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Abstract

We study the optimal control problem for Rd-valued absolutely continuous stochastic processes
with given marginal distributions at every time. When d = 1, we show the existence and the
uniqueness of a minimizer which is a function of a time and an initial point. When d > 1,
we show that a minimizer exists and that minimizers satisfy the same ordinary differential
equation.

1 Introduction

Monge-Kantorovich problem (MKP for short) plays a crucial role in many fields and has been
studied by many authors (see [2, 3, 7, 10, 12, 20] and the references therein).
Let h : Rd 7→ [0,∞) be convex, and Q0 and Q1 be Borel probability measures on Rd, and put

µh(Q0, Q1) := inf E[

∫ 1

0

h

(

dφ(t)

dt

)

dt], (1.1)

where the infimum is taken over all absolutely continuous stochastic processes {φ(t)}0≤t≤1

for which Pφ(t)−1 = Qt(t = 0, 1). (In this paper we use the same notation P for different
probability measures, for the sake of simplicity, when it is not confusing.)
As a special case of MKPs, we introduce the following problem (see e.g. [2, 3] and also [18]).

Does there exist a minimizer {φo(t)}0≤t≤1, of (1.1), which is a function of t and φo(0)?

Suppose that there exist p ∈ L1([0, 1]×Rd : R, dtdx) and b(t, x) ∈ L1([0, 1]×Rd : Rd, p(t, x)dtdx)
such that the following holds: for any f ∈ C∞o (Rd) and any t ∈ [0, 1],

∫

Rd

f(x)(p(t, x)− p(0, x))dx =

∫ t

0

ds

∫

Rd

< ∇f(x), b(s, x) > p(s, x)dx,
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p(t, x) ≥ 0 dx− a.e.,

∫

Rd

p(t, x)dx = 1. (1.2)

Here < ·, · > denotes the inner product in Rd and ∇f(x) := (∂f(x)/∂xi)
d
i=1.

Put, for n ≥ 1,

en := inf{E[

∫ 1

0

h

(

dY (t)

dt

)

dt] : {Y (t)}0≤t≤1 ∈ An}, (1.3)

where An is the set of all absolutely continuous stochastic processes {Y (t)}0≤t≤1 for which
P (Y (t) ∈ dx) = p(t, x)dx for all t = 0, 1/n, · · · , 1.
Then the minimizer of en can be constructed by those of

µh(n·)
n

(

p

(

k

n
, x

)

dx, p

(

k + 1

n
, x

)

dx

)

(k = 0, · · · , n− 1)

(see (1.1) for notation). As n→∞, en formally converges to

e := inf{E[

∫ 1

0

h

(

dY (t)

dt

)

dt] : {Y (t)}0≤t≤1 ∈ A}, (1.4)

where A is the set of all absolutely continuous stochastic processes {Y (t)}0≤t≤1 for which
P (Y (t) ∈ dx) = p(t, x)dx for all t ∈ [0, 1].
In this sense, the minimizer of e can be considered as the continuum limit of those of en as
n→∞.
In this paper, instead of h(u), we would like to consider more general function L(t, x;u) :
[0, 1]×Rd ×Rd 7→ [0,∞) which is convex in u, and study the minimizers of

e0 := inf{E[

∫ 1

0

L

(

t, Y (t);
dY (t)

dt

)

dt] : {Y (t)}0≤t≤1 ∈ A}. (1.5)

Remark 1 It is easy to see that the set An is not empty, but it is not trivial to show that the
set A is not empty if b in (1.2) is not smooth. As a similar problem, that of the construction
of a Markov diffusion process {X(t)}0≤t≤1 such that PX(t)−1 satisfies a given Fokker-Planck
equation with nonsmooth coefficients is known and has been studied by many authors (see [4],
[5], [15], [19] and the references therein).

We would also like to point out that (1.1) and (1.5) can be formally considered as the zero-
noise limits of h-path processes and variational processes, respectively, when h = L = |u|2 (see
[8] and [15], respectively).
More generally, we have the following.
Let (Ω,B, P ) be a probability space, and {Bt}t≥0 be a right continuous, increasing family of
sub σ-fields of B, and Xo be a Rd-valued, B0-adapted random variable such that PX−1

o (dx) =
p(0, x)dx, and {W (t)}t≥0 denote a d-dimensional (Bt)-Wiener process (see e.g. [11] or [13]).
For ε > 0 and a Rd-valued (Bt)-progressively measurable {u(t)}0≤t≤1, put

Xε,u(t) := Xo +

∫ t

0

u(s)ds+ εW (t) (t ∈ [0, 1]). (1.6)

