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Abstract

We study a large class of McKean–Vlasov SDEs with drift and diffusion coefficient
depending on the density of the solution’s time marginal laws in a Nemytskii-type
of way. A McKean–Vlasov SDE of this kind arises from the study of the associated
nonlinear FPKE, for which is known that there exists a bounded Sobolev-regular
Schwartz-distributional solution u. Via the superposition principle, it is already known
that there exists a weak solution to the McKean–Vlasov SDE with time marginal
densities u. We show that there exists a strong solution the McKean–Vlasov SDE,
which is unique among weak solutions with time marginal densities u. The main tool is
a restricted Yamada–Watanabe theorem for SDEs, which is obtained by an observation
in the proof of the classical Yamada–Watanabe theorem.
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1 Introduction

In this paper we will consider the following McKean–Vlasov stochastic differential
equation (abbreviated by McKean–Vlasov SDE or MVSDE) in Rd, d ∈ N, with coefficients
of Nemytskii-type, which in our case is of the form

dX(t) = E(X(t))b

(
dLX(t)

dx
(X(t))

)
dt+

√
2a

(
dLX(t)

dx
(X(t))

)
1d×d dW (t),

X(0) = ξ, (MVSDE.PME)

where t ∈ [0, T ], T ∈ (0,∞), 1d×d is the d-dimensional unit matrix, (Wt)t∈[0,T ] is a
standard d-dimensional (Ft)-Brownian motion and ξ an F0-measurable function on some
stochastic basis (Ω,F ,P; (Ft)t∈[0,T ]), i.e. a complete, filtered probability space, where
(Ft)t∈[0,T ] is a normal filtration, and LX(t) := P ◦ (X(t))−1, t ∈ [0, T ]. Here, we assume
that E : Rd → Rd, b : R → R, a : R → R are functions with a(r) := β(r)/r, r ∈ R\{0},
a(0) := β′(0), such that the following assumptions hold:
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(i) β ∈ C1(R), β(0) = 0;

(ii) There exists γ0 > 0 such that for all r1, r2 ∈ R, γ0|r1− r2|2 ≤ (β(r1)−β(r2))(r1− r2);

(iii) E ∈ L∞(Rd;Rd), divE ∈ L2(Rd) + L∞(Rd), divE ≥ 0;

(iv) b ∈ C1(R) ∩ Cb(R), b ≥ 0.

Here, we would like to point out that conditions (i) and (ii) imply

a ≥ γ0 > 0, (1.1)

which, in turn, means that the diffusion matrix of (MVSDE.PME) is assumed to be
non-degenerate. There is a vast literature on the solvability of McKean–Vlasov SDEs
under various assumptions on the coefficients. In 1966, McKean [23] initiated the study
of diffusion processes related to certain non-linear PDEs arising from, for example,
statistical mechanics (as in our case, see [2]). This work was closely followed up by
important results such as [13, 31, 30] investigating the weak and/or strong solvability
of McKean–Vlasov SDEs; for more references see [3]. For recent results consult, in
particular, [24, 29, 29, 16, 17, 18], and also [9] and the references therein. In all of these
papers, the authors assume the continuity of the coefficients in the measure-component
with respect to the weak topology, some Wasserstein distance, or total variation norm.
In [18], the authors consider also the coefficients’ continuity with respect to a norm,
which is stronger than the sum of a Wasserstein distance and total variation norm.
However, the coefficients in (MVSDE.PME) do not bear any such continuity property in
their measure-component.

Equation (MVSDE.PME) arises from the study of a nonlinear Fokker–Planck–Kolmogo-
rov equation (in short: FPKE), which in this case is a porous medium equation perturbed
by a nonlinear transport term of the following type

∂tu+ div(Eb(u)u)−∆β(u) = 0 on [0, T ]×Rd with u|t=0 = u0. (PME)

This equation is to be understood in the Schwartz-distributional sense. We will say that
a curve of L1(Rd)-functions u = (ut)t∈[0,T ] is a Schwartz-distributional solution to (PME)
if [0, T ] 7→ ut(x)dx is narrowly continuous and∫

Rd

ϕ(x)ut(x)dx =

∫
Rd

ϕ(x)u0(x)dx+

∫ t

0

∫
Rd

Ei(x)b(us(x))∂iϕ(x)us(x)dxds

+

∫ t

0

∫
Rd

β(us(x))∆ϕ(x)dxds ∀t ∈ [0, T ], (1.2)

for each ϕ ∈ C∞c (Rd) (using Einstein summation convention), where E(x) = (Ei(x))di=1.
In the case that ut is even a probability density for all t ∈ [0, T ], then u = (ut)t∈[0,T ] is
simply called a probability solution to (PME).

