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OUTLINE ANALYSES OF THE CALLED STRIKE ZONE IN
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We extend statistical shape analytic methods known as outline analysis
for application to the strike zone, a central feature of the game of baseball.
Although the strike zone is rigorously defined by Major League Baseball’s
official rules, umpires make mistakes in calling pitches as strikes (and balls)
and may even adhere to a strike zone somewhat different than that prescribed
by the rule book. Our methods yield inference on geometric attributes (cen-
troid, dimensions, orientation and shape) of this “called strike zone” (CSZ)
and on the effects that years, umpires, player attributes, game situation factors
and their interactions have on those attributes. The methodology consists of
first using kernel discriminant analysis to determine a noisy outline represent-
ing the CSZ corresponding to each factor combination, then fitting existing
elliptic Fourier and new generalized superelliptic models for closed curves to
that outline and finally analyzing the fitted model coefficients using standard
methods of regression analysis, factorial analysis of variance and variance
component estimation. We apply these methods to PITCHf/x data compris-
ing more than three million called pitches from the 2008–2016 Major League
Baseball seasons to address numerous questions about the CSZ. We find that
all geometric attributes of the CSZ, except its size, became significantly more
like those of the rule-book strike zone from 2008–2016 and that several player
attribute/game situation factors had statistically and practically significant ef-
fects on many of them. We also establish that the variation in the horizontal
center, width and area of an individual umpire’s CSZ from pitch to pitch is
smaller than their variation among CSZs from different umpires.

1. Introduction. The statistical analysis of shape has a relatively short his-
tory but a rich literature. Most of its early development occurred within systematic
biology, where it was coined “morphometrics” and used primarily to infer phy-
logeny from shapes of anatomical objects (e.g., dinosaur bones or insect wings).
Morphometrics continues to be an important part of biologists’ statistical toolkit;
book-length treatments of the subject include Bookstein (1997), Claude (2008),
and Zelditch, Swiderski and Sheets (2012). From its original roots in systematic
biology, statistical shape analysis has been extended to many other application
areas, including biometric identification (Vacca (2007)), precision manufacturing
(del Castillo and Colosimo (2011)), medical imaging (Kurtek et al. (2012)), com-
puter vision, and other automatic object recognition technologies (Belongie, Ma-
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lik and Puzicha (2002), Teutsch et al. (2013)); see Dryden and Mardia (1998) and
Srivastava and Klassen (2016) for additional applications. Recently, it has even
been applied to team sports (Jäger and Schöllhorn (2012)). In this article we con-
sider an application of statistical shape analysis to an object that plays a central
role in the sport of baseball, the strike zone. According to the Official Rules of
Baseball,

“The STRIKE ZONE is that area over home plate the upper limit of which is a horizontal line
at the midpoint between the top of the shoulders and the top of the uniform pants, and the lower
level is a line at the hollow beneath the kneecap. The Strike Zone shall be determined from the
batter’s stance as the batter is prepared to swing at a pitched ball.”

We refer to the region so defined, or alternatively the rectangle comprising
its side that lies over the front edge of home plate, as the rule-book strike zone
(RBSZ). Baseball pitchers and batters use the RBSZ, together with a myriad
of other information (strengths, weaknesses and past tendencies of each other,
whether there are runners on base, current ball-strike count and on and on), to
decide where to target the pitch and whether to swing at it. Furthermore, if the
batter does not swing at the pitch, the home-plate umpire uses the RBSZ to im-
mediately classify, or “call,” the pitch as a ball or a strike in accordance with the
following additional sentence from the Official Rules of Baseball:

“A strike is a legal pitch when so called by the umpire, which (b) is not struck at, if any part
of the ball passes through any part of the strike zone.”

Ostensibly, umpires’ calls are to be made in strict accordance with the RBSZ,
but it is widely recognized that umpires make mistakes (sometimes calling a pitch
a ball when it should have been called a strike and vice versa) and may even pur-
posely adhere to a strike zone somewhat different than that defined by the rule
book. We refer to this alternative strike zone as the called strike zone (henceforth
CSZ) and define it loosely for now as a smooth-outlined region consisting of all
those points for which a called pitch is more likely to be called a strike than a ball;
a more precise definition will be given subsequently. Furthermore, we regard the
CSZ as a “fluid” object that may vary across time, pitchers, batters, umpires, game
situations and possibly other factors. To illustrate, Figure 1 displays CSZs for each
of the years 2008–2016, obtained using methods to be described subsequently; an
animation of this figure may be found in Section A of the Supplementary Material
(Zimmerman, Tang and Huang (2019)). It appears that the CSZ gradually morphed
over this time period, becoming taller and narrower, and that other geometric at-
tributes (e.g., its centroid and area) also may have changed. But are the perceived
changes real, and are they large enough to be practically relevant? Do other factors
not considered in Figure 1, such as handedness of the batter and the ball-strike
count, significantly affect the geometry of the CSZ? For those that do, which ge-
ometric attributes are affected and by how much? And finally, by how much does
the geometry of the CSZ differ among umpires and from that prescribed by the rule
book? In this article we develop shape-analytic methods to answer these questions.
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FIG. 1. Called strike zones by year, superimposed upon the average RBSZ. Corners of the average
RBSZ have coordinates (−0.829,1.601), (−0.829,3.426), (0.829,1.601) and (0.829,3.426) in units
of feet in a coordinate system whose origin lies at the middle of the top front edge of home plate.

While fans of baseball have pondered such questions for a long time, the op-
portunity to address them became much more realistic after 2008 when Ma-
jor League Baseball began using the automated pitch tracking system known as
PITCHf/x. The PITCHf/x system uses three cameras in every major league ball-
park to record the speed and location of every pitched ball in every game from
when it leaves the pitcher’s hand until it crosses the vertical plane aligned with
the front of home plate. The system also includes an on-site human operator,
who monitors the calibration of the system and records the top and bottom of
the RBSZ for each batter from the centerfield camera video, and a “stringer,” an-
other person who records other pertinent data such as the identity of the pitcher,
batter and umpire, the game situation (e.g., inning, number of outs and ball-strike
count) and the result of the pitch including, if it was not swung at, whether it
was called a ball or a strike. The speed and location of the pitch are shown in
near real-time on Major League Baseball’s online Gameday webcast, as well as
on many television broadcasts. Furthermore, the data are made freely available
to the public on a website hosted by Major League Baseball Advanced Media
(http://gd2.mlb.com/components/game/mlb/).

The recent availability of PITCHf/x data, combined with perennial interest in
the strike zone among baseball fans and analysts, have prompted many studies of
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the CSZ. Most nonacademic studies that have described the CSZ’s geometry (e.g.,
Walsh (2010), Fast (2011a, 2011b), Roegele (2013a, 2013b, 2013c, 2014a, 2014b,
2015, 2016)) define it for a given factor combination as the union of cells of a
rectangular grid, laid over the vertical plane containing the front edge of home plate
and within which the the number of called strikes exceeds the number of called
balls for that combination. This CSZ can be visualized easily, and its overall area
computed by adding the areas of individual cells. However, it does not lend itself
easily to performing formal inference (e.g., estimation of standard errors of the
area estimate or formal comparison of the CSZ for one factor combination to the
CSZ for another combination), and there is considerable arbitrariness in the origin,
size and relative dimensions of the grid cells which could affect conclusions. Many
academic studies model the probability that a pitch is called correctly as a function
of various factors. Among the factors considered—some of which were found to be
statistically significant—are year (Mills (2017)), batter handedness, race (Parsons
et al. (2011)) and status (e.g., All-Star or not) of the batter and the pitcher (Kim
and King (2014)), ball-strike count (Green and Daniels (2014), Marchi and Albert
(2014), Walsh (2010)), type of pitch (fastball, curve, slider, etc.), league (National
or American), inning and pitcher’s home field advantage. Most such studies do not
display CSZs or consider their geometry. Other studies model the probability that
a called pitch is called a strike as a function of its location. The most successful of
these latter studies, for example, Mills (2014, 2016a, 2016b), Tainsky, Mills and
Winfree (2015), and Deshpande and Wyner (2017), are based on a semiparametric
generalized additive model (GAM) of the log odds that the ith pitch is called a
strike of form

log
(

P(zi = 1)

P (zi = 0)

)
= fk(xi, yi) + a′

iβ + εi,

where zi equals 1 if pitch i is called a strike and equals 0 otherwise; fk(·, ·) is a
smooth function of the coordinates (xi, yi) of pitch i and k indexes the levels of
one or more factors of interest (e.g., batter handedness); and ai and β are column
vectors containing, respectively, the values of (or dummy variables for) other fac-
tors of interest for pitch i and regression coefficients associated with those factors.
The outline of the CSZ for a given factor combination may be obtained as the lo-
cus of points (x, y) where the fitted log odds for that combination equals 0 and
geometric attributes (e.g., area) may be estimated from that outline.

In this article we apply and extend statistical shape-analytic methods, known
collectively as outline analysis, to more directly model the geometry of the CSZ.
Outline analysis is preferable to more well-known landmark-based shape-analytic
methods when the objects under study are smoothly curvilinear and lack discrete
homologous landmarks (such as joints of bones or corners of the eyes and mouth),
as is the case here. Alternatively, the differential geometry-based planar shape
analysis methodologies of Klassen et al. (2004) or Srivastava et al. (2005) could
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be considered, but outline analysis is considerably simpler and more computation-
ally efficient, is based on models whose parameters are easier to interpret and can
deal with variation in location, size and orientation of the objects not only in their
shapes.

Our outline analyses occur in three stages. First, the outline of a CSZ for each
combination of a given set of factors is obtained by applying kernel discriminant
analysis to the (x, y) locations of the called balls and strikes within that com-
bination. This first-stage outline is regarded as a noisy object, subject to various
sources of error including measurement error—PITCHf/x locations are claimed to
be accurate only to within the nearest half-inch—and error due to the omission of
important factors affecting the CSZ from those used to partition the set of called
pitches. Second, a model is fit to the coordinates of points sampled along each first-
stage outline. This produces estimates of model coefficients and a fitted outline that
is considerably smoother than the first-stage outline. Last, the coefficients of the
fitted second-stage outlines corresponding to years and all combinations of the
other factors are analyzed using various classical statistical methods, depending
on the nature of the question(s) being addressed. Specifically, we investigate ef-
fects of years, selected player attributes, game situation factors and umpires on the
geometric attributes of the fitted outlines using standard multivariate and univari-
ate regression, factorial analysis of variance and variance component estimation
methods.

