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Abstract. Recent years have seen considerable work on inference about
cancer evolution from mutations identified in cancer samples. Much of the
modeling work has been based on classical models of population genetics,
generalized to accommodate time-varying cell population size. Reverse-time,
genealogical views of such models, commonly known as coalescents, have
been used to infer aspects of the past of growing populations. Another ap-
proach is to use branching processes, the simplest scenario being the classical
linear birth-death process. Inference from evolutionary models of DNA often
exploits summary statistics of the sequence data, a common one being the
so-called Site Frequency Spectrum (SFS). In a bulk tumor sequencing exper-
iment, we can estimate for each site at which a novel somatic point mutation
has arisen, the proportion of cells that carry that mutation. These numbers
are then grouped into collections of sites which have similar mutant frac-
tions. We examine how the SFS based on birth-death processes differs from
those based on the coalescent model. This may stem from the different sam-
pling mechanisms in the two approaches. However, we also show that despite
this, they are quantitatively comparable for the range of parameters typical
for tumor cell populations. We also present a model of tumor evolution with
selective sweeps, and demonstrate how it may help in understanding the his-
tory of a tumor as well as the influence of data pre-processing. We illustrate
the theory with applications to several examples from The Cancer Genome
Atlas tumors.
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1. INTRODUCTION AND PRELIMINARIES

We present mathematical models that can be used to
extract information regarding cancer evolution from the
genome sequences of human cancers. This includes the
history of growth and mutation and effects such as genetic
drift and selective sweeps. Our aim is to point out how
mathematical and statistical modeling may help in eluci-
dating problems that frequently have been tackled using
intuitive approaches.

Biological cells undergo mutations as they proliferate
and such mutations can be neutral, advantageous, or dele-
terious. The rate of mutation depends on the environ-
ment and DNA repair mechanisms. Progress in genome
sequencing has allowed cataloguing not only reference
genomes of many biological species but also of variants
characteristic of human, animal and plant diseases. In
particular, initiatives such as The Cancer Genome Atlas
program and the International Cancer Genome Consor-
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tium have allowed determination of sets of genomic vari-
ants characteristic of some 50 human tumors, with several
hundred specimens of each, thus detailing their common
mutational features.

One difficulty that arises is that most of the genome se-
quences available result from so-called bulk sequencing,
in which DNA from a sample of cells obtained from the
tumor and its environment is cut into fragments, amplified
and sequenced, resulting in reads that are aligned with the
human reference genome. The resulting genome sequence
includes variants that are characteristic of different but not
easily identifiable sub-populations of tumor cells. Short
of sequencing a representative subset of genomes of indi-
vidual cells, this difficulty cannot at present be radically
improved. Nevertheless, bulk-sequencing data constitute
most of the material currently available and it seems im-
portant to try to understand the message they carry regard-
ing tumor origin and natural course, perhaps distorted by
treatment. This might be called “the genomic archaeology
of tumors.”

There are two principal issues arising in the analysis of
bulk sequencing data from a tumor: the choice of a model
for cell division, and the choice of a model for the way in
which the cells are sampled.

Recent years have produced a large amount of work on
inference about cancer evolution from mutations identi-
fied in cancer samples (cf. Nowell, 1976, Greaves and
Maley, 2012, Sottoriva et al., 2013, 2015, Williams et
al., 2018). Much of the modeling work has been based
on classical models of population genetics, generalized to
accommodate time-varying cell population size. Reverse-
time, genealogical, views of such models, commonly
known as coalescent theory, have been used to infer as-
pects of the past of growing populations. Another ap-
proach is to use branching processes, the simplest sce-
nario being the linear birth-death process (lbdp), a binary
fission Markov age-independent branching process. A ge-
nealogical view of such models is also available. As will

be seen in the sequel, the two approaches lead to similar
but not identical results.

The “population” in the models we discuss is the collec-
tion of all cells in a given tumor. These cells are sampled
(for example, through a biopsy) and the DNA they con-
tain is sequenced. Typically a so-called normal DNA sam-
ple from the patient is also obtained, and a comparison
results in somatic variant DNA sites being determined.
These variants are based on a sample of reads that is quite
difficult to characterize, one reason being that the reads
represent a mixture of variants present in different cells of
the tumor. We will present some simple models that re-
flect sampling and show how they work on simulated and
real data.

Inference from evolutionary models of DNA often ex-
ploits summary statistics of the sequence data, a common
one being the so-called Site Frequency Spectrum. In a se-
quencing experiment with a known number of sequences,
we can estimate for each site at which a novel somatic mu-
tation has arisen, the number of cells that carry that muta-
tion. These numbers are then grouped into sites that have
the same number of copies of a mutant. Figure 1 gives an
example; time is running down the page. The genealogy
of a sample of n = 20 cells includes 13 mutational events.
We can see that mutations 4, 5, 7, 10, 11, 12, and 13 (a to-
tal of 7 mutations) are present in a single cell, mutations
1, 2, and 3 (total of 3 mutations) are present in 3 cells, mu-
tations 8 and 9 (a total of 2 mutations) are present in six
cells, and mutation 6 is present in 17 cells. If we denote
the number of mutations present in k cells by Sn(k), we
see that in this example, Sn(1) = 7, Sn(3) = 3, Sn(6) = 2,
and Sn(17) = 1, with all other Sn(j) equal to 0. The vec-
tor (Sn(1), Sn(2), . . . , Sn(n − 1)) is called the (observed)
Site Frequency Spectrum, abbreviated to SFS. It is con-
ventional to include only sites that are segregating in the
sample, that is, those for which the mutant type and the
ancestral type are both present in the sample at that site.

FIG. 1. Left panel: Genealogy of a sample of n = 20 cells includes 13 mutational events, denoted by black dots. Mutations 4, 5, 7, 10, 11, 12,
and 13 (total of 7 mutations) are present in a single cell, mutations 1, 2, and 3 (total of 3 mutations) are present in three cells, mutations 8 and
9 (2 mutations) are present in six cells, and mutation 6 (1 mutation) is present in 17 cells. Right panel: The observed site frequency spectrum,
S20(1) = 7, S20(3) = 3, S20(6) = 2, and S20(17) = 1, other values equal to 0.
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Mutations that occur prior to the most recent common an-
cestor of the sampled cells will be present in all cells in
the sample; these are not segregating and are called trun-
cal mutations.

In most cancer sequencing experiments, we do not
know the number of cells that were sampled, and, indeed,
the DNA sequence of each cell cannot be determined from
bulk sequencing data. Nonetheless, we can estimate the
relative proportion of the mutant at each segregating site,
and so arrive at a frequency spectrum based on propor-
tions. We continue to use the term SFS for such a spec-
trum, as there should be no cause for confusion.