In [2] and [3], an approach was developed in order to solve general McKean–Vlasov
SDEs by first solving the associated nonlinear FPKE. This approach is based on the
superposition principle developed by Trevisan [32], which in turn relies on the fundamen-
tal result of Figalli [12]; for a very recent generalisation of the latter two publications
see [7]. Note also the very recent superposition principle, which relates solutions to
non-local FPKEs with solutions to SDEs with jumps [27]. Of course, solving first the
McKean–Vlasov SDE, Itô’s formula yields that the time marginal laws of the solution
process solve the associated nonlinear FPKE. In this sense, solving the McKean–Vlasov
equation is essentially equivalent to solving the associated nonlinear FPKE. In the special
case when the nonlinear FPKE is of the type (PME), in [4], Barbu and Röckner solved this
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equation under various assumptions on β,E, b and lifted the solution to a weak solution
to (MVSDE.PME), whose time marginal laws coincide with the constructed probability
solution u to (PME), provided u0 is a bounded probability density.

The aim of this paper is to show that the constructed weak solution provided by [4]
is a functional of the driving Brownian motion, i.e. a strong solution to (MVSDE.PME)
under our assumptions. Our method relies on a proper modification of the Yamada–
Watanabe theorem for SDEs. This modification makes it possible to prove the existence
of a strong solution to an SDE provided weak existence and pathwise uniqueness holds
in a certain subclass of weak solutions. We will provide the theorem in Section 2, as
there seems to be uncertainty about this result; in [10], the authors stated, ‘Note also
that pathwise uniqueness is proved only for particular solutions [...], so we cannot use
directly the result of Yamada and Watanabe to deduce strong existence [for the SDE
under investigation].’ ([10, p. 1502]). For the proof we refer to the author’s thesis [15].
This modification of the Yamada–Watanabe theorem can be applied to (MVSDE.PME)
by fixing the solution u to (PME) provided by [4] in the coefficients of (MVSDE.PME).
This transfers the problem of strong existence for McKean–Vlasov SDEs to a problem for
SDEs. Moreover, (MVSDE.PME) has already been studied in terms of weak existence
and restricted pathwise uniqueness by Jabir and Bossy in [8] in the case E ≡ b ≡ 0

and under assumptions which strictly imply ours. They did not prove the existence of a
strong solution in their case.

This paper is structured as follows. First, we will introduce some frequently used
notation in this paper. Afterward, in Section 2, we will present an abstract modification
of the famous Yamada–Watanabe theorem for SDEs based on [22, Appendix E], which,
in particular, enables us to conclude strong existence provided one has proved weak
existence and pathwise uniqueness for some subclass of weak solutions. This theorem
will be the main tool to deduce the existence of a strong solution to (MVSDE.PME). In
Section 3, we will apply the Yamada–Watanabe theorem for SDEs to general McKean–
Vlasov SDEs by fixing the time marginal laws of a given curve of probability measures in
the coefficients’ measure component. Within the last section, Section 4, we will state the
main result and its proof. This section is divided into four subsections. In Subsection 4.1,
we will state the main result and the steps on how to prove it. In Subsection 4.2, we
will discuss the existence and regularity of a probability solution u to (PME) under
the conditions (i)–(iv). In Subsection 4.3, we will conclude the existence of a weak
solution to (MVSDE.PME) with time marginal law densities u. In Subsection 4.4 we
show that pathwise uniqueness holds among weak solutions to (MVSDE.PME) with time
marginal law densities u. This subsection is divided into two further subsections. In
Subsection 4.4.1, we will recall a pathwise uniqueness result for SDEs with bounded
Sobolev-regular coefficients. In Subsection 4.4.2 we will apply the pathwise uniqueness
result for SDEs from Subsection 4.4.1 to (MVSDE.PME). Here we will add condition (v)
to the previous assumptions (i)–(iv).

Notation. For a topological space (T, τ), B(T) shall denote the Borel σ-algebra on (T, τ).
Let n ≥ 1. On Rn, BR(x) denotes the open ball with center x ∈ Rn and radius R > 0, and
| · |Rn the usual Hilbert–Schmidt norm. If there is no risk for confusion, we just write | · | =
| · |Rn . Let (M,d) be a metric space. Then P(M) denotes the set of all Borel probability
measures on (M,d). We will consider P(M) as a topological space with respect to the
topology of weak convergence of probability measures. A curve of probability measures
(νt)t∈[0,T ] ⊂ P(M) is called narrowly continuous if [0, T ] 3 t 7→

∫
ϕ(x)νt(dx) is continuous

for all ϕ ∈ Cb(M). By P0(Rn) we will denote the set of all probability densities with
respect to Lebesgue measure, i.e. P0(Rn) =

{
ρ ∈ L1(Rn) : ρ ≥ 0 a.e.,

∫
Rn ρ(x)dx = 1

}
.

Let (S,S , η) be a measure space and E be a Banach space. For 1 ≤ q ≤ ∞, Lq(S;E)

symbolises the usual Bochner space on S with values in E. If S = Rn and E = R, we just
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write Lp(Rn;R) = Lp(Rn). Moreover, div,∆,∇ symbolise the divergence, Laplacian and
gradient with respect to the spatial variable and are taken in the Schwartz-distributional
sense. Further, the transpose of the distributional Jacobian matrix is also denoted by the
gradient symbol.

