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Abstract. It is well-known that density estimation on the unit interval is asymptotically equivalent to a Gaussian white noise
experiment, provided the densities are sufficiently smooth and uniformly bounded away from zero. We show that a uniform lower
bound, whose size we sharply characterize, is in general necessary for asymptotic equivalence to hold.

Résumé. Il est bien connu que l’estimation de densité sur l’intervalle [0,1] est asymptotiquement équivalente à une expérience
de bruit blanc, à condition que les densités soient suffisamment régulières et uniformément bornées loin de 0. Nous montrons
qu’une borne inférieure uniforme, dont on caractérise précisément la valeur, est en général nécessaire pour que cette équivalence
asymptotique ait lieu.
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1. Introduction

A fundamental problem in nonparametric statistics is density estimation on a compact set, say the unit interval [0,1],
where we observe n i.i.d. observations from an unknown probability density f . If the parameter space � consists of
densities f that are uniformly bounded away from zero and have Hölder smoothness β > 1/2, then a seminal result
of Nussbaum [18] establishes the global asymptotic equivalence of this experiment to the Gaussian white noise model
where we observe (Yt )t∈[0,1] arising from

dYt = 2
√

f (t) dt + n−1/2 dWt, t ∈ [0,1], f ∈ �, (1)

where (Wt )t∈[0,1] is a Brownian motion. The smoothness constraint is sharp: Brown and Zhang [4] construct a coun-
terexample with a parameter space of Hölder smoothness exactly β = 1/2 such that asymptotic equivalence does not
hold.

If two statistical experiments are asymptotically equivalent in the Le Cam sense, then asymptotic statements can
be transferred between the experiments. More precisely, the existence of a decision procedure with risk Rn for a given
bounded loss function in one model implies the existence of a corresponding decision procedure with risk Rn + o(1)

in this loss in the other model. To derive asymptotic properties, one may therefore work in the simpler model and

1The research leading to these results has received funding from the European Research Council under ERC Grant Agreement 320637.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/18-AIHP946
mailto:kolyan.ray@kcl.ac.uk
mailto:schmidthieberaj@math.leidenuniv.nl


2196 K. Ray and J. Schmidt-Hieber

transfer the results to the more complex model. This is one of the main motivations behind the study of asymptotic
equivalence. Definitions and a brief summary of the concept of asymptotic equivalence of statistical experiments can
be found at the start of Section 2.

In practice, densities may be small or even zero on a subset of the domain, in which case the above result no longer
applies. The goal of this article is to contribute to the general understanding of necessary conditions for asymptotic
equivalence to hold, in particular the necessity of uniform boundedness away from zero. We show that without a
minimal lower bound on the densities, density estimation and the Gaussian model (1) are always asymptotically
nonequivalent, irrespective of the amount of Hölder smoothness.

In fact, we prove a more precise result by characterizing a size threshold such that if densities fall below this level,
asymptotic equivalence never holds. In a companion paper [22], we show constructively that above this threshold
asymptotic equivalence may still hold. Our threshold is thus sharp in the sense that it is the smallest possible value a
density can take such that asymptotic equivalence can hold.

We employ sample-size dependent parameter spaces � = �n, as is typical in high-dimensional statistics. We prove
that if the parameter spaces contain a sequence of β-smooth densities (fn)n such that infx∈[0,1] fn(x) = O(n−β/(β+1))

for all n, as well as suitable neighbourhoods of β-smooth densities around the (fn), then the experiments are al-
ways asymptotically nonequivalent. This is a natural threshold for describing “small” and “large” densities with, for
instance, different minimax rates attainable above and below this level [19,20], see (2) and the related discussion
below.

From a practical perspective, Gaussian approximations have been proposed in density estimation (e.g. [1]) and one
would like to better understand how “large” a density must be for such methods to be applicable. The present work
is a step in this direction. Furthermore, all the results presented in this paper also hold for the closely related case of
Poisson intensity estimation, which is always asymptotically equivalent to density estimation, irrespective of density
size or Hölder smoothness [15,22]. This case is of particular practical relevance given the widespread use of Gaussian
approximations for Poisson data [12], even for small intensities [16]. We avoid further mention of Poisson intensity
estimation for conciseness, but readers should bear in mind that all the present results and conclusions apply equally
to that model.

There are few results establishing the necessity of conditions for asymptotic equivalence via counterexamples. For
nonparametric regression, [4,8] show the necessity of smoothness assumptions. The paper [26] establishes nonequiva-
lence between the GARCH model and its diffusion limit under stochastic volatility, as well as their equivalence under
deterministic volatility.

