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OPTIMAL CONSUMPTION AND PORTFOLIO POLICIES
WITH AN INFINITE HORIZON: EXISTENCE
AND CONVERGENCE
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We provide sufficient conditions for the existence of a solution to a
consumption and portfolio problem in continuous time under uncertainty
with an infinite horizon. When the price processes for securities are diffu-
sion processes, optimal policies can be computed by solving a linear partial
differential equation. We also provide conditions under which the solution
to an infinite horizon problem is the limit of the solutions to finite horizon
problems when the horizon increases to infinity.

1. Introduction and summary. Recent advances in the understanding
of dynamic asset markets have made available a set of new tools to analyze the
optimal consumption and portfolio decision of an individual in continuous time
under uncertainty; see Cox and Huang (1989, 1990), Karatzas, Lehoczky and
Shreve (1987), He and Pearson (1989), Pages (1989) and Pliska (1986). There
are several attractive features of these new tools. First, the existence problem
of an optimal consumption and portfolio policy for an individual can be
analyzed with much ease while the admissible policies do not take their values
in a compact set and the consumption must obey a positive constraint. Second,
when securities prices follow a diffusion process, the optimal policies can be
computed by solving a linear partial differential equation in contrast to a
highly nonlinear Bellman equation in dynamic programming. Third, in some
situations, optimal policies can even be computed directly by evaluating some
integrals.

The aforementioned papers, however, address the optimal consumption and
portfolio problem in economies with a finite horizon. The purpose of this paper
is to show how this set of new tools can be brought to bear on the same
problem in economies with an infinite horizon. Our conclusions are that,
except for some important technical departures, the existence and computation
of an optimal policy can be analyzed similarly with the same attractive features
as in finite horizon economies.

We also study the convergence of optimal policies in finite horizon economies
to those in infinite horizon economies. We show that pointwise convergence
always occurs for optimal consumption policies. But we do not know whether
this occurs for optimal portfolio policies. However, optimal portfolio policies
converge in a certain norm involving taking expectations. Thus, if the optimal
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portfolio policies for finite horizon economies do converge at all pointwise, they
must converge to the optimal policy in the infinite horizon economy. Note that
this type of convergence result is very difficult to get by using dynamic
programming.

The analysis in this paper utilizes Cox and Huang (1989, 1990) extensively,
which the reader may want to consult. Two other papers complement our
study. First, Merton (1989) uses the Cox—-Huang technique to solve, in infinite
horizon, the optimal consumption and portfolio policy in closed form for a class
of utility functions when asset prices follow a geometric Brownian motion.
Second, Foldes (1989), using a different but related technique, also analyzes
the optimal consumption and portfolio problem with an infinite horizon in a
stochastic environment more general than ours. He, however, does not give
explicit conditions for existence nor does he study convergence properties of
optimal policies.

The rest of this paper is organized as follows. Section 2 formulates the
model. The existence and computation of optimal policies are analyzed in
Section 3 and Section 4, respectively. Section 5 gives closed-form solutions for
some commonly used utility functions. Section 6 gives results on convergence
and Section 7 contains concluding remarks.

2. Formulation. We consider a securities market under uncertainty in
continuous time with an infinite horizon. We will use an N-dimensional
Brownian motion to model the evolution of exogenous uncertainty. Thus we
take the state space ) to be the space of continuous functions from [0, ») to
R Y equipped with the topology of uniform convergence on compact subinter-
vals of [0, ). The collection of distinguishable events is the Borel sigma field of
Q denoted by & and the probability belief of the agent to be considered is the
Wiener measure on (2, %) denoted by P. It is well known that under P, the
coordinate process

w(w,t) =w(t), VYocQ,

is an N-dimensional standard Brownian motion (a standard Brownian motion
is a Brownian motion that starts at zero with probability 1), where w(#) is the
value at time ¢ of the i V-valued continuous function w € (2. Since a state of
nature is a complete realization of w on the time interval [0, ©) and one learns
the true state of nature by observing w over time, we model the intertemporal
resolution of uncertainty by an increasing and right-continuous family of
subsigma fields of & or a filtration F = {¥,; t € R_}, where & = N, ,%°
and &° is the smallest sigma field generated by {w(s); 0 < s < ¢}. (Throughout
this paper we will use weak relations. For example, positive means nonnega-
tive, increasing means nondecreasing, and so on.) One can verify that &=
V.. 0%, that is, all the distinguishable events are generated by sample paths
‘of w. As a standard Brownian motion starts from zero at time ¢ = 0 with
probability 1, %, contains only subsets of # that are probability 1 or 0.
All the processes to appear will be adapted to F. In our setup, however,
adapted processes are progressively measurable; see Stroock and Varadhan
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[(1979), Exercises 1.5.6 and 1.5.11]. Since progressively measurable processes
are naturally adapted, the set of adapted processes is equivalent to the set of
progressively measurable processes. A martingale X under P here is a (pro-
gressive) process that has right-continuous paths and has continuous paths
with P probability 1 so that E[ X(s)|.%] = X(¢) for all s > ¢, where E[-|%;]is
the expectation under P conditional on %,. For any integrable random vari-
able Y on (Q, &, P), there exists a (P)-martingale X so that X(¢) = E[Y|%],
P-as.; see Jacod and Shiryaev [(1987), Remark 1.37]. All the conditional
expectations to appear will be martingales.

REMARK 1. In the above setup, the probability space (Q, &, P) is not
complete [a probability space (), &, P) is complete if any subset of a probabil-
ity zero set is an element of %] and the filtration F does not satisfy the usual
conditions. [A filtration F satisfies the usual conditions if: (i) it is right-con-
tinuous: & = A, % forall t € R ; (ii) it is complete: the probability space
(Q, &, P) is complete and %, contains all the P-measure zero sets.] This is a
departure from the earlier literature such as Cox and Huang (1989, 1990).
This departure is important for our purpose; otherwise, Proposition 1 to follow
is not valid.

We will use the following notation: If x is a matrix, then |x| = (trace(xx"))/2,
where T denotes transpose.

