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1. Introduction

Let U : R? — R be a continuously differentiable convex function such that Z =
f]Rd e V() dz < 400. Z is the normalizing constant of the probability density 7
associated with the potential U, defined for z € R? by n(z) = Z e V(@) We
discuss in this paper a method to estimate Z with polynomial complexity in the
dimension d.

Computing the normalizing constant is a challenge which has applications
in Bayesian inference and statistical physics in particular. In statistical physics,
Z is better known under the name of partition function or free energy [3],
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[30]. Free energy differences allow to quantify the relative likelihood of different
states (microscopic configurations) and are linked to thermodynamic work and
heat exchanges. In Bayesian inference, the models can be compared by the
computation of the Bayes factor which is the ratio of two normalizing constants
(see e.g. [43, chapter 7]). This problem has consequently attracted a wealth of
contribution; see for example [9, chapter 5], [31], [20], [2], [16], [29], [49] and,
for a more specific molecular simulations flavor, [30]. Compared to the large
number of proposed methods to estimate Z, few theoretical guarantees have
been obtained on the ouput of these algorithms; see below for further references
and comments. Our algorithm relies on a sequence of Gaussian densities with
increasing variances, combined with the precise bounds of [15].

The paper is organized as follows. The outline of the algorithm is first de-
scribed, followed by the assumptions made on U. Our main results are then
stated and compared to previous works on the subject. The theoretical analysis
of the algorithm is detailed in Section 2. In Section 3, a numerical experiment
is provided to support our theoretical claims. Finally, the proofs are gathered
in Section 5. In Section 4, a result of independent interest on the mean squared
error of the empirical average of locally Lipschitz functions is established.

Notations and conventions

Denote by B(R?) the Borel o-field of R%. For p a probability measure on
(R, B(RY)) and f a p-integrable function, denote by u(f) the integral of f
w.r.t. pu. We say that ¢ is a transference plan of p and v if it is a probability
measure on (R? x R, B(R? x R9)) such that for all measurable sets A of R?,
C(A x R%) = p(A) and ((R? x A) = v(A). We denote by II(u,v) the set of
transference plans of i and v. Furthermore, we say that a couple of R%random
variables (X,Y) is a coupling of p and v if there exists ¢ € II(u,v) such that
(X,Y) are distributed according to ¢. For two probability measures p and v, we
define the Wasserstein distance of order p > 1 as

o 1/p
Wp(u71/)(=e< we [ Rnx—ynpdaw) . W

CEM(p,v)

By [46, Theorem 4.1], for all u,v probability measure on R? there exists a
transference plan ¢* € II(y, v) such that the infimum in (1) is reached in ¢*. ¢*
is called an optimal transference plan associated with W,,.

f : RY = R is a Lipschitz function if there exists C' > 0 such that for all
z,y € R |f(z) — f(y)| < Cllz — y||. Then we denote

£l = sup{lf(@) = fW)Ilz =y | 2,y € R,z # y} .

For k € N, C*(R?) denotes the set of k-continuously differentiable functions
R? — R, with the convention that C°(R?) is the set of continuous functions.
Let N* = N\ {0}, n,m € N* and F : R® — R™ be a twice continuously
differentiable function. Denote by VF and V2F the Jacobian and the Hessian
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of F respectively. For m = 1, the Laplacian is defined by AF = Tr V2F where
Tr is the trace operator. In the sequel, we take the convention that for n,p € N,
n < pthen 337 = 0 and [[ = 1. By convention, inf {#} = +o0, sup {0} = —o0
and for j > iin Z, {j,...,i} = (). For a finite set F, |E| denotes the cardinality
of E. For a,b € R, a Ab=min(a,b) and a Vb = max(a,b). Let ¥, ¢ : RY — R}.
We write 1) = O(¢) if there exists to > 0, C, ¢ > 0 such that ¥ (t) < Ce(t) [logt|*
for all ¢ € (0, to]. Denote by B(z,7) = {y € R?: |ly — z|| < r}.

Presentation of the algorithm

Since Z < +oo and U is convex, by [7, Lemma 2.2.1], there exist constants
p1 > 0 and ps € R such that U(x) > p; ||z|| — p2. Therefore, by continuity, U
has a minimum z*. Without loss of generality, it is assumed in the sequel that
z* =0 and U(z*) = 0.

Let M € N*, {02}, be a positive increasing sequence of real numbers
and set 02, = +oc. Consider the sequence of functions {U;}M defined for all
i€{0,...,M} and z € R? by
[E1ls
207

Ui(z) = +U(z) (2)

with the convention 1/co = 0. We define a sequence of probability densities
{m}M, fori € {0,...,M} and = € R? by
mi(e) =27 e L 7= / e Vi dy . (3)
Rd
The dependence of Z; in o? is implicit. By definition, note that Uy = U,
Zy = Z and 7y = 7. As in the multistage sampling method [22, Section 3.3],
we use the following decomposition

g M-l Ziit

70: Z;

(4)

=0

Zy is estimated by choosing o3 small enough so that 7 is sufficiently close to a
Gaussian distribution of mean 0 and covariance o3 Id. For i € {0,..., M — 1},
the ratio Z,;11/Z; may be expressed as

Zit1

Z / gi(@)mi(z)dz = mi(g:) )

where g; : R? — R, is defined for all x € R by

o) =exp (wllel®) . =g (-] ©)

o; Oit1

The quantity m;(g;) is estimated by the Unadjusted Langevin Algorithm (ULA)
targeting ;. Introduced in [18] and [38] (see also [44]), the ULA algorithm can



854 N. Brosse et al.

be described as follows. For i € {0,...,M — 1}, the (overdamped) Langevin
stochastic differential equation (SDE) is given by

dYi; = —VU;(Yis)dt +V2dB;;, Yio=0, (7)

where {(Bi)i>0}i2y" are independent d-dimensional Brownian motions. The
sampling method is based on the Euler discretization of the Langevin diffusion,
which defines a discrete-time Markov chain, for ¢ € {0,...,M — 1} and k € N

Xik+1 = Xik —7VUi(Xig) +V29iWikg1, Xio=0, (8)

where {(W; 1) ken~ }f\i 61 are independent i.i.d. sequences of standard Gaussian
random variables and «; > 0 is the stepsize. For ¢ € {0,..., M — 1}, consider
the following estimator of Z;11/Z;,

wilgi) = — >

Y k=N;+

i

9i(Xik) (9)

where n; > 1 is the sample size and N; > 0 the burn-in period. We introduce
the following assumptions on U.

H1. U : RY - R is continuously differentiable and L-gradient Lipschitz,
i.e. there exists L > 0 such that for all x,y € RY,

IVU(z) = VU@ < Lz -yl . (10)
H2 (m). U : R? — R is continuously differentiable and satisfies for all x,y € R?,
Uly) > U(x) + (VU (z),y — z) + (m/2) = — y||* . (11)

H3. The function U is three times continuously differentiable and there exists
L > 0 such that for all z,y € R?

|V2U(z) — V2U(y)|| < Lz —yl| - (12)

The strongly convex case (H2(m) with m > 0) is considered in Section 2.1
and the convex case (H2(m) with m = 0) is dealt with in Section 2.2. Assuming
H1 and H2(m) for m > 0, for i € {0,..., M}, U; defined in (2) is L;-gradient
Lipschitz and m;-strongly convex if m; > 0 (and convex if m; = 0) where

1 1
Define also the following useful quantities,
= — i = . 14
m + L ’ w m; + Li ( )

H3 enables to have tighter bounds on the mean squared error of 7;(g;) defined
in (9). Under H3, for all ¢ € {0, ..., M}, U, satisfies (12) with L. Finally, since
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Z < +o0 and by [7, Lemma 2.2.1], there exist p; > 0 and p2 € R such that for
all » € RY,
Uz) = p1 [zl — p2 - (15)

Denote by S the set of simulation parameters,
S={M {o75i5s" fndito i i5g L AN HEG T} (16)

and by Z the following estimator of Z,
R M—1
Z = (2r03)**(1 + ogm)~/? { H ﬁ'i(gi)} ) (17)
i=0

where 7;(g;) is defined in (9). The dependence of Z in § is implicit. Note that Z is
a biased estimator of Z because Z is approximated by (2w03)%?(1+o03m)~%2.
We define the cost of the algorithm by the total number of iterations performed
by the M Markov chains (X; ,,)n>0 for i € {0,...,M — 1}, i.e.

M-1
cost = Z {N; +n;} . (18)
i=0

Observe that each step of the Markov chain takes time linear in d. We state below
a simplified version of our results; explicit bounds are given in Theorems 5, 6,
12 and 13.

