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Abstract

In ballistic annihilation, infinitely many particles with randomly assigned velocities
move across the real line and mutually annihilate upon contact. We introduce a variant
with superimposed clusters of stationary particles, and provide a simple formula for
the critical initial cluster density in terms of the mean and variance of the cluster size.
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1 Introduction

Ballistic annihilation (BA) is a stochastic spatial system in which particles are placed
throughout the real line with independent and identically distributed spacings and
proceed to move at independently sampled velocities. Collisions result in mutual annihi-
lation. Interest in annihilating dynamics with ballistic particle trajectories arose as an
extremal case of diffusion-limited annihilating systems being studied by physicists and
mathematicians in the late 20th century [23, 5, 6].

Droz et. al in [11] analyzed the symmetric three-velocity setting with velocities
sampled from −1, 0, 1. Velocity 0 particles, which we will refer to as blockades, occur
with probability p. Velocity +1 and −1 particles, which we will call right and left arrows,
respectively, each occur with probability (1 − p)/2. Let θ(p) be the probability that a
given blockade is never annihilated. By ergodicity, the limiting proportion of surviving
blockades converges to pθ(p). So,

pc = inf{p : θ(p) > 0} (1.1)

represents the critical initial blockade density for species survival.
Three-velocity BA has multiple collision types: arrow–blockade and arrow–arrow.

The rates at which these occur are not obvious, and thus neither is the value of pc.
Another challenge is that BA exhibits long-range dependence. This makes it difficult to
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Non-universality in clustered ballistic annihilation

extrapolate from finite systems and to account for multiple velocities. BA is also sensitive
to perturbation. Changing an arrow to a blockade may increase the lifespans of other
arrows. Thus, it is not obvious how to rigorously confirm the intuition that θ and related
quantities are monotone in p. This is problematic. For example, it is not a priori obvious
that the definition of pc at (1.1) is equal to sup{p : θ(p) = 0}.

Droz et. al [11] and, later in more detail, Krapivsky et. al [19] worked out the phase-
behavior of three-velocity BA and concluded that pc = 1/4. A rough intuition for why
(given in the introduction of [11]) is that arrow–arrow collisions should occur, on average,
at twice the rate of arrow–blockade collisions. Under this assumption, on average, six
arrows are removed for every two blockades. This suggests that the critical density
starts with a 1:3 ratio of blockades to arrows, hence pc should be 1/4. This is difficult to
make rigorous and ignores any spatial effects. The derivations in both works, though
more sophisticated than this heuristic, were not completely rigorous. Despite some
progress towards upper bounds on pc [12, 22, 8], showing that pc = 1/4 remained an
open problem. Even proving the much weaker statement that pc > 0 was a problem
widely advertised by Sidoravicius in the mid 2010s. A breakthrough from Haslegrave,
Sidoravicius, and Tournier introduced an exactly solvable approach that proved that
pc = 1/4 [14]. In the same work, the authors also worked out finer details such as tail
survival probabilities and the “skyline” of collision types.

Many of the findings in [14] are universal in the sense that the results hold for any
continuous law of particle spacings. For example, pc = 1/4 so long as triple collisions
almost surely do not occur [8, 14]. Note that [14] also proved results concerning
universality when a random arrow survives a triple collision. Additional universality
properties with respect to particle spacings were observed in the followup work by
Haslegrave and Tournier [15] as well as Cruzado-Padro, Junge, and Reeves [20]. Broutin
and Marckert discovered that a closely related bullet process with finitely many particles
has a universal law governing the number of surviving particles that does not depend on
velocity or spacing laws [7].

A canonical form of universality is invariance with respect to the average particle
density. It is physically and mathematically natural to allow for clusters of superimposed
particles, as is standard in other diffusion-limited annihilating systems [6]. To test the
robustness of BA dynamics to the initial particle density, we introduce a variant of BA
with random clusters of multiple blockades. We prove that the analogue of the critical
value (1.1) depends on more than simply the average initial density of particles. Thus,
three-velocity BA lacks this type of universality. To our knowledge, this is a new discovery
that was not previously conjectured.