The models fit at the second stage are of two types: (1) truncated elliptic Fourier
series expansions and (2) superellipses and generalizations thereof. The first class
is well established within outline analysis, has closed-form least squares estimates
and is very flexible in regard to the objects’ shapes; its main disadvantage in this
application is that only a few of its parameters correspond to readily discernible
geometric features of CSZ outlines. The second class is introduced here for the
first time. It has the advantage that all of its parameters correspond to discernible
features of CSZ outlines; moreover, its relative parsimony turns out to be a virtue
here because remarkably, apart from noise, CSZ outlines tend to be superelliptic in
shape. However, superelliptic models must be fit by an iterative algorithm which
we develop herein.

There are two main reasons why an outline analysis of CSZs may be a valu-
able supplement or alternative to an analysis based on models (such as GAMs)
of the called strike probability. First, an outline analysis allows for more direct
estimation and uncertainty quantification of important geometric attributes (e.g.,
centroid, height and width) of the CSZ and for the effects that years, umpires,
various player traits and game situation factors have on those attributes. Second,
because the RBSZ has a boundary, which itself is a closed curve belonging to the
class of candidate outline models (provided that the candidate class is sufficiently
large), an outline analysis facilitates inference comparing the CSZ to the RBSZ.
Later, we will elaborate not only on these advantages but also on a disadvantage of
outline analysis relative to analyses based on GAMs or other models of the called
strike probability.
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The remainder of the article is organized as follows. In Section 2 we describe
the PITCHf/x data used to address our questions of interest, and we perform some
basic exploratory analyses. Section 3 explains the kernel discriminant analysis ap-
proach used to determine CSZ outlines and broadly characterizes their geometry.
Section 4 reviews and extends methodology for modeling the outlines via elliptic
Fourier and (generalized) superelliptic models. Statistical analyses of the encoded
outlines that address the main questions of interest are presented in Sections 5, 6
and 7. Section 8 contains a discussion of our findings and notes possible future
work.

2. Data. Analyses presented in this article use PITCHf/x data from the nine-
year period 2008–2016 (including postseasons). The data were scraped from Ma-
jor League Baseball’s Gameday website and manipulated using the R package
pitchRx (Sievert (2014, 2015)). We used data corresponding to called pitches
only. Among the available pitch characteristic variables, only the umpire’s call
of the pitch (ball or strike) and the pitch location were used, the latter being the
(x, y) coordinates (from the perspective of the umpire behind home plate) of the
baseball’s center as it crossed the vertical plane containing the front edge of home
plate. These coordinates are recorded in thousandths of a foot (or, equivalently, to
the nearest 0.012 inch) on the Gameday website, but it is worth noting that they
are measured with error. According to Sportsvision, the company that developed
the PITCHf/x system, the location of a pitch determined by PITCHf/x is within
one-half inch of its true location as it crosses the plate (Kagan (2009)). Among the
available player attribute and game situation variables, we used only the handed-
ness (right-handed or left-handed) of the pitcher and batter, the home-away status
of the pitcher (henceforth called “venue”), the ball-strike count of the at-bat im-
mediately prior to each called pitch (either zero, one, two or three balls and either
zero, one or two strikes), and, for our last analysis only, the identity of the home
plate umpire. These are the variables cited most often by previous studies as ones
that affect the aforementioned probabilities. Additional variables could be consid-
ered, of course, but including them reduces the number of called pitches for some
combinations of the factors too much to reliably determine first-stage outlines for
those combinations.

The coordinates of each called pitch were compared to those defining the bound-
aries of the RBSZ to ascertain whether the pitch was truly a ball or a strike. The
x-coordinates of the RBSZ’s right and left boundaries may be computed trivially
as 0± (1

2× plate width + average ball radius) = 0±[1
2(17 in)+1.45 in] .= ±0.829

ft. Assigning y-coordinates to the lower and upper boundaries of the RBSZ is more
problematic. The PITCHf/x data include y-coordinates of these boundaries as ob-
tained by the PITCHf/x operator which ostensibly are the rule-book prescriptions
as they apply to each batter. Unfortunately, however, these coordinates vary across
plate appearances of the same batter by an amount much larger than could rea-
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TABLE 1
Summary of the called pitches data by year. Each number in parentheses is the proportion for that

category within the set of either all called pitches (for called balls, called strikes and overall
misclassifications), all called balls (for called balls inside RBSZ) or all called strikes (for called

strikes inside RBSZ)

Called Called Called Called balls Called strikes Overall
Year pitches balls strikes inside RBSZ outside RBSZ misclassifications

2008 375,588 255,649 (0.6807) 119,939 (0.3193) 19,513 (0.0763) 30,630 (0.2554) 50,143 (0.1335)
2009 389,842 264,053 (0.6773) 125,789 (0.3227) 21,066 (0.0798) 30,443 (0.2420) 51,509 (0.1321)
2010 387,193 260,051 (0.6716) 127,142 (0.3284) 19,618 (0.0754) 30,040 (0.2363) 49,658 (0.1283)
2011 383,477 257,661 (0.6719) 125,816 (0.3281) 18,162 (0.0705) 29,517 (0.2346) 47,679 (0.1243)
2012 382,084 255,505 (0.6687) 126,579 (0.3313) 15,842 (0.0620) 29,173 (0.2305) 45,015 (0.1178)
2013 383,401 257,184 (0.6708) 126,217 (0.3292) 13,957 (0.0543) 28,197 (0.2234) 42,154 (0.1099)
2014 372,422 248,567 (0.6674) 123,855 (0.3326) 12,396 (0.0499) 28,299 (0.2285) 40,695 (0.1093)
2015 369,310 249,681 (0.6761) 119,629 (0.3239) 11,406 (0.0457) 27,495 (0.2298) 38,901 (0.1053)
2016 379,309 257,637 (0.6792) 121,672 (0.3208) 12,181 (0.0473) 26,131 (0.2148) 38,312 (0.1010)

sonably be expected by day-to-day variations in how much the batter crouches or
how high they wear their pants (Fast (2011b)). Accordingly, to determine whether a
pitch was called correctly for a given batter, we defined the lower and upper bound-
aries of a batter’s RBSZ as the average value of the boundary’s y-coordinates for
all called pitches received by that batter from 2008–2016. However, for purposes
of displaying a single RBSZ for all batters that can be compared visually to the
various called strike zones that we obtain, we defined the “average RBSZ” as the
rectangle with right and left boundaries as specified by the rule book and lower
and upper boundaries computed as averages of the rule-book boundaries over all
called pitches.

In aggregate, the data from the nine seasons consist of 3,426,165 called
pitches corresponding to 1844 pitchers, 2511 batters and 122 home plate umpires.
(The data are available for download from https://github.com/dalezimmerman/
strikezone.) Of these pitches, 3539 were missing the batter’s name. We included
these 3539 pitches in our outline analyses but excluded them from the calculation
of umpires’ misclassification rates presented in this section because their upper
and lower RBSZ boundaries could not be determined. Of the remaining 3,422,626
pitches, 2,305,988 (67.37%) were called balls and 1,116,638 (32.63%) were called
strikes. Of the called balls, 144,549 (6.27%) lie inside the RBSZ, and of the called
strikes, 261,452 (23.41%) lie outside the RBSZ. Overall, umpires misclassified
406,001 (11.86%) of called pitches. Table 1 breaks these statistics down by year
and shows that umpire performance improved steadily over the nine-year period.
Mills (2017) showed a similar improvement over a slightly shorter time frame
(2008–2014) and argued that it was likely due to evaluations that Major League
Baseball provided to umpires after every game, based on its own “in-house” anal-
yses of the PITCHf/x data.

https://github.com/dalezimmerman/strikezone
https://github.com/dalezimmerman/strikezone
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3. Outline determination. The CSZ differs fundamentally from tree leaves,
hominid skulls and other objects to which methods of statistical shape analysis
have previously been applied; it is not a tangible, physical object. Thus, one can-
not simply take a photograph of a CSZ and digitize its outline. All first-stage CSZ
outlines studied herein were obtained by applying a bivariate kernel discriminant
analysis (KDA) procedure to subsets of the called pitches dataset, taking as inputs
only the (x, y)-coordinates of the pitch. The subsets corresponded to cells in a mul-
tiway layout obtained by crossing the factors of interest (e.g., years, batter handed-
ness and umpires) and marginalizing over the rest. The CSZ for a given subset was
taken to be the set of points (x, y) where a locally smooth estimate of the probabil-
ity density of called strikes exceeded a similar estimate of the probability density
of called balls, following Green and Daniels (2014), Marchi and Albert (2014) and
many others. Determining first-stage outlines of called strike zones in this way is
not only easy to understand but also quite flexible, as it imposes no restrictions
on the shape (apart from a degree of smoothness) or other geometric features of
the objects produced. However, our experience indicates that in order to obtain
reasonable, that is, undivided and not too “wiggly,” outlines using well-accepted
bandwidths, the subsets must contain several hundred called pitches, which limits
the number of factors that can be considered simultaneously.

We implemented this approach using function kda in the R package ks with a
bivariate spherical Gaussian kernel function and the unconstrained plug-in band-
width selector of Wand and Jones (1994). This bandwidth selector is widely used,
enjoys good optimality and practical properties for density estimation (Duong
(2007), Wand and Jones (1994)) and has the same asymptotic order as a discrimi-
nant analysis-optimal selector (Hall and Kang (2005)).

Figure 1, introduced earlier, displays CSZs obtained in this manner, marginal-
ized over all factors except year. The average RBSZ, defined in Section 2, is super-
imposed on each CSZ for comparison. It is evident that the center of each year’s
CSZ is shifted to the left of the RBSZ’s center. Furthermore, each year’s CSZ
appears wider at its widest point than the RBSZ, though this has moderated re-
cently. CSZs from all years differ from the RBSZ by having curved edges, with
the upper margin often appearing to be slightly more rounded than the lower. The
presence of curvature suggests that umpires call a pitch not merely by where the
ball crosses the plate relative to prescribed rectangular boundaries but also by its
distance from a central point. Though curved, the shapes of the outlines are not
adequately described as elliptical, as some analysts (e.g., Carruth (2012), Roegele
(2013a)) have described (and modeled) them. Rather, each outline more closely
resembles a hybrid of an ellipse and a rectangle within a family of shapes known
as superellipses (Gardiner (1965)). We defer further discussion of superellipses to
Section 4.2, where we develop methodology to optimally fit them to CSZs.