There are N + 1 securities traded continuously on the infinite time horizon
[0,) indexed by n = 0,1,2,..., N. Security n + 0 is risky and is represented
by a process of right-continuous and bounded variation sample paths D, with
D,(t) representing cumulative dividends paid by security n from time 0 to
time ¢. Denote the ex-dividend price of security n # 0 at time ¢ by S,(¢) and
let S(&) = (Sy@),...,Sy(@)" and D(@) = (D((#),..., Dy(t))". As these securi-
ties are traded ex-dividends, assume without loss of generality that D,(0) = 0
forall n =1,2,..., N. We assume also that S + D is an N-vector process:

(1) S(t) +D(t) = S(0) + [b(s)ds + [o(s) dw(s), teHR,,

0 0
where b and o, respectively, are N-vector and N X N-matrix predictable
processes (a process is predictable if it is measurable with respect to the

predictable sigma field, which is the sigma field generated by all adapted
processes with continuous paths) satisfying, for all n,

(2) [Mb(s)lds <,  Pas,¥iz0,
0

(3) [Ma(s)Pds <@, P-as,Vtx0
0 .

for some sequence of optional times (T},) with T, 1 P-as., and the second
integral of (1) is a stochastic integral. [The usual definition of a stochastic
integral depends on the completion of a probability space and a filtration
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satisfying the usual conditions; see, for example, Lipster and Shiryayev [(1977),
Chapter 4.] The definition of a stochastic integral here is based on Jacod and
Shiryayev [(1987), Chapter 1] and has all the usual properties. In particular,
the stochastic integral of a continuous local martingale is a continuous local
martingale and Itd’s formula is valid, where we recall that a process X is a
local martingale under P if there exists a sequence of optional times T, 1,
P-as., so that the process {X(T, A #); t € R,} is a (uniformly integral) martin-
gale for all T;,.]

We assume that o(¢) is P-a.s. of full rank for all ¢. The Oth security, called
the bond, is locally riskless. Its price at time ¢, B(¢), is exp{ [{r(s) ds}. One can
view this security as a bank account that pays an instantaneous interest rate
r(t) at time ¢. So $1 invested at time 0 grows to B(¢) at time . For B to be
well defined, we assume that the interest rate process r satisfies

(4) [ir(s)lds <@,  P-as,Vi0.
0

Now consider an agent with a time-additive utility function for consump-
tion, u(c,¢) and an initial wealth W, > 0. Assume throughout that u(c, ¢) is
continuous in (¢, ¢), concave and increasing in ¢ and is possibly unbounded
from below at ¢ = 0. This agent wants to manage a portfolio of the risky
securities and the bond and withdraw funds out of the portfolio to maximize
his expected utility of consumption over time. Our task here is to find
conditions on the utility function and on the price processes to guarantee the
existence of a solution to the agent’s problem.

We refer to the price system as the N-vector of normalized prices defined by
S*(t) = S(t)/B(¢). It6’s formula implies that

b(s) —r(s)S(s) a(s)
% t
S(t)+fB()dD(s) S(0)+f B(s) ds+fB()d(s),

Pas,teR,.

The process on the left-hand side is called the gains process and here it is
expressed in units of the bond. Putting

G(t) = S*(¢t) +[ (s )dD(s),

one sees that the difference G(¢) — S(0) represents the accumulated capital
gains and accumulated dividends on risky assets in units of the bond, where
we note that since B(0) = 1, S*(0) = S(0).

A trading strategy is a N + l-vector predictable process (a, 87) =
(a,(0%,...,0%)), where a(t) and 6™(¢) are the number of shares of the bond
and of risky asset n, respectively, owned by the investor at time ¢ before
trading. The investor’s wealth in units of the bond at time ¢ after the receipt of
dividends is

W(t) = a(t) + 0(¢)T(S*(t) + AD(t)/B(t)).
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For now, a consumption plan c is a process that is positive (except on a set
that is negligible with respect to the product measure generated by P and
Lebesgue measure on R ) with ¢(¢) denoting the consumption rate at time ¢.
A trading strategy is said to finance the consumption plan c if the following
intertemporal budget constraint holds:

t C( s ) t T

(5) fo B(s) ds + W(t) = W(0) + foo(t) dG(t), Pas,Vteh,,

provided that the stochastic integral on the right-hand side is well defined.

This equation says that, in units of the bond, the value of the portfolio at time

t is equal to its initial value plus accumulated capital gains or losses and minus

accumulated withdrawals for consumption. For the stochastic integral of (5) to

be well defined, we introduce the class .Z(G) of trading strategies (a, 6), the 6

of which satisfies

T 2

fT,. 0(s) o(s)
o | B(s)

for a sequence of optional times T, 1, P-a.s.

For the agent’s problem to be well-posed, however, it is necessary that
something cannot be created from nothing through trading using reasonable
trading strategies. This is the subject to which we now turn.

Up to now nothing was said about the existence of arbitrage opportunities.
In fact with the strategies we have defined, it is well known that such
arbitrage opportunities do exist, even in finite time; see the doubling strategy
of Harrison and Kreps (1979). Were this the case, the consumption and
portfolio choice problem would not be well posed. To rule out arbitrage
opportunities, we will impose a regularity condition on the parameters of the
price system and a natural institutional constraint that wealth cannot be
strictly negative. This constraint has been analyzed by Dybvig and Huang
(1989) and Harrison and Pliska (1981).

We make the following assumption throughout our analysis.

ds < o, P-as.,

AssuMPTION 1. Let «(¢) = —a(2)~(b(2) — r(t)S(2)). There exists a positive
constant K < « such that |«(w, )| < K for all ¢, P-a.s.

This assumption is in particular satisfied in the models originally considered

by Samuelson (1965) and Merton (1971). Now define a martingale under P
that is almost surely strictly positive:

£(0) = exp{ ['x(6) (o) ~ 1 [l(a) ds), e ..
0 ‘ 0
By Assumption 1, it is easily verified that E[£(¢)] = 1. Thus

Q.(A) = fAf(w,t)P(dw), VAe &,
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is a probability measure equivalent to P. The family of probability measures
{Q,; t € [0, )} is consistent in that @, equals @, on %, where © >s >¢ > 0.
We have the following result.

ProPOSITION 1. There exists a probability @ on (Q, F) such that its
restriction on %, is equivalent to the restriction of Pon %, for allt € R ,.
Moreover, under Q,

G(t) = S(0) + [0‘% dw*(s), te[0,®),

and thus is a local martingale (see page 39 for a definition) under @, where
w*(t) = w(t) — [{x(s)ds is an N-dimensional standard Brownian motion un-
der Q.

Proor. Define a consistent family @, on (Q2, %,) as above. Stroock [(1987),
Lemma 4.2] shows that there exists a unique @ on (Q, %) so that Q| %, = @,
for all ¢ € R .. Since Q is equivalent to P on %,, we have the first assertion.
The second assertion follows from the definition of x and Girsanov’s theorem
[see, e.g., Stroock (1987), Lemma 4.3]. O

Since P and @ are equivalent on (2, %) for any finite ¢, they are said to be
locally equivalent. On the other hand, P and @ may be mutually singular on
the o-field %, as shown in the following lemma.