Theorem 1. Assume H1, H2(m) for m > 0. Let u,e € (0,1). There exists an
explicit choice of the simulation parameters S such that the estimator Z defined
in (17) satisfies

P(’ZA/271’>5) <u. (19)

Moreover, the cost of the algorithm (18) is upper-bounded by,

H1,H2(m) form >0

cost £, log(d)d® x O(e™4)

wZm3

Hi1,H2(m) form > 0,H3

cost (u3/2€w$/2 + Hg/L;mQ) log(d)d®/? x (7)(6_3)
H1,H2(m) form >0
cost M’;‘Z% (d + pa2)*log(d)d® x O(e*)

Hi1,H2(m) form > 0,H3

2 T ~
cost (lﬁ%Pi‘ + Ng/,}(dﬁ_pz)p?) (d 4+ p2)*log(d)d®/? x O(e~3)




856 N. Brosse et al.

By the median trick (see e.g. [27, Lemma 6.1] or [36]), the dependence in
of the cost can be reduced to a logarithmic factor, see Corollaries 7 and 14.

It is interesting to compare these complexity bounds with previously reported
results. In [33] and [5] (see also [12]), the authors propose to use sequential Monte
Carlo (SMC) samplers to estimate the normalizing constant Z of a probability
distribution 7. In [5], 7 is supported on a compact set K included in R? and
satisfies for x = (z1,...,24) € K, w(z) = Z71 H;i:l exp(g(x;)). [5, Theorem 3.2]
states that there exists an estimator Z of Z such that limg_, 4o E[|Z/Z —1[2] =
C/N where N is the number of particles and C' depends on g and on the param-
eters of the SMC (choice of the Markov kernel and of the annealing schedule).
With our definition (18), the computational cost of the SMC algorithm is O(Nd)
(there are d phases and N particles for each phase). To obtain an estimator Z
satisfying (19) implies a cost of du=*O(e~2). However, the product form of the
density 7 is restrictive, the result is only asymptotic in d and the state space
is assumed to be compact. [13] combines SMC with a multilevel approach and
[26] establishes results on a multilevel particle filter.

[23] deals with the case where m(x) = exp(—SH (z))/Z(S) where z € Q, a
finite state space, 8 > 0 and H(z) € {0,...,n}. These distributions known as
Gibbs distributions include in particular the Ising model. To compute Z(3),
[23] relies on an annealing process on the parameter 3, starting from Z(0). Let
q =10g(Z(0))/log(Z(p)). [23, Theorem 1.1] states that there exists an estimator
Z(B) of Z(B) such that (19) is satisfied with ;= 1/4 and glog(n)O(e~2) draws
from the Gibbs distribution.

Our complexity results can also be related to the computation of the volume
of a convex body K (compact convex set with non-empty interior) on R?. This
problem has attracted a lot of attention in the field of computer science, start-
ing with the breakthrough of [17] until the most recent results of [10]. Define
for x € R, m(x) = 1k(x)/ Vol(K). Under the assumptions B(0,1) C K and
Jga |#|* 7(z)dz = O(d), [10, Theorem 1.1] states that there exists an estima-
tor Z of Z = Vol(K) such that (19) is satisfied with z = 1/4 and a cost of
log(d)d>O(e™2).

Nonequilibrium methods have been recently developed and studied in order
to compute free energy differences or Bayes factors, see [24] and [30, Chapter
4]. They are based on an inhomogeneous diffusion evolving (for example) from
t =0 to t = 1 such that my and 7 are the stationary distributions respectively
for t = 0 and t = 1. Recently, [1] provided an asymptotic and non-asymptotic
analysis of the bias and variance for estimators associated with this methodology.
The main aim of this paper is to obtain polynomial complexity and inspection
of their results suggests a cost of order d'® at most to compute an estimator Z
satisfying (19). However, this cost may be due to the strategy of proofs.

Multistage sampling type algorithms are widely used and known under differ-
ent names: multistage sampling [45], (extended) bridge sampling [22], annealed
importance sampling (AIS) [34], thermodynamic integration [37], power poste-
rior [4]. For the stability and accuracy of the method, the choice of the param-
eters (in our case {02} 1) is crucial and is known to be difficult. Indeed, the
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issue has been pointed out in several articles under the names of tuning tem-
pered transitions [4], temperature placement [21], annealing sequence [5, Sec-
tions 3.2.1, 4.1], temperature ladder [37, Section 3.3.2], effects of grid size [16],
cooling schedule [10]. In Sections 2.1 and 2.2, we explicitly define the sequence

{o2} 50

2. Theoretical analysis of the algorithm

In this Section, we analyse the algorithm outlined in Section 1. The strongly
convex and convex cases are considered in Sections 2.1 and 2.2, respectively.
The choice of the simulation parameters S explicitly depends on the (strong)
convexity of U. Throughout this Section, we assume that L > m; note that
if L = m, m is a Gaussian density and Z is known. For M € N* and ¢ €
{0,...,M — 1}, we first provide an upper bound on the mean squared error
MSE; of #;(g;) defined by

MSE: = E [ {7i(g:) — mi(90)}"] , (20)

where 7;(g;) and 7;(g;) are given by (5) and (9) respectively. The MSE; can be
decomposed as a sum of the squared bias and variance,

MSE; = {E[#:(g:)] — mi(g:)}* + Var [#:(g,)] - (21)

Propositions 2 and 3 give upper bounds on the squared bias and Proposition 4
on the variance. The results are based on the non-asymptotic bounds of the
Wasserstein distance for a strongly convex potential obtained in [15] (see also
[11], [14]). We introduce the following conditions on the stepsize v; used in the
Euler discretization and the variance o7,

1 ) 2d 47 -t
. - - @ < < _
Yi € <0a m+ j7 + 2/0_1_2:| ) Uz+1 — 2(d+ 4) ( 02 m>+ ) (22)

2

where by convention 1/0 = +oco. Note that the condition on 67, is equivalent
to a; € [0,m;/{4(d+ 4)} A (207)7!] where a; is defined in (6) and m; in (13).
Assuming that v; and o, ; satisfy (22), we define the positive quantities

4da;(d + 2 1 —8a;v; d
CZ‘OZEXP M ; 011:2dﬂ, Ci2:4—, (23)
’ R — 8&1' ’ R — 8ai ’ m;
where m;, L; and k; are defined in (13) and (14), respectively. Denote by,
Ai,O = 2L?I€;1d s (24)
A1 =2dL? +dL}(k; '+ (mi+ L)) (my + 67 (my + L)Y (25)

Proposition 2. Assume HI and H2(m) for some m > 0. For N; € N, n; € N*
and 'yi,U?H satisfying (22), we have
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{El#i(9:)] — mi9:)}* < 4a}(Ci2 + Ci0Cin)

4d Vi
X {exp (fNiH i
NiMiK;Yi 2

) + 26 (Ao + Ai,l%z)} .

Proof. The proof is postponed to Section 5.1. O

The squared bias can thus be controlled by adjusting the parameters v;,n;
and N;. If U satisfies H3, the bound on the squared bias can be improved.
Define,

Bio = d (203 + k7 {(dL?)/3 + 4L}/ 3ma)}) (26)

Bi,l = dL;1 (H;l + {6(m2 + Li)}_l + m;l) . (27)

Proposition 3. Assume H1, H2(m) for some m > 0, and H3. For N; € N,
n; € N* and ’Vi701'2+1 satisfying (22), we have
{E[7i(g:)] — 771’(91‘)}2 < 46‘12(01‘,2 +C;0Cin

)
X {7 exp (—Ni R
e 2
1.

) + 26, (B o] + Bz’ﬂf’)} :

Proof. The proof is postponed to Section 5 U

Note that the leading term is of order ? instead of ;. We consider now the

variance term in (21).

Proposition 4. Assume H1 and H2(m) for some m > 0. For N; € N, n; € N*
and ~y;,02,, satisfying (22), we have

~ 320/2201"0612"1 2
Var [7;(g:)] < 5 (1 + > .

Ry KTy

Proof. The proof is postponed to Section 5.1. O

2.1. Strongly convex potential U

Theorem 5. Assume H1 and H2(m) for m > 0 and let p,e € (0,1). There
exists an explicit choice of the simulation parameters S (16) such that the esti-
mator Z defined in (17) satisfies with probability at least 1 — p

(l-eZ<zZ<(1+eZ,

and the cost (18) of the algorithm is upper-bounded by

3
) (C+3), (28

272 1 2d%(d + 4 L
cost < (6 ZMC +log(5C’d2)> (1088C)"d™(d +4) <m+
€

e 2m

o=l (1 (2) ) mrm)| -

with
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Proof. The proof is postponed to Section 5.3.3. O

Theorem 6. Assume H1, H2(m) for m > 0, H3 and let u,e € (0,1). There
exists an explicit choice of the simulation parameters S (16) such that the esti-
mator Z defined in (17) satisfies with probability at least 1 — u

(1-Z<Z<(1+eZ,

and the cost (18) of the algorithm is upper-bounded by

6272C 75120d3/?
o< (00 ge) TR
cost < ( = + log(5Cd )) 3 evii (d+4)(C+3)

. 23/2 m+L\*
X{LW+\/E< 2m) . (30)

with C' defined in (29).
Proof. The proof is postponed to Section 5.3.3. O

Using the median trick (see e.g. [27, Lemma 6.1] or [36]), we have the following
corollary,

Corollary 7. Let ¢,i € (0,1). Repeat 2 (4 log([flﬂ + 1 times the algorithm

of Theorems 5 and 6 with p = 1/4 and denote by Z the median of the output
values. We have with probability at least 1 — i,

(1-Z<Z<(1+eZ.
Proof. The proof is postponed to Section 5.3.3. O

The proof of Theorems 5 and 6 and corollary 7 relies on several lemmas which
are stated below. These lemmas explain how the simulation parameters S must
be chosen. The details of the proofs are gathered in Section 5.3. Set

o5 = {2log(1+¢/3)}/{d(L —m)} . (31)
This choice of o3 is justified by the following result,
Lemma 8. Under H1 and H2(m) for m > 0, we have

Zo < (2n0)V? /(14 02m)¥? < Zo (1 +¢/3) . (32)
Proof. The proof is postponed to Section 5.3.1. U

Given a choice of S, define the event

M-1 M1
As.e= { I #ite) = T1 mite)
i=0 i=0

< 1:[ Wi(gi)g} . (33)
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On Ag ., using Lemma 8, (4) and (17), we have:
Z(1—¢/2)<Z<Z(1+e) .