2 A modification of the Yamada–Watanabe theorem for SDEs

Since it will be the core of the technique of this paper, we will start by presenting a
restricted version of the famous Yamada–Watanabe theorem for SDEs.

The well-known Yamada–Watanabe theorem for SDEs (see, e.g. [22, Appendix E];
for the orginal work see [34]) provides a useful characterisation for the existence of
a unique strong solution to an SDE; therefore, loosely speaking, it is necessary and
sufficient to have a weak solution for any initial probability measure in combination with
the pathwise uniqueness regarding all weak solutions.

Carefully checking the statements and the proofs in [22, Appendix E], it is possible
to refine their definitions and results to a restricted Yamada–Watanabe theorem. This
theorem is the result of a generalisation of the observation in [22, Remark E.0.16], which
implies that, by the techniques employed in [22, Appendix E], a strong solution can be
constructed from a weak solution with a fixed initial condition in the case that pathwise
uniqueness is known for solutions with exactly this initial datum.

The restricted Yamada–Watanabe theorem will be of the following form. Let us fix a
set P consisting of probability measures on the solution’s path space, which have all the
same initial time marginal laws. Assume that pathwise uniqueness holds among all weak
solutions to an SDE whose laws lie in P and that there exists a weak solution (X,W )

with LX ∈ P , where LX denotes the distribution of X with respect to the underlying
probability measure. Then, and only then, this is the case if there exists a unique strong
solution to this SDE with law in P . For the precise statement see Theorem 2.5.

In the following, we will only present the necessary modification of the setup of [22,
Appendix E] in which we slightly change the definitions of solutions and the correspond-
ing statement of the main theorem. For the reader’s convenience, we will stick to the
finite dimensional setting. The adaption to the infinite dimensional case is essentially
the same. The procedure from [22, Appendix E] leading to the presented restricted
Yamada–Watanabe theorem can be rather easily adapted to our setup. Let us finally
note that in this section we will consider SDEs on the time interval [0,∞). In fact, this
section can analogously be stated for SDEs on a finite time interval [0, T ] without any
difficulties. For the details and proofs consult [15], where also the infinite dimensional
case is treated. For the finite dimensional case of [22, Appendix E], we refer to [26,
Appendix E]. For the Yamada–Watanabe theorem in the mild solution framework, we
refer to [25]. For the treatment of general stochastic models see [19, 20].

Let (Ω,F ,P; (Ft)t≥0) be a stochastic basis and d1 ∈ N. We will consider the Polish
path spaces (B, ρ) and (W0, ρ), where B := C([0,∞);Rd), W0 := {w ∈ C([0,∞);Rd1) :

w(0) = 0}, are respectively equipped with the metric ρ(w1, w2) :=
∑∞
k=1 2−k(max0≤t≤k |

w1(t) − w2(t)| ∧ 1). The Borel σ-algebra of B and W0 are denoted by B(B) and B(W0),
respectively. Furthermore, for t ∈ [0,∞), we define Bt(B) := σ(πs : 0 ≤ s ≤ t), where
πs(w) := w(s), w ∈ B. Bt(W0) is defined analogously.

The equation under investigation is the following path-dependent stochastic differen-
tial equation

dX(t) = b(t,X)dt+ σ(t,X)dW (t), t ∈ [0,∞), (SDE.pd)

where b : [0,∞) × B → Rd and σ : [0,∞) × B → Rd×d1 are B([0,∞)) ⊗ B(B)/B(Rd)

and B([0,∞)) ⊗ B(B)/B(Rd×d1)-measurable, respectively, such that for each t ∈ [0,∞)
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b(t, ·) is Bt(B)/B(Rd)-measurable, and σ(t, ·) is Bt(B)/B(Rd×d1)-measurable. Furthermore,
W is a standard d1-dimensional (Ft)-Brownian motion and PW denotes the distribution
of W on (W0,B(W0)). Let µ0 ∈ P(Rd) and P ⊂ P(B). We will write P = Pµ0

, if all the
time marginal laws of the measures in P start with the same measure µ0 at time t = 0.

Definition 2.1 (Pµ0
-weak solution). A pair (X,W ) is called a Pµ0

-weak solution to
(SDE.pd), if X = (X(t))t≥0 is an (Ft)-adapted process with paths in B, and W is a stan-
dard d1-dimensional (Ft)-Brownian motion on some stochastic basis (Ω,F ,P; (Ft)t≥0)

such that the following holds:

(i) P
(∫ T

0
|b(s,X)|+ |σ(s,X)|2ds <∞

)
= 1, for every T ≥ 0,

(ii) The following equation holds

X(t) = X(0) +

∫ t

0

b(s,X)ds+

∫ t

0

σ(s,X)dW (s), for every t ≥ 0 P-a.s., (2.1)

(iii) P ◦X−1 ∈ Pµ0
(in particular, P ◦X(0)−1 = µ0).