Put also
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eε := inf{E[

∫ 1

0

L(t,Xε,u(t);u(t))dt] : {u(t)}0≤t≤1 ∈ A
ε} (ε > 0), (1.7)

where Aε := {{u(t)}0≤t≤1 : P (Xε,u(t) ∈ dx) = p(t, x)dx(0 ≤ t ≤ 1)}; and

ẽε := inf{

∫ 1

0

∫

Rd

L(t, y;B(t, y))p(t, y)dtdy : B ∈ Ãε} (ε ≥ 0), (1.8)

where Ãε is the set of all B(t, x) : [0, 1] × Rd 7→ Rd for which the following holds: for any
f ∈ C∞o (Rd) and any t ∈ [0, 1],

∫

Rd

f(x)(p(t, x)− p(0, x))dx

=

∫ t

0

ds

∫

Rd

(

ε24f(x)

2
+ < ∇f(x), B(s, x) >

)

p(s, x)dx.

Then we expect that the following holds:

eε = ẽε → e0 = ẽ0 (as ε→ 0). (1.9)

In this paper we show that the set A is not empty and (1.9) holds, and that a minimizer of e0

exists when the cost function L(t, x;u) grows at least of order of |u|2 as u→∞ (see Theorem
1 in section 2).
We also show that the minimizers satisfy the same ordinary differential equation (ODE for
short) when L is strictly convex in u (see Theorem 2 in section 2). (In this paper we say that
a function {ψ(t)}0≤t≤1 satisfies an ODE if and only if it is absolutely continuous and dψ(t)/dt
is a function of t and ψ(t), dt-a.e..)
When d = 1, we show the uniqueness of the minimizer of e0 (see Corollary 1 in section 2).
Since a stochastic process which satisfies an ODE is not always nonrandom, we would also like
to know if the minimizer is a function of a time and an initial point. In fact, the following is
known as Salisbury’s problem (SP for short).

Is a continuous strong Markov process which is of bounded variation in time a function of an
initial point and a time?

If x(t)0≤t≤1 is a R-valued strong Markov process, and if there exists a Borel measurable

function f , on R, such that x(t) = x(0) +
∫ t

0
f(x(s))ds (0 ≤ t ≤ 1), then SP has been solved

positively by Çinlar and Jacod (see [6]). When d > 1, a counter example is known (see [21]).
When d = 1, we give a positive answer to SP for time-inhomogeneous stochastic processes
(see Proposition 2 in section 4). This is a slight generalization of [6] where they made use
of the result on time changes of Markov processes, in that the stochastic processes under
consideration are time-inhomogeneous and need not be Markovian. In particular, we show,
when d = 1, that {Y (t)}0≤t≤1, ∈ A, which satisfies an ODE is unique and nonrandom. It will
be used to show that the unique minimizer of e0 is a function of an initial point and of a time
when d = 1 (see Corollary 1 and Theorem 3 in section 2).

Remark 2 When d > 1, {Y (t)}0≤t≤1, ∈ A, which satisfies an ODE is not unique (see Propo-
sition 1 in section 2).
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When L(t, x;u) = |u|2 and p(t, x) satisfies the Fokker-Planck equation with sufficiently smooth
coefficients, the optimization problem (1.5) was considered in [16] where the minimizer exists
uniquely and is a function of a time and an initial point, and where we used a different approach
which depends on the form of L(t, x;u) = |u|2.

Our main tool in the proof is the weak convergence method, the result on the construction of
a Markov diffusion process from a family of marginal distributions, and the theory of Copulas.

In section 2 we state our main result. We first consider the case where a cost function L(t, x;u)
grows at least of order of |u|2 as u→∞ and d ≥ 1. Next we restrict our attention to the case
where L is a function of u and d = 1. The proof is given in section 3. We discuss SP in section
4.

2 Main result

In this section we give our main result.

We state assumptions before we state the result when d ≥ 1.

(H.0). ẽ0 is finite (see (1.8) for notation).

(H.1). L(t, x;u) : [0, 1]×Rd ×Rd 7→ [0,∞) is convex in u, and as h, δ ↓ 0,

R(h, δ) := sup

{

L(t, x;u)− L(s, y;u)

1 + L(s, y;u)
: |t− s| < h, |x− y| < δ, u ∈ Rd

}

↓ 0.

(H.2). There exists q ≥ 2 such that the following holds:

0 < lim inf
|u|→∞

inf{L(t, x;u) : (t, x) ∈ [0, 1]×Rd}

|u|q
, (2.10)

sup

{

supz∈∂uL(t,x;u) |z|

(1 + |u|)q−1
: (t, x, u) ∈ [0, 1]×Rd ×Rd

}

≡ C∇L <∞, (2.11)

where ∂uL(t, x;u) := {z ∈ Rd : L(t, x; v)− L(t, x;u) ≥< z, v − u > for all v ∈ Rd} (t ∈ [0, 1],
x, u ∈ Rd).