LEMMA 1. The measures @ and P are mutually singular if and only if

[Slk(®)? dt = », @-a.5.

Proor. By the Radon-Nikodym theorem, there exists an extended-valued
random variable £, such that P(¢, = ) = 0 and

Q(A) =E[&I)+Q(AN{E=x}), VAeF;

see, for example, Jacod [(1979), Theorem 7.1]. For P and @ to be mutually
singular, it is necessary and sufficient that @(£, < ) = 0. But Theorem 8.19
of Jacod (1979) shows that in fact

{é. <} = {f:lk(t)l2 dt < 00}, Q-as.,

and so P and @ are mutually singular if and only if [§ lk(#)|? dt = », Q-a.s., as
desired. O

In the models of Samuelson or Merton, the process « is constant, so by the
lemma above P and @ are mutually singular. The almost surely statements
© on & can no longer be applied indifferently with respect to either probability,
as they can be in the finite horizon case. However, one can still use almost
surely with respect to both P and @ in restriction to %, for all t € R .
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LEmMA 2. Suppose (a,0) € £(G). Then the integral [{0(s)" dG(s) is an
It6 process under both P and @ and is the same process whether it is computed
relative to (F, P) or to (F, Q).

Proor. This assertion follows from Stroock [(1987), II1.4.3]. O

We are ready to show that there are no arbitrage oppportunities when the
positive wealth constraint is in force. Our proof is a direct generalization of
Dybvig and Huang [(1989), Theorem 2]. We first recall the following usual
definition of an arbitrage opportunity.

DErFINITION 1. An arbitrage opportunity is a strategy (a, 0) € .2(G) with
W(0) = 0 that finances a consumption plan ¢ that is positive and nonzero.

We need a technical lemma to proceed.

LEmMMA 3. Letc be a consumption plan. Then

C(t)f(t)
o5 ] 2| e )
where E* denotes expectation under Q.

Proor. For any finite ¢,
ft c(s) ftC(S)f(S)
B(s) B(s) ’
see Dellacherie and Meyer [(1982), VI.57]. Given that P and @ are locally
equivalent, c is positive on any finite subinterval of [0, ) under either P or Q.
Thus the integrands on both sides of the above relation are positive and

increase in ¢. Thus letting ¢ — «, by monotone convergence theorem, we have
the assertion. O

PROPOSITION 2. Let ¢ be a consumption plan (which by definition is a
positive process) financed by (a, 8) € £ (G) with W(0) = 0 and with W(t) > 0,
P-a.s. forallt € R,. Then P-almost surely, c is identically zero.

Proor. From (5) we have

t T
fB( )ds+W(t) W(0) +fo(t) dG(t), Vte®R,.
By Proposition 1 and the fact that (a, 8) € £(G), the right-hand side of the
‘above relation is a positive local martmga.le under @ since by the positive
wealth constraint, the left-hand side is positive. It is known that a positive
local martingale is a supermartingale; see, for example, Lemma 1 of Dybvig
and Huang (1989).
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By the fact that ¢ is a positive process under P and P and @ are locally
equivalent, we know c is a positive process under @ on any finite subinterval
[0, ¢]. This implies that

« ] e e(s)
E[ mdt]—}lﬂE [[B(s)

t_mE*[f B(s )d +W(t)]

< W(0) =0,
where E*[-] is the expectation under @, the first equality follows from the
monotone convergence theorem, the first inequality follows from the fact that
W(¢) > 0, P-a.s. and thus @-a.s. since P and @ are locally equivalent, and the
second inequality follows from the above mentioned supermartingale property.

Lemma 3 then implies that
B[ 20K 4]
B(t) T

Since ¢ is a strictly positive process under P, it must be the case that ¢ is
identically zero P-almost surely. O

Thus trading strategies from #(G) that satisfy the positive wealth con-

straint cannot be arbitrage opportunities.
In models of a finite horizon T such as Cox and Huang (1989, 1990), a

consumption plan ¢ is admissible if
E[fTIc(t)I" dt] <o
0

for some given p € [1, ). A direct generalization of this space to our setup by
taking T = « is unsatisfactory since it does not include consumption plans
that do not go to zero as time approaches infinity, which we do not want to
rule out a priori. We will let the space of admissible consumption plans depend
upon the impatience of the agent.

We assume that the utility function of the agent satisfies the following
additional condition.

AssumPTION 2. For all a > 0, ¢ < s, then u(a,t) > u(a, s),
(6) fmlu(a,t)l dt < «,
0

and there exists K, > 0 such that
(7N uy,.(a,t)<K,u(a,t)l, ae.teR,,
‘where u,.(a,t) denotes the right-hand partial derivative of u(a,?) with

respect to its first argument. (Right-hand derivatives of a concave function
always exist.)
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Note that the first hypothesis of Assumption 2 implies impatience, while
relation (6) requires that impatience be sufficiently strong. Relation (7) will
later be used to show that the space of admissible consumption plans to be
specified is invariant with respect to the choices of a among those a’s so that
u(a,t) > 0 for all ¢

REMARK 2. If u(c,?) = v(c)e™%* with §, > 0 for all ¢ > 0, then it satisfies
Assumption 2.

Pick some a > 0 and define a finite measure by
A(A) = [lu(a,t)ldt, VAeBR,),
A

and denote the product measure generated by P and A, by v,. Note that A, is
equivalent to Lebesgue measure since by impatience |u(a, ¢)| > 0 except possi-
bly for one ¢. Fix p €[1,). We will say that a consumption plan c is
admissible if

E[]:Ic(t)l”lu(a,t)ldt <.

The space of admissible consumption plans is the positive orthant of the space
L?(v,) = LP(Q X R,, P4, v,), where P.# denotes the progressive sigma
field. (Note that a process is progressively measurable if and only if it is
measurable with respect to the progressive sigma field.) We will denote the
positive orthant of L?(v,) by LZ(v,).

The following lemma shows that the space of admissible consumption plans
is invariant with respect to choices of a > 0 with u(a, ¢) > 0 for all ¢.

LeEMMA 4. For any strictly positive scalars, a and @ such that u(a,t) > 0
and u(a,t) > 0 forall t, LE(v,) = L2(vy).

Proor. Let ¢ € L?(v,). We can write

E[]:lc(t)lplu(a', t)l dt] < E[jjlc(t)lplu(a, 3] dt]

+ E[[ le(t)Plu(d, t) — u(a,t)ldt].
0
The first term on the right-hand side of the inequality is finite by assumption.
If we can show that the second term is finite, then ¢ € L%(v,). Assume first

that ¢ > a. We have :

, E[']:|C(t)|p|u(al’t) - u(a,t)ldt] < E[];mlc(t)l”u“(a,t)(a’ -a) dt]

<(a - a)E[f:Ic(t)I”Kalu(a,t)Idt] < o,
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where the first inequality follows from the concavity of u and the second
inequality follows from (7).
Next suppose that @' < a. Arguments identical to those above prove the

assertion by noting that
lu(a',t) —u(ae,t)l <u.(d,t)(a —a) <K,u(d,t)(a—-a)
<K,u(a,t)(a—-a).

