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NOTES

A BOUND FOR THE DISTRIBUTION OF THE
MAXIMUM OF CONTINUOUS GAUSSIAN PROCESSES

BY MICHAEL MARCUS

Northwestern University

Let X(¢) be a real valued separable Gaussian process on [0, 1]. E{X(#)*}* < T and
E{(X(t)—X(5))*} < y(|t—s|), where y is assumed to be continuous and non-
decreasing on [0, 1]. Consider the random function ||X||,, = supo,,5|X(?)]- We
shall give an upper bound for the “tail” of the probability distribution of || X || .

The major result in this paper is a lemma that is very close to Fernique’s lemma
[1]. In fact the motivation for this work was to find a proof of this important lemma.
As far as the author knows, none has been published or is otherwise available.
Fernique’s use of the lemma is to provide sufficient conditions for the continuity of
Gaussian processes. A proof of his continuity result is given by Dudley [2]; our
proof of the lemma provides an alternate proof of this result. However, the lemma
has other significant applications, two of which will be mentioned below. The proof
in this paper was suggested by Nisio’s proof of her Theorem 1, [3]. From the
corollary to the lemma a simple proof of Nisio’s result will be obtained.

Our lemma is presented differently from Fernique’s lemma because in many cases
it yields sharper results. In the study of Holder conditions for Gaussian processes
the lemma presented in this paper enables us to improve previous results of the
author [4] obtained originally by using Fernique’s form of the lemma.

The following two conditions on the processes will be used:

(A) P ¥(e ) dx < 0;
(B) y2(h)log 1/h decreases monotonically as / decreases to zero from the right.

All processes studied will be assumed to satisfy condition (A) whereas results will be
given for the cases when condition (B) applies and when it does not apply. In [4] it is
pointed out that condition (B) is widely satisfied when (A) is satisfied. The expression
in (B) occurs in the study of uniform Holder conditions for Gaussian processes.

We now prove the lemma.

LEMMA. Let X(t) be real valued, separable Gaussian process on [0, 1]. Define Y as
above, and assume condition (A) is satisfied. Let c(p) denote n*" for n a fixed integer,
n>1;leta = (2Blogn)* where § = 2. Then

)] P{||X||, = aT +b(2B)* Y 2= Y(c(p)~ ") (log e(p))*}
< n?[*e 2 dx+G(B, n),
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where

G(B,n) = Z;o= 1 (e(p))? ,f(oCz’ﬁ log c(p) ) % e 2 du,
and b = 1if X(¢) satisfies condition (B); otherwise b = 2%,

Proor. The proof depends upon finding the proper partition of [0, 1] on which to
study the maximum of X(¢). Define D(X(#) ) as { E(X(h)*)}*. Then

X (k)]
D(X(kfn) =

21Xk
@ = Z Pr {D(X(k/ 2))—“}

-y
n? 2 e "% qu.

Pr {maxO§k<"2 IX(k/nz)' g ar} é Pl;{maxOék<"2

l/\

A

Next, define {(k, ¢, p) = | X(k/c(p) +g/c(p+1))— X(k/c(p) )| and consider

3) Pr{ {(k,q,p) ﬂf}

s 2IDE(K, 0, )] log ep+ D/a} =

fork=0,1,"-",c(p)—1;9=0,1,2,---,c(p)—1;p = 1,2,
The expression in (3) is bounded above by the following:

- -1 —u2
C)) Y=t ey ey [Bhog ot i e P du.

The expression in (4) is what we define as G(8, n); it is obvious that the bound given
in the statement of the theorem is satisfied. Also note that (4) converges for § = 2,
and furthermore it is less than 1.

Let the set of paths defined by the statement in the bracket of equation (2) be
denoted by A°(A° = complement of 4) and let the set of paths defined by the state-
ment in the bracket of equation (3) be denoted by B*.

We will now consider the paths in AnB. Let ¢ be a fixed point in [0, 1]. For each

p, choose k(p), so that

)] 0 < t—k(p)/e(p) < 1/c(p).
Note that the series

k(1) d k(p+1) B @
© <c(1)> rX <c(p+ 1)) X (C(p)>

converges absolutely on A B since on this set

) (KDY (k(p) s ( ) 3
) lX(c(p+1)> X<c( )>‘ b(2p)* ¥ ) (log c(p))
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and
£ (1 1 2t [
i ¥ E2Y/] ¥ —u?
p;w(c(p))(logdp)) < (2logn) ¢<n2>+(10gn) 2%_1L%¢(n ) du
, 28 [ 2
(®) é(log")i—.*—J Y (n™")du
2 -1,
2 [ e
=Sl LG

which converges according to condition (A). Furthermore, the series (6) converges
to X(t) almost everywhere on AnB. This follows because the series has a limit
almost everywhere on AN B and also, by hypothesis converges to Xi (t) in L? (i.e.
lim,_, , E{(X(k(p)/n(p)) — X(?) )2} = 0). Using this fact and equation (7) we see that