For the data from years 2014–2016 only, we also obtained CSZs correspond-
ing to the four combinations of pitcher and batter handedness (marginalized over
all other factors) and to the 12 ball-strike counts (also marginalized over all other



2424 D. L. ZIMMERMAN, J. TANG AND R. HUANG

FIG. 2. Called strike zones for the combined 2014–2016 data by pitcher and batter handedness
(left two columns of panels) and all called pitches for the same time period by pitcher handedness
(rightmost column of panels), superimposed upon the average RBSZ.

factors). (We chose years 2014–2016 so that the results would be as current as
possible, yet not specific to a single year.) CSZs corresponding to the handedness
combinations (Figure 2) appear to be roughly similar in size and approximately
centered vertically on the RBSZ but differ with respect to their horizontal center
and shape. More specifically, while the CSZ for right-handed batters is approxi-
mately centered on the plate, that for left-handed batters is shifted discernibly to
the left. In contrast, the handedness of the pitcher appears to have little effect on
the centroid of the CSZ. As for shape, again superellipticity is evident, but with a
more complicated form of asymmetry. Called strike zones for batter-pitcher com-
binations of the same handedness, like those for each year, have some latitudinal
asymmetry but are approximately symmetric longitudinally. However, CSZs cor-
responding to batters and pitchers of opposite handedness are asymmetric longitu-
dinally as well, being elongated so as to include more “down and away” pitches.
The direction of elongation is not aligned with the axis of rotation of the pitcher’s
arm as he releases the pitch which is perhaps surprising in light of such an align-
ment when all called pitches by pitchers of the same handedness are considered
(Figure 2, rightmost column of panels).

Figure 3 displays CSZs corresponding to the ball-strike counts. The display in-
dicates that these CSZs are also superelliptic and vary considerably in size, grow-
ing larger as the ball count increases but smaller as the strike count increases.
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FIG. 3. Called strike zones for the combined 2014–2016 data, by ball-strike count, superimposed
upon the average RBSZ.

However, no obvious systematic differences among their centroids or shapes are
discernible.

Other nonlinear classifiers, for example, loess, nonparametric logistic regres-
sion and neural networks, could alternatively be used to obtain CSZs. Indeed, we
obtained an alternative CSZ (not shown) for each year and factor combination us-
ing neural networks with various numbers of nodes. Those with four or more nodes
turned out to be slightly smoother than our KDA-based outlines but were otherwise
very similar, so we did not consider them any further. Likewise, we would expect
outlines obtained using loess or nonparametric logistic regression to be very simi-
lar.

Once the KDA-based CSZ was determined, its outline was digitized using the
R package alphahull. Coordinates were obtained for I points {(xi, yi) : i =
1, . . . , I } along each outline (I varies with the size and smoothness of the outline
but typically lies between 300 and 600), starting arbitrarily with the uppermost
of the two points where the outline intersects a vertical line passing through its
centroid. Subsequently, we refer to these points as the point configuration and to
the I -sided polygon whose vertices are the point configuration as the discretized
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outline. Models of the two types described in the next section were then fit to each
point configuration.

4. Outline modeling.

4.1. Elliptic Fourier models. An elliptic Fourier (EF) model (Kuhl and Giar-
dina (1982)) expresses an outline’s x and y coordinates as truncated Fourier series
expansions in a curvilinear abscissa, t , that ranges from 0 to T where T is the
perimeter of the outline. Specifically, the N th-order EF model, or EF(N ), for the
outline {(x(t), y(t)) : 0 ≤ t < T } is given by

x(t) = a0 +
N∑

n=1

(
an cos

2πnt

T
+ bn sin

2πnt

T

)
+ εx(t),(4.1)

y(t) = c0 +
N∑

n=1

(
cn cos

2πnt

T
+ dn sin

2πnt

T

)
+ εy(t),(4.2)

where N is a positive integer less than or equal to [I/2] (with [·] being the greatest
integer function), and εx(t) and εy(t) are independent Gaussian white noise pro-
cesses. The leading coefficients, a0 and c0, comprise the outline’s centroid, and
(an, bn, cn, dn) is known as the nth harmonic. The locus of points (x, y) on the
curve corresponding to the nth harmonic is an ellipse centered at the origin. Thus,
the EF model describes the position of a point travelling (as t varies) around a
series of N superimposed and successively smaller ellipses, as in a characteriza-
tion of planetary orbits by Ptolemaic epicycles; for further details and a graphical
illustration see Kuhl and Giardina (1982).

Least squares estimates â0, ĉ0, {(ân, b̂n, ĉn, d̂n) : 1 ≤ n ≤ N} of EF(N ) model
parameters [which minimize the integrals of squared x- and y-direction differences
between the discretized outline and an outline of form (4.1)–(4.2)] exist in closed
form as follows:

â0 = 1

T

I∑
i=1

xi�ti,

ân = T

2π2n2

I∑
i=1

�xi

�ti

(
cos

2πnti

T
− cos

2πnti−1

T

)
,

b̂n = T

2π2n2

I∑
i=1

�xi

�ti

(
sin

2πnti

T
− sin

2πnti−1

T

)
,

ĉ0 = 1

T

I∑
i=1

yi�ti,
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FIG. 4. Fitted outline models (solid curve) to the CSZ for the RHP-LHB-away-0-0 factor combi-
nation for the combined 2014–2016 data: EF models of order 1 to 4 (top panel), and superelliptic
models SE, ATS, LAS and ATLAS (bottom panel).

ĉn = T

2π2n2

I∑
i=1

�yi

�ti

(
cos

2πnti

T
− cos

2πnti−1

T

)
,

d̂n = T

2π2n2

I∑
i=1

�yi

�ti

(
sin

2πnti

T
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Here, �x1 = x1 − xI and �xi = xi − xi−1 for i = 2, . . . , I (with �yi defined
similarly), �ti is the length of the linear segment between the (i − 1)th and ith
points, and ti is the accumulated length of such segments at point i.

Although as many as [I/2] harmonics may be estimated for any outline, the vast
majority of the information about the outline typically is captured by just the first
few. Figure 4 (top panel) displays a series of fits of EF models to one CSZ, using
increasing numbers of harmonics, from which it appears that the original outline is
reasonably well fit by a fourth-order model. A quantitative measure of information
that morphometricians commonly use to choose the number of harmonics is the
cumulative power PN given by PN = ∑N

n=1(â
2
n + b̂2

n + ĉ2
n + d̂2

n)/
∑[I/2]

n=1 (â2
n + b̂2

n +
ĉ2
n + d̂2

n), whose value approaches 1.0 as N increases. One can select the order
of the EF model by choosing N as the value for which the cumulative power is,
say, 0.999 or some other number deemed sufficiently close to 1.0. Alternatively, N

may be chosen by cross validation.
The estimated EF coefficients {ân, b̂n, ĉn, d̂n : 1 ≤ n ≤ N} are location free in

the sense that they do not depend on the point configuration’s centroid, (â0, ĉ0).
However, they do depend on the starting point of the discretized outline, and they
also depend on the outline’s size and the orientation of its first harmonic’s semi-
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major axis. The coefficients of the first harmonic may be used to normalize the
higher-order coefficients to render them invariant to starting point, size and orien-
tation using the following normalizing transformation (Kuhl and Giardina (1982)):

(4.3)

(
Ân B̂n

Ĉn D̂n

)
= 1

λ̂

(
cos ψ̂ sin ψ̂

− sin ψ̂ cos ψ̂

)(
ân b̂n

ĉn d̂n

)(
cosnθ̂ − sinnθ̂

sinnθ̂ cosnθ̂

)
.

Here, {Ân, B̂n, Ĉn, D̂n : 1 ≤ n ≤ N} are the normalized coefficients, θ̂ =
(1/2) arctan[2(â1b̂1 + ĉ1d̂1)/(â

2
1 + ĉ2

1 − b̂2
1 − d̂2

1 )], ψ̂ = arctan(ĉ∗
1/â

∗
1) and λ̂ =

(â∗2
1 + ĉ∗2

1 )1/2 where â∗
1 = â1 cos θ̂ + b̂1 sin θ̂ and ĉ∗

1 = ĉ1 cos θ̂ + d̂1 sin θ̂ . The nor-
malized EF coefficients for the first harmonic satisfy Â1 = 1, B̂1 = Ĉ1 = 0 and
|D̂1| ≤ 1. Moreover, θ̂ is the angle between the starting point and the best-fitting
ellipse’s semimajor axis encountered in a clockwise direction, ψ̂ is the orientation
(in a counterclockwise direction) of that same axis relative to the positive x-axis,
λ̂ is the length of that axis and |D̂1| is the ratio of minor axis length to major axis
length (and thus is a measure of eccentricity).

The normalizing transformation (4.3) allows the nonlocation information in the
first N harmonics of the outline to be reparameterized from {(ân, b̂n, ĉn, d̂n) : 1 ≤
n ≤ N} to {θ̂ , ψ̂, λ̂, |D̂1|} ∪ {(Ân, B̂n, Ĉn, D̂n) : 2 ≤ n ≤ N}, where all information
about starting point and orientation is contained in θ̂ and ψ̂ , respectively, all infor-
mation about size is contained in λ̂ and |D̂1| and all shape information is contained
in |D̂1| ∪ {(Ân, B̂n, Ĉn, D̂n) : 2 ≤ n ≤ N}. In biological applications of morpho-
metrics, “location” has no meaning, and the shapes of objects typically are of much
greater interest than their size and orientation, hence statistical analyses of biologi-
cal objects based on normalized EF coefficients usually use only the 4N −3 coeffi-
cients that remain after excluding â0, ĉ0, Â1, B̂1, and Ĉ1 (or equivalently â0, ĉ0, θ̂ ,
ψ̂ , and λ̂). In our context, however, because it is important to compare called strike
zones to the RBSZ—which has a well-defined location, size and orientation in ad-
dition to a well-defined shape—we retained nearly all of this information. The only
quantity we excluded was θ̂ , which is of no interest. However, we replaced λ̂ with
the more pertinent size variable κ̂ = πλ̂2|D̂1| which is the area of the best-fitting
ellipse. Therefore, our statistical analyses of fitted EF(N ) CSZ outlines utilized the
4N + 1 coefficients {â0, ĉ0, ψ̂, κ̂, |D̂1|} ∪ {Ân, B̂n, Ĉn, D̂n : 2 ≤ n ≤ N}. The first
five of these correspond directly to discernible geometric features of CSZs, but
the remainder do not. R code for fitting the elliptic Fourier models is provided in
Section B of the Supplementary Material (Zimmerman, Tang and Huang (2019)).