Remark 2.2. From the measurability assumptions on b and σ, it follows that, if X is as
in Definition 2.1, then both processes b(·, X) and σ(·, X) are (Ft)-adapted.

Definition 2.3 (Pµ0
-weak uniqueness). We say that Pµ0

-weak uniqueness holds for
(SDE.pd), if any two Pµ0

-weak solutions (X,W ), (X ′,W ′) on stochastic bases (Ω,F ,P;

(Ft)t≥0) and (Ω′,F ′,P′; (F ′t)t≥0), respectively, have the same law on B, i.e. P ◦X−1 =

P′ ◦ (X ′)−1.

Definition 2.4 (Pµ0 -pathwise uniqueness). We say that Pµ0 -pathwise uniqueness holds
for (SDE.pd), if for any two Pµ0 -weak solutions (X,W ), (Y,W ) on a common stochastic
basis (Ω,F ,P; (Ft)t≥0) with a common standard d1-dimensional (Ft)-Brownian motion
W , X(0) = Y (0) P-a.s. implies X(t) = Y (t) for all t ≥ 0 P-a.s.

Let Ẽµ0
to be the set of all maps Fµ0

: Rd×W0 → B which are B(Rd)⊗ B(W0)
µ0⊗PW

/

B(B)-measurable, where B(Rd)⊗ B(W0)
µ0⊗PW

denotes the completion of B(Rd)⊗B(W0)

with respect to the measure µ0 ⊗ PW .

Definition 2.5 (Pµ0 -strong solution). The equation (SDE.pd) has a Pµ0 -strong solution

if there exists Fµ0
∈ Ẽµ0

such that, for µ0-a.e. x ∈ Rd, Fµ0
(x, ·) is Bt(W0)

PW
/Bt(B)-

measurable for every t ∈ [0,∞), and for any standard d1-dimensional (Ft)-Brownian
motionW on a stochastic basis (Ω,F ,P; (Ft)t≥0) and any F0/B(Rd)-measurable function
ξ : Ω → Rd with P ◦ ξ−1 = µ0, one has that (Fµ0

(ξ,W ),W ) is a Pµ0
-weak solution

to (SDE.pd) with X(0) = ξ P-a.s. Here, Bt(W0)
PW

denotes the completion with respect
to PW in B(W0).

Definition 2.6 (unique Pµ0
-strong solution). The equation (SDE.pd) has a unique Pµ0

-
strong solution, if there exists a function Fµ0

∈ Ẽµ0
satisfying the adaptedness condition

in Definition 2.5 and if the following two conditions are satisfied.

1. For every standard d1-dimensional (Ft)-Brownian motion W on a stochastic basis
(Ω,F ,P; (Ft)t≥0) and any F0/B(Rd)-measurable ξ : Ω → Rd with P ◦ ξ−1 = µ0,
(Fµ0

(ξ,W ),W ) is a Pµ0
-weak solution.

2. For any Pµ0
-weak solution (X,W ) to (SDE.pd) we have X = Fµ0

(X(0),W ) a.s.

Remark 2.7. Let (X,W ) be a Pµ0 -weak solution to (SDE.pd) on a stochastic basis
(Ω,F ,P; (Ft)t≥0). Since X(0) and W are independent, we have P ◦ (X(0),W )−1 =

µ0 ⊗PW . In particular, Pµ0
-weak uniqueness holds for (SDE.pd) provided there exists a

unique Pµ0
-strong solution to (SDE.pd).
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Let us state the main theorem of this section.

Theorem 2.8 (restricted Yamada–Watanabe theorem). Let Pµ0
, b and σ be as above.

Then the following statements regarding (SDE.pd) are equivalent:

(i) There exists a Pµ0 -weak solution and Pµ0 -pathwise uniqueness holds.

(ii) There exists a unique Pµ0 -strong solution.

3 Application of the restricted Yamada–Watanabe theorem to (gen-
eral) McKean–Vlasov SDEs

In this section, we will consider general McKean–Vlasov SDEs on Rd, which are of
the form

dX(t) = F (t,X(t),LX(t))dt+ σ(t,X(t),LX(t))dW (t), t ∈ [0, T ], (MVSDE)

where T ∈ (0,∞) and F : [0, T ] × Rd × P(Rd) → Rd, σ : [0, T ] × Rd × P(Rd) → Rd×d

are B([0, T ]) ⊗ B(Rd) ⊗ B(P(Rd))/B(Rd)- and B([0, T ]) ⊗ B(Rd) ⊗ B(P(Rd))/B(Rd×d)-
measurable, respectively. Let (µt)t∈[0,T ] ⊂ P(Rd) be a narrowly continuous curve of
probability measures. In the following, we will use the notation Fµ(t, x) := F (t, x, µt),
(t, x) ∈ [0, T ]×Rd. Note that Fµ and σµ are B([0, T ])⊗B(Rd)/B(Rd)- and B([0, T ])⊗B(Rd)/

B(Rd×d)-measurable, respectively. In the following, let us fix some notation for weak
solutions to (MVSDE) and pathwise uniqueness for (MVSDE) among weak solutions with
given time marginal laws. Therefore, we set

P (µt) := {Q ∈ P(C([0, T ];Rd)) : Q ◦ π−1t = µt ∀t ∈ [0, T ]}.