It remains to choose S to minimize approximately the cost defined in (18) under
the constraint P(As.) > 1 — p. We define the positive increasing sequence
{21 M1 recursively, starting from i = 0. For i € N, set

oty = s(07) (34)
where ¢, : RY — R is defined for ¢ € (0, (2d 4 7)/m) by
1 m4 (2FOH )1 - log(t/o?)
S =(=- k() = | =LY
() (t 2(d + 4) ®) log(2) (35)

and ¢;(t) = 400 otherwise. The subscript s in ¢, stresses that this choice is valid
for the strongly convex case and will be different for the convex case. With this
choice of (¢2);>0, the number of phases M is defined by

M=inf{i>1:07 > (2d+7)/m} . (36)

By (35), for t € [08,(2d + 7)/m), <s(t) > t(4d + 16)/(4d + 15), which implies
M < +o00. With this definition of ¢, for i € {0,..., M — 2}, we have

1 ( 1 1 )  m+ (21e3) 7!

;==\ 35— )
2\0? o2, 4(d+4)

if 2802 <o? <2MlgZ | (37)

and ap—1 = (203, ,)*. Define Z;, C N for k € N and K € N by,

I, ={i€{0,....M -2} : 2F6} < 07 < 2F*153} (38)
K=inf{k>0:Z;, =0} < +o0. (39)

The number of phases M and variances {Uf}ij\igl being defined, we now
proceed with the choice of the stepsize 7;, the number of samples n; and the
burn-in period N; for i € {0,...,M — 1}.

Lemma 9. Setn = (e,/11)/8. Assume that there exists a choice of the simulation
parameters {N; Y251 {n 3 M5t and {3 o1 satisfying,
i) For allk € {0,...,K —1}, i € I},

2
Var [7;(g;)] < —=,
o) < o

E [7:(g:)] — mi(gi)] < KT

i) |E[Apr—1(gam—1)] — ma—1(gm—1)| <m, Var[fa—1(gm—1)] < 0*,

where m;(g;) is defined in (5) and 7;(g;) in (9). Then P(As.) > 1 — p, where
As c is defined in (33).

Proof. The proof is postponed to Section 5.2 O
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To show the existence of ~;,n;, N; satisfying the conditions of Lemma 9,
we apply Propositions 2 to 4 for each ¢ € {0,...,M — 1}. We then have the
following lemmas,

Lemma 10. Setn = (e\/1)/8. Assume H1, H2(m) for m >0 and,
i) forallk €{0,..., K — 1}, i € Iy,

1 n’k2oim, 1
< Ot} 40
7= 2985 K227~ mi+ Li (40)
196K /m; 1
n°  Ri0i Ri%;
N; > 2(kiv;) ' log (5Kd?) (42)
Va1 <407 MPLE mar—1 < (mag—1 + L)t (43)
na—1 2 19(kp—1ym-1) "2, (44)
Nar—1 > (kp—1ym—1) "t (45)
Then, the conditions i)-ii) of Lemma 9 are satisfied.
Proof. The proof is postponed to Section 5.3.2. U
We have a similar result under the additional assumption H3.
Lemma 11. Set n = (e,/11)/8. Assume H1, H2(m) for m >0, H3 and,
i) for allk € {0,..., K — 1}, i € Iy,
1/2 o _
3nkim; “of [ o~q 4 1\ L/2 1
S < 2R 90 (072 4 10L4m: ) < (46
WS\ F g (48 + 10, St @9
and ni, N; as in (41), (42),
i)
—1/2
3NEM—1M ( =9 4 4 -1/2 1
<y 2 MM (g72 4 ) < -
TM-1S\) 7 1 +10Lp_ymp S it Lo
(47)
and nar—1, Npr—1 as in (44), (45).
Then, the conditions i)-ii) of Lemma 9 are satisfied.
Proof. The proof is postponed to the supplementary material [8]. U

2.2. Convex potential U

We now consider the convex case. The annealing process on the variances

{02} M1 s different from the strongly convex case and is defined in (54). In par-

ticular, the stopping criteria for the annealing process is distinct from the case
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where U is strongly convex and relies on a truncation argument. More precisely,
a concentration theorem for log-concave functions [39, Theorem 3.1] states that
for o € (0,1),

161og(3/a)\ /2
/d Lusdtra+np(@)m(@)de <, 70 = <il(/)) :
R

Let € € (0,1), 7 = 7.2 and D = p; ' {d(7 + 1) + p2}. By (15), we have

/ Ig(o,py(@)m(z)dr > 1 —¢/2. (48)
R4
Given a choice of M and 02, |, define gy : R? — Ry for all # € R by
_ 1
r-1(a) = exp { s — (el A D)} (19)
OM-1

and J by,

J:/ e U@ g /er<x>f<qu%D2>+/<2ai,_1>dx_
R4 Rd

Note that Z/Z]\/[,1 =J X 7T1\/[,1(§M,1) and by (48),
J(1—€/2)<1<J. (50)
On the event Ag . defined in (33) with gas—1 replaced by ga—1 and by (32)
(with m = 0), (50), we get
Z(1—¢/2°<Z<Z(1+e),
where Z is defined in (17) with gps—1 replaced by gar—1. We now state our
results in the convex case.

Theorem 12. Assume H1, H2(m) for m > 0. Let ¢, € (0,1). There exists
an explicit choice of the simulation parameters S (16) such that the estimator
Z defined in (17) (with gpr—q replaced by ga—1 defined in (49)) satisfies with
probability at least 1 —

(1-Z<Z<(1+6Z,
and the cost (18) of the algorithm is upper-bounded by
17728C 487C)%d%(d + 4
cost < ( 5 +10g(Cd2)> ( )2 (d+4)
2 e

y <c+ 6L{d(r 2%1) +p2)® 8L2{d(7-;—p%1) —I—p2}4) 1)

where p1, pa are defined in (15), 7 = 4d=/?{log(6/€)}'/? and

= (dg%(lzgtlllt/?)}gﬂ | (52)
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Theorem 13. Assume H1, H2(m) for m > 0 and HS3. Let e, € (0,1).
There exists an explicit choice of the simulation parameters S (16) such that
the estimator Z defined in (17) (with gar—1 replaced by gar—1 defined in (49))
satisfies with probability at least 1 — p

(1-Z<Z<(1+eZ,
and the cost (18) of the algorithm is upper-bounded by

17728C
cost < 2474 ( 5 + log(0d2)>
2

(C+1)d(d+4) | 8L2{d(T + 1) + p2}*
eV 3p]

1/27 3 2 2
L d L{d(r + 1) +p2}® 501 ’ <§ N Pi i )
V10p} AT+ 1) +p2’ \9  {d(T+ 1)+ p2}2L
6L{d(T + 1) + p2}?
+ E
1

+c} . (53)

where py, pa, C are defined in (15), (52) respectively and T = 4d~'/?{log(6/¢)}'/2.
Corollary 14. Let €, ji € (0,1). Repeat 2 [4log(i~t)| + 1 times the algorithm
of Theorems 12 and 18 with u = 1/4 and denote by Z the median of the output
values. We have with probability at least 1 — [i,

(1-Z2<Z<(1+eZ.