4.2. Superelliptic models. The CSZ’s shape, which appears (as noted in Sec-
tion 3) to be a hybrid of a rectangle and an ellipse with possibly some axial asym-
metries, leads us to consider, alternatively, representing its outline by the equation
of a superellipse (SE) or some asymmetric generalization thereof. Such a model
gains parsimony at the expense of flexibility relative to EF models of order two
or higher, and all of its parameters correspond directly to discernible geometric
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features of CSZ outlines. We consider only superellipses that are aligned with the
(x, y)-axes. Such an object is a set of points (x, y) that satisfy the equation∣∣∣∣x − x0

a

∣∣∣∣2r

+
∣∣∣∣y − y0

b

∣∣∣∣2r

= 1,

where (x0, y0) is the center, a is the half-width, b is the half-height and r > 0
is the rectangularity index. The value of r strongly influences the superellipse’s
shape: r < 0.5 yields a four-armed star with concave sides; r = 0.5 corresponds
to a rhombus; and r > 0.5 yields a convex, bilaterally symmetric (with respect to
each of the x- and y-axes) object, with r = 1 corresponding to an ordinary ellipse.
The “corners” of the superellipse become less rounded (more rectangular) as r

increases; in the limit, as r → ∞, the superellipse becomes a rectangle, the shape
of the RBSZ. The top row of Figure 5 displays superellipses for which a = 1.2,
b = 1.0 and r ∈ {1.0,1.5,2.5,+∞}. Some generalizations of superellipses that
allow for asymmetry of types observed in many CSZs are displayed in the bottom
row. These generalizations are as follows:

• Affine-transformed superellipse (ATS)∣∣∣∣(x − x0) + s(y − y0)

a

∣∣∣∣2r

+
∣∣∣∣y − y0

b

∣∣∣∣2r

= 1, −∞ < s < ∞.

• Latitudinally asymmetric superellipse (LAS)∣∣∣∣x − x0

a

∣∣∣∣2r1 +
∣∣∣∣y − y0

b

∣∣∣∣2r1 = 1 if y ≥ y0,

∣∣∣∣x − x0

a

∣∣∣∣2r2 +
∣∣∣∣y − y0

b

∣∣∣∣2r2 = 1 if y < y0, r1 > 0, r2 > 0.

• Affine-transformed latitudinally asymmetric superellipse (ATLAS)∣∣∣∣(x − x0) + s(y − y0)

a

∣∣∣∣2r1 +
∣∣∣∣y − y0

b

∣∣∣∣2r1 = 1 if y ≥ y0,

∣∣∣∣(x − x0) + s(y − y0)

a

∣∣∣∣2r2 +
∣∣∣∣y − y0

b

∣∣∣∣2r2 = 1

if y < y0, r1 > 0, r2 > 0,−∞ < s < ∞.

These models have five, six and seven parameters, respectively, making them more
parsimonious than all EF models except EF(1). The parameters correspond directly
to distinct geometric features: (x0, y0), a and b are defined as for a superellipse,
while r1 and r2 are the top-half and bottom-half rectangularity indices, allowing the
top half to be more rectangular (less rounded) than the bottom half or vice versa.
The horizontal shear parameter, s, corresponds to an affine transformation on the
superellipse that displaces every point horizontally by an amount proportional to
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FIG. 5. Examples of superellipses (top row) and generalizations (bottom row: first two plots, ATS;
third plot, LAS; last plot, ATLAS). In all panels a = 1.2 and b = 1.0. Moving left to right in the
top row, r = 1.0, 1.5, 2.5, +∞. Moving left to right in the bottom row, (r1, r2, s) = (2.5,2.5,0.2),
(2.5,2.5,−0.2), (1.5,2.5,0) and (1.5,2.5,0.2).

its y coordinate. This has the effect of elongating opposite corners of the superel-
lipse in a way that is consistent with the opposite-handedness plots in Figure 2.
Positive values of s elongate the upper-left and lower-right corners and shorten the
others, while negative values do the opposite, creating an apparent “tilt” to the left
or the right, respectively (see the second row of Figure 5). Two additional geo-
metric features of importance for each generalized superellipse are its eccentricity,
defined as E = a/b, and its area, which for the most general case of an ATLAS is
given by

A = 4ab

[({
[1 + (2r1)
−1]}2

2
(1 + r−1
1 )

)
+

({
[1 + (2r2)
−1]}2

2
(1 + r−1
2 )

)]

with appropriate simplification for the other cases. Note, importantly, that the area
of an ATLAS is a monotone increasing function of each of a, b, r1 and r2.

Some methods for fitting superellipses to data are reviewed by Rosin (2000),
but they are not optimal in any known sense nor do they extend easily to the
ATS, LAS and ATLAS. We prefer a fitting approach that minimizes the sum of
squared distances of the point configuration along normals to the superellipse
and extends easily to its generalizations. Accordingly, we developed a distance-
based orthogonal distance fitting (ODF) algorithm of a type described by Ahn
(2004) for general closed curves which satisfies these criteria. Every (general-
ized) superellipse described above can be represented by an equation of the form
F(x, y, θ) = 0 or, equivalently, in centered form by Fc(x − x0, y − y0, θc) = 0
where θ = (x0, y0, θc)

T ∈ � is the vector of model parameters (with � repre-
senting the parameter space) and θc is the subvector of said parameters that ex-
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cludes x0 and y0. Given a point configuration {(xi, yi) : i = 1, . . . , I }, a distance-
based ODF algorithm chooses the (generalized) superellipse S(θ) = {(x, y) ∈ R2 :
Fc(x − x0, y − y0, θc) = 0} to minimize the sum of squared orthogonal distances
from S(θ) to the point configuration, that is, to minimize

�(θ) =
I∑

i=1

[(
xi − x′

i (θ)
)2 + (

yi − y′
i (θ)

)2]
,

where {(x′
i (θ), y′

i (θ)) : i = 1, . . . , I } ⊂ S(θ), over θ ∈ �. We accomplish this by a
“variable-separation” method consisting of two steps:

1. Given the current parameter estimate θ̂
(k)

, find the set of minimum distance

points {(x′
i , y

′
i) : i = 1, . . . , I } in S(θ̂

(k)
) using a generalized Newton method;

2. Given a set of minimum distance points {(x′
i , y

′
i) : i = 1, . . . , I } ⊂ S(θ̂

(k)
),

update θ̂
(k)

to θ̂
(k+1)

using a Gauss–Newton algorithm.

Starting with an initial estimate θ̂
(0)

, Steps 1 and 2 are repeated until convergence.
Details of the generalized Newton method of Step 1 and the Gauss–Newton algo-
rithm of Step 2 and an R package for fitting the superelliptic models are provided
in Sections C and D, respectively, of the Supplementary Material (Zimmerman,
Tang and Huang (2019)).

The bottom row of Figure 4 displays minimum orthogonal distance fits of the
SE, ATS, LAS and ATLAS models to the same CSZ for which some EF fits were
displayed in the top row. It appears that the ATLAS is the best-fitting superelliptic
model to this CSZ and that it also fits better than EF models of order up to (and
including) four.

5. Evolution of the called strike zone from 2008–2016. EF models (up to
order [I/2]) and superelliptic models were fitted to the first-stage outlines for each
of the nine years, 2008–2016, which were displayed in Figure 1. Since there is no
obvious common probabilistic model for residuals from the two types of models,
we used the prediction sum of squares from tenfold cross validation as a model
selection criterion with distance from points in the point configuration to the fit-
ted outline measured orthogonally. Table 2 lists these values for EF models up to
order 5 and for the four superelliptic models, which indicate that the ATLAS had
better predictive capability than the other (generalized) superellipses and than all
EF models of order less than 5. Thus, in order for an EF model to outperform the
ATLAS, 21 EF parameters were required, compared to the seven parameters of an
ATLAS.

Because the ATLAS was able to describe year-specific CSZs so much more
parsimoniously than an EF model, we proceeded with statistical analysis of the
fitted ATLAS coefficients only. Table 3 lists the estimated ATLAS coefficients
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TABLE 2
Sums of squared prediction errors from tenfold cross validation for models fit to year-specific called

strike zones

Elliptic Fourier models Superelliptic models

Year N = 1 N = 2 N = 3 N = 4 N = 5 SE ATS LAS ATLAS

2008 1.242 0.953 0.092 0.071 0.022 0.264 0.253 0.039 0.030
2009 1.085 0.888 0.093 0.081 0.023 0.205 0.186 0.045 0.030
2010 1.114 0.906 0.103 0.086 0.022 0.216 0.191 0.050 0.028
2011 1.218 0.963 0.138 0.119 0.027 0.282 0.244 0.086 0.052
2012 1.215 0.959 0.133 0.108 0.015 0.263 0.230 0.061 0.030
2013 1.203 0.992 0.147 0.125 0.024 0.238 0.203 0.081 0.057
2014 1.280 1.099 0.163 0.147 0.017 0.199 0.175 0.060 0.042
2015 1.565 1.266 0.202 0.166 0.015 0.295 0.270 0.080 0.060
2016 1.424 1.199 0.188 0.164 0.017 0.243 0.209 0.071 0.046

(plus area and eccentricity) for each year, with the corresponding RBSZ values
provided for comparison. Figure 6 displays plots of these quantities against year.
Several trends are evident:

• The horizontal center of the CSZ, x̂0, shifted left considerably from 2008 to
2009 but after that trended back to the right; nevertheless, it was to the left of
the RBSZ’s center (by 3

4 to 11
3 inches) over the entire nine-year period.

• The CSZ’s vertical center, ŷ0, was about one inch above that of the RBSZ in
2008, but then trended mostly downwards and by 2016 was slightly ( 1

7 inch)
below that of the RBSZ. This 1.12-inch downward movement, in combination
with a 1.49-inch increase in the half-height b̂, implies that the bottom edge of
the CSZ is estimated to have extended 2.61 inches lower in 2016 than in 2008.

• The half-width, â, decreased monotonically, and the half-height, b̂, increased
monotonically over the period. Accordingly, the eccentricity decreased mono-
tonically from about 1.30 to 1.01. Nevertheless, the CSZ was considerably wider
than the RBSZ (which has eccentricity 0.908) over the entire nine-year period.
At its narrowest, in 2016, the CSZ was still 17% wider than the RBSZ. In con-
trast, the CSZ was shorter than the RBSZ initially but taller after 2013; by 2016
it was 5% taller than the RBSZ.

• For all but the first and last years of the period, the annual increase in the CSZ’s
height was large enough relative to its decrease in width that its area increased
monotonically. The CSZ was larger than the RBSZ over the entire period, about
10% larger by 2016.