We have the following definitions.

Definition 3.1. A tuple (X,W ) = (X(t),W (t))t∈[0,T ] consisting of two (Ft)-adapted
Rd-valued stochastic processes on some given stochastic basis (Ω,F ,P; (Ft)t∈[0,T ]) is
called a P (µt)-weak solution to (MVSDE) if W is a standard d-dimensional (Ft)-Brownian
motion, and

(i) P
(∫ T

0
|F (t,X(t),LX(t))|+ |σ(t,X(t),LX(t))|2dt <∞

)
= 1,

(ii) the following equality holds P-a.s.:

X(t) = X(0) +

∫ t

0

F (s,X(s),LX(s))ds+

∫ t

0

σ(s,X(s),LX(s))dW (s) ∀t ∈ [0, T ],

(iii) P ◦ (X(t))−1 = µt, for all t ∈ [0, T ].

Definition 3.2. We say that P (µt)-pathwise uniqueness holds for (MVSDE), if for any two
P (µt)-weak solutions (X,W ), (Y,W ) on a common stochastic basis (Ω,F ,P; (Ft)t∈[0,T ])

with a common standard d-dimensional (Ft)-Brownian motion W , X(0) = Y (0) P-a.s.
implies X(t) = Y (t) for all t ∈ [0, T ] P-a.s.

Let us note that (X,W ) is a P (µt)-weak solution to (MVSDE) if and only if it is a
P (µt)-weak solution to the SDE(!)

dX(t) = Fµ(t,X(t))dt+ σµ(t,X(t))dW (t), t ∈ [0, T ], (SDEµ)

and, obviously, P (µt)-pathwise uniqueness holds for (MVSDE) if and only if it holds
for (SDEµ). Therefore, also the concept of a (unique) P (µt)-strong solution is the same
for (MVSDE) and (SDEµ). This leads to the following application of the restricted
Yamada–Watanabe theorem (Theorem 2.8) to (MVSDE).
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Theorem 3.3. Let (µt)t∈[0,T ] ⊂ P0(Rd) be a narrowly continuous curve of probability
measures. The following statements regarding (MVSDE) are equivalent.

(i) There exists a P (µt)-weak solution and P (µt)-pathwise uniqueness holds.

(ii) There exists a unique P (µt)-strong solution.

Let us finally note that (MVSDE.PME) can be considered as an equation in the general
form (MVSDE) as the following remark conveys.

Remark 3.4. The coefficients of (MVSDE.PME) fulfill the measurability conditions of
the coefficients of (MVSDE) in the following sense. Consider the time-homogenous
coefficients F : Rd × P(Rd) → Rd, σ : Rd × P(Rd) → Rd×d defined via F (x, ν) :=

E(x)b(va(x)), σ(x, ν) :=
√

2a (va(x))1d×d, where x ∈ Rd, ν ∈ P(Rd) and va is the follow-
ing version of the dx-a.e. uniquely determined density of the absolutely continuous part
of the probability measure ν with respect to the d-dimensional Lebesgue measure dx
given by the Besicovitch derivation theorem

va(x) :=

{
limr→∞

ν(Br(x))
dx(Br(0))

, x ∈ Eν ,
0, x ∈ E{

ν ,
for all ν ∈ P(Rd),

where Eν :=
{
x ∈ Rd : ∃ limr→∞

ν(Br(x))
dx(Br(0))

∈ R
}
∈ B(Rd) and dx(E{

ν) = 0 (cf. [1, Theorem

2.22]). Hence, it is easy to see that Rd × P(Rd) 3 (x, ν) 7→ va(x) ∈ [0,∞) is B(Rd) ⊗
B(P(Rd))/B(R) measurable. In the following, we will always consider this version of the
absolutely continuous part of a probability measure with respect to the d-dimensional
Lebesgue measure.

Now, we are well equipped to translate Theorem 3.3 into action.

4 Strong solvability of (MVSDE.PME)

4.1 The procedure and the main result

Our overall goal is to apply Theorem 3.3, which will enable us to show that there
exists a strong solution to (MVSDE.PME) (see Theorem 3.3). In order to achieve this,
we will do the following steps.

1. We will use the recent result [4] (and the techniques of [5]) for (PME), in order to
guarantee the existence of a probability solution u with sufficient Sobolev-regularity
under the conditions (i)–(iv) (see Theorem 4.2).

2. We will apply the superposition principle procedure for McKean–Vlasov SDEs from
[3, Section 2] in combination with the result of Step 1 in order to obtain a weak
solution to (MVSDE.PME) with time marginal law densities u (see Theorem 4.3).