The emphasis in the definition of the SFS is that it
is based on a DNA sample extracted from cells, which
does not usually constitute the entire tumor population.
Moreover, at any DNA site, the sample can, and most fre-
quently does, arise from DNA of different cells, as ex-
plained in Section A of the Supplementary Material (Dinh
et al., 2020). This underscores the importance of develop-
ing a sampling theory for the SFS estimated from genome
sequencing data. We will develop some simple results in
Section 5.

2. MODELING EXPONENTIALLY GROWING CELL
POPULATIONS

Stochastic models of growth and inheritance in biolog-
ical populations follow two major traditions, one orig-
inating from population genetics, the other from popu-
lation dynamics. Population genetics models, including
those of Wright, Fisher, Moran, and Cannings, assume
in their original form time-constancy of the population
size. Under this assumption, major mathematical popula-
tion genetics results such as the Ewens Sampling Formula
(Ewens, 1972), Kingman’s coalescent (1982a, 1982b),
Kimura’s use of diffusion approximations (reviewed in
Watterson, 1996) and many others have been derived. The
tradition from which the constancy assumption stems un-
derscores the importance of constraints under which pop-
ulations evolve, such as space and resource limitations for
animal and human populations, or hormonal controls and
tissue size bounds for cell populations in multi-cellular
organisms.

The population dynamics tradition, embodied by
branching process models, emphasizes growth and
stochastic fluctuations stemming from birth and death
events of a finite collection of independent individuals
(here, cells). Historically, models such as these have been
employed to reproduce growth of bacterial populations or
other cells in culture, the growth of cancerous tumors, or
to develop methods for estimation of mutation rates.

How can we align these two rather different
approaches? One way is to relax the constancy assump-
tion in from population genetics, and this will be the first

type of model discussed in this section. If the popula-
tion size is growing exponentially in time, this model can
be compared to the supercritical branching process; cf.
Jagers (1975) and Haccou et al. (2007). There are three
differences remaining: first, the supercritical branching
process grows exponentially only in the limit (and in ex-
pectation); second, the “population growth rate” of the co-
alescent is a summary parameter that may correspond to a
wide range of supercritical branching models with differ-
ent population size distributions; and third, in birth-death
processes, coalescent events coincide with population size
increments. It is therefore of interest to know how these
two methods compare when applied to simulated or real
cell populations. Another, potentially major, difference is
that in the coalescent models we assume we can trace the
sampled cells back to their most recent common ances-
tor. There are several different sampling versions for the
branching process. The difference will become transpar-
ent later on.

In this section we compare two models based on the ge-
nealogical view of cell evolution, the first being the vari-
able population size coalescent. The other is an analogous
reverse-time, genealogical approach, known as the coales-
cent point process, which is based on the linear birth and
death process, mathematically equivalent to the branching
process with binary fission and exponentially distributed
cell lifetimes; cf. Kimmel and Axelrod (2015).

We describe both approaches in general terms, and then
compare the expressions for site frequency spectra (SFS)
under these approaches.

2.1 A Moran Model for Cell Division

The simplest model for cell division in a constant-
size population of N cells is the Moran model (Moran,
1958, 1962). We describe the process backwards in time,
noting that there are several essentially equivalent meth-
ods for doing this. Such a description is convenient for
simulating the effects of mutation on the cells in the sam-
ple, and leads to the study of the ancestral process that
counts the number of distinct ancestral cells in the history
of the sample back to its MRCA. Imagine, then, that birth-
death events occur independently to cells at rate 1. At one
of these events, one cell dies, and another is chosen from
the remaining N − 1 to divide. If there are currently i dis-
tinct ancestral cells in a sample of size n, then the next
event in the past results in i − 1 distinct ancestors if, and
only if, the pair of individuals is in the sample of i, an
event of probability

(
i
2

)
/
(
N
2

)
. Thus, the rate at which the

number of distinct ancestors reduces by 1 is

N

(
i

2

)/(
N

2

)
=

(
i

2

)
2

N − 1
.

It is convenient to consider what happens for large pop-
ulations of cells. If time is scaled in units of N/2, then
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asymptotically as N → ∞, the ancestral process drops
from i to i − 1 at rate

(
i
2

)
, resulting in a particularly sim-

ple ancestral process known as the coalescent.
To describe the ancestral process, let Tn,Tn−1, . . . , T2

denote the lengths of time during which the sample has
n,n − 1, . . . ,2 distinct ancestors back in time to its most
recent common ancestor. Kingman (1982b) showed that
the Tj are independent exponential random variables,
with

(1) ETj = 2

j (j − 1)
, j = n,n − 1, . . . ,2.

The Markov chain {An(t), t ≥ 0} that counts the number
of distinct ancestors of the sample a time t ago has transi-
tion rates

qi,i−1 = i(i − 1)

2
,

staying at 1 when the sample has been traced back to its
most recent common ancestor.

The variable population size version of this model sup-
poses that at time t ago, the population size is NλN(t).
Arguing as above, the rate at which i ancestral lines coa-
lesce to i − 1 is

NλN(t)

(
i

2

)/(
NλN(t)

2

)
=

(
i

2

)
2

NλN(t) − 1
.

Scaling time in units of N/2, as in the constant size case,
we see that in the limit as N → ∞, the rate at time s

becomes
(

i
2

)
/λ(s), where λ(s) := limλN(Ns/2).

In the setting of exponential growth from the past, we
have λN(t) = exp(−rt), so that

λN(Ns/2) = exp
(−s(Nr/2)

) → exp(−βs) =: λ(t),

where we have assumed that Nr/2 → β as N → ∞. This
process maintains the random merging of ancestral lines
back into the past, but the distribution of the coalescence
times T

β
n , . . . , T

β
2 is more complicated, and most easily

described by the fact that the ancestral process {Aβ
n(t), t ≥

0} for the exponential model results from a deterministic
time change of the constant size case:

(2) Aβ
n(t) = An

((
eβt − 1

)
/β

)
, t ≥ 0.

We use this fact to simulate the T
β
j , as shown in Ap-

pendix D in the Supplementary Material (Dinh et al.,
2020).

2.2 A Branching Process Model for Cell Division

Lambert (2010) and Lambert and Stadler (2013)
demonstrated that under general assumptions on birth
and death rates, the coalescent of a binary branching pro-
cess has i.i.d. coalescence times. More specifically, if the
branching process was started from one cell at time 0 and
conditioned to have at least one cell alive at time t , then

the coalescent tree of the Nt �= 0 cells alive at t is a coales-
cent point process (abbreviated CPP): that is, the Nt − 1
coalescence times form a sequence of independent copies
of some rv H whose law can be characterized in terms of
the birth and death rates of the process, killed at its first
value larger than t . This conclusion hinges on the manner
the tree is ordered, the two rules being that (1) progeny
branch out on the right of the parent, and (2) a given
progeny’s life-line is on the right of all further descen-
dants of the parent cell (as in the example in Figure 4
of the Supplementary Material (Dinh et al., 2020)). It is
common to characterize H through its so-called inverse
tail distribution W ,

W(x) = 1/P(H > x) x ∈ [0,∞).

