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Abstract

Suppose that a random variable X of interest is observed. This paper concerns “the
least favorable noise” Ŷε, which maximizes the prediction error E[X − E[X|X + Y ]]2

(or minimizes the variance of E[X|X + Y ]) in the class of Y with Y independent of
X and varY ≤ ε2. This problem was first studied by Ernst, Kagan, and Rogers ([4]).
In the present manuscript, we show that the least favorable noise Ŷε must exist and
that its variance must be ε2. The proof of existence relies on a convergence result we
develop for variances of conditional expectations. Further, we show that the function
infvarY≤ε2 varE[X|X + Y ] is both strictly decreasing and right continuous in ε.
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1 Introduction

In 2022, Ernst, Kagan and Rogers ([4]) investigated the problem of “the least fa-
vorable noise” for an observed square-integrable random variable X. The authors
considered Ŷε, a square-integrable random variable independent of X, which maximizes
the prediction error

E [X − E[X|X + Y ]]
2
= varX − varE[X|X + Y ],

(or, equivalently, minimizes the variance of E[X|X + Y ]) in the class of Y with varY ≤ ε2.
The authors proceeded to characterize the least favorable noise and show that Y should
be the least favorable noise if the distribution of Y satisfies the conditions of a given
characterization.

The present manuscript takes a step back from the Ernst et al. characterization of
the least favorable noise and asks the following question: ‘does the least favorable noise
exist?’ In other words, given the distribution of X, does there exist a distribution of Y
which achieves the maximum of E [X − E[X|X + Y ]]

2? Although Ernst et al. show the
existence of the least favorable noise given (i) the distribution of X and (ii) given that
the distribution of Y satisfies three characterization conditions in [4], the conditions
are somewhat complicated and, more importantly, nearly impossible to verify for most
distributions of X. Therefore, the question of existence of the least favorable noise has
remained open. The key contribution of the present paper is to close this problem by
showing the existence of the least favorable noise for any distribution of X. The proof
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The existence of the least favorable noise

relies on a convergence result for the variance of the conditional expectation of Xn given
Xn + Yn, provided (Xn, Yn) converges weakly (see Theorem 2.2).

Before proceeding with the proof of the existence of the least favorable noise, we
pause to provide some practical implications of the least favorable noise. In some applied
scientific scenarios, the observed random signal X may be highly volatile, making it
difficult to analyze. In this case, one may wish to simplify the signal X while keeping its
main structure. One possible way to do so is to consider the random variable

Q = E
[
X
∣∣X + Ŷε

]
,

where Ŷε is the least favorable noise. The random variable Q has two important proper-
ties: (i) The variance of Q is no more than the variance of X and achieves the minimum
of varE[X|X + Y ] over Y satisfying varY ≤ ε2, meaning that it is less volatile, and (ii)
noting that X + Ŷε is close to X for small ε, the random variable Q, as a function of
X + Ŷε, preserves the structure of X.

We now formalize the problem under consideration. To avoid trivialities, we assume
X is a non-degenerate and that it is a square-integrable random variable. Without loss
of generality, we may assume the mean of X to be 0. Since the conditional expectation
E[X|X + Y ] remains the same if we shift Y by a constant, we shall only focus on the
following class of random variables Y :

Vε(X) := {Y : Y independent of X, E[Y ] = 0 and E[Y 2] ≤ ε2}.

We define
L(X, ε) := inf

Y ∈Vε(X)
varE[X|X + Y ].

Then the least favorable noise Ŷε is a random variable Y in Vε(X) such that varE[X|X+Y ]

achieves L(X, ε).
In Section 2, we prove the existence of the least favorable noise. That is, we prove

the existence of Ŷε which minimizes varE[X|X + Y ] when varY ≤ ε2. In general, to show
the existence of the minimizer of a value function f(x), one typically adopts the following
strategy:

(i) One constructs a sequence {xn}∞n=1 such that f(xn) converges to infx f(x);

(ii) One finds a convergent subsequence of {xn}∞n=1 which converges to x∗;

(iii) One then shows that f(x∗) = infx f(x), from which one concludes that x∗ is the
minimizer.