1.1 Notation

We let (xn)n∈Z be an ordered sequence of starting locations for particles. To stan-
dardize placements, set x0 = 0 and assume that xn − xn−1 are sampled independently
according to a continuous distribution with support contained in (0,∞). Let X be a
nonnegative integer-valued random variable with probability distribution µ = (µk)k≥0,
and let f(t) = E[tX ] =

∑∞
k=0 µkt

k be the probability generating function. In an abuse
of notation, we will write E[µ] and var(µ) for the mean and variance of X. Adopt the
convention that var(µ) =∞ whenever E[µ] =∞. Take (Xn)n∈Z to be independent and
µ-distributed. Each site xn either independently starts with a cluster of Xn-blockades
with probability p ∈ [0, 1], or otherwise contains a single arrow whose velocity is sampled
uniformly from ±1. We will sometimes refer to the starting number of blockades in a
cluster as the size and write k-cluster to refer to a cluster of size k. Blockades are
stationary. Left and right arrows move with velocities −1 and +1, respectively.

Define µ-clustered ballistic annihilation to have the just-described starting config-
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Non-universality in clustered ballistic annihilation

uration at time 0. As time evolves, particles move at their assigned velocities. When
two arrows collide, both vanish from the system. When an arrow collides with a cluster
containing k ≥ 1 remaining blockades, the arrow vanishes and one blockade is removed
from the cluster (so k − 1 blockades remain). A more formal construction of BA that
easily generalizes to include clusters can be found in [14].

We denote the events that a cluster starts at xn by •̇n, or that a left or right arrow
starts at xn by ~•n and ~•n, respectively. When xn contains a cluster, we denote the starting
size with a superscript •̇Xn

n . We will frequently refer to •̇, ~•,~• as particles. Accordingly,
collision events and visits to a location u ∈ R are specified by

~•m ←→ ~•n = {~•m and ~•n mutually annihilate}
~•m ←→ ~• = {~•m mutually annihilates with an arrow}
•̇n ← ~•m = { ~•m mutually annihilates with a blockade at xn}
•̇kn ← ~•m = { ~•m mutually annihilates with a blockade at xn, Xn = k}
•̇ ← ~•n = { ~•n mutually annihilates with a blockade}
u← ~• = {u is visited by a ~•}

u
j← ~•m = { ~•m is the jth ~• to arrive to u}.

The events ~•m → •̇n, ~•m → •̇, ~•m → •̇k, ~• → u, and ~• j→ u are defined similarly. We
denote complements of collision events with 6←→, 6←, and 6→. Note that when an arrow
hits a cluster we count that as visiting the site, so {•̇k ← ~•} ⊆ {xk ← ~•}.

It is often helpful to restrict to a system which only includes particles started in an
interval I ⊆ R. We notate this restriction by including I as a subscript on the event, for
example, (•̇m ← ~•n)[xm,xn] is the event that •m is a blockade that annihilates with a left
arrow started at xn in the process restricted to only the particles in [xm, xn]. Unless
indicated otherwise, the default is that events are one-sided i.e., restricted to (0,∞). So,
P(0← ~•) = P((0← ~•)(0,∞)).

We now define the generalization of θ from the previous section for µ-clustered BA:

θ = θ(p, µ) := P((~• 6→ 0)(−∞,0) ∧ (0 6← ~•)(0,∞)).

It is convenient to instead work with the one-sided complement

q = q(p, µ) := P(0← ~•),

so that θ = (1− q)2. Define the critical value

pc = pc(µ) := inf{p : θ(p, µ) > 0}.

1.2 Results

Our main result is a simple formula for pc that depends on both the mean and variance
of µ. We also provide an implicit formula for q.

Theorem 1.1. For µ-clustered BA it holds that

pc =
1

(E[µ] + 1)2 + var(µ)
. (1.2)

Moreover, q is continuous, strictly decreasing on [pc, 1], and solves

(1− q)2

(1− q2) q2f ′(q)− 2qf(q) + q2 + 1
= p (1.3)

with f(q) =
∑∞

k=0 µkq
k the probability generating function of µ.
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A surprising consequence of Theorem 1.1 is that there is no phase transition whenever
µ has infinite variance.