3. Afterwards, we will prove pathwise uniqueness for (MVSDE.PME) among weak
solutions with time marginal law densities u via a pathwise uniqueness result for
SDEs (see Theorem 4.4) and Step 1 in Theorem 4.6.

For the ease of notation, we set P (ut) := P (µt), whenever (µt)t∈[0,T ] is a narrowly
continuous curve of probability measures with µt = ut(x)dx, ut ∈ P0(Rd), t ∈ [0, T ].

The steps will be carried out in the subsequent subsections. Combining the results of
the steps with Theorem 3.3 yield the main result of this section and paper.

Theorem 4.1 (main result). Let d 6= 2. Assume that conditions (i)–(iv) and (v) (see
below) are fulfilled and that u0 ∈ P0(Rd) ∩ L∞(Rd). Then, (MVSDE.PME) has a unique
P (ut)-strong solution, where u is the constructed probability solution to (PME) provided
by Theorem 4.2.

The proof of Theorem 4.1 will be postponed to the end of this section.
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4.2 Existence of a bounded Sobolev-regular probability solution u to (PME)

As described in the procedure in Section 4.1, the first step is to conclude the exis-
tence of a sufficiently regular solution to (PME) from [4] under the assumptions (i)–(iv).
Combining [4, Theorem 2.2] with the techniques of [5], Barbu and Röckner showed
that, under more general assumptions on the coefficients than we require in (i)–(iv),
there exists a unique mild solution to (PME), interpreted as a Cauchy problem driven
by an m-accretive operator. This solution is also an integrable and bounded Schwartz-
distributional solution to (PME) if u0 is integrable and bounded as well. If, in addition,
β is non-degenerate, i.e. β′ ≥ γ0 > 0, this specific solution can be proved to have
certain desirable Sobolev-regularity under our conditions. Our approach relies on ex-
actly this regularity when proving the pathwise uniqueness result for (MVSDE.PME) (cf.
Theorem 4.6).

Theorem 4.2 (probability solution to (PME)). Let d 6= 2 and u0 ∈ P0(Rd) ∩ L∞(Rd).
Under the assumptions (i)–(iv), there exists a probability solution u to (PME) such that

u ∈ L2([0, T ];H1(Rd)) ∩ L∞([0, T ]×Rd). (4.1)

Proof. By [4, Theorem 2.2], we know that there exists a Schwartz-distributional solution
u to (PME) with u ∈ C([0, T ];L1(Rd)) ∩ L∞([0, T ]×Rd), and with the property that u0 ∈
P0(Rd) implies ut ∈ P0(Rd), for all t ∈ [0, T ]. Here, we should note that the authors
require β ∈ C2(Rd). However, due to (ii) and divE ∈ L2(Rd) + L∞(Rd), this condition
can be relaxed to β ∈ C1(R); this works analogous to [5, p. 20, proof of (2.6)]. Further,
using the technique in [5], our assumptions imply that u ∈ L2([0, T ];H1(Rd)). For an
elaborate proof of these facts, see [15].

4.3 Existence of a P (ut)-weak solution to (MVSDE.PME)

The second step of the procedure in Section 4.1 is to show the existence of a weak
solution to (MVSDE.PME). The following theorem is a variant of [4, Theorem 6.1 (a)] and
is based on a superposition principle procedure for McKean–Vlasov SDEs as described
in [3, Section 2], which generalises the procedure in [2, Section 2]).

Theorem 4.3 (P (ut)-weak solution). Let d 6= 2 and u0 ∈ P0(Rd) ∩ L∞(Rd). Assume
that conditions (i)–(iv) are fulfilled. Then, there exists a P (ut)-weak solution (X,W)
to (MVSDE.PME), where u is the probability solution provided by Theorem 4.2.

Proof. It is clear that conditions (i) and (iv) imply that b and a are continuous. By
Theorem 4.2, we have that, in particular, u ∈ L∞([0, T ]×Rd). Hence, a(u) ∈ L∞([0, T ]×
Rd), and, using (iii), Eb(u) ∈ L∞([0, T ]×Rd;Rd). This yields∫ T

0

∫
Rd

[|a(u(t, x))|+ |E(x)b(u(t, x))|]u(t, x)dxdt <∞.

This enables us to use the superposition principle procedure for McKean–Vlasov SDEs
in [3, Section 2] which provides us with a P (ut)-weak solution (X,W ) to (MVSDE.PME).
This finishes the proof.

4.4 P (ut)-pathwise uniqueness for (MVSDE.PME)

The third step of the procedure in Section 4.1 is to show P (ut)-pathwise uniqueness
for (MVSDE.PME), where u is the probability solution to (PME) provided by Theo-
rem 4.2. As explained in the beginning of Section 4, showing P (ut)-pathwise uniqueness
for (MVSDE.PME) is the same as showing P (ut)-pathwise uniqueness for (SDEµ), where
µ = (utdx)t∈[0,T ]. Since the coefficients Eb(u) and

√
a(u) are not continuous in the spa-

cial variable, we will recall a pathwise uniqueness result for SDEs with time-dependent
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Sobolev-coefficients from [28] in Subsection 4.4.1. In Subsection 4.4.2, we will then
apply this result to show P (ut)-pathwise uniqueness for (MVSDE.PME).