• The upper- and lower-half rectangularity indices, r̂1 and r̂2, both tended to in-
crease, indicating that the shape of the CSZ became more rectangular over time.
Notably, r̂2 was consistently about 50% larger than r̂1, that is, the CSZ’s lower
half was consistently more rectangular than its upper half.
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TABLE 3
Estimated ATLAS coefficients, plus eccentricity and area, for years 2008–2016. Units of x̂0, ŷ0, â

and b̂ are feet; units of Â are square feet; the remaining coefficients are unitless. The corresponding
RBSZ values are provided for comparison. The last row gives two-sided P -values corresponding to

Mann–Kendall tests for trend

Year x̂0 ŷ0 â b̂ Ê Â r̂1 r̂2 ŝ

2008 −0.085 2.592 1.087 0.838 1.297 3.176 1.160 1.832 −0.017
2009 −0.114 2.593 1.060 0.842 1.259 3.124 1.209 1.780 −0.023
2010 −0.098 2.570 1.055 0.853 1.237 3.153 1.217 1.813 −0.026
2011 −0.101 2.568 1.035 0.879 1.177 3.210 1.237 1.903 −0.031
2012 −0.096 2.535 1.027 0.900 1.141 3.262 1.236 1.915 −0.028
2013 −0.081 2.513 1.009 0.921 1.095 3.296 1.290 1.889 −0.024
2014 −0.081 2.481 0.993 0.945 1.051 3.354 1.346 1.955 −0.020
2015 −0.064 2.476 0.984 0.956 1.029 3.377 1.331 2.140 −0.020
2016 −0.062 2.498 0.970 0.962 1.008 3.346 1.348 2.052 −0.022
RBSZ 0 2.510 0.829 0.912 0.908 3.026 ∞ ∞ 0
P -value 0.0091 0.0025 0.0003 0.0003 0.0003 0.0049 0.0012 0.0092 0.92

• The shear, ŝ, was quite small and did not exhibit a consistent trend over time.
• For several of the ATLAS parameters exhibiting trend, the trend moderated

somewhat from 2014 to 2016, indicating that the strike zone was somewhat
more consistent over the last three years than earlier in the nine-year period.

To quantify the strength of evidence for each trend noted above, we used a
nonparametric approach, specifically a Mann–Kendall test, because of the small
number of years involved and our reluctance to assume a particular form (e.g., lin-
ear) for the functional dependence of the ATLAS coefficients on time. P -values
associated with these tests (last line of Table 3, unadjusted for multiplicity) indi-
cated that the evidence against a no-trend hypothesis was strong (P < 0.01) for all
ATLAS coefficients except shear.

In summary, from 2008–2016 the CSZ morphed from an object that was con-
siderably wider than it was tall to one whose height and width were nearly equal
to each other. By 2016 both the height and width of the CSZ were closer to those
of the RBSZ, but the difference in widths was almost three times the difference in
heights. Moreover, from 2009 forward the center of the CSZ moved much closer,
both horizontally and vertically, to that of the RBSZ, and the CSZ became much
more rectangular, implying that umpires were improving in correctly calling as
strikes those pitches that were in the corners of the RBSZ. The only geometric
attribute of the CSZ that became less like its RBSZ counterpart was area, which
was larger than that of the RBSZ in 2008 and became even more so over time.

What impacts, if any, did the changes in the CSZ over the nine-year period
2008–2016 have on the game of baseball? Because a larger strike zone favors the
pitcher over the batter, one might expect that the number of strikeouts per game
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FIG. 6. Estimated ATLAS coefficients (plus area and eccentricity) versus year.

would have increased, and perhaps the numbers of walks and runs scored would
have decreased over the period. Table 4 (first two columns) shows that indeed the
number of strikeouts increased steadily. The numbers of walks and runs scored
(third and fourth columns), however, exhibited less clearcut behaviors; both de-
creased until 2014 and then increased substantially over the remaining two years.
Of course, many other relevant aspects of the game of baseball may have changed
over the same period, so it is not an easy matter to determine how much of a change
in such a variable can be attributed directly to changes in the CSZ. Nevertheless,
Mills (2016a) established convincingly that the substantial downward extension
of the lower boundary of the CSZ from 2008–2014 resulted in pitchers throwing
a larger proportion of pitches below 21 inches in height and batters swinging at
such pitches considerably more often and that 28% to 43% of the decline in runs
scored from 2008–2014 could be directly attributed to changes in the CSZ. Two
other analyses using different methods (Lindbergh (2015), Roegele (2014a)) at-
tributed roughly the same amount of the decrease in run scoring to the expansion
of the CSZ through 2014. What are we to make, however, of the turnaround in runs
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TABLE 4
Numbers of strikeouts, walks and runs and proportions of certain types of pitches (× 100%) by year.
Proportions are defined as follows: p1 = proportion of called pitches between 18 and 21 inches in
height and lying between the left and right boundaries of the RBSZ that were called strikes; p2 =
proportion of pitches thrown that were within the RBSZ; p3 = proportion of pitches thrown that

were below 21 inches; p4 = proportion of pitches thrown that batters swung at; p5 = proportion of
pitches below 21 inches that batters swung at

Year Strikeouts Walks Runs scored p1 p2 p3 p4 p5

2008 6.77 3.36 4.65 23.6 44.9 22.1 45.5 31.2
2009 6.91 3.42 4.61 23.4 45.1 22.3 44.9 31.1
2010 7.06 3.25 4.38 29.1 45.3 23.2 45.1 31.7
2011 7.10 3.09 4.28 34.2 45.2 23.8 45.7 32.6
2012 7.50 3.03 4.32 44.1 45.1 25.5 45.8 33.3
2013 7.55 3.01 4.17 51.4 45.0 26.3 46.1 33.9
2014 7.70 2.88 4.07 61.1 45.0 27.6 46.4 34.7
2015 7.71 2.90 4.25 65.8 44.4 28.5 47.1 35.4
2016 8.03 3.11 4.48 62.6 44.7 28.4 46.7 35.0

scored in 2015 and 2016? Table 4 shows that the proportion of called pitches lying
between the left and right boundaries of the RBSZ and between 18 and 21 inches
in height (roughly the lowest three inches of the RBSZ) continued to increase in
2015 but not in 2016. Similarly, the proportion of pitches thrown that were below
21 inches and the proportion of pitches below 21 inches that batters swung at con-
tinued to increase in 2015 but not in 2016. The abrupt halts to these trends in 2016
may be partially responsible for the increase in walks and runs in 2016, but it is
likely that other factors are involved. We defer further discussion to Section 8.

6. Effects of player attribute/game situation factors. In order to study the
effects of selected player attribute and game situation factors on the geometry
of the called strike zone, KDA-based outlines corresponding to each of the 96
(= 2 × 2 × 2 × 4 × 3) combinations of pitcher handedness, batter handedness,
venue, ball count and strike count were obtained for the data from 2014–2016.
Sample sizes differed considerably across these 96 combinations, ranging from a
minimum of 710 for the left-left-home-3-0 combination to a maximum of 76,414
for the right-right-home-0-0 combination. EF models (up to order [I/2]) and the
four superelliptic models were fitted to the KDA-based outlines. The same ten-
fold cross-validation procedure that was used to select among outline models for
year-specific CSZs in Section 5 was applied to the fitted outlines. The ATLAS per-
formed better than other superelliptic models for all but nine combinations. The
ATLAS also performed better than the EF(2) model for all but two combinations
and performed about equally as well as the EF(3) model. Since the EF(2) and
EF(3) models have more parameters (nine and 13, respectively) than the ATLAS,
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we again prefer the ATLAS. Displays of the first-stage outlines and the ATLAS
model fits and lists of estimated ATLAS coefficients may be found in Section E of
the Supplementary Material (Zimmerman, Tang and Huang (2019)). In what fol-
lows we report on analyses of ATLAS coefficients only; however, we repeated all
analyses with an EF(3) model, obtaining similar results (not shown) for those EF
coefficients that are analogous to ATLAS coefficients (â0, ĉ0, κ̂, |D̂1|).

6.1. MANOVA of all coefficients. Let yjklmq denote the nine-dimensional vec-
tor comprising the fitted seven-coefficient ATLAS representation of the CSZ out-
line, plus the two derived variables area and eccentricity, for the j th level of
pitcher handedness (j = 1 for right-handed pitchers, j = 2 otherwise), kth level
of batter handedness (k = 1 for right-handed batters, k = 2 otherwise), lth level of
venue (l = 1 for home, l = 2 for away), ball count m (m = 0,1,2,3), and strike
count q (q = 0,1,2). We performed a (weighted) multivariate analyses of variance
(MANOVA) of the vectors {yjklmq}, based on a 2 × 2 × 2 × 4 × 3 factorial model
with an overall mean, main effects for each factor and all two-factor interactions.
The residual vectors corresponding to the 96 factor combinations were assumed to
be independent multivariate normal random vectors with mean vector zero. Owing
to the large disparity among sample sizes, the variance-covariance matrix of the
residual vectors was taken to be n

−2/3
jklmq� where njklmq is the number of called

pitches that were used to create the outline for the jklmqth combination; this is in
accordance with the fact that the asymptotic variance of a two-dimensional kernel
density estimator with optimally chosen bandwidth, from a random sample of size
n, is O(n−2/3) (Wasserman (2006)). Note that we did not weight by sample size
in the analysis of yearly CSZs presented in the previous section because sample
sizes differed very little across years.