The proofs follow the same arguments as Theorems 5 and 6 and corollary 7
and are detailed in the supplementary material [8].
Note that gar—1 (49) is a ||gas—1/|y;,-Lipschitz function where,

15 ” D D?
— = ——— €X .
gt lvip oh-1 P 2034

The results of Section 4 give an upper bound on MSEj;_; which is polynomial
in the parameters if 02, ;| is approximately equal to D?. For i € N*, we define
(02)i>0 recursively. Set 03 as in (31) and

ot = se(0f) (54)

where ¢, : RY — R is defined for t € (0, D?) by,

1 1 -1 | log(t/a3)
“0= (3~ qargmonag) o 0= ) O

and ¢.(t) = +oo otherwise. Define M in this Section by,
M=inf{i>1:07, >D*} . (56)

71—

By (55), for t € [08,D?), s(t) > {(4d + 16)/(4d + 15)} t, which implies M <
+o00. The following lemmas are the counterparts of Lemmas 10 and 11. They
specify the choice of {v;i}Mgt, {n: )Mot {Ni} X! to satisfy the conditions of

Lemma 9.
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Lemma 15. Setn = (e\/p)/8. Assume H1, H2(m) for m >0 and,
i) for all k € {0,...,K — 1}, i € Iy,

1 n?L; %0, 1

<
Y462 K22 S my+ Ly (57)
453K 1
" n”? Kivi &%)
N;i > 2(kiyi) ' log (Kd?) (59)

-1 < (1/26)n°d Lyf (kar—1 < (mar—1 + Lar—1) ™", (60)
na—1 2290 2 (kp—1ym-1) " (61)
Ny > 2(kpr—1ym—1)~ Hlog(d) - (62)
Then, the conditions i)-ii) of Lemma 9 are satisfied, with grj—1 replaced by
gM-—1-
Proof. The proof is postponed to the supplementary material [8]. O
We have a similar result under the additional assumption H3.
Lemma 16. Set n = (e,/11)/8. Assume H1, H2(m) for m >0, H3 and,
i) for all k € {0,...,K — 1}, i € Iy,

3no;t /o ~1/2 1
< \f?_’g{ 2 (az v r0nie?) < L (63)

ni, N; as in (58), (59) and,
ii)

3 NEM—10M—1

~ —1/2
YTM-1S\ o= (dL2+10L§1\/171012\/171) < :
8e Vd

“ma—1+ Ly’
(64)
nM_l,NM_l as in (61), (62)
Then, the conditions i)-it) of Lemma 9 are satisfied, with grr—1 replaced by
gM—-1-

Proof. The proof is postponed to the supplementary material [8]. O

3. Numerical experiments

For the following numerical experiments, the code and data are available at
https://github.com/nbrosse/normalizingconstant. We first experiment
our algorithm to compute the logarithm of the normalizing constant of a mul-
tivariate Gaussian distribution in dimension d € {10,25,50}, of mean 0 and


https://github.com/nbrosse/normalizingconstant
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Fi1c 1. Bozplots of the logarithm of the normalizing constants of a multivariate Gaussian
distribution in dimension d € {10, 25,50}.

inverse covariance matrix diag(2,1%(?~1). We set ¢ = u = 0.1. The number of

phases M of the algorithm and the variances {of}?igl are chosen accordingly
to the formulas (34) and (36). For each phase of the algorithm, the step size ~;
is set equal to 1072(m; + L;) !, the burn-in period N; to 10* and the number of
samples n; to 10° where m;, L; are defined in (13). We carry out 10 independent
runs of the algorithm and compute the boxplots in Figure 1. The true values of
the logarithm of the normalizing constants are known and displayed by the red
points in Figure 1.

We illustrate then our methodology to compute Bayesian model evidence;
see [20] and the references therein. Let y € RP be a vector of observations
and My, ..., M; be a collection of competing models. Let {p(M;)}._; be a
prior distribution on the collection of models. For i € {0,...,l}, denote by
p(y|0™M) | M;) the likelihood of the model M;. The dominating measure is
implicitly considered to be the Lebesgue measure on RP. Similarly, for i €
{0,...,1}, denote by p(§M:)|M;) the prior density on the parameters §(M:)
under the model M; where the dominating measure is implicitly considered to
be the Lebesgue measure on R The posterior distribution of interest is
then for i € {0,...,1},

PO, Mily) o< p(y|0@), My)p(0W) | M;)p(M)
The posterior distribution conditional on model M; can also be considered
PO M, y) o p(yl0™), Mi)p(0P) | M) (65)

For i € {0,...,1}, the evidence p(y|M;) of the model M, is defined by the
normalizing constant for the posterior distribution (65)

plylMi) = / p(yl0™), Mi)p(0 M| M;) oM

Rd(Mi)
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The Bayes factor BFi between two models M; and M is then defined by the
ratio of evidences [43, Section 7.2.2], BF;; = p(y|M;)/p(y|M;). In the following
experiments, we estimate the log evidence log(p(y|M;)). For ease of notation,
the dependence on the model M of the parameters # and the dimension d of
the state space is implicit in the sequel.

Define /M) - RY — R by (M)(9) = —log(p(y|d, M)p(d|M)) for 6 € R?. In
the examples we consider, /M) satisfies H1, H2, H3 and has a unique minimum
0™ Define then UM : R? — R, by UM () = ¢ (9 4 09y — ¢(M0 (9M)
for & € R%. The algorithm described in Section 2 can be applied to UM, For
each example, two different models will be considered and UM will be written
as UM for k=1,2.

The numerical experiments are carried out on a Gaussian linear and logistic
regression following the experimental setup of [20, Section 4], which is now
considered as a classical benchmark. The linear regression is conducted on p = 42
specimens of radiata pine [47]. The response variable y € R? is the maximum
compression strength parallel to the grain. The explanatory variables are x € R?
the density and z € RP the density adjusted for resin content. z and z are
centered. The covariates of the first model M, X € RP*2, are composed of
an intercept and z, while the covariates of the second model My, X (2) € RP*2,
are composed of an intercept and z. For k = 1, 2, the likelihood is defined by,

pi 0 = () e (02 - x®a[)

where A = 1075, For the two models, the parameter @ follows the same Gaussian
prior of mean (3000, 185) and inverse covariance matrix AQy = A diag(0.06,6)
where diag denotes a diagonal matrix. These values are taken from [20, section
4.1]. For k =1, 2, U®) is m*)_strictly convex and L*)-gradient Lipschitz, where
m®*) (resp. L(®) is the minimal (resp. maximal) eigenvalue of A\([X*)]T X *) 4
Qo). We set ¢ = p = 0.1. The number of phases M of the algorithm and the
variances {af}?igl are chosen accordingly to the formulas (34) and (36). For
each phase, the step size 7; is set equal to 1072(k;02m;)/(dL?), the burn-in
period N; to 103(k;v;)~! and the number of samples n; to 104m}/2/(/1120i%)
where m;, L;, k; are defined in (13) and (14). The experiments are repeated 10
times and the boxplots for each model M are plotted in Figure 2. Note that for
this Gaussian model, the log evidence is known and displayed by the red points
in Figure 2.

With the same parameters for the algorithm, we run 10 independent runs
at each phase to measure the variability of each estimator 7;(g;) defined in
(9). The result is plotted in Figure 3 for the model M;. The last estimator
am—1(gam—1) is much higher, which underlines the specificity of the last phase
in the algorithm.

The logistic regression is performed on the Pima Indians dataset!. In this
case, y € {0,1}? is a vector of diabetes indicators for p = 532 Pima Indian

Ihttp://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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F1G 2. Bozplots of the log evidence for the two models on the Gaussian regression.
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phase i

F1a 3. Error plot of #;(gi) fori € {0,..., M — 1} in the ezample of the Gaussian regression
(model My ). The mean of 7t;(g;) is displayed in black and is spaced apart from the other two
curves by the standard deviation of 7;(g;).

women and the potential predictors for diabetes are: number of pregnancies
NP € RP, plasma glucose concentration PGC € RP, diastolic blood pressure
BP € RP, triceps skin fold thickness TST € RP, body mass index BMI € RP,
diabetes pedigree function DP € RP and age AGE € RP. These variates are
centered and standardized. The covariates of the first model M; are X1 =
(intercept, NP, PGC, BMI, DP) € RP*® and the covariates of the second model
My are X@) = (intercept, NP, PGC, BMI, DP, AGE) € RP*% where intercept
is the intercept of the regressions. The likelihood is defined for k = 1,2 by,

p(y]6; M) = exp <zp: {yiHTXi(k) —log (1 + eeTka)) }) 7

i=1

where XZ-(k) denotes the i row of X (). For the two models, the prior on 6
is Gaussian, of mean 0 and inverse covariance matrix 7Id where 7 = 0.01.
For k = 1,2, U® is 7-strongly convex and L") -gradient Lipschitz, where
L) = X [XPNTXE) /4 + 7 and Apax ([X®])TX®)) is the maximal eigen-
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Fic 4. Bozxplots of the log evidence for the two models on the logistic regression. The methods
are the Laplace method (L), Laplace at the Mazimum a Posteriori (L-MAP), Chib’s method
(C), Annealed Importance Sampling (AIS), Power Posterior (PP) and our method (AV).

value of [X ®)]T X *), We set € = p1 = 0.1. The algorithm to estimate log(p(y|M))
described in Section 2.1 is applied with the following modifications. The num-
ber of phases is decreased and the recurrence for the variances {02} ! is thus
redefined by o7, = ¢3(0?) as long as the stopping condition (36) is not fulfilled.
For i € {1,...,30}, the burn-in period N; is set equal to 10, the number of
samples n; to 10° and the step size 7; to 10_2(mi + Li)_1 where m;, L; are
defined in (13); for 4 > 30, the number of samples n; is set equal to 10° and the
step size ; to 10’1(mi + Li)*l. We compare our results with different methods
reviewed in [20] and implemented in [48]. These are the Laplace method (L),
Laplace at the Maximum a Posteriori (L-MAP), Chib’s method (C) Annealed
Importance Sampling (AIS) and Power Posterior (PP). The experiments are
repeated 10 times and the boxplots for each model M and each method are
plotted in Figure 4.