Corollary 1.2. If var(µ) =∞, then pc = 0.

Another corollary is that the value pc = 1/4 in BA from [14] is maximal among all
systems with E[µ] = 1.

Corollary 1.3. If µ1 = 1, then pc = 1/4. For all other µ with E[µ] = 1, we have pc < 1/4.

Lastly, Benitez, Junge, Lyu, Redman, and Reeves studied a coalescing version of
ballistic annihilation in which particles sometimes survive collisions [4]. The primary
interest was determining the analogue of pc for these systems. However, they were
unable to analyze the case in which blockades survive each collision with some fixed
probability (see [4, Remark 5]). This is equivalent to µ-clustered ballistic annihilation
with µ a geometric distribution. Thus, Theorem 1.1 gives the value of pc in this unsolved
case.

Corollary 1.4. Let β ∈ (0, 1) and µ be a geometric distribution with parameter β, i.e.,
µk = (1− β)k−1β for k ≥ 1. For µ-clustered ballistic annihilation it holds that

pc =
β2

β2 + β + 2

and, by solving (1.3) for q, we have for p ≥ pc

q(p) =

√
p2β − p2 − pβ + 2p− pβ + β − 1

pβ2 − pβ + p− β2 + 2β − 1
.

1.3 Discussion

There is no robust general theory that tells us whether or not a given interacting
particle system will have a universal phase transition. On Zd, branching processes,
diffusion-limited-annihilating systems, and activated random walk are processes known
to have phase transitions that do not depend on the initial particle density [1, 9, 21].
The frog model and directed parking processes on d-ary trees have phase transitions
that depend on more than the average density [10, 3, 17]. And, the number of visits to
a distinguished site varies monotonically with the concentration of the initial particle
placements for these processes on general families of graphs [16, 2].

It is a priori unclear whether or not pc depends on more than E[µ]. On one hand, BA
has dynamics similar to the systems considered in [2]. So, it is reasonable to expect
some sensitivity to the initial density of particles. On the other hand, the mean-field
heuristic presented in [11] and further clarified in [19, Section (b)] suggests that pc
might be universal. The explanation in [19] assumes that arrow–arrow collisions, on
average, occur at twice the rate of blockade–left arrow collisions. This is “based on the
expectation that the relative number of annihilation events is proportional to the relative
velocities of the collision partners.” If this “expectation”, which seems to only depend
on the relative velocities of particle types, still holds in µ-clustered BA, then the same
heuristic would predict universality.

Theorem 1.1 settles the question. Put concisely, the more volatile µ becomes, the
more space for arrow-arrow collisions, which enhances blockade survival. In a loose
sense, our theorem says that the order particles are placed plays a role in determining
pc. A more detailed heuristic for why the variance plays a role in the formula for pc
in Theorem 1.1 comes from considering the extreme case in which µ0 = (k − 1)/k and
µk = 1/k with k a large integer. As var(µ) = k− 1 and E[µ] = 1, Theorem 1.1 implies that
pc = 1/(k + 3). To see intuitively why this is the correct order, suppose that 0 contains
a k-cluster. Let xN be the next site to the right of 0 that contains a k-cluster. We have
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N is a geometric random variable with parameter p/k. Thus, we expect on the order
of (1 − p)k/p arrows in (0, xN ) along with some 0-clusters. The amount of arrows that
reach the boundary of (0, xN ) should be comparable to the magnitude of the discrepancy
between left and right arrows started in (0, xN ). By the central limit theorem, the
discrepancy is on the order of

√
k/p, and so this order of left arrows from (0, xN ) will

reach 0 [13]. For these arrows to eliminate a significant portion of the k-cluster at 0, we
would need k ≈

√
k/p, equivalently, p ≈ 1/k ∼ 1/ var(µ).

1.4 Proof overview

Our proof has three main parts. Section 2 is devoted to proving the recursive equation
for q in Proposition 2.1. This is inspired by what was done in [14], but instead uses a
version of the mass transport principle first observed in [18] and refined in [4]. The basic
idea is to partition the event associated to q based on the velocity of •1.