The proof we employ here relies on a reduction to binary experiments. The difficulty lies in both the construction
of a suitable two-point testing problem and also in obtaining sufficiently good bounds on the total variation distance.
Indeed, the situation is rather more subtle than one might first imagine. For two-point hypothesis testing problems,
we show that one can consistently test between the alternatives in one model if and only if one can do so in the other
(Lemma 2). To establish nonequivalence, one must therefore construct alternatives which can be separated with a
positive probability that is strictly bounded away from zero and one and for which suitable bounds can be computed.

Although for small signals, density estimation and the Gaussian white noise model (1) are no longer asymptotically
equivalent, many aspects of their statistical theory remain the same. As mentioned above, simple hypothesis testing is
essentially the same in both models without any lower bound on the densities. To explain this in more detail, suppose
that gn and hn are two sequences of densities and denote the probability measures in the density estimation model
and the Gaussian model (1) by P n

f and Qn
f respectively. The sums of the type I and II error probabilities of the

Neyman-Pearson test for the simple hypotheses

H0 : f = gn, H1 : f = hn

in the two models are 1
2 (1 − ‖P n

gn
− P n

hn
‖TV) and 1

2 (1 − ‖Qn
gn

− Qn
hn

‖TV) respectively. By Lemma 2 below,
‖P n

gn
− P n

hn
‖TV → 1 if and only if ‖Qn

gn
− Qn

hn
‖TV → 1, which shows that we can consistently test against a simple

alternative in one model if and only if we can do so in the other model. This argument requires no lower bound on the
densities. The Hellinger distance also behaves very similarly in the two models, see Lemma 2 for a precise statement.
It is an interesting phenomenon that while the models are potentially far apart with respect to the Le Cam distance,
information distances, such as the total variation and Hellinger distance, remain close. Although this does not hold for
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all common information measures, for instance the Kullback–Leibler divergence, it nevertheless suggests that nega-
tive results for small densities in the Le Cam sense may be misleading, since many important statistical properties still
carry over between models.

Beyond density estimation, uniform boundedness away from zero is a standard assumption in the asymptotic equiv-
alence literature [2,9–11,18]. However, this assumption is not always required, including in regression type models
[3,23] and even some non-linear problems, such as diffusion processes [5–7]. A better understanding of the necessity
of such conditions is therefore of interest in a wide variety of models.

2. Main results

Basic notation and definitions

For two functions f,g on [0,1], we write f ≤ g if f (x) ≤ g(x) for all x ∈ [0,1] and let ‖f ‖2 denote the L2-norm
of f . Given two probability measures P , Q with densities p, q with respect to some dominating measure ν, we recall
the total variation distance ‖P − Q‖TV := 1

2

∫ |p − q|dν and Hellinger distance H(P,Q) := (
∫
(
√

p − √
q)2 dν)1/2.

A statistical experiment E(�) = (�,A, (Pθ : θ ∈ �)) consists of a sample space � with associated σ -algebra
A and a family (Pθ : θ ∈ �) of probability measures all defined on the measurable space (�,A). We call E(�)

dominated if there exists a probability measure μ such that any Pθ is dominated by μ. Furthermore, E(�) is said
to be Polish if � is a Polish space and A is the associated Borel σ -algebra. If E(�) = (�,A, (Pθ : θ ∈ �)) and
F(�) = (�′,A′, (Qθ : θ ∈ �)) are two Polish and dominated experiments indexed by the same parameter space, the
Le Cam deficiency can be defined as

δ
(
E(�),F(�)

) := inf
M

sup
θ∈�

∥∥MP n
θ − Qn

θ

∥∥
TV,

where the infimum is taken over all Markov kernels M : �1 ×A2 → [0,1]. The Le Cam distance is defined as

	
(
E(�),F(�)

) := max
{
δ
(
E(�),F(�)

)
, δ

(
F(�),E(�)

)}
,

which defines a pseudo-distance on the space of all experiments with parameter space �. One may generalize the
definition of Le Cam deficiency to spaces that are neither Polish nor dominated upon replacing the notion of Markov
kernel with a more general transition [14,24]. However, we refrain from doing so here since these notions coincide
in the Polish and dominated experiments we consider in this article, see (68) and Proposition 9.2 of [18]. Finally, we
say that two sequences of experiments En(�n) = (�n,An, (P

n
θ : θ ∈ �n)) and F(�n) = (�′

n,A′
n, (Q

n
θ : θ ∈ �n)) are

asymptotically equivalent if 	(En(�n),Fn(�n)) → 0 as n → ∞. General treatments on asymptotic equivalence can
be found in [14,24].

In this article, we consider the following two statistical experiments.
Density estimation ED

n (�): In nonparametric density estimation, we observe n i.i.d. copies X1, . . . ,Xn of a ran-
dom variable on [0,1] with unknown Lebesgue density f . The corresponding statistical experiment is ED

n (�) =
([0,1]n, σ ([0,1]n), (P n

f : f ∈ �)) with P n
f the product probability measure of X1, . . . ,Xn.