In this paper, we indeed follow the above strategy. Firstly, we consider a sequence
{Yn}∞n=1 such that varYn ≤ ε2 and such that the variance of E[X|X + Yn] converges to
infY varE[X|X + Y ]. Secondly, by the tightness of {Yn}∞n=1, there exists a subsequence
that converges weakly to a random variable, say, Ỹ . It then remains to show that
the variance of E[X|X + Ỹ ] is exactly infY varE[X|X + Y ]. This represents the most
mathematically challenging task of this work. To this end, we develop a convergence
result for the variances of conditional expectations (see Theorem 2.2), which is in part
inspired by the work of [2].

The remainder of this paper is organized as follows. In Section 3, we prove that
the variance of the least favorable noise must be ε2, allowing us to reduce the class
of Y when searching for the least favorable noise. Indeed, this result simplifies the
three characterization conditions in [4] to two characterization conditions. In Section 4,
we consider further properties of L(X, ε). We prove that it is both strictly decreasing
and right continuous in ε on [0,∞). Consequently, the maximum of the prediction error
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The existence of the least favorable noise

E[X − E[X|X + Y ]]2 is strictly increasing as the variance of the noise Y increases. In
other words, “more noise makes prediction worse.” This conclusively answers Question
4 posed on page 2 of [4].

2 Existence of the least favorable noise

The main result of this section is the proof of the existence of the least favorable
noise, which we give in Theorem 2.5.

We begin by recording Lemma 2.1 below. Since this lemma is a direct result of
Skorokhod’s representation theorem, Fatou’s lemma, and Theorem 4.5.2 in [1], we omit
the proof.

Lemma 2.1. Suppose {Xn}∞n=1 is a sequence of random variables converging weakly to
some random variable X. Further, assume that

sup
1≤n<∞

E[X2
n] <∞.

Then
E[X2] ≤ lim inf

n→∞
E[X2

n] and lim
n→∞

E[Xn] = E[X].

We proceed to introduce Theorem 2.2 below, which gives a convergence result for
the variances of conditional expectations. It is, in part, inspired by the work of [2].

Theorem 2.2. Let {(Xn, Yn)}∞n=1 be a sequence of random vectors which converges
weakly to some random vector (X,Y ). If

sup
1≤n<∞

E[X2
n] <∞,

then
varE[X|X + Y ] ≤ lim inf

n→∞
varE[Xn|Xn + Yn].

Proof. We denote supE[X2
n] by M . By the Continuous Mapping Theorem, Xn converges

weakly to X. Applying Lemma 2.1 yields

E[X2] ≤ lim inf E[X2
n] ≤M. (2.1)

lim
n→∞

E[Xn] = E[X]. (2.2)

By standard properties of conditional expectation, the mean of E[Xn|Xn + Yn] is E[Xn].
Then

varE[Xn|Xn + Yn] = E
[
(E[Xn|Xn + Yn])

2
]
− (E[Xn])

2
.

Similarly, varE[X|X + Y ] = E
[
(E[X|X + Y ])

2
]
− (E[X])

2. Together with (2.2), we need

only show that

E
[
(E[X|X + Y ])

2
]
≤ lim inf

n→∞
E
[
(E[Xn|Xn + Yn])

2
]
. (2.3)

Since (Xn, Yn) converges weakly to (X,Y ), by Skorohod’s representation theorem, we

can construct (Un,Wn) and (U,W ) on a new probability space such that (Un,Wn)
d
=

(Xn, Yn), (U,W )
d
= (X,Y ) and (Un,Wn) converges to (U,W ) almost surely. It follows

immediately that
sup

1≤n<∞
E[U2

n] = sup
1≤n<∞

E[X2
n] =M,

and
E[U2] = E[X2] ≤M.
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Noting that the distributions of E[Xn|Xn + Yn] and E[Un|Un +Wn] depend only on the
distributions, respectively, of (Xn, Yn) and (Un,Wn), it follows from the fact

(Xn, Yn)
d
= (Un,Wn)

that the distribution of E[Xn|Xn + Yn] coincides with that of E[Un|Un +Wn]. Thus,

E
[
(E[Xn|Xn + Yn])

2
]
= E

[
(E[Un|Un +Wn])

2
]
.