An important probability for deriving this recursion is sk = P((0 ← ~•) ∧ (~•1 → •̇k)).
In [14], it was observed that s1 = (1/2)pq2. Computing sk for k > 1 in the proof of (2.2)
is more involved. After applying the mass transport principle, this event partitions into
various events in which k + 1 left arrows arrive to 0 while satisfying non-symmetric
spacing requirements. Remarkably, a broader symmetry than what was used in [14]
(see (2.11) makes this case tractable and yields the simple formula sk = (1/2)pµkkq

k+1.
In the proof of (2.3), we use similar methods to give a relatively simple formula for the
companion probability rk = P((0 6← ~•) ∧ (~•1 → •̇k)). With these quantities in hand, it
is straightforward to obtain (2.1). The second part is proving that q is continuous in p.
The proof closely follows the argument that θ is continuous in asymmetric three-velocity
ballistic annihilation from [18].

The last step, in Section 4, involves analyzing the recursion from Proposition 2.1.
The recursion implies that 0 = (1 − q)h(p, q) for an explicit function h. This tells us
that either q = 1 or solves h(p, q) = 0. We prove that h(u, 1) has unique solution u = pc
from Theorem 1.1. The goal is then to show that q, for any µ-clustered BA, continuously
switches from being identically 1 for p ≤ pc to the unique curve determined by (1.3).
A priori, it is not obvious how to prove that the roots of h are well-behaved and that q
faithfully follows them. The continuity of q observed in Theorem 3.6 is crucial for ruling
out the pathology that q jumps between 1 and solutions to h = 0. This more robust than
past approaches [14, 4].

2 Recursion

The goal of this section is to prove the following recursive formula.

Proposition 2.1.

q =
1− p
2

+ pqf(q) + s+ q

(
1− p
2
− s− r

)
(2.1)

with

s := P((0← ~•) ∧ (~•1 → •̇)) =
pq2

2
f ′(q) (2.2)

r := P((0← ~•) ∧ (~•1 → •̇)) =
pq
(
q2f ′ (q)− qf ′ (q)− f (q) + 1

)
1− q

. (2.3)

Proof of (2.1). We partition q in terms of the velocity of the first particle

q = P((0← ~•) ∧ ~•1) +P((0← ~•) ∧ •̇1) +P((0← ~•) ∧~•1) (2.4)
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and will provide a formula for each summand. It is immediate that

P((0← ~•) ∧ ~•1) =
1− p
2

. (2.5)

For the second summand, we further partition on the size of •̇1 to write

P((0← ~•) ∧ •̇) =
∞∑
k=0

P((0← ~•) ∧ •̇1 ∧ (X1 = k)).

If X1 = k, then k + 1 left arrows must arrive at x1 in order for 0 to be visited. This
happens if and only if the jth left arrow to arrive reaches the starting location of the
(j − 1)th left arrow to arrive for j = 2, . . . , k + 1. By similar reasoning as [14, Lemma 7],
each of these arrivals is conditionally independent and has probability q. Thus, for k ≥ 0

we have
P((0← ~•) ∧ •̇1 ∧ (X1 = k)) = p · µkq

k+1.

Summing over k gives

P((0← ~•) ∧ •̇1) = pqf(q). (2.6)

A similar argument as [22, Lemma 3.3] implies that all arrows are eventually annihi-
lated. Since P(~•1 → •̇) = s+ r, we may write

P(~•1) =
1− p
2

= P(~•1 → •̇) +P(~•1 ←→ ~•)

= s+ r +P(~•1 ←→ ~•). (2.7)

For 0 to be visited on the event {~•1}, the particle ~•1 must first be annihilated. We
partition on the collision type:

P((0← ~•) ∧~•1) = P((0← ~•) ∧ (~•1 → •̇)) +P((0← ~•) ∧ (~•1 ←→ ~•))
= s+ qP(~•1 ←→ ~•) (2.8)

= s+ q

(
1− p
2
− s− r

)
. (2.9)

The equality at (2.8) follows from the definition of s and the fact that P(0← ~• | ~•1 ←→
~•) = q. This fact follows from the observation that conditional on (~•1 ←→ ~•j) for some
j > 1, (0 ← ~•) occurs if and only if (xj ← ~•)(xj ,∞), which has probability q. The move
to (2.9) then uses (2.7). Combining (2.5), (2.6), and (2.9) in (2.4) gives (2.1).