With the same parameters for the algorithm, we run 10 independent runs at
each phase to measure the variability of each estimator 7;(g;) defined in (9) and
display the result in Figure 5 for the model Mj.

The final example we address is a Bayesian analysis of a finite mixture of
Gaussian distributions, see [33, Section 4.2] and we aim at estimating the log
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(g
0.4 0.6

0.2

0.0

phase i

Fi1Gc 5. Error plot of #i(g;) for i € {0,...,M — 1} in the example of the logistic regression
(model M1 ). The mean of 7;(g;) is displayed in black and is spaced apart from the other two
curves by the standard deviation of 7;(g;).

evidence of the posterior distribution. Note that this model does not fit into our
assumptions because the potential U is not continuously differentiable on R?
and neither convex. Nevertheless, we experiment heuristically our algorithm on
a close model given by its likelihood

sl =TT | (52) { e (COv20 - 6:7)

i=1

for y = (y1,...,yp) € RP a vector of observations. The prior distributions are set
following the recommendations of [33, Section 4.2.1] and [42]. For j € {1,...,4},
0; is drawn from a Gaussian distribution of mean £ = 1.35 and inverse variance
¢ = 7.6x1073. \is set equal to 0.03. The observations y € R'% are 100 simulated
data points from an equally weighted mixture of four Gaussian densities with
means (—3,0, 3,6) and standard deviations 0.55, taken from [25]. Define for =
(01,...,04) € RY £:R* — R by £(0) = —log(p(y|0)p(6)). The optim function
of R [41] gives a local minimum at §* ~ (1.76562%%). Define then the potential
U:R* = Rfor € R* by U(0) = £(0 +6*) — £(0%). Set e = u = 0.1, m = ¢ and
L = 1. Similarly to the logistic regression, to decrease the running time of the
algorithm, the recurrence for the variances {o2};* ;" is defined by 02, ; = ¢?(c?)
as long as the stopping condition (36) is not fulfilled. For each phase, the step
size ; is set equal to 107! (k;02m;)/(dL?), the burn-in period N; to 10* and the
number of samples n; to 10° where m;, L;, x; are defined in (13) and (14). For
comparison purposes, we run the same algorithm using the Metropolis Adjusted
Langevin Algorithm (MALA) instead of ULA to estimate 7;(g;) at each phase.
The step size ; is set equal to (k;0%m;)/(dL?) and the number of samples n; to
105. The experiments are repeated 10 times. The boxplot is plotted in Figure 6
and the red point indicates the mean of our algorithm using MALA.
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F1G 6. Bozplot of the log evidence for the mizture of Gaussian distributions.

4. Mean squared error for locally Lipschitz functions

In this Section, we extend the results of [15, Section 3] to locally Lipschitz func-
tions. This Section is of independent interest and only Propositions 17 and 20 are
used in Section 5. Let U : RY — R be a continuously differentiable function. Con-
sider the target distribution 7 with density x +— e*U(””)/ fRd e UWdy w.r.t. the
Lebesgue measure. We deal with the problem of estimating o, f(x)dn(x) for
locally Lipschitz f : R* — R by the ULA algorithm defined for k& € N by,

Xir1 = Xk = 1 VU(Xk) + /2% 412141 (66)

where (Zj)r>1 is an i.i.d. sequence of d-dimensional Gaussian vectors with zero
mean, identity covariance and (7yx)r>1 is a sequence of positive step sizes, which
can either be held constant or be chosen to decrease to 0. For n,p € N, denote

by
p

Fn#’ = Z Yk r,= Fl,n y (67)
k=n

and consider the Markov kernel R, given for all A € B(R%) and z € R? by

R(o.4) = [ (m) 2 exp (<) g — o 90 dy . (69)

Define
QP =R, R, , Qr=Qy", (69)

with the convention that for n,p > 0, n < p, Q5" and ng,o are the identity
operator.

For all initial distribution s on (R, B(R?)), P, and E,,, denote the probabil-
ity and the expectation respectively associated with the sequence of Markov ker-
nels (68) and the initial distribution po on the canonical space ((R%)N, B(R?)®N)
and (Xz)ren denotes the canonical process. Let f : R — R and consider the
following assumption,
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L1. 1. There exists Ly : RT — [0,+00) a continuous function such that for
all 2,y € RY, |f(y) — F(2)] < lly — all max {Ly(z), Ly(y)}.
2. There exist € > 0, Cr > 0 and continuous functions Cq,Cq ¢ : R? —
[0, +00) such that for all z € RY,

m(L3) < Cr, sup 6,Q7 (L}) < Cq(x), (70)
p>n>0

sup 0,Q"P L24+9) < ¢ (T

PZnIZ)O Q7 ( f )_ Q’( )

Under L1, we study the approximation of fRd fly)m(dy) by the weighted
average estimator

N4+n

AN = D Wi f(Xe) s wi =MD s N (71)
k=N+1

where N > 0 is the length of the burn-in period and n > 1 is the number of
samples. The Mean Squared Error (MSE) of 72 (f) is defined by:

MSEj(z, N,n) =, [{#) () - =(£)}"] |
and can be decomposed as,
MSE; (z, N, n) = {Eo[#Y ()] = w(f)} + Var, 7Y (f)] . (72)

The analysis of MSE¢(z, N,n) is similar to [15, Section 3|. First, the squared
bias in (72) is bounded. Denote by,

Ag =2L%"d (73)
Ay =2dL2 +dLlY (kP (m+ L) D(m ™ + 67 m+ L)Y, (74)
By =d (2L2 +rMdL2/3 + 4L4/(3m)}) , (75)
By =dL* (v ' +{6(m+ L)} ' +m™") (76)
where & is given by (14). Define then for n € N*,
ud () = ] = rmm/2), (77)
k=1
uP () = (A7 + Ayd) [ = rw/2), (78)
=1 k=i+1
uld(v) =Y (Bl + Bivf) [[ (1—rw/2). (79)
=1 k=i+1

Proposition 17. Assume H1 and H2(m) form > 0. Let f : R? — R satisfying
L1. Let (vx)r>1 be a nonincreasing sequence with v1 < 1/(m+L). Let x* be the
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unique minimizer of U. Let (X,)n>0 be given by (66) and started at x € R
Then for all N >0, n > 1:

(B ()] = 7(£)} < {Cx + Cola)}
N+n

x>0l {20z = 2P+ d/m)eV () + )}, (50)
k=N+1

where ug)(’y) is given in (77) and wy(7y) is equal to ug)(fy) defined by (78) and

to ugf) (7), defined by (79), if H3 holds.

Proof. For all k € {N +1,..., N +n}, let & be the optimal transference plan
between d,, Q§ and 7 for W5. By the Jensen and the Cauchy Schwarz inequalities,
and L1, we have:

(Bl ()] = n(f))* = Nf:n Wi / {f(2) = f(y)}r(dz, dy) 2
cen o R x R4 ’

k=N+1
N4+n 2
< 3 ([ e slmadLe) L alas )
k=N+1 R4 x R4
N+n
<G+ Co@) Y wlhy [ lle-ulaldady).
k=N+1 R xR
The proof follows from [15, Theorems 5 and 8]. O

To deal with the variance term in (72), we adapt the proof of [28, Theorem 2]
to our setting, where f is only locally Lipschitz and the Markov chain (66) is in-
homogeneous. It is based on the Gaussian Poincaré inequality [6, Theorem 3.20].
Let Z = (Z,...,Z4) be a Gaussian vector with identity covariance matrix and
f:R? = R be a locally Lipschitz function. Recall that by Rademacher’s The-
orem [19, Theorem 3.2], a locally Lipschitz function is almost everywhere dif-
ferentiable w.r.t. Lebesgue measure on R%. The Gaussian Poincaré inequality
states that Var [f(Z)] < E[|Vf(Z)|]*]. Noticing that for all z € R<, R, (x,-)
defined in (68) is a Gaussian distribution with mean z —yVU(z) and covariance
matrix 2vI;, the Gaussian Poincaré inequality implies:

0< [ Redn) (U0) - Bof @ <20 [ Roean) 9SG 5D

First consider the following decomposition of 72 (f) — E,[# (f)] as the sum

of martingale increments,

N+n—1

() —Bem (D= > {ESe+ [#) ()] —EZ [#Y(H)]}

k=N
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where (G,)n>0 is the natural filtration associated with the Markov chain
(Xn)n>0. This implies that the variance may be decomposed as the following
sum

N+n—1

Var, [70(N)] = Y B, [(EBF [7(0)] S [7Y(1)])°]

k=N
+E. [ 7Y (1)) — BN ()] - (82)

N

Because 7, (f) is an additive functional, the martingale increment EgH+! 7N ()]

— EZ* [ﬁﬁl (f)] has a simple expression. For k = N +n,..., N + 1, define back-
ward in time the function
Ol + k= Wl (k) + By O () (83)
with the convention ‘biv) Nint1 = 0. Denote finally
U can = Ry @0 v (o) (84)
Note that for k € {N,..., N + n — 1}, by the Markov property,
O i1 (K1) = By @30 (Xi) = EZ [/ ()] —EZ* [77 ()], (85)

and WY (Xn) = EJV [#)(f)]. With these notations, (82) may be equivalently
expressed as

N+4+n—1
. 2
V&I‘x [ﬂ-rly(f)] = Z Eac |:R’)/k-+1 {(bfmv,k+1(') - R’Yk+1 (va,v,k+1(Xk)} (Xk)]
k=N
+ Var, [U(Xn)] . (86)
Now for k = N +n,...,N + 1, we will use the Gaussian Poincaré inequality

(81) to the sequence of function <I>nN7 - 1t is required to prove that <I>7]X i 1s locally

Lipschitz (see Lemma 18). For the variance of ¥V (X ), similar arguments apply
using Lemma 19.