Similarly,

E
[
(E[X|X + Y ])

2
]
= E

[
(E[U |U +W ])

2
]
.

Thus, to show (2.3), it suffices to prove

E
[
(E[U |U +W ])

2
]
≤ lim inf

n→∞
E
[
(E[Un|Un +Wn])

2
]
. (2.4)

We proceed to define

Tn := E[Un|Un +Wn] and T := E[U |U +W ]. (2.5)

By Jensen’s inequality, for all n ∈ N+,

E[T 2
n ] = E

[
(E[Un|Un +Wn])

2
]
≤ E

[
E[U2

n|Un +Wn]
]
= E[U2

n] ≤M.

Similarly, E[T 2] ≤M .
The proof continues by invoking the following lemma, whose proof is relegated to the

Appendix.

Lemma 2.3. For every bounded Borel function h on R,

E[h(U +W )T ] = lim
n→∞

E[h(U +W )Tn]. (2.6)

We now show how Lemma 2.3 implies (2.4). By the definition of conditional expecta-
tion, E[U |U +W ] can be represented as g(U +W ), where g is a Borel function on R. For
k ∈ N+, let gk := g 1{|g|≤k}. Then gk is a bounded Borel function. Applying Lemma 2.3
gives

E[gk(U +W )T ] = lim
n→∞

E[gk(U +W )Tn].

Since

E[gk(U +W )Tn] ≤
(
E
[
(gk(U +W ))2

]
+ E[T 2

n ]
)
/2,

letting n→∞ yields

E[gk(U +W )T ] ≤ 1

2
lim inf
n→∞

E[T 2
n ] +

1

2
E
[
(gk(U +W ))2

]
. (2.7)

Noting that

g(U +W ) = E[U |U +W ] = T

is square-integrable, it then follows by dominated convergence that

lim
k→∞

E
[
(gk(U +W ))2

]
= E

[
(g(U +W ))2

]
= E[T 2]. (2.8)

Further, noting that

|gk(U +W )T | ≤ |g(U +W )T | = T 2,
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and recalling that T 2 is integrable, the family of random variables {gk(U +W )T} is
uniformly integrable. Since gk(U +W )T converges to g(U +W )T almost surely, we have
that

lim
k→∞

E[gk(U +W )T ] = E[g(U +W )T ] = E[T 2]. (2.9)

Finally, letting k →∞ on both sides of (2.7), and combining the results in (2.8) and (2.9),
we have

E[T 2] ≤ lim inf
n

E[T 2
n ],

which is precisely what appears in (2.4). This completes the proof.

Remark 2.4. If the random vectors (Xn, Yn) and (X,Y ) satisfy the condition that

sup
B∈BR

∣∣∣P [(Xn, Yn) ∈ A,Xn + Yn ∈ B]− P [(X,Y ) ∈ A,X + Y ∈ B]
∣∣∣→ 0

for each A in BR2 , where BR and BR2 represent the families of Borel sets on R and R2

respectively, then Corollary 5.7 in [3] could help with the simplification of the proof
for Theorem 2.2. In general, there are situations where this condition is not satisfied,
particularly when dealing with jointly discrete random vectors (Xn, Yn) and (X,Y ).
Therefore, we provide the above proof to address all situations.

With Theorem 2.2 in hand, we are now ready to present the key theorem of this
manuscript regarding existence of the least favorable noise.

Theorem 2.5. Suppose X is a non-degenerate random variable with zero mean and
finite second moment. Then there exists a minimizer Y ∈ Vε(X) such that

varE[X|X + Y ] = inf
Z∈Vε(X)

varE[X|X + Z] = L(X, ε).

Consequently, the least favorable noise exists.

Proof. Let Yn ∈ Vε(X) be a random variable such that

varE[X|X + Yn] ≤ L(X, ε) +
1

n
.