Next, we will prove the formulas for s and r at (2.2) and (2.3), respectively. These
require the use of a Mass Transport Principle based on translation invariance.

Proposition 2.2 (Mass Transport Principle). Define a non-negative random variable
Z(m,n) for integers m,n ∈ Z such that its distribution is diagonally invariant under
translation, i.e., for any integer `, Z(m+ `, n+ `) has the same distribution as Z(m,n).
Then for each m ∈ Z:

E
∑
n∈Z

Z(m,n) = E
∑
n∈Z

Z(n,m).

Proof. Fubini’s theorem and translation invariance give

E
∑
n∈Z

Z(m,n) =
∑
n∈Z

E[Z(m,n)]

=
∑
n∈Z

E[Z(2m− n,m)] =
∑
n∈Z

E[Z(n,m)] = E
∑
n∈Z

Z(n,m).

ECP 28 (2023), paper 22.
Page 6/12

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP529
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Non-universality in clustered ballistic annihilation

Proof of (2.2). Let sk = P((0 ← ~•) ∧ (~•1 → •̇k)) so that s =
∑∞

k=0 sk. We will use the
mass transport principle to relate the event associated to sk to one that involves k + 1

arrows arriving to the site containing a k-cluster. To this end, define

Zj
k(a, b) =

∑
c∈Z

[
1{•̇kb ∧ (~•a

j−→ xb)[xa,xb) ∧ (xb
k+1−j←−−−− ~•c)(xb,xc] ∧ (xb − xa < xc − xb)}

]
for a, b, j, k ∈ Z.

Observe that

sjk := P((~•1
j→ •̇k) ∧ (0← ~•)) = E

∑
b∈Z

Zj
k(1, b).

Define ~Dj to be the starting distance from x1 of the jth particle to arrive to x1 in
the process restricted to particles in (−∞, x1). We set ~Dj = ∞ whenever fewer than
j particles ever visit x1. Define ~Dj similarly, but on (x1,∞). By Proposition 2.2 and
independence, sjk is equal to

E
∑

a∈ZZ
j
k(a, 1) = P(•̇k1)P((~• j→ x1)(−∞,x1))P((x1

k+1−j←−−−− ~•)(x1,∞))P( ~Dj < ~Dk+1−j)

= p · µkq
jqk+1−jP( ~Dj < ~Dk+1−j). (2.10)

Since sk =
∑k

j=1 s
j
k, (2.10) gives

sk = p · µkq
k+1

k∑
j=1

P( ~Dj < ~Dk+1−j).

If k is even, then grouping summands gives

k∑
j=1

P( ~Dj < ~Dk+1−j) =

k/2∑
j=1

[
P( ~Dj < ~Dk+1−j) +P( ~Dk+1−j < ~Dj)

]
=
k

2
. (2.11)

We have P( ~Dj < ~Dk+1−j) + P( ~Dk+1−j < ~Dj) = 1. This is because ~Dj , ~Dk+1−j , ~Dk+1−j
and ~Dj are continuous and identically distributed random variables. Moreover, the ~Dj

and ~Dk+1−j as well as ~Dk+1−j and ~Dj are pairwise independent. Using similar reasoning,

if k = 2m+ 1 is odd, then we can write
∑k

j=1 P( ~Dj < ~Dk+1−j) as

m∑
j=1

[
P( ~Dj < ~Dk+1−j) +P( ~Dk+1−j < ~Dj)

]
+P( ~Dm+1 < ~Dm+1),

which equals m+ (1/2) = k/2. Hence, sk = p · µkq
k+1(k/2). Summing gives

s =

∞∑
k=1

sk =
pq2

2

∑
k=0

µkkq
k−1 =

pq2

2
f ′(q).