Lemma 18. Assume H1, H2(m) for m > 0 and let f : R? — R satisfying L
1. Let (yk)k>1 be a nonincreasing sequence with y1 < 2/(m + L). Then for all
{>n>0, QZ’Zf is locally Lipschitz and differentiable for almost all x € R%.
Its gradient is bounded by,

l
IvQrtf@)| < T] - m)/2(0.Q L) 2 . (87)
k=n

Proof. Let &, , be the optimal transference plan between (5$QIL/ and %QI,“E for
Ws. By Rademacher’s Theorem [19, Theorem 3.2], VQIY”Z f(z) exists for almost
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all z € R%. For such z, using Cauchy-Schwarz’s inequality and [15, Theorem 4],
we have

IVQ3“f @) = sup lm|(Q5f(x+ tu) - Q7 /() /¢|

fluf <1870
= sup lim

tt / {f(22) = f(21)} o ateu(d2r, d2o)
lul <1 t0 Rd x R4

< sup liminft Wy (0,Q™", 0ot tu Q™"
lull<1 =0 (0o desuu@)

1/2
X {/ (L?(Zl) N L?C(ZQ))é.fE,fc—&-tu(le, dZQ)}
R4 x R4
- 1/2
< sup liminf [T (1 — wyy)t/? {/Rded(L?(Zﬂ \/L}(ZQ))ngrtu(dzl’dZQ)} _

ful<t E20 =

It is then sufficient to prove that,

lim L7 (21) V L} (22)€a,y(dz1, d2g) = /R , L?(zl)émQ:,f(dzl) )

Y7 JRdxRd

Let ,7,R> 0 and y € R%. Since a Vb —a = (b — a),, we have

[ (E3Gea) = L))o, dze) = E) + Baly) + Ealo)

where,

Ei(y) = / (L7 (22) — L?(zl))+ Lg ol 4122 | >2R oy (21, d22)
R4 xR4
Bs(y) = /Rded (LF(22) = LF(21)) . Lgjiza 11z <2Ry L1 — sl <ny Sy (d21, d22)

Bs(y) = /R Lo (L (z2) = L5 (1)) | s ol <Ry s ol 2 S (2, dz2)
X

Holder’s inequality gives for p,¢ > 1, 1/p+1/q¢ =1,
2 ¢ Ha
B < ([ D)6, ()

1/p
x (/R L)1 2Ry 02 Q5 (d21) +/Rd 1{|z2|>R}5yQ$’Z(dZ2)> :

Under L1-2, the first term on the right hand side is dominated by a constant for
g small enough, and the second term tends to 0 for R large enough, uniformly
for y in a compact neighborhood of x by [15, Theorem 3] and

/]l{uzQqu}%QZ’é(d@)SR‘2/ 22| 8,Q" (d2s) -
]Rd ]Rd
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We can then choose R such that E;(y) < e/3. We consider now Es(y). L?c isa
continuous function, uniformly continuous on a compact set and we can then
choose 1 such that Fy(y) < /3. We finally consider E5(y). By Markov’s inequal-
ity and limy_,, Wf(éng’e,ész’Z) = 0, there exists a compact neighborhood
V(z) of x such that y € V(z) implies E3(y) < &/3. O

Lemma 19. Assume H1 and H2(m) form > 0. Let (y)k>1 be a nonincreasing
sequence with y; < 2/(m+L) and N > 0. Let f : R — R be such that QSH’Nf
is locally Lipschitz for k € {1,...,N}. Then for all z € R,

N
/ QY (a,dy) {F(y) - @ f@)} <23 m / Q4 (. dy) [ VQEN F)*
R Pt R
Proof. Using B9 [f(Xx)] = Q51N £(X,), we get

Var, [£(X)] = S, [ES— [(BZ [£(X0n)] — B2 (X)) ]
k=1

N
SE [Ry {QETN ) - Ry QPN (X))} (X))
k=1

Eq. (81) implies that

N
Var, [f(Xn)] <2 % /R Q. dy) [VQE N )| O
k=1

Proposition 20. Assume HI and H2(m) form > 0. Let f : R? — R satisfying
L1 and (yg)k>1 be a nonincreasing sequence with v1 < 2/(m+ L). Then for all
N>0,n2>1, we get

R SCQ(QT) _ _ 2
Var,, [WTJ:[(f)] Sm 1+FN1+2,N+n+1 K 1+m+L . (88)

Proof. For k € {N,...,N +n — 1} and for all y,x € R%, we have

|<I>,]Xk+1(y) - ¢£Xk+1($)| =

Wiy 1f(y) = f(2)}

N+n ‘

+ 3 Wl QR f(y) — QEFH f(x)}

i=k+2

By Lemma 18, @ﬁk_ﬂ is locally Lipschitz and for almost all 2 € R,

N4+n 7
||V<I>ka+1(x)|’ < Z wf?fn { H (1— “7@)1/2} (5me{+2,iL?)1/2 '

i=k+1 L=k+2
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For k € {N,...,N+n—1} and z € R% we have by (81) and the Cauchy-
Schwarz inequality,

2
’Yk+1 {(I)n k+1 ) R”ﬂc+1¢)n k+1< )} (JJ)

N+n
< 2’yk+1Q{g\{n{ Z zn H 1- ’{’W 1/2 Qflerl’iL?‘)} )
i=k+1 {=k+2
where,
N+n
=Y W, H (1 — ky)/2 . (90)
i=k+1 l=k+2

By L1-2, we get for k € {N,...,N+n — 1}

E, |:R'Yk+1 {(Pr]:/kJrl(') - R’Yk+1®r]:[k+1<Xk)}2 (Xk)}

N+n
< 2’Yk+1Q£:V,n { Z Wi n H ’i’}/ﬁ 1/2 5 Q’L LQ)} < 2"}/k+1CQ(I)(QéVﬂ)2
i=k+1 l=k+2

Using (1 —)'/2 < (1 —t/2) for t € [0, 1], we have

O < (\0N42,Nn41/2) 7" (91)
Using this inequality, we get

N+n—1

Z E, |:R’Yk,+1 {(br]XkJrl(') - R“/k+1(1)r]2],k+1(Xk)}2 (Xk)]
k=N

< 8CQ(@) I N+1,N+n/ (KD N+2,N4nt1)? - (92)
We now bound Var, [ (Xx)]. Since for all z € R?, we have

N4+n

V(@) = Y Wy (),

i=N+1

by Lemma 18, QXN W is locally Lipschitz for k € {1,..., N} with for almost
all z € RY,

N4+n 1
||VQ§+1’N‘IJTJ>’($)H < Z wi?’n (1- "‘VYZ)I/Q ( Qk+1 ’L2)1/2
i=N+1 l=k+1

Isolating the term HéV:kH(l—/iw)l/z and since (1—#yn+1)/? < 1, the Cauchy-
Schwarz inequality implies
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N
HVQ§+1,N\1;nN(g;)H2 < { H (1- Ii’}/g)}

{=k+1
N4+n 7
N N 1/2 k+1,i712
X QN,n Z Wi n (1 - Kﬁﬂ) / 6IQ7 ZLf .
i=N-+1 =N+1

Plugging this inequality in Lemma 19, using L1-2, Zgﬂ Vi HlN:kH (1—ky) <
k! and (91), we get
Var, [ (Xx)] < 257 Cala)(5/2) T Rg s - (93)

Combining (92) and (93) in (82) concludes the proof. O
5. Proofs

5.1. Proofs of Propositions 2, 3, 4

We assume in this Section that H1 and H2(m) for some m > 0 hold. The
proofs rely on the results given in Section 4, Propositions 17 and 20 which
establish bounds on the mean squared error for locally Lipschitz functions. For
i€{0,...,M—1}, 02 > 0and v; > 0, consider the Markov chain (X; »)n>0 (8)
and its associated Markov kernel R; defined for all A € B(R?) and = € R? by

Ri(w.A) = [ (am) = exp (<) ly = + 50U dy . (04

Under H1 and H2(m) for m > 0, [35, Theorems 2.1.12, 2.1.9] show the following
useful inequalities for all =,y € RY,

(VUi(y) = VU(2),y — ) = 5 ly =l + IVUi(y) = VU()I

m; + L;
(95)
(VU(y) = VUi(2),y — 2) > mi|ly — z|* (96)

where L;, m; are defined in (13) and &; in (14). We then check L1 for g;, where
gi : RY — R is defined in (6). Note that g; is continuously differentiable and for
r € R Vgi(x) = 2a;z¢%1#I* | Define Ly, R4 = Ry for x € RY by,

Ly, (x) = 2a; |Jaf| 71" (97)
We have for all z,y € R%:

/0 (Vailty + (1 - t)z),y — z) dt

< ”y - x” ma‘X(ng‘ (1‘), Lgi (y)) ) (98)

which implies that L1-1 holds for g;. The following Lemmas 21 and 22 enable
to check L1-2 for g;.