The most general assumptions under which the last
statement holds are (i) the per-cell birth (division) rate de-
pends only on absolute time, and (ii) the per-cell death
rate depends only on absolute time and cell age (or any
other nonheritable trait).

Implicit in condition (2) is that upon division, one can
distinguish between the mother cell (whose age continues
to increase after division) and the daughter cell (whose
age is 0 at division). Another way of expressing this is that
cells can have lifetimes that follow a general distribution
(not necessarily exponential, possibly even deterministic)
which possibly depends on their absolute birth time.

A consequence of the CPP representation is that Nt

follows a geometric distribution with failure probability
1/W(t). Then conditional on Nt = n, the coalescence
times are i.i.d. rvs distributed as H conditioned on H < t .

A useful feature of CPPs is that a Bernoulli sample from
a CPP is again a CPP. More specifically, if each tip of a
CPP tree with inverse tail distribution W is sampled in-
dependently with probability p, the tree spanned by the
sampled tips is a CPP with inverse tail distribution Wp

given by

Wp(x) = 1 − p + pW(x), x ∈ [0,∞).

In the case when the bp has constant birth rate b and death
rate d (linear birth-death process), growth rate r := b −d ,

W(x) = 1 + b

r

(
erx − 1

)
, x ∈ [0,∞)

if b �= d and W(x) = 1 + bx if b = d . Note that in the
subcritical case when b < d , P(H = +∞) = 1 − b/d .

The coalescent point process representation of recon-
structed trees generated by an lbdp is originally due to
Popovic (2004) in the critical case (b = d) and has been
extended to noncritical cases and to some non-Markovian
branching processes by Lambert (2010) and Lambert and
Stadler (2013). A corollary of this representation is that
conditional on the number of tips, branching times are
independent with an explicit distribution. Note that this
corollary is already present in Thompson (1975), Nee et
al. (1994), Rannala (1997) and Gernhard (2008).



EVOLUTIONARY HISTORY OF CANCER GENOMES 133

3. SITE FREQUENCY SPECTRA UNDER THE
INFINITELY-MANY-SITES MODEL

We examine how the SFS based on birth-death pro-
cesses differ from those based on the coalescent model.
This may stem from the different sampling mechanisms
in the two approaches. However, we also show that de-
spite this, they can be made quantitatively comparable at
least for the range of parameters typical for tumor cell
populations.

3.1 The SFS for the Coalescent

We assume an infinitely-many-sites (IMS) model of
mutation: think of the DNA sequence as a unit inter-
val, and label mutations by a sequence of independent
uniform(0,1) random variables. Mutations are almost
surely distinct, giving rise to the term “infinitely-many-
sites.”

We assume that mutations arise over the lifetime of a
cell according to a Poisson process of rate τN , conditional
on the lifetime. The expected number of mutations accu-
mulated per unit time is therefore τN . If time is rescaled
in units of N/2, the expected number becomes NτN/2, so
to balance mutation and drift we assume that NτN → ϑ

as the population size increases. To summarize, time is
measured in units of N/2, mutations occur according to a
Poisson process of rate ϑ/2 during a cell’s lifetime, N is
assumed very large, and

(3) β = limNr/2, ϑ = limNτN.

In the large population size limit, mutations take place
according to independent Poisson processes of rate ϑ/2
on the branches of the coalescent tree, conditional on the
lengths of the branches.

Fu (1995) showed that for a constant size model,

ESn(k) = θ

k
, k = 1,2, . . . , n − 1.

Griffiths and Tavaré (1998) provide a general coalescent
framework for the expected number ESn(k) of mutant
sites having k copies of the mutant in a sample of size
n, drawn from a population with size changing determin-
istically in the past. We provide a brief account of their
results for the case of exponential population growth and
describe a useful approximation due to Durrett (2013).

Griffiths and Tavaré showed that

(4) ESn(k) = ϑ

2

n−k+1∑
j=2

jpnj (k)ETj ,

where

pnj (k) =
(
n − k − 1

j − 2

)/(
n − 1
j − 1

)
,

the Tj denoting the coalescence times for the model with
exponential growth. While the expectations can be simu-
lated, it is convenient to consider the approximations pro-
vided by Durrett (2013), who showed that

(5) ESn(k) ≈ ϑ

2β

n

k(k − 1)
, k = 2, . . . , n − 1,

while

(6) ESn(1) ∼ ϑn logβ

2β
.

3.2 The SFS for the Birth-Death Process

Here, we consider an application of the theory of coa-
lescent point processes to a supercritical linear birth-death
process (lbdp) with an ISM mutation model. We derive
an explicit expression for the expectation of the site fre-
quency spectrum (SFS) in this case, and develop a simple
and efficient simulation scheme based on the CPP repre-
sentation. In the spirit of the original work, we use un-
scaled parameters r and θ here, instead of the scaled β

and ϑ . See Table 2, which displays the conversions.
Lambert (2009) showed that the expected SFS for a

sample size n has the form

ESn(k) = θ

∫ ∞
0

(
1 − W(t)−1)k−1

× (
(n − k − 1)W(t)−2 + 2W(t)−1)

dt,

(7)

for k = 1, . . . , n − 1, where for the lbdp case the function
W(x) has the form

W(t) = α + (1 − α)ert , t ≥ 0,

with r > 0, α ∈ (0,1), and where θ is the mutation rate
(the intensity of the Poisson process of mutations assumed
in the ISM). Recall that r = b − d and α = 1 − pb/r ,
where b is division rate, d is death rate and p is the frac-
tion of cells sampled. The case when α = 0 corresponds
to d = b(1 − p), which occurs in particular when d = 0
and p = 1.

This version of the process is equivalent to the ancestor
being “born in the very remote past,” and it is the limit
version of the process we will simulate. As will be seen,
the discrepancies are small for the cases in which we are
interested.

We show in Section E of the Supplementary Material
(Dinh et al., 2020) that

ESn(k) = θ

r

(
n − k − 1

k(k + 1)
F

([1,2];k + 2, α
)

+ 2

k
F

([1,1];k + 1, α
))

,

(8)

where F([p, r];q, z) = ∑
j≥0(z

j /j !) (p)j (r)j
(q)j

belongs to
the hypergeometric family of functions (cf. Abramowitz
and Stegun, 1964) and

(k)j := k(k + 1) · · · (k + j − 1) = (k + j − 1)!
(k − 1)! .
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FIG. 2. Numerical example of the expected SFS for the lbdp (semi-logarithmic scale). Continuous line: expected SFS ESn(k) (interpolated
for visual convenience); circles: corresponding average of 10,000 simulations; dashes: standard deviation estimate based on 10,000 simulations;
dotted line, diamonds and triangles: median and first and third quartile of 10,000 simulations. The parameters for this simulation (cf. Table 2) are
n = pEN(t) = 30, r = 1, θ = 1, α = 0.999999, t = 100 for simulations, t = ∞ for ESn(k). Other parameters can be calculated from these.