Since E[X2] < ∞ and supnE[Y 2
n ] ≤ ε2, the sequence of random vectors {(X,Yn)}∞n=1

is tight. Thus, there exists a subsequence {(X,Yn(k))} of {(X,Yn)} such that (X,Yn(k))

converges weakly to some random vector, say, (X̃, Ỹ ). It follows by the Continuous

Mapping Theorem that X
d
= X̃ and Yn(k) converges weakly to Ỹ . Noting that X is

independent of Yn, it may be easily verified that X̃ is independent of Ỹ . Furthermore,
applying Lemma 2.1 to the sequence {Yn(k)}, we have

E[Ỹ 2] ≤ lim inf
k→∞

E[Y 2
n(k)] ≤ ε

2 and E[Ỹ ] = lim
k→∞

E[Yn(k)] = 0.

We now may construct a random variable Y such that Y is independent of X and Y
has the same distribution as Ỹ . We now claim Y is the desired minimizer. We proceed to
prove this claim. Indeed, since

E[Y ] = E[Ỹ ] = 0

and
E[Y 2] = E[Ỹ 2] ≤ ε2,

then Y ∈ Vε(X). Furthermore, it follows by the assumption of independence of X and Y

that (X,Y )
d
= (X̃, Ỹ ). Invoking a similar argument from the proof of Theorem 2.2 yields

that
varE[X|X + Y ] = varE[X̃|X̃ + Ỹ ].
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Finally, applying Theorem 2.2 yields

varE[X̃|X̃ + Ỹ ] ≤ lim inf
k→∞

varE[Xn(k)|Xn(k) + Yn(k)] = L(X, ε).

Thus, varE[X|X + Y ] ≤ L(X, ε), which proves that Y is the desired minimizer.

3 Variance of the least favorable noise

The purpose of this section is to calculate the variance of the least favorable noise
(Theorem 3.3). Theorem 3.3 relies on Proposition 3.1 and Lemma 3.2 below. Proposi-
tion 3.1 is a standard result conditional expectation and therefore we omit the proof.

Proposition 3.1. Suppose X is a square-integral random variable. Let F and G be two
σ-algebras with G ⊂ F . Then

E
[
(E[X|G])2

]
≤ E

[
(E[X|F ])2

]
,

with equality holding if and only if E[X|G] = E[X|F ] almost surely.

We now introduce Lemma 3.2, which relies on Proposition 3.1.

Lemma 3.2. Suppose X is a non-degenerate random variable with zero mean and finite
second moment and Y is an arbitrary random variable independent of X. Let Z be a
non-degenerate Gaussian random variable independent of σ(X,Y ). Then

varE[X|X + Y + Z] < varE[X|X + Y ].

Proof. First, we note that the means of E[X|X + Y ] and E[X|X + Y + Z] are both
E[X] = 0. It thus suffices to prove that

E
[
(E[X|X + Y + Z])

2
]
< E

[
(E[X|X + Y ])

2
]
.

Applying Proposition 3.1 gives

E
[
(E[X|X + Y + Z])

2
]
≤ E

[
(E[X|X + Y,Z])

2
]
= E

[
(E[X|X + Y ])

2
]
, (3.1)

where in the last equality we have invoked the fact that

E[X|X + Y, Z] = E[X|X + Y ],

which holds because Z is independent of σ(X,Y ). In what follows, we only need rule out
the case where

E
[
(E[X|X + Y + Z])

2
]
= E

[
(E[X|X + Y ])

2
]
. (3.2)

We proceed by contradiction. Assume, for the sake of contradiction, that equa-
tion (3.2) holds. Combining (3.1) and Proposition 3.1, we have that

E[X|X + Y + Z] = E[X|X + Y, Z] = E[X|X + Y ], (3.3)

holds almost surely.
Let f1 and f2 be two Borel functions on R such that f1(X + Y + Z) and f2(X + Y )

are versions of E[X|X + Y + Z] and E[X|X + Y ] respectively. Then the equality in (3.3)
implies that

P (f1(X + Y + Z) = f2(X + Y )) = 1. (3.4)

In what follows, we use PU to denote the probability measure on R generated by the
random variable U . Since X,Y, Z are independent, (3.4) is equivalent to∫

R

∫
R

P (f1(x+ y + Z) = f2(x+ y))PX(dx)PY (dy) = 1.
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Since P (f1(x+ y + Z) = f2(x+ y)) ≤ 1, we have that

P (f1(x+ y + Z) = f2(x+ y)) = 1 PX ⊗ PY – a.s..

