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The distribution of the number of distinct values in a
finite exchangeable sequence
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Abstract

Let Kn denote the number of distinct values among the first n terms of an infinite
exchangeable sequence of random variables (X1, X2, . . .). We prove for n = 3 that the
extreme points of the convex set of all possible laws of K3 are those derived from i.i.d.
sampling from discrete uniform distributions and the limit case with P(K3 = 3) = 1.
We also consider the problem in higher dimensions and variants of the problem for
finite exchangeable sequences and exchangeable random partitions.
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1 Introduction

For an infinite sequence of real-valued random variables (X1, X2, . . .), let

Kn = Kn(X1, . . . , Xn) := #{Xi : 1 ≤ i ≤ n},

the number of distinct values appearing in the first n terms. This article focuses on the
case in which the sequence (X1, X2, . . .) is exchangeable, meaning that its distribution is
invariant under finite permutations of the indices. It is a well-known and celebrated result
of de Finetti that any infinite exchangeable sequence is a mixture of i.i.d. sequences. We
explore ideas related to the following central question:

Given a probability distribution (a1, . . . , an) on [n] := {1, . . . , n}, is there an
infinite exchangeable sequence of random variables (X1, X2, . . .) such that
P(Kn = k) = ak for 1 ≤ k ≤ n?
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Distribution of Kn for a finite exchangeable sequence

The functional Kn has been studied extensively in the context of the occupancy problem
as well as other closely related formulations including the birthday problem, the coupon
collector’s problem, and random partition structures [5,8,13]. Much of the literature
pertains to the asymptotic behavior of Kn in the classical version in which the Xi are
i.i.d. discrete uniform random variables, as well as the general i.i.d. case. See [6] for
a recent survey with many references. Asymptotics of Kn have also been studied for a
random walk (X1, X2, . . .) with stationary increments [15], [3, Section 7.3].

Let us first consider the problem for small values of n. For n = 1, the random variable
K1 is just the constant 1. Next, it is easy to see that any probability distribution on
{1, 2} can be achieved as the law of K2 for some exchangeable sequence; indeed, for any
a ∈ [0, 1], i.i.d. sampling from a distribution with a single atom having weight

√
a yields

P(K2 = 1) = a. However, the problem is not trivial for n = 3, as evident by the following
bound due to Jim Pitman (personal communication.) The proof is presented in Section 3.

Proposition 1.1. For K3 the number of distinct values in the first 3 terms of an infinite
exchangeable sequence of random variables (X1, X2, . . .),

P(K3 = 2) ≤ 3

4
.

Here we present the main result of this article. Let vn,m denote the law of Kn,m :=

Kn(Xm,1, . . . , Xm,n) where Xm,i are i.i.d. with uniform distribution on m elements, i.e.

vn,m =
(
P(Kn,m = k) : 1 ≤ k ≤ n

)
and let vn,∞ = (0, . . . , 0, 1), corresponding to the limit case m =∞ since

P(Kn,m = n) =
m(m− 1) · · · (m− n+ 1)

mn
−→ 1 as m→∞.

Let

Vn := {vn,m : m = 1, 2, . . . ,∞}

and let Hn denote the convex hull of Vn.

Theorem 1.2. For n = 3,

(i) The set of extreme points of Hn is Vn.

(ii) The set of possible laws of Kn for an infinite exchangeable sequence (X1, X2, . . .)

is Hn.

It is natural to conjecture that the assertions in Theorem 1.2 hold true for larger
values of n. Yuri Yakubovich [17] proved that (i) holds for all n ≥ 3. However, Yakubovich
exhibits a counterexample to (ii) for n = 7. The results in [17] are further discussed in
Section 4. It remains a conjecture that (ii) holds for n = 4, 5 and fails for all n ≥ 6, and
more generally it remains an open problem to characterize the the set of possible laws
of Kn for n ≥ 4.

The rest of this article is organized as follows. Section 2 establishes notation and
the fundamentals of our approach. Section 3 covers some properties of the law of K3

leading to a proof of Theorem 1.2, and Section 4 extends some of these results to higher
dimensions. Section 5 considers a variant of the main problem for finite exchangeable
sequences by appealing to the framework of exchangeable random partitions, and
Section 6 explores a remarkable symmetry for K3 in the Ewens-Pitman two-parameter
partition model.
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Distribution of Kn for a finite exchangeable sequence

2 Preliminaries

For an i.i.d. sequence (X1, X2, . . .), there is an associated ranked discrete distribution
(p1, p2, . . .) with p1 ≥ p2 ≥ . . . ≥ 0 and

∑∞
i=1 pi ≤ 1 where the pi are the weights of

the atoms for the law of Xi in decreasing order, and 1 −
∑∞
i=1 pi is the weight of the

continuous component.
Consider the set

∇∞ :=
{

(p1, p2, . . .) : p1 ≥ p2 ≥ . . . ≥ 0,

∞∑
i=1

pi ≤ 1
}
,

sometimes referred to as the infinite dimensional Kingman simplex as in [12]. The
uniform distribution on m elements corresponds to

um :=
( 1

m
, . . . ,

1

m︸ ︷︷ ︸
m times

, 0, 0, . . .
)
∈ ∇∞.

and any non-atomic law corresponds to u∞ := (0, 0, . . .) ∈ ∇∞. With Theorem 1.2 in
mind, note that {

um : m = 1, 2, . . . ,∞
}

is precisely the set of extreme points of ∇∞ [1, Theorem 4.1]. Any (p1, p2, . . .) ∈ ∇∞ has
a unique representation as a convex combination of um, m = 1, 2, . . . ,∞ given by

(p1, p2, . . .) = p∗u∞ +

∞∑
i=1

(pi − pi+1)ui, p∗ = 1−
∞∑
i=1

pi.

This is a discrete version of Khintchine’s representation theorem for unimodal distribu-
tions [9].

It is easy to see that the law of Kn for an i.i.d sequence depends only on the ranked
frequencies of the atoms. Let

qn,i(p1, p2, . . .) := P
(
Kn = i

)
where Kn = Kn(X1, . . . , Xn) for i.i.d. Xi with ranked frequencies (p1, p2, . . .). Then for
n = 3, it is easy to see that

q3,1(p1, p2, . . .) =

∞∑
i=1

p3i

q3,2(p1, p2, . . .) =

∞∑
i=1

3p2i (1− pi)

q3,3(p1, p2, . . .) = 1−
∞∑
i=1

[
3p2i − 2p3i

]
.

For the general exchangeable case, de Finetti’s theorem guarantees that the law of
Kn for an exchangeable sequence of random variables (X1, X2, . . .) is a mixture of laws of
Kn for i.i.d. sequences. In other words, the set of laws of Kn derived from exchangeable
sequences is the convex hull of those derived from i.i.d. sequences. This property allows
us to focus on the i.i.d. case and simplify our treatment to ranked discrete distributions.

Note that there is an equivalent reformulation of the problem in the setting of
exchangeable random partitions; see e.g. [13] for relevant background on the subject.
For an exchangeable random partition Π = (Πn) of N, let Kn denote the number of
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Distribution of Kn for a finite exchangeable sequence

clusters in the restriction Πn of Π to [n]. Through Kingman’s representation theorem [10]
for exchangeable random partitions ofN in terms of random ranked discrete distributions,
the possible laws of Kn in this setting are identical to the possible laws of Kn as defined
originally in this paper as the number of distinct values in the first n terms of an
exchangeable sequence (X1, X2, . . .). In Sections 5–7, we explore some related problems
in the framework of exchangeable random partitions.

Notations and conventions. If a ranked discrete distribution (p1, p2, . . .) has finitely
many atoms, i.e. there exists m such that pi = 0 for all i > m, we call it a finite
distribution and abbreviate it as (p1, . . . , pm) when convenient. Since all of the functionals
that we work with on ∇∞ are symmetric functions of the arguments, we understand
an equivalence between an unordered discrete distribution (p1, p2, . . .) and its ranked
version. Unless otherwise stated, it is implicit in the appearance of (p1, p2, . . .) or
(p1, . . . , pm) that the conditions pi ≥ 0 and

∑
pi ≤ 1 hold.