An algorithm for simulating the SFS based on the CPP
process is given in Section D.2 of the Supplementary Ma-
terial (Dinh et al., 2020).

3.2.1 Computational example. We carried out a num-
ber of simulation experiments including a range of pa-
rameters. Figure 2 depicts results of one such experiment.
As can be seen, the average of 10,000 simulated SFS co-
incides closely with the hypergeometric formula. How-
ever, the simulated SFS median becomes equal to 0 for
relatively small k. For individual SFS, this corresponds to
more than half of the SFS terms being equal to 0, which
is consistent with spectra observed in cancer mutations.

3.3 Using the Two Coalescents to Model Tumor
Growth and Mutation

Section 2.1 explains how to use the Moran model with
exponentially growing population size to introduce coa-
lescent structure into our cell proliferation model. In the
birth-death process approach, we model a growing popu-
lation of tumor stem cells as a birth-death process in con-
tinuous time with parameters b and d . In biological terms
this means that a cell population starts with a single cell
at time t = 0, the lifetimes of cells are exponentially dis-
tributed with parameter b + d , and that cell divides into
two progeny with probability b/(b + d) (probability of
self-renewal), or dies with probability d/(b + d). Under
these assumptions, the expected cell count at time t is
equal to EN(t) = ert , t ≥ 0, with growth rate r = b − d .

At time t = x, when the tumor is diagnosed, its nuclear
DNA is sequenced with average coverage n. (A more re-
alistic sampling theory appears in Section 5.) This can be

represented as binomial sub-sampling from about N(x)

cells with sub-sampling probability p = n/N(x). Notice
that the d-parameter does not have to be literally equal to
the death rate. The model applies equally well to the pop-
ulation of cancer cells, in which case d is the combined
death and differentiation rate. Mutations occur according
to the ISM model, at rate θ .

For illustrative purposes, this growth model will be pa-
rameterized to reflect several scenarios differing with re-
spect to growth rate and efficiency of division. In the cur-
rent computations we assume that the tumor is detected
when it contains approximately N(x) = 107 cells. How
can we relate it to sizes of human tumors? An analysis
of this issue has been published by Del Monte (2009)
who addresses the commonly held view that 1 cm3 tu-
mor contains 109 cells. The author concludes that this
is true for “normal” human cell sizes, while tumor cells
may frequently be larger and interspersed with other cells,
so it may be more appropriate to claim that 1 cm3 con-
tains 108 or even fewer cells (so that 1010 cells might
occupy a cube 4.64 cm each side or larger). Ling et al.
(2015) consider a 1 mm thick slice of hepatocellular car-
cinoma, roughly a disc 3.5 cm in diameter (volume of a
cube 0.98 cm each side) and apparently assume (see their
Table 1) only 105 cells (aside from this, they sample mu-
tations in different tumor regions and find the resulting
SFS in agreement with Durrett’s formula, based on non-
singletons, which does not relate to N ). To sum up, our
assumed N(x) = 107 cells seems on target.

We will consider slow-, moderate-, and fast growing tu-
mors that reach this size within x = 4000, 400, and 40
days, respectively. Also, we will assume the surviving cell
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TABLE 1
Calculations of parameters for the tumor birth-and-death process

x 40 400 4000

r = ln[EN(x)]/x 0.40295 0.04029 0.00403
d = b − r 0.59704 0.95970 0.99597
1 − α = bp/r 7.44×10−6 7.44×10−5 7.44×10−4

average lifetime 1/b corresponding to b = 1 day, which is
consistent with the average cell cycle time in mammalian
cells (Mura et al., 2019). Calculations of other parame-
ters corresponding to these input specifications are listed
in Table 1.

Figure 3 depicts the expected SFS based on the hy-
pergeometric formula (8) with parameters as described
above. The three cases considered are depicted along with
the corresponding SFS resulting from the Griffiths-Tavaré
theory, this latter using scaled parameters as at the top of
the present section. In addition, Figure 4 depicts the ex-
pected SFS based on the hypergeometric formula (8) with
parameters as for the center scenario in Table 1, but with
parameter 1−α varying from 10−8 through 0.5. For com-
parison, Durrett’s approximation (5) is included.

Several observations can be made. The hypergeomet-
ric spectrum for nonsingletons preserves signal (how-
ever faint) from 1 − α = bp/r in addition to the sig-
nal from θ/r . The hypergeometric spectrum has differ-
ent tails from the Durrett’s approximation of the coa-
lescent spectrum, although whether these can be distin-
guished in noisy data set seems quite doubtful. Compar-
ison is further complicated by somewhat different sam-
pling philosophies in coalescent and lbdp approaches. An
interesting question is how to apply the fitted theoretical
spectra to estimate the growth parameters and particularly

FIG. 3. Comparison of expected SFS based on the hypergeometric
formula (8) with parameters as in Table 1 (dotted lines), Griffiths–
Tavaré theory (continuous lines), and Durrett’s approximation (dashed
lines). Three cases as in Table 1, fast-growing tumors (red), moderate–
growing (blue), and slow growing ones (black) are considered. θ = 1
has been assumed. Unscaled parameters listed in Table 1, can be con-
verted to scaled ones, using Table 2.

FIG. 4. Expected SFS based on the hypergeometric for-
mula (8) with parameters as for the center scenario in Ta-
ble 1, that is, N = 107, n = 30 and r = 0.04029, but with
1 − α = 10−8,10−6,0.0001,0.01,0.1,0.5 (dashed, dotted, contin-
uous, and again dashed, dotted and continuous lines), and θ = 1,
compared to GT SFS (diamonds) and Durrett approximation (circles)
with matching parameters. Unscaled parameters listed here, can be
converted to scaled ones, using Table 2.

the time elapsed from the cell initiating tumor growth
(more generally, from the population ancestral individ-
ual)? The difficulty becomes clear upon inspection of the
asymptotic formula (5). None of the terms depends on N ,
the present-time population size, except for the singleton
term ESn(1) ∼ nθ

r
ln(Nr), which is equal to nθt under ex-

ponential growth. However, in genome data singletons are
usually indistinguishable from sequencing errors and are
therefore discarded. Other terms may be used to estimate
the reduced mutation rate θ/r .