Then we can select x0, y0 such that

P (f1(x0 + y0 + Z) = f2(x0 + y0)) = 1,

which implies that f1(x0 + y0 + Z) is a constant almost surely. Note that since Z is an
absolutely continuous random variable whose density is positive everywhere, f1 is a
constant almost everywhere with respect to Lebesgue measure. By standard properties
of convolution, X+Y +Z is an absolutely continuous random variable. Thus, f1(X+Y +Z)

is a constant almost surely, namely, E[X|X + Y + Z] is a constant almost surely. Note
that since the mean of E[X|X + Y + Z] is 0, E[X|X + Y + Z] must be 0 almost surely.
Then

0 = E [E[X|X + Y + Z](X + Y + Z)] = E [X(X + Y + Z)]

= E[X2] + E[XY ] + E[XZ] = E[X2] + E[X]E[Y ] + E[X]E[Z] = E[X2],

which implies that X = 0 almost surely. Since X is non-degenerate, a contradiction has
been reached. This concludes the proof.

With above lemmas in hand, we now turn to the variance of the least favorable noise.

Theorem 3.3. Suppose X is a non-degenerate random variable with zero mean and
finite second moment. For any Y ∈ Vε(X) such that varE[X|X + Y ] attains the minimum
L(X, ε), we must have that E[Y 2] = ε2.

Proof. We proceed by contradiction. For the sake of contradiction, let us assume
E[Y 2] < ε2. We proceed to construct a Gaussian random variable Z with zero mean and
sufficiently small variance such that Z is independent of σ(X,Y ) and E[(Y + Z)2] ≤ ε2.
It is immediate to verify that Y + Z ∈ Vε(X). However, applying Lemma 3.2 gives

varE[X|X + Y + Z] < varE[X|X + Y ].

However, this directly contradicts the fact that Y is a minimizer. Thus, by contradiction,
E[Y 2] = ε2.

Remark 3.4. Theorem 3.3 tells us that in order to search for the least favorable noise,
one may only need focus on the random variable Y satisfying E[Y 2] = ε2. If one attempts
to find the least favorable noise by the method of Lagrange multipliers, Theorem 3.3
converts the inequality constraint to an equality constraint, which greatly simplifies the
problem.

4 Properties of L(X, ε)

The purpose of this section is to study some properties of the function L(X, ε).
Proposition 4.1 is introduced in order to prove the key result of this section (Theorem 4.2),
which states that L(X, ε) is strictly decreasing and right continuous in ε on [0,∞).

Proposition 4.1. Let {Xn}∞n=1 be a sequence of random variables with zero mean which
converges weakly to some random variable X with zero mean. Let {εn}∞n=1 be a sequence
of non-negative real number which converges to a non-negative real number ε. If

sup
1≤n<∞

E[X2
n] <∞,

then
L(X, ε) ≤ lim inf

n→∞
L(Xn, εn).
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Proof. By the properties of limit inferior, there exists a subsequence {n(k)}∞k=1 of {n}∞n=1

such that
lim inf
n→∞

L(Xn, εn) = lim
k→∞

L(Xn(k), εn(k)).

Thus, provided the limit of L(Xn(k), εn(k)) exists, we need only prove

L(X, ε) ≤ lim inf
k→∞

L(Xn(k), εn(k)).

For simplicity of notation, in what follows, we continue to write the subsequence
{n(k)}∞k=1 by {n}∞n=1. We shall also assume the limit of L(Xn, εn) exists.

For every n, by Theorem 2.5, there exists a Yn ∈ Vεn(Xn) such that

varE[Xn|Xn + Yn] = L(Xn, εn).