3 Laws of K3

To simplify notation in this section, let

qi := q3,i = P(K3 = i)

where qi may be treated as a functional on ∇∞.

Lemma 3.1. For (p1, . . . , pm) with m ≥ 3 and p1 ≤ . . . ≤ pm,

q2(p1 + p2, p3 . . . , pm) ≥ q2(p1, p2, p3, . . . , pm).

Proof. Let a = p1 and b = p2. We have

q2(a, b, p3, . . . , pm) = 3a2(1− a) + 3b2(1− b) +

m∑
i=3

3p2i (1− pi)

and

q2(a+ b, p3, . . . , pm) = 3(a+ b)2(1− a− b) +

m∑
i=3

3p2i (1− pi).

Then

q2(a+ b, p3, . . . , pm)− q2(a, b, p3, . . . , pm) = 3(a+ b)2(1− a− b)− 3a2(1− a)− 3b2(1− b)
= 6ab(1− a− b)− 3a2b− 3ab2

= 3ab(2− 3(a+ b))

≥ 0

since a and b are the two smallest values among {a, b, p3, . . . , pm} so a+ b ≤ 2
m ≤

2
3 for

m ≥ 3.

This shows that for any (p1, . . . , pm) with m ≥ 3, merging the two smallest values
among {p1, . . . , pm} does not decrease q2.

Proof of Proposition 1.1. By de Finetti’s theorem, it suffices to prove the inequality for
i.i.d. sequences. Since

q2(p1, p2, . . .) =

∞∑
i=1

3p2i (1− pi) = lim
m→∞

m∑
i=1

3p2i (1− pi) = lim
m→∞

q2(p1, . . . , pm),
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Distribution of Kn for a finite exchangeable sequence

it is enough to establish the inequality q2(p1, . . . , pm) ≤ 3
4 for finite discrete distributions

(p1, . . . , pm). If m = 2, then q2(p1, p2) = 3p21(1−p1)+3p22(1−p2) which attains its maximum
value of 3

4 subject to p1, p2 ≥ 0 and p1 + p2 ≤ 1 at p1 = p2 = 1
2 . For m ≥ 3, by Lemma 3.1

repeatedly merging the two smallest values until no more than two nonzero values
remain gives q2(p1, . . . , pm) ≤ q2( 1

2 ,
1
2 ) = 3

4 .

Consider the law of K3 for an i.i.d. sequence (X1, X2, . . .) where each Xi has the
uniform distribution uN := ( 1

N , . . . ,
1
N ). A probability distribution (q1, q2, q3) of K3 (on

{1, 2, 3}) can be represented by any pair of its coordinates; here we shall work with
(q1, q3) :=

(
P(K3 = 1),P(K3 = 3)

)
. Then

q1(uN ) := P(K3(uN ) = 1) =
1

N2

q3(uN ) := P(K3(uN ) = 3) =
(N − 1)(N − 2)

N2
.

The set of points {vN : N ∈ N} = {(1, 0), ( 1
4 , 0), ( 1

9 ,
2
9 ), ( 1

16 ,
6
16 ), ( 1

25 ,
12
25 ), ( 1

36 ,
20
36 ), . . .} where

vN := (q1(uN ), q3(uN )) =
( 1

N2
,

(N − 1)(N − 2)

N2

)
(3.1)

are shown in Figures 1 and 2, with line segments connecting consecutive points.

Figure 1: Probability distributions of K3 represented as points (q1, q3) =
(
P(K3 =

1),P(K3 = 3)
)

with q1 horizontal and q3 vertical. Shaded in black is the restricted region
specified by Proposition 1.1. The gray region is the closed convex hull of {vN : N ∈ N}
where vN corresponds to the distribution of K3 for i.i.d. sampling from a discrete
uniform distribution on N elements, as defined in (3.1).

The slope of the line connecting vN =
(

1
N2 ,

(N−1)(N−2)
N2

)
and vN+1 =

(
1

(N+1)2 ,
N(N−1)
(N+1)2

)
is

N(N−1)
(N+1)2 −

(N−1)(N−2)
N2

1
(N+1)2 −

1
N2

= − (N − 1)(3N + 2)

2N + 1
. (3.2)

This is increasing in N which proves Theorem 1.2(i). The equation of the Nth line is
given by

q3 −
(N − 1)(N − 2)

N2
= − (N − 1)(3N + 2)

2N + 1

(
q1 −

1

N2

)
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Distribution of Kn for a finite exchangeable sequence

Figure 2: The shaded regions (nested) correspond to the images of {(p1, . . . , pm) : pi ≥
0,
∑
pi = 1} under the map (p1, . . . , pm) 7→

(
q1(p1, . . . , pm), q3(p1, . . . , pm)

)
, i.e. distribu-

tions of K3 for i.i.d. sampling from a discrete distribution with at most m atoms for m = 3

(dark), m = 4 (dark and medium), and m = 5 (dark, medium, and light). The existence of
the gap between the left boundary of the dark region and the line segment connecting
v2 and v3 is a consequence of Lemma 3.6. The midpoint of v2 and v3, for example, does
not correspond to i.i.d. sampling from any any discrete distribution; however, it does
correspond to the the exchangeable sequence with law given by i.i.d. sampling from u2

with probability 1
2 and i.i.d. sampling from u3 with probability 1

2 .

or after rearranging,

q3 +
(N − 1)(3N + 2)

2N + 1
q1 =

2N − 2

2N + 1
. (3.3)

For p = (p1, . . . , pm), define according to the left-hand side of (3.3) the functional

LN (p) := q3(p) +
(N − 1)(3N + 2)

2N + 1
q1(p)

which may be reexpressed as

LN (p) = 1−
(
1− LN (p)

)
= 1−

(
1− q3(p)− q1(p)−

[
(N − 1)(3N + 2)

2N + 1
− 1

]
q1(p)

)
= 1− q2(p) +

3(N2 −N − 1)

2N + 1
q1(p)

= 1−
m∑
i=1

3p2i (1− pi) +
3(N2 −N − 1)

2N + 1

m∑
i=1

p3i

= 1− 3

m∑
i=1

p2i +
3N(N + 1)

2N + 1

m∑
i=1

p3i .

Note that LN is nonlinear as a function of discrete distributions p. Define

f(N) :=
3N(N + 1)

2N + 1
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so

LN (p) = 1− 3

m∑
i=1

p2i + f(N)

m∑
i=1

p3i .

To better understand the sequence of values f(N), note that f is increasing and

N <
2N + 2

2N + 1
(N) =

2

3
· 3N(N + 1)

2N + 1︸ ︷︷ ︸
f(N)

=
2N

2N + 1
(N + 1) < N + 1.

The first few values are f(1) = 2, f(2) = 18
5 , f(3) = 36

7 , f(4) = 60
9 .

Lemma 3.2. For N ≥ 1 and any p = (p1, . . . , pm) with p1 ≥ . . . ≥ pm ≥ 0 and
∑
pi ≤ 1,

LN (p) ≥ 2N − 2

2N + 1
.

Geometrically, Lemma 3.2 asserts that for any p = (p1, . . . , pm), the point
(
q1(p), q3(p)

)
lies on or above each of the lines connecting vN and vN+1 for N ∈ N. It will be shown in
the proof that for N ≥ 2, LN (p) = 2N−2

2N+1 if and only if p = uN or p = uN+1; as for N = 1,
L1(p) = q3(p) = 0 is attained if and only if p = (p1, p2) with p1 + p2 = 1.

The strategy for proving Lemma 3.2 is to show that LN is minimized at precisely vN
and vN+1 by reducing the domain of minimization in stages, first to (p1, . . . , pm) with∑
pi = 1, then to the uniform distributions, and finally to uN and uN+1. The key to the

proof is the following merging lemma, which generalizes Lemma 3.1.