Similar arguments prove that ¢ € L?(v,) implies ¢ € L?(v,). O

Now we are ready to specify completely the agent’s problem. He wants to
solve the following program:

s.t. W(0) = a(0)B(0) +6(0)"S(0) < W,,

(8) sup E[]; u(e(t),t) dt] c is financed by (a, 6) and ¢ € L2(v,).

(a,0)eX (@)
w®)=>0

We will say that there exists a solution to the program (8) if the value of the

program, val(W,), is finite and is attained by a consumption plan financed by
an admissible trading strategy that satisfies the positive wealth constraint.

3. Existence of an optimal policy. We provide in this section sufficient
conditions for the existence of a solution to (8). Our technique follows Cox and
Huang (1990). We first transform the dynamic maximization problem into a
static variational problem whose solution is well understood. The solution of
the static problem is then implemented with a dynamic trading strategy
uncovered by a martingale representation theorem.

Consider the following static variational problem:

=c(8)€(8) )
9 sup E[ u(ce(t tdt s.t [ <W,.
® s [ ule(®), ) |, =B o
We first show that the dynamic program (8) is equivalent to the static
variational program of (9).

PROPOSITION 3. ¢ is a feasible consumption plan in (8) if and only if it is
one in (9).

Proor. Let ¢ € L?(v,) be financed by (a, 8) € £(G) satisfying the positive
wealth constraint and with W(0) < W,. From the proof of Proposition 2 we
know that

jB( )d + W(t) = W(0) +fo(t) dG(t), Vt>0,Pas.,

is a supermartingale under @. Thus

E*[[ B(s )d +W(t)] <W(@0), VieR,.
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Because W(¢) > 0 and c(¢) > 0 under P, by the local equivalence of P and @,
we know

E*[[Ot;((ss)) ds] <W(), Vte®,,

and

[[ B t] < W(0),

where the monotone convergence theorem is used for the second inequality. It
then follows from Lemma 3 that

[[mc(B)(f() ) d ] < W(0) < W,.

Thus c is feasible in (9).
Conversely, let ¢ € L2(v,) be feasible in (9). Lemma 3 implies that

[f —B(—t)dt] < WO'
Thus

c(t) L
j 10 ——dte LN(Q, F,Q).
Since all P-local martingales have the representation property relative to w
(see Jacod and Shiryayev, Theorem II1.4.33) and since @ and P are locally
equivalent, all @-local martingales also have the representation property rela-
tive to w* (Jacod and Shiryayev, Theorem III.5.24). Hence there exists an
N-vector process p and a sequence of optional times (7,) with lim T, 1« @-a.s.
so that for all T,

]‘T"Ip(s)l2 ds < «, Q-as.,
0

and
E*[ - ols) dslé’z'] [f c(s) s] +ftp(s)wa*(s) teR,, Qas.
o B(s) ‘ 0 0 ’ i
Let 8(2)" = B(1)p()'o(£) 7,
(10) W(t) =E*[fw (s) dslg'] >0, V¢, Pas.
¢ B(s) ¢ ’ g ’
and

! a(t) = W(t) - 0(2)"(S*(¢) + AD(2)/B(t)).

Since ¢ > 0 under P, W) >0, @ and P-a.s. Since @ and P are locally
equivalent, T, 1o, P-a.s. Hence (a, 6) € -Z(G). Also by construction and the
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local equivalence of P and @, we have

W(o) + [ ds = a(0) + 00)'S(0) + ['0(s) dG(s), Pas.t e,

That is, («, 8) finances c. Finally, it is easily seen that W(0) < W,,. Thus ¢ is
feasible in (8). O

We record an immediate corollary of Proposition 3.

COROLLARY 1. c is a solution to (8) if and only if it is a solution to (9).

Given this corollary we can then concentrate on (9). Note that since (8) and
(9) are equivalent, we will also use val(W,) to denote the value of (9).

We first provide conditions under which val(W,) is finite.

ProPOSITION 4. Suppose that:

(i) For almost all t, u(c,t) is unbounded from above in c and there exists
B1 =0, B, >0 andb €(0,1) such that

(11) u(e,t) < Iu(a,t)I(B1 + lﬁ_zb c'?=1)|, ae.t;
and
(12) (—%)_ lu(a,t) € LP/%(v,).

(ii) Also suppose that, if u(c,t) is unbounded from below at the origin on a
set A of t with strictly positive Lebesgue measure,

3
(13) E[ fA % dt
Then val(W,) is finite.

Proor. We first show that val(W,) < ». When the utility function is
lu(a, OI(B; + (By/(1 — b)c!~% — 1)) with b € (0, 1), there exists a solution ¢
to (9) only if there exists y > 0 so that

-1/b ¢ -1/b
c(t) = (;2) (_z((_t))) Iu(al,t)ll/b.

Relation (12) ensures that ¢ € L%(v,). For ¢ to actually be a solution, it must
also satisfy the budget constraint and yield a finite expected utility. For the
former it is necessary and sufficient that

=c(8)é(2) )
2l

CB(t) <%
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for then vy can be chosen to exhaust the initial wealth. Putting p = p/(1 — b) >
pand 1/p + 1/§ = 1, Holder’s inequality implies

°°c(t)g(t)
el G
“1 . 1-(1/b)
=(l) E[/ (ﬂ)_) Iu(a,t)l_H(l/b)d/\a(t)}
0

B2 B(t)
-1/b -p/b

<[] (53] e onco

1/4

X (j:lu(a,t)ldt) <00,

where the last inequality follows (12) and Assumption 2. Finally, we have to
verify that the expected utility is finite. For this we note that

E[ ]:c(t)l_blu(a,t)ldt] [ [ "(;)(i()t ) g ]

4
< —Wy <o,
B2

1/p

Thus val(W;) < « by (11).