Proof of (2.3). Let rk = P((0 6← ~•) ∧ (~•1 → •̇k)) so that r =
∑∞

k=0 rk. As we did for the
proof of (2.2), we apply the Mass Transport Principle with new indicators

W i,j
k (a, b) =

∑
c∈Z 1{•̇kb ∧ (~•a

i−→ xb)[xa,xb) ∧ (xb
j←− ~•c)(xb,xc] ∧ (xc 6← ~•)(xc,∞)}

for i, j, k, a, b ∈ Z. Let (~•1
i→ •̇k j∗← ~•) denote the event that ~•1 is the ith right arrow to

annihilate with a k-cluster and exactly j left arrows visit that same k-cluster. Observe
that for i+ j ≤ k with i 6= 0, we have

ri,jk := P((0 6← ~•) ∧ (~•1
i→ •̇k j∗← ~•)) = E

∑
b∈Z

W i,j
k (1, b).
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By Proposition 2.2 and independence,

ri,jk = E
∑
a∈Z

W i,j
k (a, 1)

= P(•̇k1)P((~• i→ x1)(−∞,x1))P((x1
j← ~•)(x1,∞))×P( ~Dj+1 =∞ | ~Dj <∞)

= p · µkq
iqj(1− q).

We then have

rk =

k∑
i=1

k−i∑
j=0

ri,jk = p · µk

k∑
i=1

k−i∑
j=0

qi+j(1− q).

Applying the formula
∑m

i=0 a
i = (1− am+1)/(1− a) twice, gives

rk = p · µk

q
(
kqk+1 − kqk − qk + 1

)
1− q

.

Hence,

r =

∞∑
k=1

rk =
pq
(
q2f ′ (q)− qf ′ (q)− f (q) + 1

)
1− q

.

3 Continuity

The goal of this section is to prove that q is continuous in p by proving that it is both
upper and lower semi-continuous. We begin by recalling these definitions and stating a
few classical facts. A function ϕ is upper semi-continuous (USC) at each p0 ∈ [0, 1] if and
only if lim supp→p0

ϕ(p) ≤ ϕ(p0). It is lower semi-continuous (LSC) at each p0 ∈ [0, 1] if
and only if it holds that lim infp→p0

ϕ(p) ≥ ϕ(p0). Rather than working directly with the
definition, we will apply the following properties. See [18] for proofs.

Fact 3.1. The following hold.

(a) ϕ is continuous if and only if ϕ is USC and LSC.

(b) If there exists a sequence of LSC functions ϕn with ϕn ↑ ϕ, then ϕ is LSC.

(c) If ϕ(p) = supn(ϕn(p)) with ϕn LSC, then ϕ is LSC.

(d) If ϕ1 and ϕ2 are LSC, then max(ϕ1, ϕ2) is LSC.

(e) ϕ is LSC if and only if −ϕ is USC.

(f) If ψ is continuous and ϕ is LSC, then ψ ◦ ϕ is LSC. Similarly, if ϕ is USC, then ψ ◦ ϕ
is USC.

(g) If ϕ and ψ are both LSC or USC, then so is ϕ+ ψ.

That q is LSC follows almost immediately from its definition.

Proposition 3.2. q is LSC for p ∈ [0, 1].

Proof. The events Qn = {(0← ~•)(0,xn)} involve finitely many particles. After conditioning
on the velocities of these particles and integrating over all possible spacings, P(Qn) is
a finite degree polynomial in p, and thus continuous. Moreover, Qn ⊆ Qn+1, thus the
P(Qn) are increasing in n. Since q = limn→∞P(Qn), it follows from Fact 3.1 (b) that q is
LSC.
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We next aim to prove that q is USC. This is more difficult and involves an indirect
characterization of θ = (1− q)2 that takes a supremum over functionals of configurations
with only finitely many particles. Let Ṅ(j, k) be the number of blockades that survive
in ballistic annihilation restricted to the particles in [xj , xk]. Similarly, let ~N(j, k) and
~N(j, k) count the number of surviving left and right arrows. Define the random variables
that track the difference between the number of surviving blockades and arrows in the
process restricted to only the particles in [xj , xk]:

W (j, k) = Ṅ(j, k)− ~N(j, k)− ~N(j, k).

Lemma 3.3. n−1Ep[W (1, n)] is continuous in p for all n ≥ 1.

Proof. The random variables W (1, n) involve only finitely many particles. Ep[W (1, n)] is
thus a finite degree polynomial in p and is continuous.