(H.3). p(t, ·) is absolutely continuous dt-a.e., and for q in (H.2),

∫ 1

0

∫

Rd

∣

∣

∣

∣

∇xp(t, x)

p(t, x)

∣

∣

∣

∣

q

p(t, x)dtdx <∞. (2.12)

Remark 3 If (H.0) does not hold, then e0 in (1.5) is infinite. (H.1) implies the continuity of
L(·, ·;u) for each u ∈ Rd. (H.2) holds if L(t, x;u) = |u|q. We need (H.3) to make use of the
result on the construction of a Markov diffusion process of which the marginal distribution at
time t is p(t, x)dx (0 ≤ t ≤ 1). (2.3) holds if b(t, x) in (1.2) is twice continuously differentiable
with bounded derivatives up to the second order, and if p(0, x) is absolutely continuous, and if
the following holds:

∫

Rd

∣

∣

∣

∣

∇xp(0, x)

p(0, x)

∣

∣

∣

∣

q

p(0, x)dx <∞. (2.13)

The following theorem implies the existence of a minimizer of e0 (see (1.5)-(1.8) for notations).
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Theorem 1 Suppose that (H.0)-(H.3) hold. Then the sets Aε (ε > 0) and A are not empty,
and the following holds:

ẽε = eε → e0 = ẽ0 (as ε→ 0). (2.14)

In particular, for any {uε(t)}0≤t≤1, ∈ A
ε(ε > 0), for which

lim
ε→0

E[

∫ 1

0

L(t,Xε,uε

(t);uε(t))dt] = e0, (2.15)

{{Xε,uε

(t)}0≤t≤1}ε>0 is tight in C([0, 1] : Rd), and any weak limit point of {Xε,uε

(t)}0≤t≤1

as ε→ 0 is a minimizer of e0.

The following theorem implies the uniqueness of the minimizer of ẽ0 and that of the ODE
which is satisfied by the minimizers of e0.

Theorem 2 Suppose that (H.0)-(H.3) hold. Then for any minimizer {X(t)}0≤t≤1 of e0,
bX(t, x) := E[dX(t)/dt|(t,X(t) = x)] is a minimizer of ẽ0. Suppose in addition that L is
strictly convex in u. Then ẽ0 has the unique minimizer bo(t, x) and the following holds: for
any minimizer {X(t)}0≤t≤1 of e

0,

X(t) = X(0) +

∫ t

0

bo(s,X(s))ds for all t ∈ [0, 1], a.s.. (2.16)

Remark 4 By Theorems 1 and 2, if (H.0) with L = |u|2 and (H.3) with q = 2 hold, then
there exists a stochastic process {X(t)}0≤t≤1, ∈ A, which satisfies an ODE.

Since b ∈ Ã0 is not always the gradient, in x, of a function, the following implies that the set
Ã0 does not always consist of only one point.

Proposition 1 Suppose that L = |u|2, and that (H.0) and (H.3) with q = 2 hold, and that
for any M > 0,

ess.inf{p(t, x) : t ∈ [0, 1], |x| ≤M} > 0. (2.17)

Then the unique minimizer of ẽ0 can be written as ∇xV (t, x), where V (t, ·) ∈ H1
loc(R

d : R)
dt-a.e..

We next consider the one-dimensional case. Put

Ft(x) :=

∫

(−∞,x]

p(t, y)dy (t ∈ [0, 1], x ∈ R),

F−1
t (u) := sup{y ∈ R : Ft(y) < u} (t ∈ [0, 1], 0 < u < 1).

(H.3)’. d = 1, and Ft(x) is differentiable and has the locally bounded first partial derivatives
on [0, 1]×R.
By Proposition 2 in section 4, we obtain the following.

Corollary 1 Suppose that (H.0)-(H.3) and (H.3)’ hold, and that L is strictly convex in u.
Then the minimizer {X(t)}0≤t≤1 of e

0 is unique. Moreover, lims∈Q∩[0,1],s→t F
−1
s (F0(X(0)))

exists and is equal to X(t) for all t ∈ [0, 1] a.s..
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The theory of copulas allows us to treat a different set of assumptions by a different method
(see (1.3)-(1.4) for notations).
(H.0)’. {en}n≥1 is bounded.
(H.1)’. h : R 7→ [0,∞) is even and convex.
(H.2)’. There exists r > 1 such that the following holds:

0 < lim inf
|u|→∞

h(u)

|u|r
. (2.18)

(H.3)”. d = 1, and p(t, x) is positive on [0, 1]×R.