4.4.1 A pathwise uniqueness result for SDEs with bounded Sobolev-regular
coefficients

There are a lot of pathwise uniqueness results for SDEs across the literature, but
numerous classical as well as recent results on this topic require the diffusion coefficient
to be continuous in the spacial variable. For example, in [35] and [21] (see also the
classic result [33]), the authors consider a (singular) drift coefficient in Lq([0, T ];Lp(Rd)),
d/p+ 2/q < 1, where p, q ∈ (2,∞), and an elliptic diffusion coefficient, whose distributional
derivative is in Lq([0, T ];Lp(Rd)), for the same choice of p and q as before. Additionally,
the diffusion coefficient is considered to be uniformly continuous in the x-variable locally
uniformly in time.

To the best of our knowledge, the best pathwise uniqueness results for SDEs, with no
a priori continuity assumption on the diffusion term, can be obtained through [28] and
[10]; these works require Sobolev-regularity of the coefficients in the x-variable, but no
a priori continuity property. Here, we will just focus on the result obtained in [28], as it
allows the coefficients to only have local Sobolev-regularity in the spatial variable.

In this subsection, we will provide the reader with a simple modification of a restricted
pathwise uniqueness result for SDEs in the proof of [28, Theorem 1.1]. The strength of
this result is that there is a trade-off between the regularity of the densities of the time
marginal laws of a solution process and the regularity of the coefficients of the equation.
Further, the estimate [11, Lemma A.3] and [11, Lemma A.2], involving the (local) Hardy-
Littlewood maximal function, shows that sufficient Sobolev-regular coefficients of (SDE)
(see below) satisfy (4.3), see Remark 4.5. Here, we also refer to [10], where the authors
developed an interesting modification of this estimate (see [10, Lemma 3.2]), which
turned out to be very useful when showing a restricted pathwise uniqueness result in
the critical case when the drift coefficient of an SDE has L1([0, T ];W 1,1(Rd))-regularity
(cf. [10, Theorem 1.1]).

Let us consider the following stochastic differential equation

dX(t) = F (t,X(t))dt+ σ(t,X(t))dW (t), t ∈ [0, T ], X(0) = ξ. (SDE)

where F : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd×d are B([0, T ]) ⊗ B(Rd)/B(Rd)- and
B([0, T ]) ⊗ B(Rd)/B(Rd×d)-measurable functions, respectively; the initial condition ξ

and the d-dimensional Brownian motion W are considered to be analogous to those
introduced in the beginning of this work. We have the following theorem.

Theorem 4.4 (restricted pathwise uniqueness for (SDE)). Let F ,σ ∈ L∞([0, T ]×Rd). Fix
p, q, p′, q′ ∈ [1,∞], such that 1/p + 1/p′ = 1/q + 1/q′ = 1. Let (X,W ), (Y,W ) be two (usual)
weak solutions to (SDE) up to time T on a common stochastic basis (Ω,F ,P; (Ft)t∈[0,T ])

with X(0) = Y (0) P-a.s., such that

dLX(·)/dx, dLY (·)/dx ∈ Lq
′
([0, T ];Lp

′

loc(R
d)). (4.2)

If for any radius R > 0, there exists a function fR ∈ Lq([0, T ];Lp(BR(0)), such that for
almost all (t, x, y) ∈ [0, T ]×BR(0)×BR(0)

2〈x− y,F (t, x)− F (t, y)〉Rd + |σ(t, x)− σ(t, y)|2 ≤ (fR(t, x) + fR(t, y)) · |x− y|2. (4.3)

Then, supt∈[0,T ] |X(t)− Y (t)| = 0 P-a.s.

Proof. The proof is essentially contained in the proof of [28, Theorem 1.1]. However,
since we allow different integrability in space and time for the time marginal law
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densities in (4.2) and for fR, we need to separately apply Hölder-estimates in the proof
of [28, Theorem 1.1]. We omit the details here, since the adaption of the proof is
straightforward.

Remark 4.5. Let q = p = 1. Then, the proof of Theorem 4.4 allows to replace (4.2)
by dLX(·)/dx, dLY (·)/dx ∈ L∞loc([0, T ] × Rd)). Further, (4.3) is satisfied if, for some ε > 0,
F ∈ L1([0, T ];W 1,1+ε

loc (Rd;Rd)), σ ∈ L2([0, T ];W 1,2
loc (Rd;Rd×d)). For details see [Remark

1.2,RO10].