19:(y) — gi(x)| =
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Lemma 21. Assume H1 and H2(m) for m > 0. For all 0? € (0,+00), n € N,
€ (0,2/(m; + L;)], a; € [0,5;/8 A (207)7") and z € R, we have:

sup R (L2.) (x) < 4a2g?(x)Ci {||g;||2 + Cm} ,
neN
where Ly, is defined in (97) and C;o,C;1 in (23).

Proof. In the proof, the subscript i is not specified for ease of notation. Let
7 € (0,2/(m + L)]. Note that for all a € [0, (4y)™"), we have

=N Hz—yVU(@)|?

(4my) 4/

NCIIOE
= 6(a).

where ¢(z) = (1—4va)~%2exp{(a/(1—4ay)) ||z — yVU(z)|*}. By the Leibniz
integral rule and (95), we obtain:

Ry (17 1) () = 0a R, (2117 ()

/ e(@=(N) ) yIP+2) ™ = VU () gy,
Rd

:(1_47a>—d/2—1{27d+”“ﬂi’iy } b (= I 7V
< 1=ty fora 4 L e (A0 ’H )

Let a € [0,x/8). Since a < (47)~!, by a straightforward induction we have

SR 1) < (1= yan) 2 exp (a o)

p—1 0 p—1
X 227do¢ga0 {H 1 —4yay) d/Z_l} { H (1- 4’yak)_d/2}
k=1

£=0 k=(+1

p—1
+ (1~ dya0) /2 1{H 1~ ) 1}apaal ]2 exp (e )

1 p—1 - - p—1
< oexp (ay o)) {H(l—zxwk) 2 1}{% ]| +2dv D e p s (99)

k=0 £=0

where (ay)een is the decreasing sequence defined for ¢ > 1 by:

g =2a, op=op_1 (100)

We now bound the right-hand-side of (99). First, by using the following inequal-
ity,

v
log(1l — 4vya) = —4a/ (1 —4at)~'dt > —4ay(1 — 4ay) ™!,
0
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we have:
p—1 d p—1
H(l _ 4’70ék)_d/2_1 = exp (— (5 + 1> Zlog(l — 4ak7))
k=0 k=0
d Ay BN 1—ky
< exp <<2 + 1> T kzzoakl — 4om> . (101)

Second, by a straightforward induction we get for all £ > 0, ap < 2a{(1—xk7)(1—
8a7y)~!}¢. Using (100) and this result implies:

p—1

1—rky l—ry 8a7
Z 1—dagy kY Z o < /w 8ay’ ZCW - /<w Sary
k=0 k=1
Combining these inequalities and (101) in (99) concludes the proof. O

Lemma 22. Assume H1 and H2(m) for m > 0. For all 0? € (0,4+c0) and
€ [0,m;/{4(d+4)} A (202)7], we have

m(L2) < 4aiCis
where C; o is defined in (23).

Proof. In the proof, the subscript 4 is not specified for ease of notations. Recall
that the generator of the Langevin diffusion (7) associated to U is defined for
any f in C%(R%) by

of=—(VUVfy+Af.

In particular, for f(z) = ||z|* ¢2*I*I” and = € R%, we have
Vi(z) =2(1+ 2a|z|*)ze2el=l®
Af(z) = eelel’ {16a2 z|* + da(d + 4) =] + 2d} .
Using (96) and VU(0) = 0, we get
o (| 1) (@) < 211" {24 + 2 (2a(d +4) = m) |l2]* + 4a (40 —m) ]|} .

Using that a € [0,m/(4(d 4+ 4))], we have 2a(4da — m) < —(8/5)am. Then an
elementary study of t — €?** {2d + 4a (4a — m)t*} on R, shows that:

sup e2alll? {2d + da (da — m) ||xu4} <4d.
rER4

Therefore we get using 2(2a(d + 4) —m) < —m,
A ([P 1) (@) < —m|lz|* 1" 1 4d.
Finally applying [32, Theorem 4.3-(ii)] shows the result. |

Proofs of Propositions 2 and 3. Lemmas 21 and 22 and proposition 17 prove
the result. O

Proof of Proposition 4. The proof follows from Lemma 21 and proposition 20.
|
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5.2. Proof of Lemma 9

The case K = 0 being straightforward, assume K € N*. Using Markov’s in-
equality, we have

o | (55" 2o - 115 mta0)|

P(AS,) < . (102)
(I3 milon)
Since 7;(g;) for i € {0,..., M — 1} are independent, we get
2
E [(H%o () - TI, Wz’(gz‘)) ]
— 5 =F{(F—1)+ (F —1)%,  (103)
(M2 m(9)
where
M-1 M—1
F = H E[#i(g9:)] /mi(gi) , Fa= H E [{#:(9:)}] /B [#:(g:)] -
i=0 i=0
In addition, since {0,...,M —2} = UkK;OlIk, we can consider the following
decomposition
K—1
E[7;(g:)] — m(gi)>
P = 1+
' kl;[o Zg ( mi(9:)
k

E[far—1(gm—1)] = mv—1(gn—1)
. (1+ 7TM—1(9M—1) ) ’

O Var [#:(g:)] Var [#37-1(ga-1)]
FQHH<1+W 1+ 2

k=0 i€, E[7ar—1(g9a-1)]

We now bound Fj, Fy separately. Using 1 + ¢ < exp(t) for t € R with ¢t =
n/(K |Z|) and leaving the term ¢ = M — 1 out, we get by conditions 1)-ii)

Fy <(14n)exp(n) . (104)

Since #;(g;) > 1, we have Var [#;(g:)] /E [#:(g:)]® < 12/K |Tx|. Therefore using
1+t < exp(t) for t € R with t = n?/(K |Zx|) leaving the term i = M — 1 out,
we obtain by conditions i)-ii)

F < (1+n%) exp(n®) . (105)
By combining (102), (103), (104) and (105), we get:
(/9P(AS,) < (1+ )% ((L+72)e” —1) + (1 +me’ = 1) .

With 7 < 1/8 and e — 1 < te’ for t > 0, we have (e?/4)P(Ag ) < 99>
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Proofs of Section 2.1

We preface the proofs by a technical lemma which gathers useful bounds and
inequalities. We recall that in this Section the number of phases M is defined
by (36)

M=inf{i>1:0}_, > (2d+7)/m} .

Lemma 23. Assume H1 and H2(m) for m > 0. Let {a?}M 1 defined by (34)
for o¢ given in (31) and M in (36).

1.
2.

3.

S

K < [(1/1log(2))log{(2d + 7)/(mo})}| where K is defined in (39).

For all k € {0,...,K — 1} and i € Iy, 28T'02a; |Zx| < 1, where a; is
defined in (37) and Iy, in (38).

For allt € {0,...,M — 1} and v; < 1/(m; + L;), there exist a; € [4,14]
and B; € [1,10] such that Ci 2+ C;Ci1 = azdm; " and C; ¢C; 1 = Bidr]
where C; 0,C;.1,Ci2 and k; are given in (23) and (14) respectively.

. Forallie{0,..., M —1},0< A;; < 4de/$;1m;1, where L;,m; and K;

are given in (13) and (14) respectively.
For alli € {0,...,M — 2}, k;02 < 4d + 16.
For allie{0,...,M — 1}, /m;/(kio;) <1
Foralli e {0,...,M — 1},

mi+Li _m+L 12 _(m+L 3
2m; 2m K} '

For allk € {0,...,K — 1} and i € I,

—1/2 2
o 12 o (25F10§)P? L, < <m+L> 1

T T (e m2Rad) 2T 2022 T\ 2m ) L4 m2og

Proof. 1. By (36) and (38),

2.

K<mf{e>0:0002> 2TV [ 1 (24573
m log(2) mo?

Let k € {0,..., K — 1}. Denote by iy = inf Zj,. By (37) and (38),

1 1
Tilai=Y 0<% < 5
|Zk| a; al_Qafo = 2k+igZ

1€Ty,

and the proof follows.