Theorem 3 Suppose that (H.0)’-(H.2)’ and (H.3)” hold. Then {F−1
t (F0(x))}0≤t≤1 on

(R,B(R), p(0, x)dx) belongs to the set A and is a minimizer of e. Suppose in addition that
(H.3)’ holds. Then {F−1

t (F0(x))}0≤t≤1 is the unique minimizer, of e, that satisfies an ODE.

Remark 5 If {en}n≥1 is unbounded, then so is e. By (H.1)’, {X(t) := F−1
t (F0(x))}0≤t≤1

satisfies the following (see e.g. [20, Chap. 3.1]): for any t and s ∈ [0, 1],

µh(p(s, x)dx, p(t, x)dx) = E0[h(X(t)−X(s))] (2.19)

(see (1.1) for notation), where we put P0(dx) := p(0, x)dx. Indeed,

X(t) = F−1
t (Fs(X(s))) (2.20)

since for a distribution F on R,

F (F−1(u)) = u (0 < u < 1) (2.21)

(see e. g. [17]).

3 Proof of the result

In this section we prove the result given in section 2.
Before we give the proof of Theorem 1, we state and prove three technical lemmas.

Lemma 1 Suppose that (H.2) holds. Then for any ε > 0, ẽε = eε.

(Proof). For any Bε ∈ Ãε for which
∫ 1

0

∫

Rd L(t, x;B
ε(t, x))p(t, x)dtdx is finite, there exists a

Markov process {Zε(t)}0≤t≤1 such that the following holds:

Zε(t) = Xo +

∫ t

0

Bε(s, Zε(s))ds+ εW (t), (3.22)

P (Zε(t) ∈ dx) = p(t, x)dx (0 ≤ t ≤ 1), (3.23)

since
∫ 1

0

∫

Rd |B
ε(t, x)|2p(t, x)dtdx is finite by (H.2) (see [4] and [5]). This implies that

{Bε(t, Zε(t))}0≤t≤1 ∈ A
ε, and that the following holds:

∫ 1

0

∫

Rd

L(t, x;Bε(t, x))p(t, x)dtdx =

∫ 1

0

E[L(t, Zε(t);Bε(t, Zε(t)))]dt, (3.24)
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from which eε ≤ ẽε.

We next show that eε ≥ ẽε.

For any {uε(t)}0≤t≤1 ∈ A
ε, bε,u

ε

(t, x) := E[uε(t)|(t,Xε,uε

(t) = x)] ∈ Ãε.

Indeed, for any f ∈ C∞o (Rd) and any t ∈ [0, 1], by the Itô formula,

∫

Rd

f(x)(p(t, x)− p(0, x))dx = E[f(Xε,uε

(t))− f(Xε,uε

(0))] (3.25)

=

∫ t

0

E

[

ε2

2
4f(Xε,uε

(s))+ < ∇f(Xε,uε

(s)), uε(s) >

]

ds

=

∫ t

0

E

[

ε2

2
4f(Xε,uε

(s))+ < ∇f(Xε,uε

(s)), bε,u
ε

(s,Xε,uε

(s)) >

]

ds

=

∫ t

0

ds

∫

Rd

(

ε2

2
4f(x)+ < ∇f(x), bε,u

ε

(s, x) >

)

p(s, x)dx.

The following completes the proof: by Jensen’s inequality,

∫ 1

0

E[L(t,Xε,uε

(t);uε(t))]dt (3.26)

≥

∫ 1

0

E[L(t,Xε,uε

(t); bε,u
ε

(t,Xε,uε

(t)))]dt

=

∫ 1

0

∫

Rd

L(t, x; bε,u
ε

(t, x))p(t, x)dtdx.

Q. E. D.

The following lemma can be shown by the standard argument and the proof is omitted (see
[13, p. 17, Theorem 4.2 and p. 33, Theorem 6.10]).

Lemma 2 For any {uε(t)}0≤t≤1 ∈ Aε (ε > 0) for which {E[
∫ 1

0
|uε(t)|2dt]}ε>0 is bounded,

{{Xε,uε

(t)}0≤t≤1}ε>0 is tight in C([0, 1] : R
d).

Lemma 3 For any {uεn(t)}0≤t≤1 ∈ A
εn (n ≥ 1) (εn → 0 as n→∞) such that {E[

∫ 1

0
|uεn(t)|2dt]}n≥1

is bounded and that {Xn(t) := Xεn,u
εn
(t)}0≤t≤1 weakly converges as n → ∞, the weak limit

{X(t)}0≤t≤1 in C([0, 1] : R
d) is absolutely continuous.