Noting that E[Y 2
n ] ≤ ε2n and that εn converges to ε, we have supnE[Y 2

n ] < ∞. Together
with the fact that supnE[X2

n] <∞, the family of random vectors {(Xn, Yn)}∞n=1 is tight.
Then there exists a subsequence {(Xn(k), Yn(k))} of {(Xn, Yn)} such that (Xn(k), Yn(k))

converges weakly to some random vector, say, (X̃, Ỹ ). By continuous mapping, we have

that Xn(k) converges weakly to X̃ and Yn(k) converges weakly to Ỹ . Then, X
d
= X̃, since

Xn(k) also converges weakly to X. By Lemma 2.1, we have E[Ỹ ] = limk E[Yn(k)] = 0 and

E[Ỹ 2] ≤ lim infk E[Y 2
n(k)] ≤ ε

2. Furthermore, since Xn(k) is independent of Yn(k), we also

have that X̃ is independent of Ỹ . Invoking Theorem 2.2 here gives

varE[X̃|X̃ + Ỹ ] ≤ lim inf
k→∞

varE[Xn(k)|Xn(k) + Yn(k)]

= lim inf
k→∞

L(Xn(k), εn(k)) = lim inf
n→∞

L(Xn, εn), (4.1)

where the last equality follows by our assumption that the limit of L(Xn, εn) exists.

There exists a random variable Y such that Y is independent of X and Y
d
= Ỹ . Thus,

E[Y ] = E[Ỹ ] = 0 and E[Y 2] = E[Ỹ 2] ≤ ε2, which implies Y ∈ Vε(X). By independence,

we have (X,Y )
d
= (X̃, Ỹ ), hence,

varE[X|X + Y ] = varE[X̃|X̃ + Ỹ ], (4.2)

by a similar argument in the proof of Theorem 2.2. Combining (4.1) and (4.2), we have

L(X, ε) ≤ varE[X|X + Y ] ≤ lim inf
n→∞

L(Xn, εn).

This completes the proof.

Theorem 4.2. Let X be a non-degenerate random variable with zero mean and finite
second moment. Then, with fixed X, L(X, ε) is a strictly decreasing and right continuous
function with respect to ε on [0,∞).

Proof. We first shall prove that L(X, ε) is strictly decreasing with respect to ε. Consider
0 ≤ ε1 < ε2. By Theorem 2.5, there exists Y1 ∈ Vε1(X) such that

varE[X|X + Y1] = L(X, ε1).

We proceed to construct a Gaussian random variable with mean zero and variance ε22− ε21
such that Z is independent of σ(X,Y1). It is straightforward to check that Y1+Z ∈ Vε2(X).
Then by Lemma 3.2,

L(X, ε2) ≤ varE[X|X + Y1 + Z] < varE[X|X + Y1] = L(X, ε1),
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which means that L(X, ε) is strictly decreasing.
We now turn to the right continuity. Consider every ε0 ∈ [0,∞). For ε > ε0, we have

L(X, ε) < L(X, ε0). Thus

lim sup
ε↓ε0

L(X, ε) ≤ L(X, ε0). (4.3)

Applying Proposition 4.1 yields

L(X, ε0) ≤ lim inf
ε↓ε0

L(X, ε). (4.4)

Finally, combining (4.3) and (4.4) completes the proof.

Remark 4.3. Theorem 4.2 shows that the maximum of the prediction error E[X −
E[X|X + Y ]]2 is strictly increasing as the variance of the noise Y increases. In other
words, “more noise makes prediction worse.” This conclusively answers Question 4
posed on page 2 of [4].
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5 Appendix

This Appendix contains the proof of Lemma 2.3.

Proof of Lemma 2.3. We first claim that the class H of bounded real-valued Borel func-
tion h on R such that (2.6) holds must satisfy properties (A.1)-(A.3) below:

(A.1) H is a vector space which contains constant functions;

(A.2) H is closed under uniform convergence;

(A.3) For a uniformly bounded sequence {hk} of non-negative functions in H where ∀k,
hk ≤ hk+1, and ∀s, hk(s)→ h(s), we have that h ∈ H.

It is immediate that H is a vector space. Furthermore, for every constant function
c(x) ≡ c, by (2.2), we have

lim
n→∞

E[c(U +W )Tn] = lim
n→∞

cE[Tn] = lim
n→∞

cE[Xn] = cE[X] = cE[T ] = E[c(U +W )T ].