As is common practice for unreplicated factorial designs, we used the effect
sparsity principle to produce experimental error for the MANOVA (and subsequent
ANOVAs). Specifically, we applied Lenth’s method (Lenth (1989)) to determine
which of the effects are null. This method requires the design to be a 2k factorial
with no weighting, so for this purpose only we collapsed the three levels of “Strike”
and four levels of “Ball” into two (by combining the called pitches on counts with
zero or one strike, and doing likewise for pitches on counts with zero or one ball
and two or three balls), making our design a complete 25 factorial. The entire three-
step estimation and modeling process was then repeated for this design without
weighting, and estimates of all 25 − 1 = 31 contrasts were determined to be null
or nonnull according to Lenth’s procedure. We found no evidence that any three-,
four- or five-factor interaction effects were nonnull, and on this basis those effects
were pooled in the weighted 2×2×2×4×3 MANOVA and ANOVAs to produce
experimental error. The experimental error can be regarded as an amalgamation of
several distinct error components, including PITCHf/x instrument error, errors in
representing the actual CSZ as the 50% outline of a kernel discriminant analysis,
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TABLE 5
Weighted level means of estimated ATLAS coefficients, plus area and eccentricity, corresponding to

each player attribute and game situation factor and selected two-factor combinations, for the
combined 2014–2016 data. Units are identical to those in Table 3

Factor Levels x̂0 ŷ0 â b̂ Â Ê r̂1 r̂2 ŝ

Pitcher RHP −0.081 2.481 0.943 0.931 3.156 1.016 1.396 2.010 −0.061
LHP −0.060 2.490 0.944 0.927 3.121 1.022 1.319 2.031 0.041

Batter RHB −0.028 2.487 0.960 0.926 3.195 1.040 1.391 2.117 0.009
LHB −0.130 2.481 0.924 0.935 3.082 0.991 1.345 1.895 −0.071

Venue Home −0.074 2.484 0.949 0.934 3.173 1.018 1.359 2.042 −0.029
Away −0.074 2.484 0.939 0.925 3.115 1.018 1.381 1.992 −0.025

Ball 0 −0.072 2.491 0.936 0.920 3.092 1.021 1.377 2.025 −0.025
1 −0.073 2.485 0.944 0.915 3.102 1.034 1.353 2.110 −0.029
2 −0.078 2.478 0.946 0.941 3.188 1.007 1.376 2.015 −0.027
3 −0.079 2.463 0.969 0.993 3.405 0.978 1.381 1.729 −0.029

Strike 0 −0.076 2.479 0.985 0.996 3.498 0.989 1.408 1.805 −0.021
1 −0.074 2.476 0.928 0.913 3.050 1.018 1.409 2.129 −0.025
2 −0.071 2.502 0.893 0.840 2.669 1.066 1.263 2.237 −0.038

Batter × Strike: Batter Strike x̂0 Batter × Pitcher: Batter Pitcher ŝ

RHB 0 −0.022 RHB RHP −0.018
RHB 1 −0.022 RHB LHP 0.053
RHB 2 −0.045 LHB RHP −0.105
LHB 0 −0.141 LHB LHP 0.020
LHB 1 −0.136
LHB 2 −0.103

residuals from the fitted ATLAS model to points on the KDA-based outline and
errors due to the omission from the model of covariates that influence the CSZ.

Wilk’s lambda tests from the MANOVA indicated very strongly that all main-
effect vectors and several second-order interaction effect vectors were nonnull.
Furthermore, for all but one pair of ATLAS coefficients, there was no evidence
of cross correlation among residuals, and for the exceptional pair (ŷ0 and r̂1) the
evidence was only moderate (P = 0.010, with a Bonferroni-based adjustment for
multiplicity). Accordingly, we proceeded with a (weighted) univariate factorial
ANOVA of each ATLAS coefficient plus area and eccentricity. Results of these
analyses are summarized in subsequent subsections; Table 5 lists the (weighted)
factor level means of each coefficient; the corresponding standard errors and
ANOVA tables with P -values unadjusted for multiplicity may be found in Sec-
tion E of the Supplementary Material (Zimmerman, Tang and Huang (2019)). In
our summaries below, we discuss only those effects for which the evidence against
the null hypothesis of no effect is “strong” (0.001 < P < 0.01) or “very strong”
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FIG. 7. KDA-based CSZ outlines for 299 bootstrap samples, for six groups (factor combinations)
having a range of sample sizes.

(P < 0.001) following Bland (2000). We deemed the sizes of all other effects,
including some that are statistically significant in conventional terms (P < 0.05),
as too small to be practically relevant. Even some effects for which the evidence
against the null is very strong are not practically relevant, as will be seen.

In conjunction with each ANOVA, residual analyses including an assessment
of normality were carried out. Evidence against normality existed for some coef-
ficients, but in all such cases the distribution of fitted residuals was heavy tailed
rather than skewed, so, taking into account the substantial number (63) of degrees
of freedom for error, we judged the P -values obtained from the ANOVAs to be
trustworthy.

Also, as a check for the appropriateness of weighting by n2/3 in the ANOVAs,
we took bootstrap samples of size 299 from the data for each of six factor combi-
nations, chosen from among the 96 factor combinations so as to have sample sizes
that range from very small (n = 781) to moderately large (n = 28,736). KDA-
based outlines corresponding to each bootstrap sample are displayed in Figure 7.
Sample variances of the widths and heights of the outlines closely adhere to the
assumed inverse dependence on n2/3. Furthermore, it is shown in Section E of the
Supplementary Material (Zimmerman, Tang and Huang (2019)) that this inverse
dependence on n2/3 propagates to the ATLAS parameter estimates obtained via the
second stage of analysis, and yields bootstrap-based variances of those estimates
that, when pooled over factor combinations, are similar in magnitude to the resid-
ual mean squares from the ANOVAs. These results establish that using an ANOVA
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with weights n2/3 to estimate standard errors of ATLAS parameter estimates and
the effects that player attribute/game situation factors have on them is sensible.

For the MANOVA/ANOVAs just described, we marginalized over years 2014–
2016. One might question whether the results of this analysis are affected by
changes in the CSZ over years that were documented in Section 5. Therefore, we
repeated the analysis using a third-stage model with all the same effects plus main
effects of years and interaction effects of year with every other factor. Results of
this analysis are given in Section E of the Supplementary Material (Zimmerman,
Tang and Huang (2019)). Although these year-by-year analyses indicate that some
additional effects are nonzero for some ATLAS parameters, none of them are
large enough to be practically relevant, and all conclusions based on the analy-
sis marginalized over years (to be described in what follows) still hold. Numerical
estimates of effects, however, must be interpreted as averages over the three years.

6.2. Center. The ANOVA of horizontal center (x̂0) provided very strong evi-
dence of a nonzero batter handedness main effect and nonzero batter ×strike inter-
action effect. These two effects explained 88% and 6%, respectively, of the over-
all variation. The (weighted) level means of x̂0 were −0.34 (s.e. 0.02) inches for
right-handed batters (RHBs) and −1.56 (s.e. 0.02) inches for left-handed batters
(LHBs). Together with a half-width (â) for LHBs that was 1.14 inches larger than
its rule-book prescription, this shift implies that the CSZ for LHBs extends 2.70
(s.e. 0.03) inches to the left of the left boundary of the RBSZ. This feature, known
as the “lefty strike,” is undoubtedly practically relevant and has been a topic of
much discussion among baseball analysts (e.g., Roegele (2013b)); we defer fur-
ther discussion of it to Section 8. The effect size of the batter ×strike interaction
was considerably smaller and manifested itself primarily as horizontal centers for
LHBs and RHBs that were 0.73 (s.e. 0.07) inches closer to each other on a two-
strike count than when there were no strikes. Although there was strong or very
strong evidence of a nonzero pitcher handedness effect and some additional inter-
action effects, their effect sizes were less than one-third inch, that is, only about
1.5% of the total width of the RBSZ, which may not be practically relevant.

The ANOVA of vertical center (ŷ0) indicated very strong evidence for three
nonzero main effects, but only those of ball and strike count, which manifested
as a lowering of the centroid as the strike count increased and a slight raising as
ball count increased, were practically relevant. The centroid of the CSZ for an 0-
2 count was 0.66 (s.e. 0.09) inches higher than that for a 3-0 count. Sizes of the
remaining effects were less than one-eighth inch which is much less than 1% of
the height of the RBSZ.

6.3. Width, height and area. We found very strong evidence that all main ef-
fects on the half-width (â) save that of pitcher handedness were nonzero with the
strike, batter handedness, ball and venue effects explaining 74%, 13%, 4% and
1%, respectively, of the overall variation. There was also some evidence for three
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nonzero two-factor interactions, but their effect sizes were not practically rele-
vant. The difference in mean half-widths for RHBs and LHBs was 0.43 (s.e. 0.03)
inches, indicating that RHBs had a CSZ almost one inch wider than that of LHBs.
Thus, while our analysis of the horizontal center indicated that the CSZ of LHBs
extended further off the outside of the plate than that of RHBs, this analysis in-
dicates that LHBs actually had a substantially narrower CSZ. The strike and ball
main effects were of opposite sign: as the strike count increased, the CSZ became
narrower by an average of about 1.10 (s.e. 0.07) inches per strike, but as the ball
count increased it became wider by an average of about 0.26 (s.e. 0.09) inches per
ball. Thus the average decrease in width with each additional strike was about four
times the average increase in width with each additional ball. Although the evi-
dence of a nonzero venue main effect was very strong and indicated that pitchers
had a wider strike zone when they pitched at home, the difference in width was
only 0.24 (s.e. 0.03) inches, hence perhaps not very important from a practical
standpoint.

The results for half-height (b̂) were similar in many respects to those of half-
width. Evidence of nonzero main effects was very strong for all factors save pitcher
handedness, and no two-factor interaction was practically relevant. However, in
this case the strike and ball counts explained 85% and 10%, respectively, of the
overall variation, and the batter handedness effect was not practically relevant. The
strike and ball main effects were again of opposite signs, but their magnitudes were
somewhat greater than the magnitudes of their effects on â. More specifically, as
the strike count increased the CSZ became shorter by an average of 1.87 (s.e. 0.09)
inches per strike, and as the ball count increased it became taller by an average of
about 0.58 (s.e. 0.11) inches per ball. We found very strong evidence that pitchers
had a taller strike zone when they pitched at home, but the difference of 0.22 (s.e.
0.03) inches was not very large.

Owing to the similarities between the results for â and b̂ just presented, the
results for the derived variable, area, are similar. Only the strike, ball and batter
handedness main effects were practically relevant. Particularly noteworthy was
the difference in the CSZ’s area for the most extreme ball-strike counts, 0-2 and
3-0; means for those combinations were 2.42 (s.e. 0.02) and 4.00 (s.e. 0.03) square
feet, respectively. Thus, the CSZ was 65% larger when the count was 3-0 than
when it was 0-2! Some possible explanations for this effect are offered in Section 8.
Finally, we note that while there was very strong evidence of home-field advantage
in the form of a larger strike zone for a pitcher at home, the difference in areas at
the two venues was only 0.06 (s.e. 0.01) square feet (1.9% of the CSZ’s area).

6.4. Eccentricity, rectangularity and shear. The ANOVA of Ê provided very
strong evidence of nonzero batter handedness, strike and ball main effects. CSZs
for RHBs were more eccentric than those for LHBs. Strike and ball count effects
had opposite signs, with eccentricity consistently increasing as the strike count
increased or ball count decreased.



OUTLINE ANALYSES OF THE CALLED STRIKE ZONE 2441

Turning our attention to rectangularity, the evidence was strong and very strong,
respectively, that the main effects of pitcher handedness and strike on r̂1 were
nonzero. The top half of the CSZ was more rounded for LHPs than RHPs and,
regardless of pitcher handedness, became more so as the strike count increased.
However, the effect sizes were rather small and not discernible in Figures 2 and
3. For r̂2, evidence of nonzero batter handedness and strike main effects was very
strong, but the first of these was not large. The bottom half of the CSZ became more
rounded as the ball count increased from two to three, but more rectangular (i.e.,
more like that of the RBSZ) as the strike count increased. The bottom-half effects
of the ball-strike count on shape are large enough to be discernible in Figure 3.