(Proof). We only have to show the following: for any δ > 0 and any m ≥ 2, n ≥ 1 and any
si,j , ti,j ∈ Q for which 0 ≤ si,j ≤ ti,j ≤ si,j+1 ≤ ti,j+1 ≤ 1 (1 ≤ i ≤ n, 1 ≤ j ≤ m− 1) and for
which

∑m
j=1 |ti,j − si,j | ≤ δ (1 ≤ i ≤ n) ,

E[ max
1≤i≤n

(

m
∑

j=1

|X(ti,j)−X(si,j)|)
2] ≤ δ lim inf

k→∞
E[

∫ 1

0

|uεk(t)|2dt]. (3.27)

Indeed, by the monotone convergence theorem and by the continuity of {X(t)}0≤t≤1, (3.6)
implies that, for all m ≥ 2,
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E[sup{(

m
∑

j=1

|X(tj)−X(sj)|)
2 :

m
∑

j=1

|tj − sj | ≤ δ (3.28)

, 0 ≤ sj ≤ tj ≤ sj+1 ≤ tj+1 ≤ 1(1 ≤ j ≤ m− 1)}]

≤ δ lim inf
k→∞

E[

∫ 1

0

|uεk(t)|2dt].

The left hand side of (3.7) converges, as m→∞, to

E[sup{(
m
∑

j=1

|X(tj)−X(sj)|)
2 :

m
∑

j=1

|tj − sj | ≤ δ,m ≥ 2 (3.29)

, 0 ≤ sj ≤ tj ≤ sj+1 ≤ tj+1 ≤ 1(1 ≤ j ≤ m− 1)}]

since the integrand on the left hand side of (3.7) is nondecreasing in m.
Hence by Fatou’s lemma,

lim
δ→0

(sup{(

m
∑

j=1

|X(tj)−X(sj)|)
2 :

m
∑

j=1

|tj − sj | ≤ δ,m ≥ 2 (3.30)

, 0 ≤ sj ≤ tj ≤ sj+1 ≤ tj+1 ≤ 1(1 ≤ j ≤ m− 1)}) = 0 a.s.,

since the integrand in (3.8) is nondecreasing in δ > 0 and henceforth is convergent as δ → 0.
To complete the proof, we prove (3.6). By Jensen’s inequality, for i = 1, · · · , n for which
∑m

j=1 |ti,j − si,j | > 0,

(

m
∑

j=1

|X(ti,j)−X(si,j)|)
2 (3.31)

≤ (

m
∑

j=1

|ti,j − si,j |)
∑

1≤j≤m,si,j<ti,j

∣

∣

∣

∣

X(ti,j)−X(si,j)

ti,j − si,j

∣

∣

∣

∣

2

(ti,j − si,j).

Put Amn := {ti,j , si,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m} and {tk}1≤k≤#(Amn) := Amn so that tk < tk+1

for k = 1, · · · ,#(Amn)−1, where #(Amn) denotes the cardinal number of the set Amn. Then,
by Jensen’s inequality,

∑

1≤j≤m,si,j<ti,j

∣

∣

∣

∣

X(ti,j)−X(si,j)

ti,j − si,j

∣

∣

∣

∣

2

(ti,j − si,j) (3.32)

≤
∑

1≤k≤#(Amn)−1

∣

∣

∣

∣

X(tk)−X(tk+1)

tk+1 − tk

∣

∣

∣

∣

2

(tk+1 − tk).

The following completes the proof: for any k = 1, · · · ,#(Amn)− 1,
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E

[∣

∣

∣

∣

X(tk)−X(tk+1)

tk+1 − tk

∣

∣

∣

∣

2]

≤ lim inf
`→∞

E

[∣

∣

∣

∣

X`(tk)−X`(tk+1)

tk+1 − tk

∣

∣

∣

∣

2]

(3.33)

≤
1

tk+1 − tk
lim inf
`→∞

E[

∫ tk+1

tk

|uε`(t)|2dt].

Q. E. D.
We prove Theorem 1 by Lemmas 1-3.
(Proof of Theorem 1). The proof of (2.5) is divided into the following:

lim sup
ε→0

ẽε ≤ ẽ0, (3.34)

lim inf
ε→0

eε ≥ e0, (3.35)

since eε = ẽε by Lemma 1, and since e0 ≥ ẽ0 in the same way as in the proof of the inequality
eε ≥ ẽε (see (3.4)-(3.5)).

We first prove (3.13). For B ∈ Ã0 for which
∫ 1

0

∫

Rd L(t, x;B(t, x))p(t, x)dtdx is finite and

ε > 0, B(t, x) + ε2∇p(t, x)/(2p(t, x)) ∈ Ãε.
Indeed, for any f ∈ C∞o (Rd) and any t ∈ [0, 1],

∫

Rd

f(x)(p(t, x)− p(0, x))dx

=

∫ t

0

ds

∫

Rd

< ∇f(x), B(s, x) > p(s, x)dx

=

∫ t

0

ds

∫

Rd

(

ε2

2
4f(x) +

〈

∇f(x), B(s, x) +
ε2∇p(s, x)

2p(s, x)

〉)

p(s, x)dx.