Next we take two cases. Suppose first that u(c, ) is bounded from below for
a.e. t. Then val(W,) > — and thus val(W,) is finite. Otherwise, suppose that
© is unbounded from below at the origin on a set A of ¢. Let

_ £(2)
k=E[ B(t)d]

By (13), k is finite. Thus

W,
210a(0,8) >0, Vot

c(w,t) = 7

is a feasible consumption plan. Thus
val(Wo) = [ u(Wo/k,t) dt > —eo,
A
where the inequality follows fl;bm Assumption 2. O

Note that, in (11), if b > 1, then u(c,?) < |u(a, t)|B;. Thus the expected
utility is always strictly less than + . ‘
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Now our remaining task is to give conditions under which val(W,) is
attained. We will utilize Cox and Huang (1990) by rewriting (9) as follows:

cu(e(t),t)
C;ngmE[fo u(a, 0l (”]

(14)

OHON
lf BOh(a. ] d/\a(t)] <W,.

In (14), both the objective functional of the maximization program and the
space of feasible objects are defined on a measurable space (O X R, P.A)
with a finite measure v,. This fits into the framework of Cox and Huang

(1990).
Here is our first existence theorem:

THEOREM 1. Under the conditions of Proposition 4, there exists a solution
to (14).

Proor. The assertion follows from Cox and Huang [(1990), Theorem 4.1]
by noting that @ and P are locally equivalent. O

The next theorem is for the case where the utility function is bounded from
above by a multiple of |u(a, ¢)I.
THEOREM 2. Suppose that:
() ule,t) < Klu(a,t)| for a.e. t;
(ii)
(15) (¢/B) Ylu(a,t)l € L?(v,); and

(iii) (13) holds when u(c,t) is unbounded from below at the origin on a set
A of t with strictly positive Lebesgue measure.

Then there exists a solution to (14).

Proor. By the first hypothesis, we know that

u(c,t)
—— <K, Yc,a.e.t.
lu(a,t)l
Given (13) and (15), the assertion follows from a (trivial) generalization of Cox
and Huang [(1990), Theorem 4.2] by noting that P and @ are locally equiva-
lent. O

Before leaving this section, we give in the following two corollaries sets of
explicit conditions on the parameters of prices for (12), (13) and (15) to be
valid.
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CoROLLARY 2. Suppose that there exists 0 < F < © so that 0 <r(t) <F,
P-g.s. for a.e. t and there exists © > T > 0, € > 0, such that

Inlu(e,t)l p _ D
_—— T > K24
t 2bK b+p

(16) Fte, Vitx>T.

Then (12) is valid. When (16) holds with b = 1, (15) is valid.

Proor. Note that

-p/b
(&) Iu(a,t)l(p/b)+1]

BN\ B

a P martingale

=

=E exp{—g OtK(s)wa(s) - %fotlk(s)l2 ds}

Xexp{—zl%(% + 1)1‘{'% + %fotr(s) ds + (1 + %)lnlu(a,t)l}

< exp{(%(% + 1)1?2 + %7 + (1 + %)M)t}.

Given that

Inlu(a,t)| _
___(__)_>_11.K2+ p

F o+ VisT,
: 26 bip O =

Fubini’s theorem then implies that (12) is valid.
Identical arguments proves the second assertion when b = 1. O

COROLLARY 3. Suppose that the set A of (13) is of finite Lebesgue measure.
Then if r(t) > 0, (13) is always valid. Otherwise, if there exists 0 < r so that
r <r(t) P-a.s. for a.e. t, then (13) is valid.

ProoF. Suppose first that A is of finite Lebesgue measure. We note that ¢
is a martingale under P with unity expectation. Since B(¢) > 1,

e

Fubini’s theorem implies that (13) is valid.
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Next suppose that A is of infinite measure. The hypothesis of this corollary

yields
o

Fubini’s theorem again implies that (13) is valid. O

When the utility function is not unbounded from below, for existence, it
suffices that the interest rate does not become unbounded and the utility
function significantly discounts the future asymptotically. Otherwise, the agent
may find it advantageous to keep accumulating his wealth and postpone
consumption until ¢ = ». When the utility function is unbounded from below
at the origin, we will further require that the interest rate does not become too
low so that it may become infeasible to maintain a certain level of minimum
consumption over time and thus the expected utility may become — oo,

4. Computation of optimal policies. This section is devoted to the
computation of optimal policies. The idea follows that of Cox and Huang
(1989) and thus we will be brief. The main result reported here is a verification
theorem of optimal policies. We will show that if there exists a solution to a
second order linear parabolic partial differential equation and if the solution
satisfies certain conditions, then the optimal trading strategy in the form of
feedback controls can be computed by taking derivatives of the solution.

For the purpose of this section, we will assume that u(c,t) is strict-
ly concave in c¢. Then define the inverse of the marginal utility function
f(x=1,¢) =inflc € R,: u,, (c,t) <x~!), where u,, denotes the right-hand
partial derivative of u with respect to c. By the strict concavity of u(c, ) in c,
it is easily seen that f(x~,¢) is continuous in x.

We assume throughout this section that f satisfies a growth condition:

f(x~',t) <K(lu(a, t)|"/°%x/®  for some strictly positive constants K and b,

and (12) holds if b € (0,1) and (15) holds if b > 1. Moreover, if « is un-
bounded from below at the origin, (13) holds. Under these conditions, it is
easily verified that the conditions of either Theorem 1 or Theorem 2 hold and
there exists a solution to (14).

The object of computation here is the value over time of future optimal
consumption. From (10) we know this value in units of the bond is

wo-el

if ¢ is the optimal consumption. Thus F(t) = W(¢)B(¢) is the present value of
future optimal consumption. Under some conditions, F can be computed by
solving a partial differential equation and optimal trading strategies are re-
lated to the derivatives of F.

if)
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Before proceeding, we record in the following proposition the first order
condition for optimality, which is the cornerstone for the construction of an
optimal policy.

PropPosITION 5. Under conditions of this section, there exists a solution to
(14) if and only if there exists a A > 0 so that

(17) c(t) =f(M t) eL?(v,)
B(t)’ e
and
[ f°° c(t)é(¢ )
B(t)
Proor. The only if part follows from the saddle-point theorem and

Rockafellar (1975). The if part follows from the definition of f and concavity
of uine O

| = w,

For the purpose of computation, we specialize our model of securities prices
as follows. Assume that S satisfies the stochastic integral equation

S(t) =8(0) + fof(b(S(s),s) ~ d(8(s),s)) ds
(18)
+j’tg-(S(s),s)dw(s), £>0,
0

where d(S(#), t) is the N-vector dividend rate at time ¢ when the risky asset
prices are S(#). Assume further that r(¢) can be written as r(S(2),¢). Thus
k(¢) can also be written as «(S(2), ¢).