Lemma 3.3. For N ≥ 1 and (p1, . . . , pm) with m ≥ 2,

LN (p1 + p2, p3, . . . , pm)− LN (p1, p2, p3, . . . , pm) = 3p1p2
[
(p1 + p2)f(N)− 2

]
which is positive, negative, or zero according to the sign of p1 + p2 − 2

f(N) .

Proof. Let a = p1 and b = p2. We have

LN (a, b, p3, . . . , pm) = 1− 3a2 − 3b2 − 3

m∑
i=3

p2i + f(N)(a3 + b3) + f(N)

m∑
i=3

p3i

and

LN (a+ b, p3, . . . , pm) = 1− 3(a+ b)2 − 3

m∑
i=3

p2i + f(N)(a+ b)3 + f(N)

m∑
i=3

p3i .

Then

LN (a+ b, p3, . . . , pm)− LN (a, b, p3, . . . , pm) = −6ab+ f(N)(3a2b+ 3ab2)

= 3ab
[
(a+ b)f(N)− 2

]
.

The proof of Lemma 3.2 is organized according to the following lemmas.

Lemma 3.4. Let P denote the set of all finite ranked discrete distributions, and let P1

denote the set of finite ranked discrete distributions (p1, . . . , pm) with
∑
pi = 1. Then for

any N ≥ 1, we have the equality of sets

arg min
p∈P

LN (p) = arg min
p∈P1

LN (p)
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Proof. Let p0 = (p1, . . . , pm) ∈ P such that
∑m
i=1 pi < 1. Let ε satisfy 0 < ε <

min{ 3
f(N) , 1−

∑m
i=1 pi}. Then

LN (ε, p1, . . . , pm) = −3ε2 + f(N)ε3 + LN (p1, . . . , pm)

= ε2(f(N)ε− 3) + LN (p1, . . . , pm)

< LN (p1, . . . , pm).

This shows that if p0 /∈ P1, then p0 /∈ arg minp∈P LN (p).

Lemma 3.5. Let P1 denote the set of finite ranked discrete distributions (p1, . . . , pm)

with
∑
pi = 1, and let U :=

{
um : m ∈ N}. Then for N ≥ 2, we have the equality of sets

arg min
p∈P1

LN (p) = arg min
p∈U

LN (p)

Proof. Let p0 = (p1, . . . , pm), not necessarily ranked, such that
∑m
i=1 pi = 1. Suppose

p0 has a pair of distinct nonzero values, say a = p1 and b = p2 with a, b > 0 and a 6= b.
Consider the three cases as designated in Lemma 3.3, noting that 2

f(N) < 1 for N ≥ 2.

(i) If a+ b < 2
f(N) , then LN (a+ b, p3, . . . , pm) < LN (a, b, p3, . . . , pm) by Lemma 3.3.

(ii) If a+ b > 2
f(N) , then

LN (a+b2 , a+b2 , p3, . . . , pm)− LN (a, b, p3, . . . , pm)

=
(
LN (a+ b, p3, . . . , pm)− LN (a, b, p3, . . . , pm)

)
−
(
LN (a+ b, p3, . . . , pm)− LN (a+b2 , a+b2 , p3, . . . , pm)

)
= 3ab

(
(a+ b)f(N)− 2

)
− 3(a+b2 )2

(
(a+ b)f(N)− 2

)
= 3
(
ab− (a+b2 )2

)(
(a+ b)f(N)− 2

)
which is negative since ab− (a+b2 )2 < 0 and (a+ b)f(N)− 2 > 0.

(iii) If a + b = 2
f(N) < 1, then there must exist a third nonzero value, say p3 = c >

0. If c = 2
f(N) , then a 6= c and a + c > 2

f(N) so LN (a+c2 , a+c2 , b, p4, . . . , pm) <

LN (a, b, c, p4, . . . , pm) by case (ii). If c 6= 2
f(N) , then merging a and b, which does not

change LN , followed by averaging a+ b and c gives LN (a+b+c2 , a+b+c2 , p4, . . . , pm) <

LN (a, b, c, p4, . . . , pm) by case (ii) again.

Since permuting values in any discrete distribution does not change LN , the analysis
above holds for all ranked discrete distributions and thus shows that among p ∈ P1, LN
cannot be minimized at any p with a pair of distinct nonzero values, i.e. any non-uniform
distribution.

Remark. As mentioned previously, for N = 1,

arg min
p∈P

L1(p) = {(p1, p2) : p1 ≥ p2 ≥ 0, p1 + p2 = 1}

which differs from the general case N ≥ 2. The reason the proof of Lemma 3.5 fails for
N = 1 is that f(1) = 2, so 2

f(1) = 1 and case (iii) of the proof breaks down.

Lemma 3.6. Let U := {um : m ∈ N}. Then for N ≥ 1,

arg min
p∈U

LN (p) = {uN ,uN+1}
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Proof. The claim is obvious based on Figure 1, which shows that the slopes between vN
and vN+1 for N ∈ N are decreasing in N . Indeed, the slope of the Nth line segment is
computed in (3.2) as

− (N − 1)(3N + 2)

2N + 1
= −3N2 −N − 2

2N + 1
= 2− 3N(N + 1)

2N + 1
= 2− f(N)

which is decreasing in N .

Proof of Lemma 3.2. The claim holds trivially for N = 1. For N ≥ 2, applying Lem-
mas 3.4, 3.5, and 3.6 yields

arg min
p∈P

LN (p) = arg min
p∈P1

LN (p) = arg min
p∈U

LN (p) = {uN ,uN+1}

and therefore for any p = (p1, . . . , pm) with pi ≥ 0 and
∑
pi ≤ 1,

LN (p) ≥ LN (uN ) = LN (uN+1) =
2N − 2

2N + 1
.

Proof of Theorem 1.2. Part (i) was proven earlier by the slope computation (3.2) and
illustrated in Figure 1. For part (ii), Lemma 3.2 asserts that (q1(p), q2(p), q3(p)) ∈
conv(V3) for any finite ranked discrete distribution p. Extension to infinite discrete
distributions (p1, p2, . . .) follows because limm→∞ qi(p1, . . . , pm) = qi(p1, p2, . . .), and then
extension to exchangeable sequences holds by convexity.

4 Higher dimensions

This section aims to extend some of the results in the previous section to Kn for larger
n. Here qn,i := P(Kn = i). We begin by generalizing Lemma 3.1 and Proposition 1.1.

Lemma 4.1. For n ≥ 3 and (p1, . . . , pm) with m ≥ 3,
∑m
i=1 pi = 1, p1 ≤ . . . ≤ pm,

qn,2(p1 + p2, p3, . . . , pm) ≥ qn,2(p1, p2, p3, . . . , pm).

The proof requires the following inequality:

Lemma 4.2. For a, b > 0 and n ≥ 2,

4
(
n−1
n

)
ab(a+ b)n−2 ≤ (a+ b)n − an − bn ≤ nab(a+ b)n−2

Proof. We have

(a+ b)n − an − bn =

n−1∑
k=1

(
n

k

)
akbn−k = ab

n−2∑
k=0

(
n

k + 1

)
akbn−2−k. (4.1)

Observe that(
n

k + 1

)
=

n(n− 1)(n− 2)!

(k + 1)k!(n− k − 1)(n− k − 2)!
=

n(n− 1)

(k + 1)(n− k − 1)

(
n− 2

k

)
;

the denominator (k + 1)(n− k − 1) is no greater than (n/2)2, and is minimized at k = 0

and k = n− 2, so (
n

k + 1

)
≥ n(n− 1)

(n/2)2

(
n− 2

k

)
= 4

n− 1

n

(
n− 2

k

)
(4.2)

and (
n

k + 1

)
≤ n

(
n− 2

k

)
. (4.3)

The result follows by substituting inequalities (4.2) and (4.3) into (4.1) and appealing to
the binomial theorem.
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Proof of Lemma 4.1. Let a = p1 and b = p2. We can compute

qn,2(a, b, p3, . . . , pm) = P
(
Kn(a, b, p3, . . . , pm) = 2

)
by conditioning on the appearance of the first two values:

qn,2(a, b, p3, . . . , pm) =

n−1∑
k=1

(
n

k

)
akbn−k +

n−1∑
k=1

(
n

k

)
ak

m∑
i=3

pn−ki

+

n−1∑
k=1

(
n

k

)
bk

m∑
i=3

pn−ki +
∑

3≤i<j≤m

n−1∑
k=1

(
n

k

)
pki p

n−k
j .