For any t ∈ [0, 1], x, u, v ∈ Rd, and z ∈ ∂uL(t, x;u+ v), by (2.2),

L(t, x;u+ v) ≤ L(t, x;u)− < z, v > (3.36)

≤ L(t, x;u) + C∇L(1 + |u+ v|)q−1|v|.

Putting u = B(t, x) and v = ε2∇p(t, x)/(2p(t, x)) in (3.15), we have

ẽε ≤

∫ 1

0

∫

Rd

L

(

t, x;B(t, x) +
ε2∇p(t, x)

2p(t, x)

)

p(t, x)dtdx (3.37)

≤

∫ 1

0

∫

Rd

C∇L

(

1 +

∣

∣

∣

∣

B(t, x) +
ε2∇p(t, x)

2p(t, x)

∣

∣

∣

∣

)q−1∣
∣

∣

∣

ε2∇p(t, x)

2p(t, x)

∣

∣

∣

∣

p(t, x)dtdx

+

∫ 1

0

∫

Rd

L(t, x;B(t, x))p(t, x)dtdx

→

∫ 1

0

∫

Rd

L(t, x;B(t, x))p(t, x)dtdx (as ε→ 0)
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by (2.1) and (H.3), where we used the following in the last line of (3.16):

q − 1

q
+

1

q
= 1.

Next we prove (3.14). By Lemmas 2-3, we only have to show the following: for any {uεn(t)}0≤t≤1 ∈
Aεn (n ≥ 1) (εn → 0 as n → ∞) for which {Xn(t) := Xεn,u

εn
(t)}0≤t≤1 weakly converges, as

n → ∞, to a stochastic process {X(t)}0≤t≤1, and for which {E[
∫ 1

0
L(t,Xn(t);u

εn(t))dt]}n≥1

is bounded,

lim inf
n→∞

E[

∫ 1

0

L(t,Xn(t);u
εn(t))dt] ≥ E[

∫ 1

0

L

(

t,X(t);
dX(t)

dt

)

dt]. (3.38)

We prove (3.17). For α ∈ (0, 1) and δ > 0,

E[

∫ 1

0

L(t,Xn(t);u
εn(t))dt] (3.39)

≥
1

1 +R(α, δ)
E[

∫ 1−α

0

dsL

(

s,Xn(s);
1

α

∫ s+α

s

uεn(t)dt

)

; sup
0≤t,s≤1,|t−s|<α

|Xn(t)−Xn(s)| < δ]−R(α, δ).

Indeed, if sup0≤t,s≤1,|t−s|<α |Xn(t)−Xn(s)| < δ, then for s ∈ [0, 1−α], by Jensen’s inequality
and (H.1),

L

(

s,Xn(s);
1

α

∫ s+α

s

uεn(t)dt

)

≤
1

α

∫ s+α

s

L(s,Xn(s);u
εn(t))dt (3.40)

≤ R(α, δ) +
1 +R(α, δ)

α

∫ s+α

s

L(t,Xn(t);u
εn(t))dt.

Hence putting u =
∫ s+α

s
uεn(t)dt/α and v = (Xn(s+α)−Xn(s)−

∫ s+α

s
uεn(t)dt)/α in (3.15),

we have, from (3.18),

E[

∫ 1

0

L(t,Xn(t);u
εn(t))dt] (3.41)

≥
1

1 +R(α, δ)
E[

∫ 1−α

0

L

(

s,Xn(s);
Xn(s+ α)−Xn(s)

α

)

ds

; sup
0≤t,s≤1,|t−s|<α

|Xn(t)−Xn(s)| < δ]

−E[

∫ 1−α

0

C∇L

(

1 +

∣

∣

∣

∣

Xn(s+ α)−Xn(s)

α

∣

∣

∣

∣

)q−1

×

∣

∣

∣

∣

εn
α
(W (s+ α)−W (s))

∣

∣

∣

∣

ds]−R(α, δ).

Letting n→∞ and then α→ 0 and δ → 0 in (3.20), we obtain (3.17).
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Indeed, by Skorohod’s theorem (see e.g. [13]), taking a new probability space, we can assume
that {Xn(t)}0≤t≤1 converges, as n → ∞, to {X(t)}0≤t≤1 in sup norm, a.s., and that the
following holds: for any β ∈ (0, δ/3), by (H.1),

(1 +R(0, β))E[

∫ 1−α

0

L

(

s,Xn(s);
Xn(s+ α)−Xn(s)

α

)

ds

; sup
0≤t,s≤1,|t−s|<α

|Xn(t)−Xn(s)| < δ]

≥ E[

∫ 1−α

0

L

(

s,X(s);
Xn(s+ α)−Xn(s)

α

)

ds; sup
0≤t≤1

|X(t)−Xn(t)| < β

, sup
0≤t,s≤1,|t−s|<α

|X(t)−X(s)| < β]−R(0, β).