Next define a process

Z(t) = 2(0) + [(r(S(s),5) + k(S(5),5)*)Z(5) ds
(19) o
—/OK(S(s),s)TZ(s) dw(s)

for some constant Z(0) > 0. Using It6’s lemma, it is easily verified that

90 2(t Z(0)B(¢)
(20) A OYIOR
As pointed out by Cox and Huang (1989), (log Z(T) — log Z(0))/T is the
realized continuously compounded growth rate from time 0 to time T of the
growth—optimal portfolio—the portfolio that maximizes the expected continu-
ously compounded growth rate. ‘
Now write (18) and (19) compactly together under @:

S(t)) _ (S(O,)) [[€(5(5).2(5),9) ds
5 (Z(t) Z(0)
+/;t&(s(s), Z(s), s) dw*(s),
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where we note that

s - (0580556507,

(T S ,Z )
G(S(2), 2(1), 1) = ( —é(t()t:T(S((tZ) tt)) ) '

Assume throughout this section that { and ¢ satisfy a local Lipschitz and a
uniform linear growth condition on any finite time interval [0, T'].

[The functions { and & satisfy a local Lipschitz condition on every [0, T']
with T < = if for every T > 0 and M > 0, there is a strictly positive constant
K such that for all y,z € RN X (0,) with |yl <M and |2 <M and all
te[0,T],

MA(y,t) - {A(z’ t)l =< KTMIy _zl, |6'(y’t) - é(z’t)l < KTL'{Iy - Zl.

These functions satisfy a uniform growth condition on every [0, T] with T' <
if for every T > 0, there exists a strictly positive constant K such that, for all
x € RNV X (0,) and ¢ €[0,T],

0(x,8) < Kp(L + Ixl),  16(x,8)l < Kp(1 + lxl).]

Thus there exists a unique solution to (21) and (S, Z) has the strong Markov
property under @ and thus is a diffusion process under Q.
The following notation will be utilized:

m my+mg+ - m
bl gmitme N

D" = = ;
y aym ay{'h [N ameN
for positive integers m,m,,...,my. If g@ ®Y X [0,T]1 > R has partial
derivatives with respect to its first N arguments, the vector (dg/dy,...,
dg/dyx)" is denoted by D, g or g,.
Here is the main theorem of this section:

m=m;+ " +my,

THEOREM 3. Suppose that:

(i) There exists a function F: (0,0) X RN x [0,0) > R, such that
DF,"(y,t) and F(y, t) are continuous for m < 2, F is a solution to the partial
differential equation

SF(Z,8,t) - r(S,6)F(Z,8,t) + F(Z,8,t) +f(Z™1,£) = 0
with the boundary condition
F(Z(T),S(T),T)|
N _
B T BT
where 7 is the differential of (Z,8S) under Q [-£F = jtr(Fsgoo") +

1F,,Z2k|? + Fgzox + Fs(rS — f) + FzrZ); and, for all T > 0, F satisfies a
uniform growth condition on every [0,T] with T <, that is, there exist

2
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strictly positive constants KT and y” so that, for all t €[0,T],
IF(y, ) <KT(1+ ") Vye(0,0) x R,
(ii) Also suppose that there exists Z, such that F(Z,, S(0),0) = W,.

Then the optimal consumption and portfolio policies are
c(t) =f(2(t)7",t), wva.e,

o(t) = | Fo(2(), 8(8),2) + [o(8(2), ) o(8(),0)"] "
(22)
x[b(S(t),t) — r(S(t),t)S(t)]Z(t)FZ(Z(t),S(t),t)], v,-a.e.,

a(t) = [F(Z(¢t), 5(t),t) — 0(¢)'S(¢)| /B(¢),  v,a.e.,
where we have put Z(0) = Z,,.

Proor. Using the growth condition on f and F and the fact that F
satisfies the partial differential equation, Cox and Huang [(1989), Theorem 2.3]
implies that, for every ¢,

/]

F(Z(t),S8(¢),t) . rf(Z(s)7',s) F(Z(T),S(T),T)
B(?) —E [f, B(s) & B(T)

|

where we have used the monotone convergence theorem. Thus F gives the
value of f(Z~1,¢) over time. By the hypothesis, Z(0) = Z,,, thus

_ F(2(0),5(0,0) _ ., fwf(Z(t)'l,t)
0 B(0) o  B(2)

This shows that c(¢t) = f(Z(¢)™!, t) exhausts the initial wealth. If we can show
that ¢ € L?(v,), then by Proposition 5, ¢ is a solution to (14). By the growth
condition on £, (12) and (15), one quickly verifies that ¢ € L”(v,) and thusis a
solution to (14). The fact that the trading strategy that finances ¢ is as
described in (22) follows from identical arguments on Cox and Huang [(1989),
Theorem 2.2]. O

Let T — « and use the boundary condition to get

F(Z(1), (1)) _ . fwf(Z(S)_l,S)

B(7) B(s) =

dt

5. A special case. We now specialize the market model developed in the
earlier sections and consider the model with constant coefficients examined by
,Merton (1971) and revisited recently by Karatzas, Lehoczky and Shreve (1987).
In this case explicit formulas for the optimal consumption and portfolio
policies can be computed just as in Cox and Huang (1990). The method does
not use stochastic control and takes care in a natural way of the nonnegative
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constraint on consumption. We illustrate our results with two examples taken
from the family of constant absolute risk aversion and HARA utility functions.

We shall use the following specialization. The risky securities follow a
geometric Brownian motion,

S(2) = S(0) + jO’(IS(s)b —d(S(s),s))ds + jotzs(s)o dw(s), t>0,

where b is an n-vector of constants, ¢ an n X n nonsingular matrix of
constants and Ig,, an n X n diagonal matrix having S;(¢) in the (i,i)th
position. We furthermore assume that r is constant and write r for an
n-vector of r’s and k for the constant vector —o~ (b — r).

Given some initial data 2z, define ¢ as

8() - B [z )]s 270 -
0
Assuming u(c, t) = v(c)e # (cf. Remark 2), we can write alternatively
#(2) = E*[fwe"‘g(eﬂtZ(t)‘l) dt]; Z7Y(0) =2,
0

where g is the inverse of the time-independent marginal utility function

v,.(c).
Since it is easily verified that

ePZ(t) ' = zexp{KTw*(t) + (B —r+Ixl?/2)t},

one sees that the function F of Section 4 can be identified as F(z,¢) =
¢(eP?z271). Under @, eP’Z(t)~! is lognormally distributed with mean log z +
(B — r + 0?/2)t and variance o, where o is the square root of |k|>. It follows
that

et 1 o [x—logz—(B—r+0%/2)¢
#(2) = fo f_me -é—)—‘/;_—g(e )n( oTE )dtdx,

where n stands for the standard normal density function. This yields

+og(e*) o e " x—logz— (B —r+0%/2)t 2
#(z) = f_w 0 j; ‘/2—7—texp(— ( 20% ) dtdx
_(re8le) B(x — log z)
- oV2m T o’