Note that the first term, which is an expression for the probability that the first two
values both appear and are the only ones to appear in the first n observations, is also
equal to (a+ b)n − an − bn. Similarly,

qn,2(a+ b, p3, . . . , pm) =

n−1∑
k=1

(
n

k

)
(a+ b)k

m∑
i=3

pn−ki +
∑

3≤i<j≤m

n−1∑
k=1

(
n

k

)
pki p

n−k
j .

For m ≥ 3, the difference after appropriate cancellations and applying Lemma 4.2 is

qn,2(a+ b, p3, . . . , pm)− qn,2(a, b, p3, . . . , pm)

=

n−1∑
k=1

(
n

k

)[
(a+ b)k − ak − bk

] m∑
i=3

pn−ki −
n−1∑
k=1

(
n

k

)
akbn−k

=

n−2∑
k=1

(
n

k

)[
(a+ b)k − ak − bk

] m∑
i=3

pn−ki︸ ︷︷ ︸
≥0

+n
[
(a+ b)n−1 − an−1 − bn−1

]︸ ︷︷ ︸
≥4(n−2

n−1 )ab(a+b)
n−3≥2ab(a+b)n−3

m∑
i=3

pi

−
[
(a+ b)n − an − bn

]︸ ︷︷ ︸
≤nab(a+b)n−2

≥ nab(a+ b)n−3
[
2

m∑
i=3

pi − (a+ b)
]
.

Since
∑m
i=1 pi = 1 and a ≤ b ≤ p3 ≤ . . . ≤ pm, it follows that

∑m
i=3 pi ≥

m−2
m and a+b ≤ 2

m ,
so

2

m∑
i=3

pi − (a+ b) ≥ 2
(m− 2

m

)
− 2

m
=

2(m− 3)

m
≥ 0

and therefore merging the two smallest values among {p1, . . . , pm} does not decrease
qn,2 provided that there are at least 3 nonzero values.

Lemma 4.3. For any (p1, . . . , pm) and n ≥ 3,

qn,2(p1, . . . , pm, p∗) ≥ qn,2(p1, . . . , pm)

where p∗ := 1−
∑m
i=1 pi.

Proof. We have

qn,2(p1, . . . , pm) =
∑

1≤i<j≤m

n−1∑
k=1

(
n

k

)
pki p

n−k
j +

m∑
i=1

npn−1i p∗
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and

qn,2(p1, . . . , pm, p∗) =
∑

1≤i<j≤m

n−1∑
k=1

(
n

k

)
pki p

n−k
j +

m∑
i=1

n−1∑
k=1

(
n

k

)
pki p

n−k
∗ ,

so

qn,2(p1, . . . , pm, p∗)− qn,2(p1, . . . , pm) =

m∑
i=1

n−2∑
k=1

pki p
n−k
∗ ≥ 0.

Theorem 4.4. For any exchangeable sequence of random variables (X1, X2, . . .) and any
n ≥ 3,

P(Kn = 2) ≤ 1− 2−(n−1).

Proof. As in the proof of Proposition 1.1, it suffices to show that qn,2(p1, . . . , pm) ≤
1− 2−(n−1) for any (p1, . . . , pm). If m = 2 and p1 + p2 = 1, then

qn,2(p1, p2) = 1− pn1 − pn2

which attains its maximum of 1 − 2−(n−1) at p1 = p2 = 1
2 . For m ≥ 3, by Lemmas 4.1

and 4.3 we have

qn,2(p1, . . . , pm) ≤ qn,2(p1, . . . , pm, p∗) ≤ qn,2
(
1
2 ,

1
2

)
= 1− 2−(n−1).

The difficulty in extending the proof of Theorem 1.2(ii) to the problem in higher
dimensions is that there is no simple generalization of Lemma 3.3. Lemma 3.3 is
essential because it asserts that whether merging two values in a discrete distribution
increases, decreases, or preserves the functionals LN is determined by only the sum of
the two value to be merged. The corresponding functionals for the higher dimensional
problem are more complicated and do not have the same convenient property.

Recently, Yakubovich [17] resolved the previously standing conjecture regarding the
assertions in Theorem 1.2 for n ≥ 3.

Recall some notation from Section 1: for n ≥ 3 and m = 1, 2, . . . ,∞, denote by vn,m
the law of Kn(Xm,1, . . . , Xm,n) where Xm,i are i.i.d. with uniform distribution on m

elements, i.e.
vn,m =

(
P(Kn,m = k) : 1 ≤ k ≤ n

)
and vn,∞ = (0, . . . , 0, 1). By a standard combinatorial argument, we have the formula

vn,m(k) =
S(n, k)

(
m
k

)
k!

mn
(1 ≤ k ≤ n)

where the S(n, k) are Stirling numbers of the second kind. Let

Vn := {vn,m : m = 1, 2, . . . ,∞}

and let Hn denote the convex hull of Vn. Yakubovich proved the following:

Proposition 4.5. For n ≥ 3, the set of extreme points of Hn is Vn.

This is a consequence of the following two lemmas, in which orthogonal vectors to
bounding hyperplanes are found, revealing the geometry of Hn.

Lemma 4.6. Let n ≥ 3 be odd. Let γn,1 := δn = (0, . . . , 0, 1) ∈ Rn, and for r ≥ 2 define
γn,r ∈ Rn by

γn,r(k) :=
(−1)k−1

(
n−1
k−1
)

S(n, k)
(
n+r−3
k−1

)
(k − 1)!

for k = 1, . . . , n.

Then for r ≥ 1 we have 〈γn,r,vn,m〉 = 0 for m = r, r+ 1, . . . , r+ n− 2 and 〈γn,r,vn,m〉 > 0

for m < r or m > r + n− 2.
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Proof. The assertion for r = 1 is obvious because the probability of observing n distinct
values in a n-sample from a uniform distribution on m elements is 0 for m = 1, . . . , n− 1

and positive for m ≥ n. For r ≥ 2, observe that

〈γn,r,vn,m〉 =

n∑
k=1

(−1)k−1
(
n−1
k−1
)

S(n, k)
(
n+r−3
k−1

)
(k − 1)!

S(n, k)
(
m
k

)
k!

mn
=

n∑
k=1

(−1)k−1
(
m−1
k−1

)(
n−k+r−2

r−2
)(

n+r−3
r−2

)
mn−1

(4.4)
because k

(
m
k

)
= m

(
m−1
k−1

)
and

(
n−1
k−1
)(
n+r−3
k−1

)−1
=
(
n−k+r−2

r−2
)(
n+r−3
r−2

)−1
. Note that the

denominator in the summand does not depend on k. It can be shown using generating
functions that the numerator evaluates to 0 for r ≤ m ≤ r + n − 2 and is otherwise
positive for all odd n (proof omitted).

Lemma 4.7. Let n ≥ 4 be even. Let γ′′n,2 := δn = (0, . . . , 0, 1) ∈ Rn. For r ≥ 2 define
γ′n,r ∈ Rn by

γ′n,r(k) :=
(−1)k−1

(
n−2
k−1
)

S(n, k)
(
n+r−4
k−1

)
(k − 1)!

for k = 1, . . . , n− 1,

γ′n,r(n) := 0

and for r ≥ 3 define γ′′n,r ∈ Rn by

γ′′n,r(1) := 0,

γ′′n,r(k) :=
(−1)k

(
n−2
k−2
)

S(n, k)
(
n+r−5
k−2

)
(k − 2)!

for k = 2, . . . , n.