The liminf of the right-hand side of this inequality as n → ∞, and α → 0 and then β → 0 is

dominated by E[
∫ 1

0
L(s,X(s); dX(s)/ds)ds] from below by Fatou’s lemma. The second mean

value on the right hand side of (3.20) can be shown to converge to zero as n→∞ in the same
way as in (3.16) by (2.1).
(H.0) and (2.5) implies that the set A and Aε (ε > 0) are not empty.
(2.5) and (3.17) completes the proof.

Q. E. D.
(Proof of Theorem 2). bX(t, x) is a minimizer of ẽ0 by (2.5) in the same way as in (3.4)-(3.5).
We prove the uniqueness of the minimizer of ẽ0. Suppose that bo(t, x) is also a minimizer of
ẽ0. Then for any λ ∈ (0, 1), λbX + (1− λ)bo ∈ Ã0, and

ẽ0 ≤

∫ 1

0

∫

Rd

L(t, y;λbX(t, y) + (1− λ)bo(t, y))p(t, y)dtdy (3.42)

≤ λ

∫ 1

0

∫

Rd

L(t, y; bX(t, y))p(t, y)dtdy

+(1− λ)

∫ 1

0

∫

Rd

L(t, y; bo(t, y))p(t, y)dtdy = ẽ0.

By the strict convexity of L in u,

bX(t, x) = bo(t, x), p(t, x)dtdx− a.e.. (3.43)

We prove (2.7). Since L is strictly convex in u, the following holds:

dX(t)

dt
= bX(t,X(t)) dtdP − a.e. (3.44)

by (2.5) (see (3.5)). By (3.22),

E[ sup
0≤t≤1

|X(t)−X(0)−

∫ t

0

bo(s,X(s))ds|] (3.45)

≤

∫ 1

0

E[|bX(s,X(s))− bo(s,X(s))|]ds = 0.
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Q. E. D.
(Proof of Proposition 1). From [15], ẽε = eε for ε > 0, and the minimizer of ẽε can be written as
∇xΦ

ε(t, x), where Φε(t, ·) ∈ H1
loc(R

d : R) dt-a.e.. Since {∇xΦ
ε}0<ε<1 is strongly bounded in

L2([0, 1]×Rd : Rd, p(t, x)dtdx) by (2.5), it is weakly compact in L2([0, 1]×Rd : Rd, p(t, x)dtdx)
(see [9, p. 639]). We denote a weak limit point by Ψ. Then Ψ is the unique minimizer of ẽ0.
Indeed, Ψ ∈ Ã0, and by (2.5) and Fatou’s lemma,

ẽ0 = lim
ε→0

∫ 1

0

∫

Rd

|∇xΦ
ε(t, y)|2p(t, y)dtdy (3.46)

≥

∫ 1

0

∫

Rd

|Ψ(t, y)|2p(t, y)dtdy ≥ ẽ0.

In particular, {∇xΦ
ε}0<ε<1 converges, as ε→ 0, to Ψ, strongly in L2([0, 1]×Rd : Rd, p(t, x)dtdx),

which completes the proof in the same way as in [15, Proposition 3.1].
Q. E. D.

Remark 6 If V (t, x) and p(t, x) in Proposition 1 are sufficiently smooth, then

∇xΦ
ε(t, x) = ∇xV (t, x) +

ε2∇xp(t, x)

2p(t, x)

(see [16, section 1]).

(Proof of Theorem 3). Put for t ∈ [0, 1], x ∈ R and n ≥ 1,

Y (t, x) = F−1
t (F0(x)), (3.47)

Yn(t, x) = Y

(

[nt]

n
, x

)

(3.48)

+n

(

t−
[nt]

n

)(

Y

(

[nt] + 1

n
, x

)

− Y

(

[nt]

n
, x

))

,

where [nt] denotes the integer part of nt.
Then by (H.3)”, Y (·, x) ∈ C([0, 1] : R), P0(dx) := p(0, x)dx− a.s., and

lim
n→∞

Yn(t, x) = Y (t, x) (0 ≤ t ≤ 1), P0 − a.s., (3.49)

and

en = E0[

∫ 1

0

h

(

dYn(t, x)

dt

)

dt] (n ≥ 1) (3.50)

(see Remark 5 in section 2 and [11, p. 35, Exam. 8.1]).
Hence in the same way as in the proof of Lemma 3, we can show that the following holds: for
any δ > 0