4. MODELING MUTATION, GROWTH, AND
SELECTIVE SWEEPS

We begin with a simple model for the clonal evolution
of a tumor. Imagine that at some time labeled t0 = 0, the
initial malignant cell population (clone 0) arises, grows
deterministically in size at rate r0, these cells acquiring
mutations at the rate θ0 per time unit per genome. At
time t1 > 0, a secondary clone (clone 1) arises, which dif-
fers from the original clone with respect to growth rate

TABLE 2
Summary of growth and mutation parameters

Unscaled (Kingman coalescent)
r growth rate
τ mutation rate

Scaled (Kingman coalescent)
time measured in units of N/2

β = limNr/2 scaled growth rate
ϑ = limNτ scaled mutation rate

Unscaled (lbdp)
EN(t) expected population size at time t (counterpart of N )
p probability of sampling from the process (n ≈ pEN(t))

b, d birth and death rates, so that growth rate r = b − d

θ mutation rate
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FIG. 5. Events in the tumor evolution model. Horizontal intervals
denote genomes with mutations denoted as ×-s. At time t0 = 0, the
initial cell population (clone 0) arises, grows at rate γ0, and mutates
at rate θ0 per time unit per genome (blue arrows). At time t1 > 0,
a secondary sub-clone 1 arises (red arrow), which grows at rate γ1
and mutates at rate θ1 (yellow arrows). The new clone arises on the
background of a haplotype of K mutations (denoted by dots on the
genome). At time t2 > t1 > 0, the tumor is diagnosed and a sample of
DNA is sequenced.

(now equal to r1) and mutation rate (now equal to θ1).
We call this the “selective event.” The new clone arises on
the background of a haplotype already harboring K muta-
tions. Finally, at t2 > t1 > 0, the tumor is diagnosed and a
sample of DNA is made available for sequencing. At that
point, it is difficult to distinguish cells arising from the
two (or more) clones and the resulting sample represents
a mixture of DNA from both. The course of events in this
tumor history is depicted in Figure 5.

We assume that both clones start from single cells, so
that the sequenced sample comes from N = N0 + N1
cells, and the number of cells in each clone is

N0 = exp(r0t), N1 = exp
(
r1(t2 − t1)

)
,

and the fraction of clone i cells is approximately equal to

pi = Ni/(N0 + N1), i = 0,1.

Based on this, we use the SFS from Section 3.1 to esti-
mate the expected site frequency spectra and then com-
pare these to data, to obtain information concerning the
natural course of tumor development. As explained be-
fore, we use scaled parameters β0, β1, ϑ0, ϑ1, instead of
r0, r1, θ0, θ1, respectively.

4.1 Sampling Formulae

We adopt the coalescent model with infinitely-many
sites mutation and exponential population growth de-
scribed in Section 2.1. We take a sample of n = n0 + n1
cells from the N cells in the tumor, ni coming from
clone i. We also define

qn,k = ESn(k), k = 2, . . . , n, the expected number of
variants present in k copies in the sample of n se-
quences
q0
n0,k

= ES0
n(k), k = 2, . . . , n0, the expected number of

variants present in the k copies in a sub-sample of n0
sequences
q1
n1,k

= ES1
n(k), k = 2, . . . , n1, the expected number of

variants present in the k copies in a sub-sample of n1
sequences
Qn,k = ESu

n(k), k = 2, . . . , n, the expected number of
variants present in k copies in the sample of n se-
quences from the union of clone populations 0 and 1

We use the approximate version of the expression for the
qn,k , given in (5),

(9) qnk = nϑ

2β

1

k(k − 1)
, k = 2, . . . , n,

and we ignore singletons.
If we knew n0 and n1, the expected number of vari-

ant sites represented k times in the sample would be
q0
n0,k

+q1
n1,k

+Kδn1k , where δlk = 1 if l = k;= 0 if l �= k.
However, if each of the n cells is randomly chosen from
the two sub-clones, then (n0, n1) is a random draw from
the multinomial distribution, that is,

(10) (n0, n1) ∼ MN(p0,p1;n).

Therefore, the expected count of variants present in k

copies in the sample of n cells is

Qnk =
n∑

i=0

(
n

i

)
pi

0p
n−i
1

[(
iϑ0

2β0
+ (n − i)ϑ1

2β1

)

× 1

k(k − 1)
+ Kδn−i,k

]

= A

k(k − 1)
+ K

(
n

k

)
pn−k

0 pk
1

(11)

for k = 2, . . . , n, where
A

n
= a0

2β0
+ a1

2β1
, ai = piϑi, i = 0,1.

The model can be generalized to the case of H sub-
clones arising at different times. The previous expression
for H = 1 now assumes the form

Qnk = ∑
{∑h nh=n,nh≥0}

(
n

n0, n1, . . . , nH

) H∏
s=0

pns
s

×
[

1

k(k − 1)

H∑
σ=0

(
nσ

ϑσ

2βσ

)
+

H∑
σ=1

Kσδnσ m

]
(12)

= A

k(k − 1)
+

(
n

k

) H∑
σ=1

Kσpk
σ (1 − pσ )n−k,

where the notation is analogous to the case in (11). We
will use these expressions, taking into account the sam-
pling effects, in Section 5.
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4.2 Model Parameters and Their Interpretation

We return to the case H = 1. Equation (11) can be rep-
resented in the following form:

(13) Qnk = A

k(k − 1)
+ K

(
n

k

)
pn−k

0 pk
1.

Given SFS data, and the value of n, we are able to ob-
tain an optimal least-squares fit by varying three parame-
ters:

A, proportional to the mass of the spectra correspond-
ing to the intervals before and after the selective event;
p1 = 1 − p0, the fraction of cells in sub-clone 1; and
K , the number of variant sites constituting the back-
ground haplotype of the selective event.

The parameters listed above are functions of the intrinsic
parameters of the model: times t1 and t2, growth rates β0

and β1 and mutation rates ϑ0 and ϑ1. Some of their val-
ues can be constrained, based on additional information
available in part of the TCGA data.

5. SAMPLING FROM THE SFS

One of the conceptual problems with using the model-
based expectations of the site frequency spectrum is how
to take into account the sampling process. In Section A
of the Supplementary Material (Dinh et al., 2020), we
provide a brief overview of the sequencing process that
relates input cells to output SFS. Indeed, the empirical
SFS are not based on the cell population, but on DNA
reads (fragments) sampled from the genomes of the cells.
Therefore, it is necessary to proceed with care. Under sim-
plifying assumptions, we can obtain unbiased estimates of
the expected SFS, given a parametric model of either co-
alescent or lbdp type. The assumptions are as follows:

1. DNA fragments (reads) used to estimate variant
allele frequencies (VAF) originate from a population of
cells, with variant genomes representative of a given tu-
mor or a portion of the tumor.

2. For each particular mutation site, each read cover-
ing this site originates from a different cell. This seems to
be a reasonable assumption, as the number of such reads
is usually at most of order 102, while there are around at
least 3–5 orders of magnitude more tumor cells in a cubic
millimeter of tumor tissue (Del Monte, 2009).

3. For a given mutation site, the numbers of reads
covering it is considered a random variable (generically
named R) drawn from a distribution which does not de-
pend on the site position in the genome. This assumption
can be relaxed in a variety of ways, but it is used here for
simplicity. The distribution of R is estimated from cover-
age data.