Lemma 3.4. θ = max
(
0, supn≥1 n

−1Ep[W (1, n)]
)

for all p ∈ [0, 1].

Proof. The proof has four steps. Fortunately, it requires little modification from the
blueprint developed in [18]. We explain the basic idea of each step and refer the reader
to the appropriate reference.

Step 1. For all integers j < k < ` it holds that W (j, `) ≥W (j, k) +W (k + 1, `).

Proof. This superadditivity property is proven in [4, Lemma 15] for a more general
variant of ballistic annihilation in which particles sometime survive collisions. The basic
idea is that surviving arrows from the restrictions to [xj , xk] and [xk+1, x`] have a non-
decreasing effect on W (j, `). Surviving arrows either destroy other surviving arrows,
which augments W (j, `). Or, surviving arrows destroy blockades, which may cause a
chain reaction, but, regardless, the effect is worst-case neutral on W (j, `). The argument
does not change if multiple blockades are present at a site.

Step 2. limk→∞ k−1 ~N(1, k) = 0 = limk→∞ k−1 ~N(1, k).

Proof. This is proven in [18, Proposition 12] for asymmetric ballistic annihilation. It
is much simpler to deduce for symmetric systems. Using translation invariance of
the velocity configuration, Birkhoff’s Ergodic Theorem gives that the limits equal the
probability an arrow is never annihilated. [22, Lemma 3.3] observes that this quantity
must be zero, as otherwise, Birkhoff’s Ergodic Theorem gives the contradiction that
there is a positive densities of surviving left and right arrows. This reasoning still applies
with the possibility of multiple blockades at a single site.

Step 3. Let NR(1, k) denote the number of blockades that survive in [x1, xk] in ballistic
annihilation with all particles in R present. If θ > 0, then

lim
k→∞

k−1Ṅ(1, k) = θ = lim
k→∞

k−1NR(1, k).

Proof. This is proven in [18, Proposition 12]. It follows from the definition of θ and the
strong law of large numbers that limk→∞ k−1NR(1, k) = θ. So, it suffices to prove that

lim
k→∞

k−1[Ṅ(1, k)− ṄR(1, k)] = 0.

First, observe that blockade survival is a decreasing event as the interval of restriction
is expanded. So, Ṅ(1, k) − ṄR(1, k) ≥ 0. From there, the main idea is that at most a
geometric random variable with parameter q, call it Rk, of the surviving blockades in
ballistic annihilation restricted to [x1, xk] are removed from right arrows entering at x1,
and the same for an independent and identically distributed geometric random variable
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of left arrows entering at xk, call it Lk. So, Ṅ(1, k) − NR(1, k) ≤ Lk + Rk Since these
random variables have exponential tails and constant parameter q, it is easy to infer
from the Borel-Cantelli lemma that limk→∞ k−1[Rk + Lk] = 0 almost surely.

Step 4. Let θ0 := max
(
0, supk≥1 k

−1Ep[W (1, k)]
)
. It holds that θ = θ0.

Proof. The proof is similar to [18, Lemma 10]. First, we prove that θ ≤ θ0. Combining
Step 2, Step 3, and Fatou’s lemma gives

θ = lim
k→∞

k−1W (1, k) = Ep

[
lim inf
k→∞

k−1W (1, k)

]
≤ lim inf

k→∞
k−1Ep[W (1, k)] ≤ θ0.

Next, we show that θ ≥ θ0. This is immediate when θ0 = 0, so suppose that θ0 > 0.
Then, there is an integer k with Ep[W (1, k)] > 0. Letting Km = km for m ≥ 0, we see
that Sn :=

∑n−1
m=0W (Km+1,Km+1) is a random walk with positive drift. The law of large

numbers gives that Sn > 0 for all n ≥ 1 with positive probability. Step 1 implies that

W (1,Kn) ≥ Sn ∀n ≥ 1. (3.1)

This is enough to deduce that 0 is never visited with positive probability, which gives
θ > 0. See the proof of [18, Lemma 10] for more details.