Then for r ≥ 2 we have 〈γ′n,r,vn,m〉 = 0 form =∞, r, r+1, . . . , r+n−3 and 〈γ′n,r,vn,m〉 > 0

form < r or r+n−3 < m <∞, and we have 〈γ′′n,r,vn,m〉 = 0 form = 1, r, r+1, . . . , r+n−3

and 〈γ′′n,r,vn,m〉 > 0 for 1 < m < r or m > r + n− 3.

Proof. First, for r ≥ 2 we have 〈γ′n,r,vn,∞〉 = 0 since vn,∞ = δn, and for 1 ≤ m <∞ we
have

〈γ′n,r,vn,m〉 =

n−1∑
k=1

(−1)k−1
(
n−2
k−1
)

S(n, k)
(
n+r−4
k−1

)
(k − 1)!

S(n, k)
(
m
k

)
k!

mn
=

n−1∑
k=1

(−1)k−1
(
m−1
k−1

)(
n−k+r−3

r−2
)(

n+r−4
r−2

)
mn−1

(4.5)
which is up to a factor of m the same as (4.4) with n replaced by n − 1. Therefore it
evaluates to 0 for r ≤ m ≤ r + n− 3 and is positive for other integer values of m for all
even n.

Next, the assertion about 〈γ′′n,r,vn,m〉 for r = 2 holds by the same reasoning as in the
case for n odd and r = 1. For r ≥ 3 we have 〈γ′′n,r,vn,∞〉 > 0 and for 1 ≤ m <∞ we have

〈γ′′n,r,vn,m〉 =

n∑
k=2

(−1)k
(
n−2
k−2
)

S(n, k)
(
n+r−5
k−2

)
(k − 2)!

S(n, k)
(
m
k

)
k!

mn

=

n∑
k=2

(−1)k(m− 1)
(
n−k+r−3

r−3
)(
m−2
k−2

)(
n+r−5
r−3

)
mn−1

=

n−1∑
k=1

(−1)k−1(m− 1)
(
n−k+r−4

r−3
)(
m−2
k−1

)(
n+r−5
r−3

)
mn−1

because k(k − 1)
(
m
k

)
= m(m − 1)

(
m−2
k−2

)
and

(
n−2
k−2
)(
n+r−5
k−2

)−1
=
(
n−k+r−3

r−3
)(
n+r−5
r−3

)−1
. We

see that 〈γ′′n,r,vn,m〉 = 0 for m = 1. For m > 1 by shifting the variables accordingly,
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specifically r − 1 7→ r and m − 1 7→ m, we obtain (4.5) up to a positive factor and thus
〈γ′′n,r,vn,m〉 = 0 for r ≤ m ≤ r + n− 3, and is positive for other integer values of m > 1

and m =∞ by definition of γ′′n,r.

The set Hn ∈ Rn is a (n− 1)-dimensional apeirotope, or a generalized polytope which
has infinitely many facets, lying in the (n− 1)-dimensional affine subspace {(x1, . . . , xn) :

x1 + . . .+ xn = 1} intersected with the positive orthant in Rn. Lemmas 4.6 and 4.7 show
that the geometry of Hn depends on the parity of n. Specifically,

• for odd n ≥ 3, the facets of Hn are (n − 2)-dimensional polytopes given by the
vertices vn,1,vn,2, . . . ,vn,n−2,vn,∞ and the vertices vn,r,vn,r+1, . . . ,vn,r+n−2 for
r = 1, 2, . . .;

• for even n ≥ 4, the facets of Hn are (n − 2)-dimensional polytopes given by
the vertices vn,1,vn,2, . . . ,vn,n−2,vn,∞, the vertices vn,1,vn,r, . . . ,vn,r+n−3 for r =

2, 3, . . ., and the vertices vn,∞,vn,r, . . . ,vn,r+n−3 for r = 2, 3, . . ..

For some intuition regarding the structural difference between the two cases, see
Figure 1 (n = 3) and Figure 3 (n = 4).

Figure 3: The set H4 ∈ R4 projected onto the first, second, and fourth coordinates. Each
point v4,m is labeled by m, for m = 1, 2, 3, 4, 5,∞.

Yakubovich [17] also found the following counterexample to assertion (ii) in Theo-
rem 1.2 for n = 7. Consider the distribution of K7 induced by i.i.d. sampling from the
discrete distribution p(t) := ( 1

4+t ,
1

4+t ,
1

4+t ,
1

4+t ,
t

4+t ) = 4−4t
4+t u4 + 5t

4+tu5 for some t > 0.
The corresponding distribution of K7 can be computed according to

v
(t)
7 (k) := P(K7(p(t)) = k) =

∑(
7

n1, . . . , n5

) 5∏
i=1

(p(t)(i))ni

where the sum is taken over quintuples (n1, . . . , n5) with
∑
ni = 7 and #{i : ni > 0} = k.

In particular, it can be verified numerically that for t ∈ (0, 0.13), 〈γ7,2,v
(t)
7 〉 < 0 and hence

by Lemma 4.6, v(t)7 /∈ V7. This result is proved in [17] using a calculus argument, by

showing that function t 7→ 〈γ7,2,v
(t)
7 〉, which takes the value 0 at t = 0 by Lemma 4.6, has

a negative one-sided derivative at t = 0, implying that 〈γ7,2,v
(t)
7 〉 < 0 for small positive

values of t.
A similar counterexample works for n = 6, with p(t) := ( 1

5+t ,
1

5+t ,
1

5+t ,
1

5+t ,
1

5+t ,
t

5+t )

and the hyperplane inequality with γ′6,3 as in Lemma 4.7. It appears empirically that
similar modifications can be made to produce counterexamples for larger values of n.
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5 Finite exchangeable sequences

In this section, we consider the distribution of Kn for a finite exchangeable sequence
(X1, . . . , Xm) with m ≥ n. Note the deviation from the original problem: the first m terms
of an infinite exchangeable sequence always form a finite exchangeable sequence, but
a finite exchangeable sequence need not have an embedding into an infinite one, nor
one with more terms. See [2] for some nice geometric pictures of this property; [7] for
an extension of de Finetti’s theorem to finite exchangeable sequences in which such a
sequence can be identified as a “mixture” of i.i.d. random variables, but allowing for a
signed mixing measure; and [11] for conditions for the existence of an embedding of
a finite exchangeable sequence in a longer one. The presence of negative signs in the
mixture confirms that the laws of Kn in this setting are not simply derived from the i.i.d.
case by convexity.

The set of possible laws of Kn for finite exchangeable sequences (X1, . . . , Xm) form
decreasing nested subsets for m ≥ n, all of which contain that for infinite exchangeable
sequences. To analyze this problem, we shift to the framework of exchangeable random
partitions, for which we provide some background below.

A partition of [m] := {1, . . . ,m} is an unordered collection of disjoint non-empty
subsets {Ai} of [m] with

⋃
iAi = [m]. The Ai are called the clusters of the partition. The

restriction of a partition {Ai} of [m] to [n] where n < m is the partition of [n] whose
clusters are the nonempty members of {Ai ∩ [n]}.

Any infinite sequence of random variables (X1, X2, . . .) induces a random partition
of N according to the relation i ∼ j if and only if Xi = Xj . More precisely, a random
partition Π of N is a sequence (Πm) where for each m, Πm is a random partition of [m],
and for n < m, the restriction of Πm to [n] is Πn. For the random partition Π of N induced
by a sequence (X1, X2, . . .), the clusters of Πm are the indices associated to each distinct
value among {X1, . . . , Xm}. For example, if

(X1(ω), X2(ω), . . .) = (7, 6, 7, 8, 8, 7 . . .),

then
Π1(ω) = {{1}}, Π2(ω) = {{1}, {2}}, Π3(ω) = {{1, 3}, {2}},

Π4(ω) = {{1, 3}, {2}, {4}}, Π5(ω) = {{1, 3}, {2}, {4, 5}}, Π6(ω) = {{1, 3, 6}, {2}, {4, 5}}.