© x—logz\’1 a% drd
Xj;)t exp|( — _—Q\@ 7 3 Xy
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where we have put 8 =8 — r + 0?/2 and a? = 2r + 2/0?,

=f+co2g(e")e B(x —logz) ||x —log z 1/2K x — log z s
o Q\/2_'rr P 92 oa 172 Qa_l ’

where K, ,, is associated with a Bessel function and takes here the particular
form K, ,(x) = ym/2xe™* see Gradshteyn and Ryzhik [(1979), pages 340
and 967]. We then evaluate the last integral to obtain the formula

_ 1 * —u)e~Hu ® u —y,'ud
¢(2) = 501—['/(; g(ze™%)e u+f0g(ze )e u],

where
B«
/'L=—_§+—’
[ 0
B«
W=—-=+—
o o

are both positive. Using the formula above, it is then easy to compute ¢ for a
wide range of utility functions. Note that when utility has a finite marginal
utility at zero, optimal consumption may involve zero consumption. Indeed,
¢, = 0 if and only if v,,(0) < eP’Z(¢)~ %, that is, if and only if nominal wealth
e"*W(2) is less than the deterministic time-independent boundary given by

1 o ’
W= ¢(vc+(0)) = _f [g(vc+(o)e—u)e—;bu + g(vc+(0)eu)e—p.u] du‘
ea’o
We now give two examples.

ExampLE 1. Utility functions of constant absolute risk aversion. Let the
time-independent utility function be

v(x) = — Ee"”‘,

where 6 > 0 is the coefficient of absolute risk aversion. In this case, we find

1 +
g(x) = [—Elogx]

and so
—uy _ | —(1/0)(logz —u), ifu=loge,
g(z™) {O, otherwise,
. and similarly for g(ze*). Straightforward computations show that if z > 1,
I'(2,ulogz -
b(z) = “BomloBD)

oafu? oadu’
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and that if 2 < 1,
1 log 2z log 2z ,
- -
oabu  Qabu

where y and T are the incomplete gamma functions

y(2,1 log z7 1)
Qaﬂpfz

)

X
y(a,x) = /(;e_tt"_ldt,

(e, x) = f:e‘tt"“ldt.

It is easily checked that F is twice continuously differentiable and that F — 0
as z — » and F — » as z — 0. The vector of optimal dollar amounts invested

in the stocks is given by

—But

A, = Ig,)0(t) = Z(t)"(o0")(b — 1)

oabu
if Z(¢) < eP* and by
1

A, = +
‘ loabp  oaby

(1 —ePHiZ(t) _”’)](O'O'T)(b -r)
if Z(¢) > e”.

ExampLE 2. HARA utility functions. Let v be in turn
50
v(x) = —— +1
(x) S 125
with p > 0,7 > 0, y <1 and y # 0. In the first condition of Proposition 4, it
suffices to take b = 1 — y when vy > 0. In this case one finds

g(x) = i[(f)_l/l_y - 17]+

P p
Computations whose length is the sole difficulty give
1 l/z\7*
= —| — 1-p(1-7v)
z2) = n
(2) oap(p —1)/(L—y) p (p)

when z > pn~@~" =y, (0) and

’

_ —1/1- _ 7
#(2) = ! ,7(_2_) 71 7,7+ 1 : l(i) 2
ps \p pr eap (W +1)/(1=-y) p\p

when z < v, (0), where

. 1 0?
é= 1_y([3—y(r+—2(1_7))).
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The inequalities § > 0, u > 1/(1 —y) and & > —1/(1 — y) all result from
B> yr+ (y/1 — y)?/2 which itself follows from condition (16) of Corol-
lary 2.

The case n = 0 is the one that is usually taken in the approach of dynamic
programming, for this is the one for which the Bellman equation can be solved
quite explicitly. This yields the simpler expression

BT
#(2) 25 \p ;

from which one derives ¢, = §W,e”. It is clear that except in the degenerate
case 1 = 0, the optimal consumption and portfolio policies are not linear
functions of wealth, because of the nonnegativity constraint on consumption.
When z > v,,(0), we have z¢'(z) = —u¢(z). Hence when nominal wealth
e W, falls below the nonstochastic boundary W, consumption is zero and the
optimal dollar investment in the stocks is proportional to wealth with

A, = pe"W(oa™) (b - ).

When z < v,,(0), that is, when nominal wealth is above W, optimal policy is no
longer linear. As z approaches zero, however, which corresponds to large
values of wealth, the optimal consumption and investment policies are almost
the linear functions of wealth given in Merton (1971).

6. Convergence of finite horizon to infinite horizon solutions. We
study two convergence problems in this section. First we show that the
optimal consumption policy in an infinite horizon economy, if one indeed
exists, is a pointwise limit of those in corresponding finite horizon economies.
Second, under some regularity conditions, the optimal portfolio policy in an
infinite horizon economy is the limit, with respect to a norm, of the optimal
policies of the corresponding finite horizon economies. Thus, there exists a
subsequence of the latter that converges pointwise to the former. It follows
that if the latter converges pointwise at all, the pointwise limit must be equal
to the former almost everywhere.

The convergence results reported here are useful in two respects. First, for
the class of models where closed-form solutions exist for finite horizon
economies, we know conditions under which the optimal policy in infinite
horizon can be gotten by letting 7' — « in the finite horizon policies. Second,
in the numerical computation of the optimal policy for the infinite horizon
problem, the horizon will have to be truncated. It is therefore imperative to
know conditions under which the solutions to finite horizon problems are
© approximations to that to an infinite horizon problem.

. Assume until further notice that the conditions of Theorem 1 or Theorem 2
hold and thus there exists a solution to (14), denoted by c*. Also assume that
the utility function is strictly concave in consumption and thus the optimal
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consumption plan is unique. Consider a class of finite horizon problems:

ru(e(t),t)
sup E[/(; mdAa(t)]

ceLl?(v,; T)
R OHON
[[ B(t)lu( dAa(t):l =< WO’

where we have used L2(v,;T) to denote the positive orthant of the space of
processes ¢ such that

(23)

E[fOTIc(t)IP d/\a(t)] < .

It is clear that under the conditions of Theorem 1 or Theorem 2, there
exists a unique optimal consumption policy of (23), denoted by c?. The
following theorem shows that ¢” — c¢*, v,-a.e., as T — «. Thus, if we know the
functional expression of c¢”, which naturally depends on T, we will get the
optimal consumption policy for the infinite horizon case by simply letting
T — .

We first record a lemma.