We will use this framework to prove that θ > δ for arbitrary δ ∈ (0, 1) with δ < θ0. Let
k ≥ 1 be such that k−1Ep[W (1, k)] > δ. Step 2 and Step 3 imply that θ = limn→∞

1
nW (1, n).

Multiplying by n/n, applying (3.1) and then the strong law of large numbers gives

θ = lim inf
n→∞

n

Kn

1

n
W (1,Kn) ≥ lim inf

n→∞

n

Kn

1

n
Sn = k−1Ep[W (1, k)] > δ

as desired.

Proposition 3.5. q is USC for p ∈ [0, 1].

Proof. It follows that θ is LSC from Lemmas 3.3 and 3.4 along with Fact 3.1 (c) and (d).
Since θ = (1− q)2, we have q = 1−

√
θ. Fact 3.1 (e) and (f) imply that −

√
θ is USC. Since

1 is USC, q can be expressed as the sum of two USC functions and by Fact 3.1 (g) is
USC.

Theorem 3.6. q is continuous for p ∈ [0, 1].

Proof. This follows immediately from Propositions 3.2 and 3.5 along with Fact 3.1 (a).

4 Proof of Theorem 1.1

Proof of Theorem 1.1. Subtracting q from both sides of (2.1) in Proposition 2.1 gives
0 = g(p, q) with g : [0, 1]2 → R defined as

g(u, v) :=
u
(
1− v2

)
v2f ′(v) + 2uvf(v)− uv2 + u+ v2 − 2v + 1

2(1− v)
. (4.1)

Let h(u, v) = g(u, v)/(1− v) so that Proposition 2.1 implies

0 = (1− q)h(p, q). (4.2)

The goal is to show that (p, q) solves 1 − v = 0 for p ≤ pc and transitions to solving
h(u, v) = 0 for p ≥ pc.
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Inspecting (4.1), we see that h(u, v) is linear in u. Solving h(u, v) = 0 yields

u =
(1− v)2

(1− v2) v2f ′(v)− 2vf(v) + v2 + 1
=: F (v).

Thus,

Fact 4.1. If h(u, v) = 0, then u = F (v).

Using L’Hospital’s rule twice and basic generating function properties

lim
v→1

F (v) =
1

f(1) + 3f ′(1) + f ′′(1)
=

1

(1 +E[X])2 + var(X)
=: p∗.

By Fact 4.1,

Fact 4.2. (u, v) = (p∗, 1) is the unique solution to 1− v = 0 = h(u, v).

Since q is continuous (Theorem 3.6) with q(1) = 0, it follows from (4.2) and Fact 4.2
that (p∗, 1) is the only point at which (p, q) can continuously transition from solving
1− v = 0 to solving h(u, v) = 0. So,

Fact 4.3. If p ≥ p∗, then h(p, q(p)) = 0.

Combining Fact 4.1 and Fact 4.3 gives

Fact 4.4. p = F (q(p)) for p ≥ p∗.
Fact 4.4 says that F is a left inverse of q on the domain p ≥ p∗ i.e., if q(p) = y for

p ≥ p∗, then F (y) = p. It is an elementary exercise in analysis that this and continuity of
q imply that

Fact 4.5. q is continuous and strictly decreasing for p ≥ p∗.
Fact 4.4 and Fact 4.5 (along with Theorem 3.6) imply (1.3) in Theorem 1.1.
It remains to prove that pc = p∗ as claimed at (1.2). Suppose that p > p∗. Fact 4.3

implies that h(p, q(p)) = 0. Fact 4.2 ensures that q(p∗) = 1. Fact 4.1 requires that q(p) 6= 1.
Since q(p) is a probability, we then have q(p) < 1. So, pc ≤ p∗.

To see the reverse inequality, suppose that there exists p0 < p∗ with q(p0) = v < 1.
Fact 4.5 and q(1) = 0 imply that q : [p∗, 1]→ [0, 1] is a continuous bijection. Thus, there
is p1 > p∗ with q(p1) = v. As v < 1, (4.2) implies that h(p0, v) = 0 = h(p1, v). This
contradicts Fact 4.1, which requires that p0 = p1 = F (v). So, q = 1 for all p ≥ p∗. Thus,
pc ≥ p∗.
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