Observe that Kn as previously defined for a sequence (X1, X2, . . .) counts the number
of clusters of Πn for the associated partition Π. When (X1, X2, . . .) is exchangeable,
it induces an exchangeable random partition Π of N, meaning that for each m, the
distribution of Πm is invariant under any deterministic permutation of [m]. In this
scenario, associated to Π is a function p defined for all finite sequences of positive
integers such that for any m and any partition {A1, . . . , Ak} of [m],

P(Πm = {A1, . . . , Ak}) = p(|A1|, . . . , |Ak|).

Here p is called the exchangeable partition probability function (EPPF) associated to
Π. A consequence of exchangeability is that the EPPF is a symmetric function of its
arguments. The probability mass function for Kn can therefore be expressed in terms of
the EPPF as

P(Kn = k) =
∑

n1+...+nk=n
n1≥...≥nk≥1

C(n1, . . . , nk)p(n1, . . . , nk) (5.1)

where

C(n1, . . . , nk) :=
n!∏n

j=1(j!)sjsj !
, sj = sj(n1, . . . , nk) := #{i : ni = j} (5.2)
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counts the number of partitions of [n] whose cluster sizes in descending order are given
by n1, . . . , nk. Furthermore, the EPPF p satisfies the following consistency relation:

p(n1, . . . , nk) = p(n1, . . . , nk, 1) +

k∑
i=1

p(n1, . . . , ni + 1 , . . . , nk). (5.3)

Reposed in this alternate framework, the goal of this section is to understand the
possible distributions of Kn = Kn(Πm) for an exchangeable random partition Πm of
[m] for m ≥ n, meaning the number of clusters of the restriction Πm↓n of Πm to [n].
A consequence of the exchangeability of Πm is that Πm↓n is an exchangeable random
partition of [n], whose EPPF is determined recursively by the EPPF for Πm and the
consistency relations (5.3). Note that form = n, Kn(Πn) can have any general probability
distribution on [n]: for example, given such a probability distribution (a1, . . . , an), define
an EPPF according to

p(n− k + 1, 1, . . . , 1︸ ︷︷ ︸
k−1 singletons

) =
ak(
n
k−1
) , k = 1, . . . , n

where the rest of the values are either 0 or specified by symmetry. By construction, p
corresponds to an exchangeable random partition of [n] such that P(Kn = k) = an for
1 ≤ k ≤ n. However, for m > n, the consistency relations (5.3) must be satisfied, so it is
not immediately clear given n and m > n what restrictions there are on the distribution
of Kn, if any. The next proposition shows that there are indeed nontrivial restrictions on
the law of Kn in this setting.

Proposition 5.1. Let n ≥ 3, and let Πn+1 be an exchangeable random partition of [n+1].
Then we have the sharp bound

P(Kn(Πn+1) = n− 1) ≤ max{4, n− 1}
n+ 1

Proof. We have

P(Kn = n−1) =

(
n

2

)
p(2, 1n−2) =

(
n

2

)[
p(3, 1n−2)+(n−2)p(2, 2, 1n−3)+p(2, 1n−1)

]
(5.4)

where 1m is shorthand for m clusters of size 1. We consider the appearance of each of the
three terms p(3, 1n−2), p(2, 2, 1n−3), and p(2, 1n−1) in the expansion (5.3) of p(n1, . . . , nk)

for (n1, . . . , nk) with
∑k
i=1 ni = n and n1 ≥ . . . ≥ nk ≥ 1.

• p(3, 1n−2) appears in the expansion of only p(2, 1n−2) with coefficient 1 and p(3, 1n−3)

with coefficient 1. p(3, 1n−3) appears in the expansion of P(Kn = n− 2) according
to (5.1) with coefficient C(3, 1n−3) =

(
n
3

)
.

• p(2, 2, 1n−3) appears in the expansion of only p(2, 1n−2) with coefficient n− 2 and
p(2, 2, 1n−4) with coefficient 1. p(2, 2, 1n−4) appears in the expansion of P(Kn =

n− 2) according to (5.1) with coefficient C(2, 2, 1n−4) = 3
(
n
4

)
.

• p(2, 1n−1) appears in the expansion of only p(2, 1n−2) with coefficient 1 and p(1n)

with coefficient n. p(1n) appears in the expansion of P(Kn = n) with coefficient
C(1n) = 1.

Hence the problem reduces to maximizing (5.4) subject to the linear constraints[(
n

2

)
+

(
n

3

)]
p(3, 1n−2) +

[(
n

2

)
(n− 2) + 3

(
n

4

)]
p(2, 2, 1n−3) +

[(
n

2

)
+ n

]
p(2, 1n−1) ≤ 1.
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The maximum value of (5.4) is evidently equal to

max

{ (
n
2

)(
n
2

)
+
(
n
3

) , (
n
2

)
(n− 2)(

n
2

)
(n− 2) + 3

(
n
4

) , (
n
2

)(
n
2

)
+ n

}
,

with the first expression corresponding to Πn+1 having 1 cluster of size 3 and n − 2

clusters of size 1 with probability 1; the second expression corresponding to Πn+1

having 2 clusters of size 2 and n− 3 clusters of size 1 with probability 1; and the third
expression corresponding to Πn+1 having 1 cluster of size 2 and n− 1 clusters of size 1

with probability 1. Simplifying each of the three expressions yields

max
{ 3

n+ 1
,

4

n+ 1
,
n− 1

n+ 1

}
=

max{4, n− 1}
n+ 1

.

It follows from Proposition 5.1 that for n = 3, there are no restrictions on the
distribution of K3(Π4) on {1, 2, 3}. The same claim cannot be made for n ≥ 4, as
P(K4(Π5) = 3) ≤ 4

5 and P(Kn(Πn+1) = n− 1) ≤ n−1
n+1 for n ≥ 5.

The remainder of the section will focus on K3(Πn) for n ≥ 3. Intuitively, as n→∞,
the set of probability distributions of K3(Πn) should tend to the corresponding set for
K3(Π) for exchangeable random partitions Π of N, which was explicitly characterized in
Section 2. Fix n ≥ 3, and as before, consider the parameterization q1 = P(K3(Πn) = 1)

and q3 = P(K3(Πn) = 3). By repeated application of (5.3), q1 and q3 may be written in
terms of the EPPF as

q1 = p(3) =
∑

1≤k≤n
n1+...+nk=n
n1≥...≥nk≥1

A(n1, . . . , nk)p(n1, . . . , nk)

and
q3 = p(1, 1, 1) =

∑
1≤k≤n

n1+...+nk=n
n1≥...≥nk≥1

B(n1, . . . , nk)p(n1, . . . , nk)

for uniquely defined nonnegative integer coefficients A(n1, . . . , nk) and B(n1, . . . , nk).
The problem is to describe the set of points (q1, q3) arising in this manner subject to∑

1≤k≤n
n1+...+nk=n
n1≥...≥nk≥1

C(n1, . . . , nk)p(n1, . . . , nk) = 1

where C(n1, . . . , nk) is as defined in (5.2). Observe that, in vector notation,

(q1, q3) =
(∑

A(n1, . . . , nk)p(n1, . . . , nk),
∑

B(n1, . . . , nk)p(n1, . . . , nk)
)

=
∑

C(n1, . . . , nk)p(n1, . . . , nk)
(
A(n1,...,nk)
C(n1,...,nk)

, B(n1,...,nk)
C(n1,...,nk)

)
This shows that any (q1, q3) is a convex combination of points of the form

(A(n)
C(n) ,

B(n)
C(n)

)
,

and thus the set of probability distributions of K3(Πn) over all exchangeable random
partitions Πn of [n], expressed in the parameterization (q1, q3), is the convex hull of the
finite set of points

Sn :=
{(

A(n1,...,nk)
C(n1,...,nk)

, B(n1,...,nk)
C(n1,...,nk)

)
: 1 ≤ k ≤ n, n1 + . . .+ nk = 1, n1 ≥ . . . ≥ nk ≥ 1

}
.