LEmMma 5. Let Ay be such that cT(t) = f(Ap£(1)/B(),t) v,-a.e. Then

Proor. Suppose otherwise that A, < Ap. By the strict concavity of u in c,
we know that f is strictly decreasing when it is nonzero. This implies that

_ gl (rED (M) /B(0)), 1)
Wo=E _fo B(?) ]

ng(t)f((ATff(t)/B(t)) t)
o B(?)

lef(t) f((Aré()/B(®)).1)
/o B (t) )
We claim that the first inequality in the above relation must be a strict

inequality and hence ¢’ violates the budget constraint for the finite horizon
problem with horizon [0, T'] and constitutes a violation. Now suppose that

r£(2) f((Ar€(2)/B(2)), t) ré(8) f((Ar-£(t) /B(2)), t)
E fo B(%) ] E[fo B(?) ]

This, necess1tates that on [0, T'], ¢¥ = 0, v,-a.e. This clearly contradicts the fact
that ¢7 is an optimal solution to (23). O

<E

<E

Now let A* be such that c*(¢) = f((A*¢(¢)/B(2)), t), v,-a.e.
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THEOREM 4. limy_, Ay = A* and cT - c*, v,-a.e.

Proor. Once we can show that A; — A* as T — «, the second assertion
follows from the fact that f is continuous in its first argument by the strict
concavity of u in c.

By Lemma 5, there exists a limit

A= lim A
T->x T
We claim that A = A*. :

We take two cases. Suppose first that A > A*. Then there exists T < © such
that A, > A*. Arguments identical to those used in the proof of Lemma 5 prove
that

= £(t) f((X*E(2)/B(2)),t)
W, < E[ / 10 dt},
which is a contradiction.

Next suppose that A < A*. Pick A € (X, A*). Arguments identical to those
used in the proof of Lemma 5 show that

W, = E[ [rEONCaEO)/B0) ) dt]
0

B(t)

>E dt

/Tf(t) f((Re(t)/B(1))¢)
0 B(¢) ‘

Letting T — « on the right-hand side of the second inequality gives
fwf(t)f((Aﬁ(t)/B(t)) t) &
0 B(t)
=£(2) F((X*€(2)/B(¢)), t)
> E[fo 0

If the second inequality above is an equality, then it must be that ¢* = 0,
v,-a.e., which is clearly suboptimal. Thus the inequality must be a strict
inequality and it leads to a contradiction. O

, vVT>0.

Wo= E

| -,

Next we turn our attention to the convergence of trading strategies. For
this we restrict our attention to the case where p > 2 and make the following
assumption.

AssumpTiON 3. (i) If u satisfies the conditions of Theorem 1, then

HONNS s
(24) fg() B0 lu(a, £)7® dr(t) | < .
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(ii) If u satisfies the conditions of Theorem 2, then

f §(t)( £) ) lu(a,t)? dAa(t)] < o,

(25) B(?)

We record below a useful technical lemma.

LEMMA 6. Let ¢ be the solution to (14) financed by (a,0) € -£(G). Then,

under Assumption 3,
o c(t)
7|5

0(t) (t)
T B(t)

and

dt| <o

4

Proor. Using the fact that P and @ are locally equivalent, the first
assertion follows from similar arguments of Cox and Huang [(1990), Theorem
4.1].

From the proof of Proposition 3, we know that

o e Jee® L], @)
§ [f B(s) ] w By ]+ L e,

Vit>0,Q-as.

The left-hand side is a square-integrable martingale under . Thus Jacod
(1979, 2.48) shows that the second assertion of this lemma is valid. O

Now we present our results of convergence of trading strategies. We will
show the convergence of trading strategies in a metric involving taking expec-
tation under Q.

THEOREM 5. Let (a, ) and (ar,07) be the trading strategies that finance
c* and c7, respectively. Then

lim dt|=0.

T—o

[ A 6 - 6o ) [
=), B(7)
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Proor. Note first that c¢7(t) = f((Ap£(8)/B@)), )1y r(#), ¢ >0, and
c*(t) = f((X*&(8)/B(t)), t) = 0. The triangle inequality implies

(E*[f:lc*(t) — T(2)2 dt])1/2
dt])w
(Mf(t) ) _f(/\Tg(t)

S(E*/ f( NE(2) t) f( PE(2) )
2 1/2
2\ B Tt)’t)l“"“(t) dt}) |

B(t) ’ B(t) °
Recall from Lemma 5 that A, is an increasing function of T and from
Theorem 4 that A* = lim,_,, Ap. Thus both

XE(H) ArE(t) |\ [
sart) =156

and
2

)tTé:(t) )‘Tg(t)
f B(t) ’t) _f(wﬂf) {t<T}

decrease to zero v,-a.e. and the Lebesgue convergence theorem yields that
J

2 1/2
d” “o.
The assertion then follows from the fact that

) -0 ]| ] 0 — o) e [
8w | “|= %)

B(t) B(?)

Theorem 5 is not enough for us to conclude that the optimal trading
strategy for the infinite horizon case can be gotten by letting T — « in the
optimal strategies for the finite horizon cases as we need almost everywhere
convergence for this. The following theorem gives a sufficient condition for this
operation to be valid.

o

c*(t) —c"(?)

3 *
lim | E B()

T—>»

E* dt dt|. O

THEOREM 6. Let (a,6) and (ar,07) be the trading strategies that finance
c* and c7, respectively. Suppose that limj_, ., 05(¢) exists v,a.e.; then
limg ., 0,(¢) = 6(2), v,-a.e. :

~ Proor. First recall that 8 — 6 in the sense of Theorem 5. Chung [(1974),
Thebrems 4.1.4 and 4.2.3] implies that there exists a subsequence {T},} with

T, tesothat 6, — 6, v,-a.e.as n — «. Given the hypothesis that limg._, ., 6(¢)
exists v,-a.e., it follows that lim_,, 0,(¢) = 6(¢), v,-a.e. O
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In words, if the optimal portfolio policies for finite horizon economies do
converge pointwise, they must then converge to the optimal policy for the
infinite horizon economy.

7. Concluding remarks. We have assumed throughout this paper that
there are as many linearly independent risky securities as the dimension of the
underlying uncertainty, or, markets are dynamically complete. When markets
are dynamically incomplete, it is straightforward to borrow from He and
Pearson (1989) and show that when prices of securities together with some
other processes follow a diffusion process, then the optimal policy can be
computed by solving a quasilinear partial differential equation, and, in addi-
tion, a general existence theorem is available for the case where the coefficient
of the Arrow—Pratt measure of the relative risk aversion [see Arrow (1970) and
Pratt (1964)] of the individual’s utility function is less than 1.
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