Finally, there was very strong evidence of nonzero pitcher and batter handed-
ness main effects and their interaction effect on ŝ. Shear coefficients for CSZs
corresponding to RHBs or LHPs were positive on average while those correspond-
ing to LHBs or RHPs were negative. Shear coefficients for all four pitcher-batter
handedness combinations were quite different with the largest difference existing
between pitcher-batter combinations of opposite handedness in a manner that ex-
pands the CSZ in a down-and-away direction, as Figure 2 illustrated.

7. Variability between and within umpires. The analyses reported in the
previous two sections considered called strike zones that were marginalized over
umpires. Students of the game of baseball are aware, however, that umpires seem
to differ in how they call balls and strikes. This section compares the variability of
CSZ outlines corresponding to different umpires (inter-umpire variability) to vari-
ability within individual umpires (intra-umpire variability). Of course, obtaining a
separate outline for each umpire greatly reduces the number of called pitches from
which the outlines may be determined. Furthermore, examining within-umpire
variability requires that we randomly split the called pitches for a given umpire
to create replicates, further reducing the sample sizes. So as to have sufficient data
to reliably determine KDA-based outlines that can serve our purpose, we subset-
ted the called pitches and restricted our focus as follows. First, we used data over
merely the three-year period 2014–2016 (during which time the CSZ was more
homogeneous than earlier) and from only the 86 umpires who called at least 500
pitches during this period for each subset. Second, the only player attribute/game
situation factors that we accounted for were batter handedness and count; we
marginalized over the remainder. The analysis in Section 6 justifies these marginal-
izations, as it indicated that the effects of venue on CSZ were not practically rel-
evant and that pitcher handedness affected only the rectangularity and shear coef-
ficients, which are of lesser importance for comparing umpires than other ATLAS
coefficients and will be excluded from this analysis. Even with these marginaliza-
tions, however, after random splitting of each umpire’s called pitches into replicate
halves, only those outlines corresponding to a 0-0 count were based on sufficient
sample sizes to be reliable, so it is those to which an ATLAS model was fit. Fig-
ure 8 shows KDA-based and optimally fitted ATLAS outlines for four umpires,
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FIG. 8. KDA-based (shaded regions) and fitted ATLAS called strike zones (bold outlines) on 0-0
counts from 2014–2016 for four umpires superimposed upon the average RBSZ.

illustrating typical differences between umpires and between the two replications
of the same umpire. For outlines corresponding to the same batter handedness,
greater geometric variability in the CSZ is evident between umpires than between
replicates from the same umpire.

Let yijk denote an arbitrary fitted coefficient from the ATLAS representation
of the CSZ outline corresponding to the ith level of batter handedness, j th um-
pire, and kth replicate. The following two-factor crossed mixed effects model with
interaction was fit to each such coefficient:

(7.1) yijk = μ + βi + uj + (βu)ij + eijk.

Here, μ is an overall fixed effect, βi is the fixed effect of the ith level of batter
handedness, uj is the random effect of umpire j , (βu)ij is the random interac-
tion effect between the ith level of batter handedness and umpire j and eijk is
the random effect of the kth replicate. We assumed that the uj s, (βu)ij s, and the
eijks are mutually independent random variables with N(0, σ 2

u ), N(0, σ 2
βu) and

N(0, σ 2
e ) distributions, respectively. Note that we regard the effects of umpires
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TABLE 6
Minimum variance quadratic unbiased estimates (×106) of variance components in the mixed

effects model (7.1) for selected ATLAS coefficients (plus area and eccentricity) and the
corresponding point estimate and 99% upper confidence interval estimate of the proportion γ of

variability attributable to umpires

ATLAS coefficient σ̂ 2
u σ̂ 2

βu σ̂ 2
e γ̂ Confidence interval

x0 459 1238 987 0.731 (0.634,∞)

y0 199 360 945 0.372 (0.207,∞)

a 1301 549 987 0.652 (0.526,∞)

b 1122 209 996 0.572 (0.424,∞)

A 14,830 10,510 13,500 0.652 (0.530,∞)

E 2961 824 1920 0.663 (0.538,∞)

(and thus also their interaction with batter handedness) as random variables. This
seems more reasonable for our purposes than treating them as fixed effects because
the question being addressed here pertains to the variability of these effects rather
than their values for individual umpires.

Minimum variance quadratic unbiased estimates of the variance components
under this model are listed in Table 6 for each ATLAS coefficient. (Because the
data are balanced, these estimates are also residual maximum likelihood, i.e.,
REML, estimates.) Two features in the table are especially noteworthy. First,
the estimates of σ 2

e for the CSZ centroid’s coordinates and its width and height
are very similar, indicating that individual umpires were about equally consistent
horizontally and vertically in their calls. Second, the estimated between-umpire
variability, viz. σ̂ 2

u + σ̂ 2
βu, is larger than the estimated within-umpire variability,

σ̂ 2
e , for all ATLAS coefficients except vertical center. Estimates of the propor-

tion of total variability of an ATLAS coefficient attributable to umpires, that is,
γ̂ = (σ̂ 2

u + σ̂ 2
βu)/(σ̂

2
u + σ̂ 2

βu + σ̂ 2
e ), are also listed in the table, together with 99%

upper confidence intervals for the corresponding true proportion. We derived the
form of the confidence interval by manipulating and specializing a general expres-
sion for confidence intervals given by Lu, Graybill and Burdick (1987) for certain
other ratios of variance components in random and mixed linear models; for de-
tails see Section F of the Supplementary Material (Zimmerman, Tang and Huang
(2019)). It may be noted that the lower endpoint of the interval exceeds 0.5 for all
geometric attributes except vertical center and half-height. These results provide
strong evidence that, on 0-0 counts at least, the horizontal attributes (horizontal
center and width) of the CSZ, plus its area and ellipticity, exhibit more variability
between umpires than they do for replicates within umpires. No such statement
can be made about the vertical attributes of the CSZ.

8. Discussion and future work. In this work we applied and extended meth-
ods of outline analysis in order to characterize the geometry of the called strike
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zone and perform inference on it. The new affine-transformed latitudinally asym-
metric superelliptic (ATLAS) model introduced here fit the data remarkably well,
generally much better than existing elliptic Fourier models with a similar number
of parameters. Another distinct advantage of the ATLAS is that all of its parame-
ters, unlike those of EF models, correspond directly to geometric attributes of the
CSZ that are of interest. In particular, the rectangularity coefficients of the ATLAS
allow us to directly measure the adherence (or lack thereof) of the top and bottom
halves of the called strike zone to the rectangular shape prescribed by the rule book,
and the shear coefficient accounts for the observed longitudinal asymmetry in the
CSZ for pitcher-batter combinations of opposite handedness. Additional contribu-
tions of this work to outline analysis include the development of an orthogonal
distance fitting algorithm for (generalized) superelliptic models and an expansion
of follow-up methodologies for outline model coefficients to, specifically, tests for
time trend, factorial analyses of variance for determining moderators of outline
geometry and mixed effects models/variance component estimation for character-
izing outline variability among and between umpires. The superelliptic models,
fitting algorithm, and follow-up methodologies developed here may in the future
be applied, when appropriate, to outlines of other objects.

In Section 1, we briefly noted some advantages of an outline analysis relative
to previously published analyses based on generalized additive models (GAMs)
of the log odds of a called strike. We give a more detailed comparison of the two
methodologies now. With one exception, authors presenting GAM-based analyses
of the CSZ have not produced estimates of geometric attributes or provided con-
fidence regions for the CSZs they display. The exception is Mills (2016a), who
gave numerical values for the endpoints of a confidence interval for the CSZ’s area
and displayed a confidence region for the CSZ’s outline but did not describe how
he actually obtained them. In contrast, because the parameters of the model fit to
the outline at its second stage directly represent important geometric attributes of
the CSZ and because the factorial ANOVA or other third-stage analysis yields an
estimate of error, an outline analysis results in straightforward inference on those
attributes and straightforward comparison to the corresponding attributes of the
RBSZ. Moreover, previous authors using GAMs have imposed pure additivity on
the model, ignoring the possibility of interactions between factors, some of which
we found to be important via outline analysis. It is possible, of course, to add inter-
action terms to a GAM but only with a corresponding increase in the effects of the
curse of dimensionality. Thus, an outline analysis has several advantages over a
GAM-based analysis. However, a distinct disadvantage of an outline analysis rela-
tive to GAM-based analyses is that the player attribute/game situation factors that
can be considered are limited, as a consequence of requiring a sufficient number
(several hundred) of called pitches in subsets corresponding to factor combinations
in order to obtain reasonable kernel discriminant analysis-based outlines at the
first stage. A GAM, when embedded within a Bayesian hierarchical framework,
can borrow strength across factor combinations to produce useful inferences even
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when the subsets contain very few pitches. For example, Deshpande and Wyner
(2017) used hierarchical Bayesian GAMs to address questions about effects of in-
dividual catchers on the CSZ. Some of their models included effects of ball-strike
count and individual catchers, umpires, pitchers and batters with factor combina-
tions numbering in the millions. Nevertheless, they obtained meaningful results
though it may be noted that inferences for a model with so many parameters are
likely to be sensitive to prior specification and to the validity of their no-interaction
assumption.

One main objective of our work was to perform inference on changes in the
geometry of the called strike zone since the inception of the PITCHf/x system in
2008. We found that the CSZ evolved remarkably smoothly from 2008–2016, and
that most of its geometric attributes were more like those of the RBSZ at the end
of this period than at its beginning. The lone exception was the CSZ’s size, which
increased over time to the point that it was about 10% larger than that of the RBSZ
by 2016. Two factors were mainly responsible for the increase in size: (1) a drop in
the CSZ’s lower boundary, and (2) an increase in its rectangularity. However, these
changes actually made the CSZ more like the RBSZ, not less. The primary reason
the CSZ was so much larger than the RBSZ by 2016 was its excessive width which,
though it moderated over time, was still 17% larger in 2016 than that prescribed by
the rule book. For comparison, the CSZ in 2016 was only about 5% taller than the
rule-book prescription. Reports from a few years ago (e.g., Passan (2015)) indicate
that Major League Baseball’s Competition Committee, in hopes of reducing the
size of the (called) strike zone and thereby increasing offensive production, was
contemplating raising the lower boundary of the RBSZ from the hollow beneath
the hitter’s kneecap to the top of the knee. While such an action would likely
reduce the size of the CSZ, it would seem that if adherence to the RBSZ is desired,
it is the width, not the height, of the strike zone that should be receiving most
of the Committee’s attention. In any case, increased offensive output since the
middle of the 2015 season appears to have rendered the issue moot, for now. Mills
(2016b), seeking an explanation for the recent dramatic increase in run scoring
despite a continued increase in strikeouts and only a very small decrease in the
size of the CSZ, documented several changes by batters and pitchers over this
period, including an increase in exit velocity (the speed at which a struck ball
leaves the bat), an increase in the proportion of pitches thrown to the inner half
of the plate (where batters can drive the ball with more power) and an increase in
average launch angle (the vertical angle at which the ball leaves the bat after being
struck). But as of this writing, the extent to which these changes are responsible
for the increase in run scoring is unknown.