Listed below is the sequence (sn) for the number of extreme points of the convex hull
of Sn for 3 ≤ n ≤ 35, computed using SciPy [16].
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Figure 4: The nested regions are the possible probability distributions of K3(Πn) for Πn

an exchangeable random partition of [n] for n = 4, 5, 7, 12, 19, 41, which tend to the region
corresponding to K3 for infinite exchangeable sequences, as described in Theorem 1.2
and shown in Figure 1.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
sn 3 3 4 4 5 5 6 6 7 6 8 7 8 8 9 8 10

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
sn 9 10 10 11 9 12 11 11 11 13 11 13 12 13 13 14

6 The two-parameter family

It was shown in [14] that any pair of real parameters (α, θ) satisfying either of the
conditions

(i) 0 ≤ α < 1 and θ > −α; or

(ii) α < 0 and θ = −mα for some m ∈ N

corresponds to an exchangeable random partition Πα,θ = (Πn) of N according to the
following sequential construction known as the Chinese restaurant process: for each
n ∈ N, conditionally given Πn = {C1, . . . , Ck}, Πn+1 is formed by having n+ 1

attach to cluster Ci with probability
|Ci| − α
n+ θ

, 1 ≤ i ≤ k ;

form a new cluster with probability
θ + kα

n+ θ
.

The corresponding EPPF is given by

pα,θ(n1, . . . , nk) =

∏k−1
i=0 (θ + iα)

∏k
j=1(1− α)nj−1

(θ)n

where n = n1 + . . .+ nk and

(x)m := x(x+ 1) · · · (x+m− 1) =
Γ(x+m)

Γ(x)
.

EJP 27 (2022), paper 105.
Page 17/25

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP815
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Distribution of Kn for a finite exchangeable sequence

Figure 5: The (α, θ) parameter space.

Let Pα,θ denote the law of Πα,θ. The distribution of K3 for Πα,θ is given by

q1(α, θ) =
(1− α)(2− α)

(1 + θ)(2 + θ)
(6.1)

q2(α, θ) =
3(1− α)(θ + α)

(1 + θ)(2 + θ)

q3(α, θ) =
(θ + α)(θ + 2α)

(1 + θ)(2 + θ)
(6.2)

where

qi(α, θ) := Pα,θ(K3 = i).

For m > 0, let

Am :=
{

(m+mθ, θ) : − m
m+1 < θ < 1−m

m

}
⊆ {(α, θ) : 0 ≤ α < 1, θ > −α}

and let A0 := {(0, θ) : θ > 0}, the parameter subspace corresponding to the well-known
one-parameter Ewens sampling formula [4]. The line segments and one ray {Am}m≥0
with inverse slope m in the (α, θ) plane, each of which would pass through the point
(α, θ) = (0,−1) if extended, partition the parameter subspace {(α, θ) : 0 ≤ α < 1, θ > −α}.
Hence the distribution of K3 can be reparameterized in m and θ as

q
(m)
1 (θ) =

(1−m−mθ)(2−m−mθ)
(1 + θ)(2 + θ)

(6.3)

q
(m)
2 (θ) =

3(1−m−mθ)[m+ (m+ 1)θ]

(1 + θ)(2 + θ)

q
(m)
3 (θ) =

[m+ (m+ 1)θ][2m+ (2m+ 1)θ]

(1 + θ)(2 + θ)
(6.4)

It can be checked by calculus that for each fixed m > 0,

• the function q(m)
1 (θ) is strictly decreasing for θ ∈ (− m

m+1 ,
1−m
m ) with

limθ→− m
m+1

q
(m)
1 (θ) = 1 and limθ→ 1−m

m
q
(m)
1 (θ) = 0.

EJP 27 (2022), paper 105.
Page 18/25

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP815
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Distribution of Kn for a finite exchangeable sequence

• the function q(m)
3 (θ) is strictly increasing for θ ∈ (− m

m+1 ,
1−m
m ) with

limθ→− m
m+1

q
(m)
3 (θ) = 0 and limθ→ 1−m

m
q
(m)
3 (θ) = 1.

• the function q(m)
2 (θ) is strictly increasing on

(
− m

m+1 , τ(m)
]

and strictly decreasing

on
[
τ(m), 1−mm

)
, with a unique maximum value of 9 − 6

(√
(m+ 1)(m+ 2) − m

)
at θ = τ(m) :=

−m2−3m+
√

(m+1)(m+2)

1+3m+m2 , which is also the unique value of θ in the

domain at which q(m)
1 (θ) = q

(m)
3 (θ).

The properties above also hold for m = 0 after slight modification by replacing each
instance of 1−m

m with limm→0+
1−m
m = ∞, and this remark also applies to subsequent

discussion.

Figure 6: Graphs of q(m)
i (θ) for m = 0 and θ ∈ [0, 5]. Observe that q1 and q3 intersect at

the same value of θ as where q2 attains its maximum value. The corresponding graphs
for every m > 0 also share this property.

Duality. The last observation implies that for m ≥ 0 and any real number p such that
0 < p < 9− 6(

√
(m+ 1)(m+ 2)−m), there are exactly two values θ(m)

± (p) with

− m

m+ 1
< θ

(m)
− (p) < τ(m) < θ

(m)
+ (p) <

1−m
m

. (6.5)

satisfying
q
(m)
2 (θ

(m)
− (p)) = q

(m)
2 (θ

(m)
+ (p)).

For p = 9 − 6(
√

(m+ 1)(m+ 2) − 2), define θ
(m)
− (p) = θ

(m)
+ (p) = ϕ(m). As θ(m)

± (p) are
defined as the solutions to the equation

3(1−m−mθ)[m+ (m+ 1)θ]

(1 + θ)(2 + θ)
= p

or equivalently the quadratic equation

p(1 + θ)(2 + θ)− 3(1−m−mθ)[m+ (m+ 1)θ] = 0, (6.6)

we have the polynomial identity

(θ − θ(m)
+ (p))(θ − θ(m)

− (p)) = θ2 +
3p− 3 + 6m2

p+ 3m+ 3m2
θ +

2p− 3m+ 3m2

p+ 3m+ 3m2
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after rearranging (6.6). It follows that

θ
(m)
+ θ

(m)
− =

2p− 3m+ 3m2

p+ 3m+ 3m2
. (6.7)

For − m
m+1 < θ < 1−m

m , define the m-dual θ(m)
∗ of θ according to (6.5). Rearranging (6.7)

and simplifying gives the explicit formula

θ
(m)
∗ =

2−m(3 +m)(1 + θ)

θ +m(3 +m)(1 + θ)
. (6.8)

Figure 7: Contour plot of q2(α, θ). The level curves for q2(α, θ) ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
are shown, along with their tangent lines where they meet the curve q1(α, θ) = q3(α, θ).
Observe that each tangent line passes through the point (α, θ) = (0,−1). Note that here
α is plotted on the vertical axis, for convenience of display.

Theorem 6.1. For m ≥ 0 and − m
m+1 < θ < 1−m

m , we have

q
(m)
1 (θ

(m)
∗ ) = q

(m)
3 (θ) and q

(m)
3 (θ

(m)
∗ ) = q

(m)
1 (θ).

Proof. It suffices to verify the first of the two identities since (6.8) is constructed as an
involution. Let D(m, θ) be the denominator in (6.8). Substituting and simplifying yields

1 + θ
(m)
∗ =

2 + θ

D(m, θ)
;

2 + θ
(m)
∗ =

(1 + θ)(1 +m)(2 +m)

D(m, θ)
;

1−m−mθ(m)
∗ =

(1 +m)[m+ (m+ 1)θ]

D(m, θ)
;

2−m−mθ(m)
∗ =

(2 +m)[2m+ (2m+ 1)θ]

D(m, θ)
.