4.4.2 Application to (MVSDE.PME)

In this subsection, we will apply the pathwise uniqueness result for SDEs from the
previous section to (MVSDE.PME). We impose the following additional assumption on a
and E, respectively.

a is locally Lipschitz continuous, ∇E ∈ L2
loc(R

d;Rd×d). (v)

Note that if β ∈ C2(Rd), then a ∈ C1(Rd) with a′(0) = 1
2β
′′(0) and the first part of (v) is

automatically satisfied. We have the following

Theorem 4.6 (P (ut)-pathwise uniqueness). Let d 6= 2 and u0 ∈ P0(Rd)∩L∞(Rd). Assume
that the conditions (i)–(iv) and (v) are fulfilled. Let (X,W ), (Y,W ) be P (ut)-weak solutions
to (MVSDE.PME) on the same filtered probability space (Ω,F ,P; (Ft)t∈[0,T ]), with the
same Brownian motion W , and X(0) = Y (0) P-a.s., where u is the probability solution
provided by Theorem 4.2. Then, supt∈[0,T ] |X(t)− Y (t)| = 0 P-a.s.

Proof of Theorem 4.6. Let u denote the probability solution provided by Theorem 4.2. As
explained before, we exactly need to show that P (ut)-pathwise uniqueness holds for (SDE)
with coefficients F := Eb(u) and σ :=

√
2a(u)1d×d. We will now check the conditions in

Theorem 4.4. By Remark 4.5, these will be implied by the following conditions together
with (4.1).

(a) Eb(u) ∈ L∞([0, T ]×Rd;Rd), a(u) ∈ L∞([0, T ]×Rd),

(b) ∇(
√
a(u)) ∈ L2([0, T ];L2(Rd)), ∇(Eb(u)) ∈ L2([0, T ];L2

loc(R
d;Rd×d)).

Clearly, (a) is satisfied, since b and a are continuous and E and u are bounded. Let
us now show condition (b). Due to (1.1) and (v),

√
a is locally Lipschitz continuous. Let

L > 0 be the Lipschitz constant of
√
a on the interval [−‖u‖L∞ , ‖u‖L∞ ]. By (4.1),

√
a(ut))

has a weak gradient satisfying |∇
√
a(ut)| ≤ L|∇ut| a.e., for almost all t ∈ [0, T ] (cf. [36,

Theorem 2.1.11.]). Using (4.1), we see that condition (b) is fulfilled for a. Analogous
to the proof of (b), condition (4.1) and b ∈ C1(R) imply that ∇(b(u)) ∈ L2([0, T ];L2(Rd)).
Having in mind (iii), (iv) and (v), for each R > 0 we estimate using the usual product rule
for Sobolev functions

‖∇(Eb(u))‖L2([0,T ];L2(BR(0))) ≤ T
1/2 ‖b(u)‖L∞ ‖∇E‖L2(BR(0)) + d ‖E‖L∞ ‖∇(b(u))‖L2 <∞,

This finishes the proof.

The proof of the main result, Theorem 4.1, is straight forward.

Proof of Theorem 4.1. On the one hand, by Theorem 4.3, there exists a P (ut)-weak
solution to (MVSDE.PME). On the other hand, Theorem 4.6 shows that P (ut)-pathwise
uniqueness holds for (MVSDE.PME). Now, the assertion follows from Theorem 3.3.
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Remark 4.7. In fact, we can relax the integrability condition on E in (v) to ∇E ∈
L1
loc(R

d;Rd×d). Indeed, one can use the stopping time technique of the proof of [28,
Theorem 1.1] and the general technique of the proof of [10, Theorem 1.1 (ii)] to prove,
in particular, a pathwise uniqueness result for (SDE) with coefficients F ∈ L∞([0, T ]×
Rd;Rd)∩L1([0, T ];W 1,1

loc (Rd;Rd)) and σ ∈ L∞([0, T ]×Rd;Rd×d)∩L2([0, T ];H1
loc(R

d;Rd×d))

among weak solutions with bounded time marginal law densities. The details are carried
out in the author’s thesis [15].

Remark 4.8. With a similar technique as in this work, we are able to prove the existence
of a strong solution to the degenerate McKean–Vlasov SDE associated to the classical
porous medium equation in one dimension

∂tu = ∂2x(|u|m−1u), t ∈ [0, T ], u|t=0 = u0 ∈ P0(R) ∩ L∞(R),

where m > 3. From [14, Theorem 1.2], it is known that there exists a unique entropy
solution satisfying u

m−1
2 ∈ L2([0, T ];H

1
2 (R)). If u0 is chosen as above, u is a bounded

probability solution to this equation. As above, the existence of a P (ut)-weak solution
is provided by the superposition principle procedure for MVSDEs. Employing the one
dimensional pathwise uniqueness result [10, Theorem 1.2], we can show P (ut)-pathwise
uniqueness to the corresponding MVSDE. Using a similar procedure to the one in
Section 4.1, we obtain a unique P (ut)-strong solution. To the best of the author’s
knowledge, this result seems to be new. Note that in [6] the authors proved the existence
of a unique strong solution in the case d = 1 under the stronger assumption that the
initial distribution density is given by u0 ∈ P0(R) ∩ C1

b (R) with the property that u0 is
always strictly positive.
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