. Let k € {0,...,K —1} and i € Ty, Since m; > m + (2"102)"1 qa; <

m;/{4(d+4)}. Therefore using in addition that v; < 1/(m;+ L;), we have
ki —8a; > Kki(d+2)/(d+4) and 1 —8a;vy; > (d+3)/(d+4). The definition
of Ci0,C;1,Ci 2 (23) completes the proof.

. The upper bound is a straightforward consequence of (1+#;(m;+L;) %) x

(1 + 6*1mi(mi + Li)il) < 2.
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5. The bound follows using that o3, , < (2d+7)/m by (36) and the sequence
{k;o?} M52 is non-decreasing since

Lo?2 —1/02
fimf:Q{l—i—mal /Ul},

m+ L+2/0?

and {0?}M? is non-decreasing.
6. The proof is a direct consequence of the fact that the sequence i +—

i/ (ki0;) is non-increasing since m < L, {o?}};? is non-decreasing

and
vmi 1 1 1 1+ mo?
1+ Lo2 |~

KiO; T2 1 + mo2

i

7. Using that {o? f‘ng is non-decreasing and

mi+L; 2+ (m+ L)o? L2 <(m+L)af+2>3

3
2m; 2+ 2mo? T Klotm; (2m)o? +2

concludes the proof.
8. Let k € {0,...,K —1} and i € Zj. Since xk; > m; and 2’“03 < 01-2 <

2F+152 we have
o2 51/20._2 Cf? < (2k+103)3/2
v b (mio?)P/2 T (1 + m2ko2)5/2 7
and
L} _(m+L 2 1 1 -
K2~ 2m " omio? T 1+ m2kad

5.83.1. Proof of Lemma 8

Because U satisfies H1, H2(m) for m > 0 and U(0) = 0, VU(0) = 0, we have:
exp(—(L/2) ||z]*) < exp(~=U(x)) < exp(—(m/2) ||) ,

which implies by integration that,
(2m0)2 /(1 + o3 L)¥* < Zo < (2m0)*? /(1 + afm)?/?

where Z, = fRd e~ Yo and Up is defined in (2). The proof follows from the
expression of of and the bound,

o d/2
<M> < exp (gag(L - m)) .

1+ mo?
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5.8.2. Proof of Lemma 10
Let k € {0,..., K — 1} and i € Zj. Assume that v; < (m; + L;)~!. By Propo-

sition 2, Proposition 4, Lemma 23-2 and 01-2 < 2]”‘10(2), to check condition-i) of
Lemma 9, it is then sufficient for ~;, n;, IV; to satisfy,

4d KiVi _ n? ot
—_— —N; ) 261 (Aioyi + Ainn?) < = )
iR ( 2 )T (Asomi+ Airi) < 4K? Ci 2+ Ci0Cin
(106)
CL2 L0Vl (1+ ) S a; N ) (107)
K54 KiTg i K

By (24), Lemma 23-3 and Lemma 23-4, there exist «; € [4,14] and §; € [1,10]
such that these two inequalities hold if ~;, n;, N; satisfy

2 4

_ _ _ n RiM;0;
2Lk dy; +4dLik; ' mi 2 < 617 ad (108)

1 2 n?02K3y;
— (1 < L 109
n; ( + Iﬂ’l’Li’yi) - 32K(Ii5id ’ ( )
2 4,2
= _ ’17 J‘m-nmmi

N; > N; = —2(kiy;) 1 _— 110
> (Kivi) 0g< K o > (110)

These inequalities are shown to be true successively for 7;,n; and N; chosen
as in the statement of the Lemma. Denote by ¥4; and 7, ! the positive roots
associated to (108) and (109) seen as equalities and given by

_ i f n?k2o}

=4 ey | 1441+ (112)

Note that for (108) and (109) to hold, it suffices that v; < 7; and n; > n;. We
now lower bound #4; and upper bound ;.

Using that T+¢ > 1+ 27%(1 +t)~Y/2 for t = n’k?o} /(4o K2d?) and
(n*k20d)/(4e; K2d?) < 25 by a; > 4 and Lemma 23-5, concludes that if (40)
holds then v; < 4;. The fact that v; < (m; + L;)~! can be checked by simple
algebra.

First, by (37) and the definition of Zj, a; < m;/{4(d +4)},

__ _ 2k202(d + 4

ni1241m% _1+\/1+TIWZ(MJ)

Then using that /T +¢ > 14+ 27%(1 +)~/2 for t = n?wx?02(d + 4)/(Km;B:d)
and f; > 1 concludes that if (41) holds then n; > n;. Finally, we have by (41),
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(nikiys)~t < n?kio;/(196,/m; K), which gives with &; > my,

196
< 2(kiy;) Mlog (5Kd?)

_ Acv;
Ni < Q(Iii’}/i)_l log {%Kd%l + mU?)_S/Q}

which concludes that (42) implies (110).
The same reasoning applies to check condition-ii) of Lemma 9. The details
are gathered in the supplementary material [8].

5.8.3. Proof of Theorems 5 and 6 and corollary 7

For i € {0,..., M — 1}, set 7;,n;, N; such that (40), (41), (42), (43), (44) and
(45) are equalities. By (18), we consider the following decomposition for the
cost = A 4+ B where A = Z?if{Ni +n;} and B =np—1 + Np—1. We bound
A and B separately.

First Lemma 23-6 implies that for all ¢ € {0,...,M —2}, n; < (196K)/
(n*ki7y;) and therefore using Lemma 23-7

196 K o\ 2285K2%d%® (m+ L 8
<[ === 4 —1).
A ( 5 2log(5Kd )) 5 ( 5 ) (M—-1) (113)

We now give a bound on M — 1. Define
Kint = sup {k > 1:m2%% <1} A K < _ log(mat) (114)
SRS UARE T ) |
By Lemma 23-2 and (37), we have

M -1 |Zx|
Ad+4) & a(d+a)

=

< King + 2. (115)
k=

Note that K,y < K < C by (114) and Lemma 23-1. Combining (113), Lem-
ma 23-7 and (115), we get

M-2 3
98K 4570K2d? L
STN 4 < (o +log(5Kd?) mE LYY 4d+4)(C+2) .
i=0 U U 2m
(116)
Regarding the term ¢ = M — 1, we have
19 40m~+L L
nar—1+ Naro1 < (—2+1) Snroz (117)
n n? 2m m

Replacing n by (e\/z)/8 and combining (116) and (117) gives (28).
Assume H3. We now prove Theorem 6 and use Lemma 11 instead of Lem-
ma 10. For ¢ € {0,..., M — 1}, set v, n;, N; such that (46), (41), (42), (47),
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(44) and (45) are equalities. By (18), we have the decomposition cost = A + B
where A = Zij\iEQ{Ni +n;} and B =np;—1 + Np—1. Lemma 23-6 implies that
for all i € {0,..., M — 2}, n; < (196K)/(n*k;7v:), and using that for a,b > 0,
Va+b < /a+ Vb, we have

M—-2 ~
196K 78Kd d'2L 4 /10L?m
A< 5Kd? \/j E
_< n? 8 )> 3

1/2
L — K2oim; /

Then, by Lemma 23-2 and Lemma 23-8, and splitting the sum in two parts
k < Kint and k > Kinta

M- (2k+10, 2)3/2

K—
e me

93/2 K1 (m2* 2)3/2
m3/2 - (1—|—m2k )7/2

<4(d+4) 3//2 (Kint—i— Z (m2k08)_2>

k=Kint+1

2
1OH

A(d + 4)

23/2 4

We have similarly by Lemma 23-2 and Lemma 23-8,

1271/ N2
> L <) (BEE) (+e)

Combining these inequalities with

19 74 [dVL m+L\?
N, < 1 == =5 + V10| —/—— 118
nar—1 + Napr—1 (772+)\/;77{m3/2+ <2m> ’ (118)

and replacing 1 by (e,/z)/8 establish (30).

Proof of Corollary 7. Let N = [4log(i~')]| and (Z i)ie{1,...2N+1} be 2N +1
independent outputs of the algorithms of Theorems 5 and 6 w1th w=1/4, sorted
by increasing order. Denote by 7 = ZN+1 the median of (Z )16{17“_,21\;_5_1} In
addition, define the independent Bernoulli random variables (W;)icq1,... 2n+1}

by
—1‘26}.

Since Z is the median of (Zi)ie{lw’gNH}, we have

2N+1
[P(‘Z/Z—l’>e)§]?<z WizN+1> .

i=1

W; = 1,a, , where A; = { Az
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In addition since P(W; = 1) < 1/4, we have by [40, Corollary 5.2]

2N+1 2N+1~
P(Z Wi>N+1><P<Z Wi>N+1> :

=1 =1

where (Wi)ie{17...,2N+l} are 1.i.d. Bernoulli random variables with parameter
1/4. Then by Hoeffding’s inequality [6, Theorem 2.8] and using for all ¢ > 1,
8(t/2+ 3/4)2/{t(2t + 1)} > 1, we get

2N+1 2N+1
P(Z Wi ZN+1> SP(Z W; — (1/4)(2N + 1) 2N/2+3/4>

oo (25

< exp(=N/4) ,

which concludes the proof. O
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