Hence we have

q
(m)
1 (θ

(m)
∗ ) =

(1−m−mθ(m)
∗ )(2−m−mθ(m)

∗ )

(1 + θ
(m)
∗ )(2 + θ

(m)
∗ )

=
[m+ (m+ 1)θ][2m+ (2m+ 1)θ]

(1 + θ)(2 + θ)

= q
(m)
3 (θ)

as desired.
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Symmetry. A consequence of Theorem 6.1 is a surprising symmetry in the set of laws
of K3 arising from the two-parameter model. To make this observation explicit, for any
m ≥ 0 we solve for q3 = q

(m)
3 in terms of q1 = q

(m)
1 as defined in (6.3) and (6.4) to obtain

the formula

q3 = ϕm(q1) := 1 +
3

4
m+

5

4
q1 −

3

4

√
m2 + 6q1m+ q1(8 + q1). (6.9)

Rearranging to eliminate the radical yields the relation

(4 + 3m)(q1 + q3) + 5q1q3 − 2(q21 + q23)− 2− 3m = 0

which verifies the symmetry. For m = 0 the identity reduces to

h(q1, q3) := 4(q1 + q3) + 5q1q3 − 2(q21 + q23)− 2 = 0. (6.10)

This appears to be an exclusive property of the case n = 3, as no similar symmetry
appears to manifest for larger n.

Theorem 6.2. The mapping (α, θ) 7→ (q1, q3) defined by (6.1) and (6.2) is a bijection
between the regions

{(α, θ) : 0 ≤ α < 1, θ > −α} and {(q1, q3) : h(q1, q3) ≥ 0, q1 + q3 < 1}

where h(q1, q3) is defined as in (6.10).

Proof. Consider ϕ(m, q1) := ϕm(q1) as in (6.9). To show the desired bijection, it suffices
to show that for every fixed 0 < q1 < 1 that (i) ϕ(m, q1) is increasing in m, and (ii)
limm→∞ ϕ(m, q1) = 1− q1.

(i)

∂

∂m
ϕ(m, q1) =

3

4
(1− 2m+ 6q1

2
√
m2 + 6q1m+ q1(8 + q1)

) >
3

4
(1− 2m+ 6q1

2
√
m2 + 6q1m+ 9q21

) = 0

(ii)

lim
m→∞

ϕ(m, q1) = lim
m→∞

1 +
5

4
q1 +

3

4

(
m2 − (m2 + 6q1m+ q1(8 + q1))

m+
√
m2 + 6q1m+ q1(8 + q1)

)

= lim
m→∞

1 +
5

4
q1 +

3

4

( −6q1 − q1(8+q1)
m

1 +
√

1 + 6q1
m + q1(8+q1)

m2

)
= 1− q1

Explicit inverse. Define the ratios

r(α, θ) :=
q1(α, θ)

q2(α, θ)
=

2− α
3(θ + α)

, s(α, θ) :=
q2(α, θ)

q3(α, θ)
=

3(1− α)

(θ + 2α)

These ratios uniquely define the law of K3 for the corresponding (α, θ). The map
(θ, α) 7→ (r, s) can be explicitly inverted as

α(r, s) =
9r − 2s

9r − s+ 3rs
, θ(r, s) =

3− 9r + 4s

9r − s+ 3rs

Expressed in terms of q1 and q3, this gives the inversion formulas

α(q1, q3) =
4q1 + 4q3 + 5q1q3 − 2q21 − 2q23 − 2

5q1 + 2q3 + 4q1q3 − 4q21 − q23 − 1
,

θ(q1, q3) = −8q1 + 5q3 + 4q1q3 − 4q21 − q23 − 4

5q1 + 2q3 + 4q1q3 − 4q21 − q23 − 1
.
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Figure 8: The bijection of Theorem 6.2. The regions colored in different shades of gray
reveal the geometry of the bijection.

Note that the numerator in the formula for α(q1, q3) is equal to h(q1, q3) as defined
in (6.10). It is easy to verify that these formulas give an algebraic inverse. Observe
that the denominator which is the same in both formulas is nonvanishing on the region
{(q1, q3) : h(q1, q3) ≥ 0, q1 + q3 < 1}, since

2(5q1 + 2q3 + 4q1q3 − 4q21 − q23 − 1) = h(q1, q3) + 6q1 − 6q21 + 3q1q3 > 0.

Corollary 6.3. For any parameters (α, θ) with 0 ≤ α < 1 and θ > −α, there exists a
unique pair (α∗, θ∗) with 0 ≤ α∗ < 1 and θ∗ > −α∗ such that

q2±1(α, θ) = q2∓1(α∗, θ∗).

Explicit formulas for α∗ and θ∗ in terms of α and θ can be computed as

α∗ =
(2− 3α)(1 + θ)− α2

(θ + 3α)(1 + θ) + α2

θ∗ =
α(2 + θ)

(θ + 3α)(1 + θ) + α2
.

Exceptional parameters. α < 0, θ = −mα for some m ∈ N
It is well-known that in this case, the exchangeable random partition (Πn) of N

generated according to the Chinese restaurant construction is distributed as if by
sampling from a symmetric Dirichlet distribution with m parameters equal to −α [13].
Hence for fixedm ∈ N, as α ↓ −∞ the exchangeable random partition ofN corresponding
to the parameter pair (α, θ) = (α,−mα) converges in distribution to that obtained by
sampling from the discrete uniform distribution on m elements. For K3, the (α, θ) to
(q1, q3) correspondence can be seen in Figure 9.

7 Complements

In this section, we point out an interesting convexity property for the the law of K3.
With notation as in Section 3, for p ∈ ∇∞, let

Q(p) :=
(
q1(p), q3(p)

)
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Figure 9: The blue curves correspond to the images of (α, θ) = (α,−mα) for α ∈ (−∞, 0)

and fixed m under the (α, θ) 7→ (q1, q3) map, for m = 2, 3, 4, 5, 6. The curve defined by
(6.10) is included in black.

be the mapping from a ranked discrete distribution to its corresponding law of K3

obtained by i.i.d. sampling. In Section 3 we established that the range of Q is a (strict)
subset of the closed convex hull of the set of points {Q(uN ) : N ∈ N}. Note that the
range of Q includes only distributions of K3 which arise from i.i.d. sampling. Here are
some preliminary efforts to better understand the geometry of this mapping.

Proposition 7.1. For any 0 ≤ λ ≤ 1 and N ≥ 1,

Q(λuN + (1− λ)u2N ) = λ2Q(uN ) + (1− λ2)Q(u2N )

Proof. We have

λuN + (1− λ)u2N =
(

1+λ
2N , . . . , 1+λ2N︸ ︷︷ ︸

N times

, 1−λ2N , . . . , 1−λ2N︸ ︷︷ ︸
N times

)
.

Hence

q1(λuN + (1− λ)u2N ) = N
(1 + λ

2N

)3
+N

(1− λ
2N

)3
=

1 + 3λ2

4N2

and

q3(λuN + (1− λ)u2N ) =

(
N

3

)(1 + λ

2N

)3
+

(
N

2

)
N
(1 + λ

2N

)2(1− λ
2N

)
+N

(
N

2

)(1 + λ

2N

)(1− λ
2N

)2
+

(
N

3

)(1− λ
2N

)3
=

(
N

3

)
1 + 3λ2

4N3
+N

(
N

2

)
1− λ2

4N3

=
N − 1

3

(2N − 1− 3λ2

4N2

)
.

On the other side,

λ2q1(uN ) + (1− λ2)q1(u2N ) =
λ2

N2
+

1− λ2

4N2
=

1 + 3λ2

4N2
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and

λ2q3(uN ) + (1− λ2)q3(u2N ) = λ2
(
N

3

)
1

N3
+ (1− λ2)

(
2N

3

)
1

8N3

=
N(N − 1)(N − 2)

6
· λ

2

N3
+

2N(2N − 1)(2N − 2)

6
· 1− λ2

8N3

=
N − 1

3

(2N − 1− 3λ2

4N2

)
.
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