Thus, property (A.1) holds.
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The existence of the least favorable noise

To check property (A.2), suppose hk ∈ H converges uniformly to h. Then

|E[h(U +W )T ]− E[h(U +W )Tn]|
≤ |E [(h(U +W )− hk(U +W )) T ]|+ |E [(h(U +W )− hk(U +W )) Tn]|

+|E[hk(U +W )T ]− E[hk(U +W )Tn]|

≤
{
E
[
(h(U +W )− hk(U +W ))

2
]}1/2

·
{
E[T 2]

}1/2
+
{
E
[
(h(U +W )− hk(U +W ))

2
]}1/2

·
{
E[T 2

n ]
}1/2

+|E[hk(U +W )T ]− E[hk(U +W )Tn]|

≤ 2M1/2
{
E
[
(h(U +W )− hk(U +W ))

2
]}1/2

+|E[hk(U +W )T ]− E[hk(U +W )Tn]|,

where the second inequality follows by Hölder’s inequality and in the last inequality
we have applied the fact that supnE[T 2

n ] ≤M and E[T 2] ≤M . Letting n tend to∞ and
noting that (2.6) holds for hk, we have

lim sup
n→∞

|E[h(U +W )T ]−E[h(U +W )Tn]| ≤ 2M1/2
{
E
[
(h(U +W )− hk(U +W ))

2
]}1/2

.

(5.1)
Letting k tend to∞, and recalling the fact that hk converges uniformly to h, we conclude
that h ∈ H.

We now turn to (A.3). Suppose uniformly bounded non-negative functions hk ↑ h. It is
immediate that hk(U +W )− h(U +W ) converges to 0 pointwise and that it is uniformly
bounded. By dominated convergence, we have

lim
n→∞

E
[
(h(U +W )− hk(U +W ))

2
]
= 0 (5.2)

Using a similar argument in the proof of (A.2) yields (5.1) again. Together with (5.2) we
conclude that h ∈ H.

With above preparation in hand, we prove the equality in (2.6) for every bounded
Borel function h. By the monotone class theorem (cf. [5, p.91]), it suffices to prove (2.6)
for every bounded continuous function h on R. Recall that by construction, (Un,Wn)

converges to (U,W ) almost surely. Since h is continuous, we have h(Un+Wn)→ h(U+W )

almost surely. Since h is bounded, by dominated convergence, we have

lim
n→∞

E
[
(h(Un +Wn)− h(U +W ))

2
]
= 0. (5.3)

Note that
sup

1≤n<∞
E
[
(Unh(Un +Wn))

2
]
≤ ‖h‖2 · sup

1≤n<∞
E[U2

n] =M‖h‖2,

where ‖h‖ := supx |h(x)|. Then the family of random variables {Unh(Un +Wn)}∞n=1 is
uniformly integrable. Further, Unh(Un+Wn) converges to Uh(U +W ) almost surely, and
so

lim
n→∞

E[Unh(Un +Wn)] = E[Uh(U +W )]. (5.4)

Recalling the definitions of Tn and T given in (2.5), and invoking the standard properties
of conditional expectation, we have

E[h(Un +Wn)Tn] = E [h(Un +Wn)E[Un|Un +Wn]] = E[Unh(Un +Wn)],

and
E[h(U +W )T ] = E [h(U +W )E[U |U +W ]] = E[Uh(U +W )].
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The existence of the least favorable noise

Plugging the above two displays into (5.4) yields

lim
n→∞

E[h(Un +Wn)Tn] = E[h(U +W )T ]. (5.5)

By Hölder’s inequality, we have

|E[h(Un +Wn)Tn]− E[h(U +W )Tn]|
= |E[(h(Un +Wn)− h(U +W ))Tn]|

≤
{
E
[
(h(Un +Wn)− h(U +W ))

2
]}1/2

·
{
E[T 2

n ]
}1/2

≤ M1/2
{
E
[
(h(Un +Wn)− h(U +W ))

2
]}1/2

.

Together with (5.3), we obtain

lim
n→∞

|E[h(Un +Wn)Tn]− E[h(U +W )Tn]| = 0 (5.6)

Combining (5.5) and (5.6), the equality in (2.6) follows.
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