) |X(0)] < al+b(Q2p)* Y51 v(1/c(p) (loge(p))*

for X(r)e AnB, with the possible exception of a subset of measure zero. The
probability that equation (9) does not hold is less than or equal to the probability
that X(¢) e (4~ B)*, which is bounded by P(4°)+ P(B°).
Therefore

P{|X||., 2 aT +b2B)* Loy ¥(1/c(p) (log e(p))*}

< n? 7 72 dx+ G(B, ).

and the lemma is proven.
As a corollary we shall write this lemma in the form used by Fernique.

COROLLARY. Under the same hypotheses as the lemma,

(10) P{IIXIIwEX<F+2—22—21f W(n_“z)du>}§Cn2j e™2 du,
—1, |

where x = (4logn)*, and C = 1+ L(4logn)/(4logn—1)(2* - 1)~ .
ProoF. From (8) we see that
i 1 28 [
b(2B)* .p(—) logc(p))* < (logn)*b (2 %*—f (n™") du.
(ﬁ),,; C(p)(g(p (logm)* b (2h)* 73— 1'!/

Next we find a bound for G(B, n) as defined in (4). Since G(B,n) £ G(2,n) (recall
B = 2) we restrict our attention to G(2,r). Using the standard upper bound for the
tail of the Gaussian integral we obtain

o - © c(p)—1 q 2 | y-pi2
@m= Pgl “(p) qgo (c(p+1)> (4logn)* '

Since Y<®) 7! ¢* < [§¥ x?dx < ¢(p)*/3,

= 1 1
e L L L T . ——
@ns ) 3(dlogn)* 3@dlogn)t 25 —1

p=1
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Now, using the standard lower bound for the tail of the Gaussian integral we see

that
1 P a2 4logn
—— < “Rau| ——— ).
(410gn)% " J‘(4 logn)%‘ ¢ u<410gn—1)

Thus for a = (2flogn)*, we get from (1)
i) du]}

p{1x1. 2 epopms| 143
S Cn? [Bp1gmie ?du.

Since this equation is true for arbitrary values of f = 2itis true forany x > (4logn)*.

This observation completes the proof of the corollary.

Note that »2*%/(2* —1) is approximately equal to 3.42 for b = 1, although it is
approximately equal to 4.82 for b = 2%, The left-hand side of Fernique’s lemma is
identical to (10) except that he has a 4 in place of »2%/(2*—1). The value of this
constant is significant, at least in the applications of this lemma by the author. That
is why the lemma is useful, because in many cases the sum given in the lemma
is considerably less than the integral. Consider the case when l//(lt sl) =

1/(log([t—s|"1)* o > 1. Then

f w( ( )>(log n(p))* = (log n)* z w( )2"’2

1 1
" (logn)**2et—1’

2*1

whereas

I
J'/’(" Y = S T (ogmy

Thus, for example, if « = 9/2 the constants differ by a factor of 15/2 regardless of

the value of n.

More significant than this example is the fact that many of the upper bounds on
the local Hoélder conditions obtained in [4] using Fernique’s form of this result (the
corollary) can be reduced by factors of 2 to 4 by using the lemma.

It is also interesting to note that Nisio’s Theorem 1 follows easily from our

corollary, as we show below:

THEOREM. Let X(t) be a separable, mean continuous Gaussian process such that
E(]X (t)lz) < T and such that the function \y as defined above satisfies condition (A).

Then

x| }= .

; 3 N < 1
1) P{llm sup; ©(2Tlog )t =
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PRrOOF. Define Y, (t) = X(k+1¢),0=t < 1,k =1,2,---. Givene > 0, small enough
so that (1+¢/2)%? < 14¢ we can choose an n so that

2 (* 2
Z’}jj‘ Y(n™")du < (g/2)T.

This is possible since [ Y(n™**)du = (logn)"* [, ;s ¥(e”*") dx and condition (A)
is satisfied.
From (10) we get

(12) P{| YDl = (2(1 +&/2) log k)*(I' +¢/2I)}
<20 [Bisenyiogior e du,

The integral in (12) is a term of a convergent series in k (regardless of n). Hence by
the Borel-Cantelli lemma

- [ %]l _
P{llmsupkﬁwm% é 1+e;=1.

The theorem follows immediately.
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