4. For a given mutation site, given coverage R, the
count Z of variant reads has a binomial distribution
Binomial(R,ρ), where ρ is the relative frequency of this
mutation among the tumor cells.

Unfortunately, it seems difficult to exploit the higher
moments of the SFS, as this requires using mixed mo-
ments of variant counts at different sites. The papers by
Sargsyan (2015) and Klassman and Ferretti (2017) lay out
the necessary theory, which is however quite complex.

5.1 Binomial Sampling and Data Pre-Processing

In the following subsections, we develop estimates of
the coalescent SFS based on binomial sampling. Since
various types of thresholds might be used to pre-process
genome data, we would like the transformations to ro-
bustly reproduce the effects of varying the thresholds,
while keeping constant the parameters, such as A, K , and
p1, of the underlying model. We will see that in some in-
stances this works on real-life tumor data with some pre-
cision, while in some others it does not.

5.1.1 Sampling. Let n be the total number of cells in
the tumor sample. The model-based expected SFS is the
sequence {Qnk = ESu

n(k), k = 1, . . . , n − 1}, that is, the
expected number of mutations that occur in exactly k out
of these n cells (see (11)). For the ith mutation of the
Su

n(k) occurring in k cells, the probability mass function
(pmf) of read coverage is ϕr = P(Rki = r), r = 1,2, . . . ,
and the number of cells with mutation i in the sample is
Zki , where conditionally on Rki , we assume a binomial
distribution with probability of success k/n and Rki trials
(see Hypothesis 4 earlier on):

Zki |Rki ∼ Binomial
(
Rki,

k

n

)
.

Relative frequency of this particular mutation in the sam-
ple is Zki/Rki .

For 0 ≤ x1 < x2 ≤ 1, we are interested in the expecta-
tion of 
(x1, x2), the number of mutations with sampling
frequencies within (x1, x2]:

E
[

(x1, x2)

]

= E

(
n∑

k=1

Su
n (k)∑
i=1

1
(

Zki

Rki

∈ (x1, x2]
))

= E

(
n∑

k=1

Su
n(k) · P

(
Zk

Rk

∈ (x1, x2]
))

=
n∑

k=1

ESu
n(k) · ∑

r

ϕr

· Binomial
(
(x1r, x2r]; r, k

n

)
,

(14)

where Binomial((x1r, x2r]; r, k
n
) is the probability that a

random variable with distribution Binomial(r, k
n
) belongs
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to the interval (x1r, x2r]. Given a theoretical SFS (for in-
stance, given by (11)), we can then compute the expected
SFS, taking into account sampling effects, by partitioning
0 = x1 < x2 < · · · < xK = 1 and applying (14) for each
interval.

In general, the read coverage pmf {ϕr} varies among
patients and tumors. In our computations, we use a “per-
sonalized” estimate of the coverage distribution, which is
based on the tally of reads for all sites in each sample and
is usually available from sequencing data.

5.1.2 Pre-processing and its influence on SFS visual-
ization. Mutations with small frequencies may be diffi-
cult to distinguish from technical errors. Data are there-
fore usually pre-processed before further analysis. Specif-
ically, it is a usual practice to remove from genome statis-
tics variants that are present in only few reads, since these
may be confused with sequencing errors. A procedure of
this kind has been proposed among others by Williams et
al. (2018), who disregard variants present in less than five
reads. We slightly generalize this approach.

We consider two pre-processing schemes:

1. Disregard mutations with fewer than L variant
reads. This means that the new variant read count Z′

ki

is such that, given k and r , Z′
ki = 0 with probability∑L−1

s=0 Binomial(s; r, k/n) or Z′
ki = s ≥ L with respective

probabilities Binomial(s; r, k/n).
2. Disregard mutations with fewer than M total read

coverage. This alters the coverage pmf {ϕr}.
We note that different pairs (L,M), mask differently the
neutral (clone 0) and selective (sub-clone) components of
the SFS. The following are some interesting cases:

• L > 1 makes singletons invisible.
• In general, larger values of L make it difficult to visual-

ize the existence of the neutral clone represented by the
descending component at the left end of the SFS, and
therefore low Z/R ratios.

• However, large values of M with moderate L may al-
low uncovering of the neutral component, since then
more variants with low Z/R ratios may be visible. The

limitation is that there are enough variants with high R

values.

In the next section, we show on biological examples how
this may work.

5.2 Examples

We now study the effects of pre-processing on the SFS
from patients from The Cancer Genome Atlas (TCGA)
collection. The fitted SFS is calculated based on Eqn. (14)
with 30 bins of uniform length in [0,1]. The parameters
from fitting the expected SFS to the observed SFS are
shown in Table 3. The numbers show an interesting trend,
which may have relevance for estimation of total mutation
count in the tumor sample (see Discussion). Two more ex-
amples are included in the Supplementary Material (Dinh
et al., 2020).

5.2.1 Colon cancers with polymerase ε mutator pheno-
type. We start with the case of TCGA-AA-3977 display-
ing the Polymerase ε mutator phenotype in colon cancer,
which results in a very large number of mutations caused
by proofreading errors of DNA replication due to faulty
polymerase. Naturally, in these cases, sites have unusu-
ally high coverage and therefore using a high threshold
M does not remove all information from the sample.

This case has been pre-processed using four differ-
ent thresholds of L = 5,10,15, and 20. The theoretical
SFS based on expressions (14) and (12) is fitted to the
patient’s data with threshold L = 10. The resulting pa-
rameter set (consisting of A for the neutral slope, and
(Kσ ,pσ ) for each sub-clone, with σ = 1, . . . ,H ) is then
used to compute the sampled SFS for the other thresh-
olds (L = 5,15,20) and compare them with the corre-
spondingly threshold data. We also examine the effects of
thresholding the total read counts. We consider four dif-
ferent thresholds, M = 20,30,40, and 50, all with L = 5.
Results are shown in Figure 6.

The SFS for L = 10 can be well fitted with the theo-
retical expression (Figure 6(B)). Moreover, the resulting
parameter set accurately recreates the SFS with the other

TABLE 3
Parameters from fitting the SFS in the TCGA collection. For every case, the number of mutations reported from the sequencing data is shown, as

well as the number of sub-clones in the fitted SFS, and parameters A and (K,p) for each sub-clone (Eqn. (13))

Cases Total mutation count H A K p

TCGA-AA-3977 1,051,861 2 20,000,000 200,000 0.23
450,000 0.35

TCGA-86-A4D0 1104 4 15,000 140 0.31
280 0.44

80 0.61
50 0.78
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FIG. 6. Fitting the SFS of case TCGA-AA-3977 (colon cancer). The theoretical SFS (red lines, Eqn. (14)) is fitted to the patient’s SFS (green bars).
The blue and black dotted lines denote the contribution of the neutral part and sub-clones in the fitted SFS, respectively. Threshold combinations of
variant and total read counts: [A]: L = 5, M = 0, [B]: L = 10, M = 0, [C]: L = 15, M = 0, [D]: L = 20, M = 0, [E]: L = 5, M = 20, [F]: L = 5,
M = 30, [G]: L = 5, M = 40, [H]: L = 5, M = 50.

thresholds. This reinforces the relevance of the theoret-
ical model and the sampling scheme, including the pre-
processing step. It can also be observed that varying the
conditioning thresholds for variant and total read counts
leads to very different visualizations.