Our second main objective was to investigate how selected player attribute and
game situation factors affect the CSZ’s geometry. For the data from 2014–2016,
we found that pitcher handedness, batter handedness and ball-strike count all had
practically relevant effects on at least one geometric attribute of the CSZ. Of these
effects, we regard four as worthy of additional discussion; two have been discussed
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extensively by baseball analysts and two have not. Perhaps the most important of
these is the effect that the ball-strike count has on the CSZ’s size. In short, the CSZ
expands as the number of balls increases and shrinks as the number of strikes in-
creases. One possible explanation, termed the “Compassionate Umpire Theory” by
Walsh (2010), is that umpires attempt (perhaps unconsciously) to help the pitcher
by expanding the strike zone when the batter is “ahead in the count” (i.e., the count
has more balls than strikes) and attempt to help the batter by shrinking the strike
zone when he is behind in the count. Another, more plausible explanation, put for-
ward by Mills (2014) and Green and Daniels (2015), could be called the “Reluctant
Arbiter Theory.” According to this theory, the umpire, preferring to let the pitcher
and batter determine the outcome of an at-bat via game action (a swinging strike or
a pitch struck and put into play), adjusts his strike zone with each pitch to reduce
the chance that he will eventually have to make a decisive call of a third strike or
fourth ball. A similar phenomenon has been observed in other sports such as foot-
ball and basketball, where referees appear to be less likely to call certain penalties
or fouls late in the game compared to earlier; see, for example, Moskowitz and
Wertheim (2011). On the other hand, Lopez and Mills (2018) present evidence of
an opposite effect in the bottom half of extra innings of baseball games, wherein
umpires (again perhaps unconsciously) act in a way that increases the probability
that the game will end after that inning, by calling more borderline pitches balls
if the batting team is tied and has at least one man on base, while calling more
such pitches strikes if the batting team is behind. Still another explanation for the
ball-strike count’s effect on the CSZ, advocated by Molyneux (2016) and called
“Bayesian instinct” by Green and Daniels (2017), is that when the batter is ahead
in the count, the pitcher needs to throw a strike, so the umpire’s prior belief of
a strike is higher; when the pitcher is ahead in the count, he can better afford to
throw a ball, so the umpire’s prior belief of a strike is lower. The umpire then calls
the pitch by integrating this “rational expectations” prior with his observation of
the pitch’s location.

The other extensively documented noteworthy effect is the “lefty strike,” that
is, a strike zone for left-handed batters that extends outside the plate more than
2.5 inches beyond its rule-book prescription. A theory for this phenomenon has
emerged (Fast (2011a), Roegele (2013b)), which is based on the notion that the
visual cues the umpire uses to call a pitch include not only its location but also
the movements (or lack thereof) of the batter and catcher it induces. According
to this theory, greater movement by either player suggests to the umpire that the
pitch was less likely to be in the RBSZ, increasing the likelihood that he calls it a
ball. One component of the theory is that pitches near the inside edge of the RBSZ
may appear to the batter as if they will hit him, possibly causing him to move out
of harm’s way, while pitches near the outside edge, if not swung at, will induce
little movement. A second component is the fact that virtually all catchers catch
the ball with their left hand, with the consequence that a pitch caught near the left
edge of the RBSZ results in considerably less movement of the catcher’s arm than
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a pitch caught near the right edge (the former requires only a slight movement to
the side while the latter requires the catcher to reach across his body). Together,
these two components imply that a pitch to a left-handed batter that is caught
near the left edge of the RBSZ will result in less movement by the batter and
catcher than the other three possibilities. A final component of the theory is “pitch
framing,” whereby the catcher, in agreement with the pitcher, sets his glove in
a predetermined location prior to receiving the pitch, providing a target for the
pitcher and resulting in little catcher movement if the pitch is on target. If catchers
set up outside the midpoint of the plate more often to left-handed batters than
to right-handed batters, their arm will tend to move less for outside pitches to
lefthanders than for outside pitches to righthanders. It is worth noting that 65.7% of
called pitches to left-handed batters from 2014–2016 were outside the midpoint of
the plate, compared to 61.9% of called pitches to right-handed batters. Recent in-
depth analyses of pitch framing and its impacts are presented by Brooks, Pavlidis
and Judge (2015) and Deshpande and Wyner (2017).

Two previously undocumented features of the CSZ revealed by our analysis are
its latitudinal asymmetry, specifically the top half being smaller and more rounded
than the bottom half, and that its elongation toward its low outside (to the bat-
ter) corner, noted previously by baseball experts, is attributable to pitcher-batter
combinations of opposite handedness only. We speculate that both of these can be
explained by a “movement” theory similar to the one offered for the lefty strike.
In regard to the latitudinal asymmetry, catchers may set their target below the ver-
tical midpoint of the RBSZ more often than not with the consequence that pitches
caught in the top half tend to cause greater arm movement; furthermore, the um-
pire’s eyes are located at this higher level so the catcher’s body is less likely to ob-
scure the precise location where the ball is caught if it is above the midpoint. Some
supporting evidence for the first of these points is that 62.4% of called pitches in
2014–2016 crossed the vertical plane containing the plate’s front edge below the
vertical midpoint of the RBSZ. Unfortunately, the theory does not explain the sub-
stantial increase in rectangularity in the bottom half of the CSZ as strike count
increases, for which we have no plausible explanation. As for the low-outside-
corner elongation, we reiterate that the batter does not have to move out of the way
of an outside-edge pitch; furthermore, the momentum of a pitch received on the
side of the plate coinciding with the pitcher’s handedness will tend to carry the
catcher’s mitt (and arm) into his body, resulting in little sideways arm movement,
whereas the momentum of a pitch received on the opposite site will tend to carry
the catcher’s arm away from his body, resulting in greater arm movement.

Our final analytical objective was to characterize the variability in the geometry
of called strike zones between umpires. For pitches on 0-0 counts from 2014–2016,
we found that the horizontal center, width, area and eccentricity of the CSZ (but
not its vertical center and height) exhibited greater variability between umpires
than within umpires. Put another way, on 0-0 counts the (horizontal) variation in
an individual umpire’s CSZ from pitch to pitch is smaller than the (horizontal)
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variation in CSZs of different umpires. This is probably desirable, as players and
managers appear more willing to tolerate variability in strike zones called by dif-
ferent umpires than they will tolerate inconsistency in calls from the same umpire,
particularly if the umpire is inconsistent over the course of a mere inning or game.

Outline-based methodologies similar to those used herein could be used to ad-
dress many other interesting questions about the geometry of the called strike zone,
such as whether pitch type and speed, or umpire age and experience, affect it.
Moreover, rather than focusing merely on geometric attributes of the CSZ, future
studies could also consider its precision, as measured for example by the average
gradient along the KDA-based outline or, more simply, by the the area between
KDA-based or ATLAS-based outlines corresponding to called strike probabilities
of (50−α)% and (50+α)%, where 0 < α < 50. In particular, it would be of inter-
est to see whether the precision of the CSZ, not merely its accuracy, improved from
2008–2016, and, if so, whether the improvement occurred equally on all four sides
of the strike zone, whether it was affected by the ball-strike count and whether in-
dividual umpires’ improvements in precision over time were correlated with their
improvements in accuracy. Answers to these questions will be reported elsewhere.

Our outline-analytic methods for characterizing the geometry of the strike zone
moderated by the effects of years, umpires and player attribute/game situation fac-
tors could be used to predict whether a (called) pitch in any given location would
be called a strike (or a ball), though this was not an inferential objective of the
current article. Methods of analysis based on GAMs or other logistic regression
models for the called strike probability can do likewise, so, in principle, it would
be possible to compare the predictive performance of our modeling approach to
that of those other approaches. This is a topic for future investigation.

SUPPLEMENTARY MATERIAL

Supplement A to “Outline analyses of the called strike zone in Major
League Baseball” (DOI: 10.1214/19-AOAS1285SUPPA; .zip). We include in this
supplementary material an animation depicting the evolution of the called strike
zone from 2008–2016.

Supplement B to “Outline analyses of the called strike zone in Major
League Baseball” (DOI: 10.1214/19-AOAS1285SUPPB; .zip). We include in this
supplementary material R code for fitting elliptic Fourier models.

Supplement C to “Outline analyses of the called strike zone in Major
League Baseball” (DOI: 10.1214/19-AOAS1285SUPPC; .pdf). We include in this
supplementary material details of the algorithm for fitting generalized superel-
lipses and other closed curves.

Supplement D to “Outline analyses of the called strike zone in Major
League Baseball” (DOI: 10.1214/19-AOAS1285SUPPD; .zip). We include in this
supplementary material an R package for fitting generalized superelliptical models.

https://doi.org/10.1214/19-AOAS1285SUPPA
https://doi.org/10.1214/19-AOAS1285SUPPB
https://doi.org/10.1214/19-AOAS1285SUPPC
https://doi.org/10.1214/19-AOAS1285SUPPD
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Supplement E to “Outline analyses of the called strike zone in Major
League Baseball” (DOI: 10.1214/19-AOAS1285SUPPE; .pdf). We include in this
supplementary material displays of KDA-based and fitted ATLAS called strike
zones and a list of estimated ATLAS coefficients corresponding to the 96 factor
combinations described in Section 6. We also give the MANOVA table, ANOVA
tables, and standard errors of weighted level means described in Section 6, and give
similar results for a model that includes main effects of year and interactions of all
other factors with year. Finally, we list bootstrap variances of ATLAS parameter
estimates of called strike zones for selected factor combinations.

Supplement F to “Outline analyses of the called strike zone in Major
League Baseball” (DOI: 10.1214/19-AOAS1285SUPPF; .pdf). We include in this
supplementary material a derivation of the form of the confidence interal for the
proportion of variability in geometric attributes of called strike zone outlines at-
tributable to umpires.
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