E0[sup{(

m
∑

j=1

|Y (tj , x)− Y (sj , x)|)
r :

m
∑

j=1

|tj − sj | ≤ δ,m ≥ 2 (3.51)
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, 0 ≤ sj ≤ tj ≤ sj+1 ≤ tj+1 ≤ 1(1 ≤ j ≤ m− 1)}]

≤ δr−1 lim inf
n→∞

E0[

∫ 1

0

∣

∣

∣

∣

dYn(t, x)

dt

∣

∣

∣

∣

r

dt],

which implies that Y (·, x) is absolutely continuous P0−a.s., by (H.0)’ and (H.2)’. In particular,
{Y (t, x)}0≤t≤1 on (R,B(R), P0) belongs to the set A.
For n ≥ 1 and α ∈ (0, 1), by Jensen’s inequality and (H.1)’,

∞ > sup
m≥1

em ≥ en ≥ E0[

∫ 1−α

0

ds

(

1

α

∫ s+α

s

h

(

dYn(t, x)

dt

)

dt

)

] (3.52)

≥ E0[

∫ 1−α

0

h

(

Yn(s+ α, x)− Yn(s, x)

α

)

ds].

Let n → ∞ and then α → 0 in (3.31). Then the proof of the first part is over by Fatou’s
lemma since supm≥1 em ≤ e.
The following together with Proposition 2 in section 4 completes the proof: by (2.12),

Y (t, x) = Y (0, x) +

∫ t

0

∂F−1
s (Fs(Y (s, x)))

∂s
ds (0 ≤ t ≤ 1) P0 − a.s..

Q. E. D.

4 Appendix

In this section we solve SP positively for R-valued, time-inhomogeneous stochastic processes.

Proposition 2 Suppose that (H.3)’ holds, and that there exists {Y (t)}0≤t≤1, ∈ A, which
satisfies

Y (t) = Y (0) +

∫ t

0

bY (s, Y (s))ds (0 ≤ t ≤ 1) a.s. (4.53)

for some bY (t, x) ∈ L1([0, 1]×R : R, p(t, x)dtdx). Then the following holds:

Y (t) = F−1
t (F0(Y (0))) (t ∈ Q ∩ [0, 1]) a.s.. (4.54)

In particular, lims∈Q∩[0,1],s→t F
−1
s (F0(Y (0))) exists and is equal to Y (t) for all t ∈ [0, 1] a.s..

Remark 7 If F0 is not continuous, then SP does not always have a positive answer. For
example, put Y (t) ≡ tY (ω) for a R-valued random variable Y (ω) on a probability space. Then
dY (t)/dt = Y (t)/t for t > 0. But, of course, Y (t) is not a function of t and Y (0) ≡ 0.

(Proof of Proposition 2). It is easy to see that the following holds:

Ft(Y (t)) = F0(Y (0)) (t ∈ [0, 1]) a.s.. (4.55)

Indeed,

∂Ft(x)

∂t
= −bY (t, x)p(t, x), dtdx− a.e.
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since bY (t, x) = b(t, x), p(t, x)dtdx− a.e., and henceforth by (H.3)’

E[ sup
0≤t≤1

|Ft(Y (t))− F0(Y (0))|]

≤

∫ 1

0

E[

∣

∣

∣

∣

∂Fs(Y (s))

∂s
+ p(s, Y (s))bY (s, Y (s))

∣

∣

∣

∣

]ds = 0.

Since {Y (t)}0≤t≤1 is continuous, the proof is over by (4.3) and by the following:

P (F−1
t (Ft(Y (t))) = Y (t)(t ∈ [0, 1] ∩Q)) = 1. (4.56)

We prove (4.4). For (t, x) ∈ [0, 1]×R for which Ft(x) ∈ (0, 1),

F−1
t (Ft(x)) ≤ x,

and for t ∈ [0, 1], the set {x ∈ R : F−1
t (Ft(x)) < x,Ft(x) ∈ (0, 1)} can be written as a union

of at most countably many disjoint intervals of the form (a, b] for which P (a < Y (t) ≤ b) = 0,
provided that it is not empty.
Indeed, if F−1

t (Ft(x)) < x and if Ft(x) ∈ (0, 1), then

{y ∈ R : F−1
t (Ft(y)) < y, Ft(y) = Ft(x)}

= (F−1
t (Ft(x)), sup{y ∈ R : Ft(y) = Ft(x)}].

Q. E. D.
(Acknowledgement) We would like to thank Prof. M. Takeda for a useful discussion on Salis-
bury’s problem.
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[20] Rachev, S. T. and Rüschendorf, L. (1998), Mass transportation problems, Vol. I: Theory,
Springer, Berlin Heidelberg New York.

[21] Salisbury, T. S. (1986), An increasing diffusion, Seminar on Stochastic Processes 1984,
Birkhauser, Boston Basel Berlin, 173-194.