Although higher thresholds L result in more reliable
SFS (as false positives due to technical errors are less
likely), they also gradually dissolve the neutral part of
the spectrum that dominates the region with low VAF.
This neutral slope can be easily recognized at L = 5 (Fig-
ure 6(A), 8% mutations in the dataset are discarded) but at
L = 20, only the sub-clone can be observed (Figure 6(D),
63% mutations are discarded).

On the other hand, increasing the threshold M pre-
serves the overall structure of the SFS. Comparing the
SFS with L = 5, M = 20 (Figure 6(E), 8% mutations in
the dataset discarded) and that with L = 5, M = 50 (Fig-
ure 6(H), 21% mutations discarded), we observe a slight
decrease in the height of the sub-clonal peak, while the
neutral slope remains intact.

5.2.2 Lung cancer. We also fitted the model to a
TCGA sample from lung cancer, case TCGA-86-A4D0
(Figures 7). There are several differences between this

sample and the cases displaying the Polymerase ε mu-
tator phenotype. First, the data result from whole-exome
sequencing, which only reports mutations in the protein-
coding regions of genes, while the previous cases resulted
from whole-genome sequencing, which reported muta-
tions in the noncoding regions as well. This contributes,
along with the absence of Polymerase ε mutation, to the
number of mutations in these cases being much lower than
in the mutator dataset, and SFS being accordingly more
noisy.

While the cases of colon cancers with polymerase ε

mutator phenotype can be fitted with H = 2, this case
is fitted with H = 4. This is in agreement with the ex-
istence of various driver mutations at different frequen-
cies. Each of the drivers, therefore, could be associated
with one or more sub-clones in the fitted SFS. The dif-
ference between the real and fitted SFS is most severe at
frequency f ≤ 1/30. This may be because the mutations
at low frequencies are more likely to be disregarded, as
they can be confused with technical errors. However, the
fitted SFS is in overall agreement with the data across dif-
ferent thresholds of L and M .
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FIG. 7. Fitting the SFS of case TCGA-86-A4D0 (lung cancer). The theoretical SFS (red lines, Eqn. (14)) is fitted to the patient’s SFS (green
bars). The blue and black dotted lines denote the contribution of the neutral part and sub-clones in the fitted SFS, respectively. Driver mutations are
denoted in blue at their frequencies. Threshold combinations of variant and total read counts: [A]: L = 5, M = 0. [B]: L = 10, M = 0. [C]: L = 15,
M = 0. [D]: L = 20, M = 0. [E]: L = 5, M = 20. [F]: L = 5, M = 50. [G]: L = 5, M = 80. [H]: L = 5, M = 100.

5.3 Linear Birth-Death Process with Sweeps

5.3.1 Simulating selective sweeps. It seems useful to
compare the SFS with selective sweeps based on the co-
alescent approach to those based on the lbdp approach.
While mathematical results have not been developed in
the latter setting, we experimented with simulation code
that allows generating in time of the order of minutes a
random lbdp tree consisting of 104 or even 105 cells. If
the cell count is up to 103, we are able to draw the tree
using the same convention of enumeration that was used
in Section 3.3.

Cells proliferate according to lbdp with rates b and d .
During its lifetime, each cell gathers neutral mutations ac-
cording to a Poisson process with intensity θ . These mu-
tations are shared by progeny of the cell. At a predeter-
mined time point s, the cell with the highest number of
neutral mutations among all cells alive, acquires an ad-
vantageous mutation. This cell initiates a new lbdp (ad-
vantageous clone) with rates b� and d� chosen so that the
growth rate is higher than that in the original process. At
the end time T , the mutation counts of all live cells from
the original process and the advantageous clone are deter-

mined. The SFS is determined from the frequencies of all
neutral mutations, or from a random sample obtained via
binomial sampling.

The neutral mutations are partitioned into three sub-
groups:

• Background mutations: acquired by the selective
founder cell or any of its ancestors. These cells are
therefore shared among all selective cells and possibly
some neutral cells.

• Foreground mutations: acquired by any selective cell.
These can be shared among some selective cells but not
by any neutral cells.

• Other mutations: neither of the above.

Figure 8 represents an example of the resulting simu-
lated tree. The neutral cells are shown as blue circles and
the advantageous cells as green circles. The neutral cells
that are ancestors to the selective founder cell are shown
in red. In the plot, dead and live cells are indexed so that
all descendants of any given cell are grouped together.
Cells alive at the final time T are shown as solid symbols.

Figure 9, panel A, shows a “trimmed” view of the sim-
ulated tree. The cells that have no progeny at final time



EVOLUTIONARY HISTORY OF CANCER GENOMES 141

FIG. 8. [A]: Example of a simulated tree and resulting SFS. The y-axis is time, x-axis includes invisible indices of cells such that progeny of any
given cell is grouped together. The three types of mutations correspond to the SFS. [B]: the SFS resulting from sampling the simulation under the
TCGA distribution.

FIG. 9. The choice of sampling distribution distorts the resulting SFS. [A]: the simplified presentation of the simulated tree. [B, C, D]: the SFS
resulting from sampling the simulation under the binomial distribution with mean 50 (B), 80 (C) and 150 (D). [E]: PDF of the TCGA sampling
distribution. [F]: the SFS resulting from sampling from the simulated tree according to the TCGA distribution. Parameters: T = 1000, s = 800,
b = 0.0162, b� = 0.0721, d = d� = 0.01, θ = 1.
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T are removed, since their mutations do not contribute to
the SFS. All other aspects are similar to Figure 8.

We now discuss how the sampling coverage distribu-
tion may affect the SFS from the simulation. A common
assumption (see, e.g., Williams et al., 2018) is that the
sizes of samples for detecting mutations follow the bino-
mial distribution. To implement this, we performed one
simulation, which resulted in ∼ 103 cells at the final time
(Figure 9(A)). Four sampling coverage distributions are
used: binomial distributions with mean 50, 80 and 150,
and the TCGA distribution as in Figure 9, panels B, C, D,
and F.

We can observe in Figure 9 that the background muta-
tions form a peak centered around frequency f = 0.68,
consistent with the fact that the selective clone makes up
for 63% of the population. Meanwhile, the foreground
mutations form a decreasing slope at low frequencies
(f < 0.2) which can be explained by the theory in (13).
Under deep binomial sampling distributions (Figure 9(C),
(D)), the other mutations also show the characteristic neu-
tral slope, which is more obscure under the TCGA distri-
bution (Figure 9(F)).

6. DISCUSSION

Our paper has outlined a model-based approach to in-
ferring aspects of the clonal evolution of cancers, using
data from the site frequency spectrum of somatic single
nucleotide variants found from bulk whole-genome or ex-
ome sequencing. We focused primarily on two aspects:
stochastic models of tumor evolution adapted from the
fields of population genetics and population dynamics,
and the effects of “data cleaning” that is often used in the
analysis of sequencing data.

The modeling aspects have made a number of simplify-
ing assumptions that make the statistical inference aspects
tractable. In the comments below, we address a number of
these in more detail.

Simplicity

Following a review of mathematical models of site fre-
quency spectra based on Kingman’s coalescent and the
linear birth-death process, we develop a theory for models
of clonal sweeps. We explored its action on simulated and
TCGA data-based spectra. The leading principle in our
analysis was simplicity. We considered a neutrally evolv-
ing cell population, which spawns an advantageous mu-
tant giving rise to a clone with different growth and muta-
tion rates. The clone leads to a peak in the spectrum. More
than one such event can be accommodated. This approach
allows us to estimate aggregate parameters A, K , and p1
of the model. We note that our model is not spatial, nor
does it deal with multiregion data explicitly, although ex-
tensions are conceivable.

Similar views have been expressed by other cancer ge-
nomics researchers. For example, a recent review by Tura-
jlic et al. (2019) features cartoons very similar to ours, in-
cluding the hypothetical SFS decomposition in their Fig-
ure 2.

Simulation Approach of Williams et al.

Williams et al. (2018) present a simulation-based ap-
proach that is based on an lbdp. Our sampling transforma-
tion in (14) can be considered an “expected value” version
of their data transformation. However, there are notable
differences in approach. Williams et al. identify as a sep-
arate category the “truncal” mutations, that is, mutations
that arose in the ancestor of the tumor clone. These muta-
tions are present in all tumor cells, however, since they are
usually heterozygous (the other allele being a nonmutant
variant), they are present in 50% of DNA strands. Since
reads covering a truncal variant site are sampled binomi-
ally, truncal mutations form a binomial peak centered at
variant allele frequency x = 0.5. In contrast, the emerging
new selective clone leaves another binomial peak, being
a signature of the mutations accumulated in its ancestral
cell (which might be called truncal mutations of this par-
ticular clone). This peak is centered at VAF x �= 0.5, de-
pending on the fraction of tumor cells in the new clone.
In our experience, the “solitary” peaks seem to be rarely
centered at VAF x = 0.5. This might be a result of con-
tamination. However, please see the discussion of evolu-
tionary history further on. We can easily accommodate
truncal mutations by adding an extra peak in Eqn. (12).

Biologically Meaningful Parameters

As mentioned earlier, we can estimate a small number
of aggregate parameters, which are functions of growth
and mutation rates and the size of the background haplo-
types of the emerging clones, as well as the proportions
of these clones in cell population. The difficulty with in-
terpretation of these parameters is illustrated best by the
example of A = n(a0/2β0 + a1/2β1). Suppose that we
assume that mutation rate in the emerging clone 1 is the
same as in clone 0. We still have to consider differences in
growth rates between the two clones. These can be related
to the proportion p1 of clone 1 (which is estimable), but
the ages of the clones would have to be assumed.

Dissection of Sub-Clones and Tumor Evolutionary
History

We return to the question discussed in Williams et al.
(2018), namely the truncal mutations. If we assume there
are K0 of these, we obtain the following augmented ver-
sion of (12):

Qnk = K01{k=n} + A

k(k − 1)
1{k>1}

+
(
n

k

) H∑
σ=1

Kσpk
σ (1 − pσ )n−k,

(15)
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for k = 0,1, . . . , n. After transformation accounting for
sampling and ploidy (as in Eqn. (1) in the Supplementary
Material (Dinh et al., 2020), with qnk replaced by Qnk),
we see that the central term in (15) becomes one of the
left-skewed profiles in Figure 4 in theSupplementary Ma-
terial, the truncal term becomes a K0 Binomial(r, 1

2) peak,
and the right hand-side peaks are transformed but retain
their original masses Kσ ,σ = 1, . . . ,H . In our examples
(see Figures 6 and 7, and Figures 2 and 3 in the Supple-
mentary Material), we notice that all estimated sub-clonal
masses are comparable to each other. If one of them cor-
responds to the truncal peak, this means that the ancestral
cell of the tumor already acquired a very large mutation
count. If the mass of this peak is approximately equal to
50% of all mutations, then this assertion might be con-
sistent with the hypothesis of Tomasetti and Vogelstein
(2013), who estimate that as many as 50% of mutations
arise before transition to malignancy. It cannot be gener-
ally excluded that all the peaks are truncal, corresponding
to mutations in regions with different ploidies. Genome
sequencing through time might allow to distinguish be-
tween this possibility and our model of secondary clones.

Missing Mutations

Based on (15), the total mass of the SFS is to good ac-
curacy equal to

� = A +
H∑

σ=0

Kσ ,

which is clear if we notice that
∑n−1

k=2(k(k − 1))−1 =
1 − (n − 1)−1. Table 3 indicates that this is many times
more than the total number of mutations found in the sam-
ple. This result is understandable if one considers that
the parameter estimates were obtained using data pre-
processing that makes the estimates sensitive only to the
terms of the GT-spectrum with k ≥ L. We may accept �

as a crude estimate of the total count of point mutations in
the tumor sample employed for sequencing.

Single-Cell Sequencing Data

The spread of new technologies will lead to break-
throughs in understanding of mutations and other genome
transformations in cancer cells. Currently, we are wit-
nessing a rapid expansion of single-cell DNA sequencing
methods, such as described in Zahn et al. (2017) and Laks
et al. (2019).

With relatively low coverage, VAF values can be esti-
mated reliably since they only may assume values from
a spectrum k/P , where k = 1, . . . ,P , if CNV or local
ploidy at the given site is equal to P . This also allows
us to infer in principle whether a substitution event at a
given site preceded a chromosomal rearrangement or the
other way around. However, it is unlikely that single-cell

sequencing of a single snapshot of the tumor alone will
bring a better understanding of evolutionary dynamics of
cancer cell populations. This requires taking serial sam-
ples of DNA, which is still difficult at large scale.

Recurrent Mutations

The hypothesis underlying the methods in this paper is
that mutations arise only once, so that recurrent mutations
at any site are impossible. Whether this is satisfied or not
depends on the mutation rate predominant at a given re-
gion of the genome. In the context of autosomal genomes,
Kuipers et al. (2017) showed, using single-cell data, that
it is highly unlikely that cancer cells do not feature recur-
rent mutations. Based on this possibility, Cheek and Antal
(2018) provide a theory of SFS spectra that includes the
possibility of recurrent mutation.
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