Gaussian white noise experiment EG
n (�): We observe the Gaussian process (Yt )t∈[0,1] arising from (1) with f ∈

� unknown. Denote by C([0,1]) the space of continuous functions on [0,1] and let σ(C([0,1])) be the σ -algebra
generated by the open sets with respect to the uniform norm. The Gaussian white noise experiment is then given by
EG

n (�) = (C([0,1]), σ (C([0,1])), (Qn
f : f ∈ �)) with Qn

f the distribution of (Yt )t∈[0,1].

Function spaces

Denote by 	β
 the largest integer strictly smaller than β . The usual Hölder semi-norm is given by |f |Cβ :=
supx �=y,x,y∈[0,1] |f (	β
)(x) − f (	β
)(y)|/|x − y|β−	β
 and the Hölder norm is ‖f ‖Cβ := ‖f ‖∞ + ‖f (	β
)‖∞ + |f |Cβ .
Consider the space of β-smooth Hölder densities with Hölder norm bounded by R,

Cβ(R) :=
{
f : [0,1] → R : f ≥ 0,

∫ 1

0
f (u)du = 1, f (	β
) exists,‖f ‖Cβ ≤ R

}
.
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If 0 < β ≤ 2, the pointwise rate of estimation at any x ∈ (0,1) over the parameter space Cβ(R) is given by

n
− β

β+1 +
(

f (x)

n

) β
2β+1

, (2)

with upper and lower bounds matching up to logn factors (see Theorems 3.1 and 3.3 of [19] for density estimation and
Theorems 1 and 2 of [20] for the Gaussian white noise model). There is thus a phase transition in the estimation rate

for small densities occurring at the n-dependent signal size f (x) 
 n
− β

β+1 . This is the same boundary for asymptotic
nonequivalence proved in Theorem 1 below, so that in some respects at least, the two experiments do behave dif-
ferently from one another below this threshold. However, despite asymptotic nonequivalence, many other properties,
such as minimax rates and consistent testing, are still asymptotically the same below this threshold. Indeed, the coun-
terexample we construct lies right on the boundary of testing problems and in some sense only narrowly fails. The

importance of the threshold f (x) 
 n
− β

β+1 is not isolated to minimax estimation rates and asymptotic equivalence
and seems to play a fundamental role for small densities, for example being necessary to obtain sharp rates when
estimating the support of a density [19]. For further discussion see [19,20].

The rate of convergence (2) does not extend to β > 2 using the usual definition of Hölder smoothness due to the
existence of functions which are highly oscillatory near zero (Theorem 3 of [20]). A natural way to attain the rate for
smoothness β > 2 is to impose a shape constraint ruling out such pathological behaviour. On Cβ , define the flatness
seminorm

|f |Hβ = max
1≤j<β

∥∥∣∣f (j)
∣∣β/|f |β−j

∥∥1/j

∞ = max
1≤j<β

(
sup

x∈[0,1]
|f (j)(x)|β
|f (x)|β−j

)1/j

(3)

with 0/0 defined as 0 and |f |Hβ = 0 if 0 < β ≤ 1. The quantity |f |Hβ measures the flatness of a function near
zero in the sense that if f (x) is small, then the derivatives of f must also be small in a neighborhood of x. Define
‖f ‖Hβ := ‖f ‖Cβ + |f |Hβ and consider the space of densities

Hβ(R) := {
f ∈ Cβ(R) : ‖f ‖Hβ ≤ R

}
.

Notice that Hβ(R) = Cβ(R) for β ≤ 1. For further discussion and properties of the function space Hβ(R), see [21].
The reason we construct a counterexample in Hβ(R) is to concretely show that asymptotic nonequivalence is not

due to functions that are highly oscillatory near zero, but also holds for typical Hölder functions. Thus even when
considering only “nice” Hölder functions, for which the rate (2) is attainable, nonequivalence still holds.

Asymptotic nonequivalence

To obtain suitable lower bounds on the Le Cam deficiencies, we require that the small densities are not isolated in the
parameter space �n, meaning we must introduce a notion of interior parameter space. This is in some sense necessary,
since asymptotic equivalence may still hold when the small density behaviour is driven by a parametric component,
in particular having finite Hellinger metric dimension. For further discussion on this point, see Proposition 1 below.

The following result is the main contribution of this article, showing that if

inf
f ∈�n

inf
x∈[0,1]f (x) � n−β/(β+1),

then the Le Cam deficiency is bounded from below by a positive constant for sufficiently large n. In this case, the
experiments are asymptotically nonequivalent.

Theorem 1. Let R,β > 0. There exists a constant c > 1, not depending on R, such that if (f0,n)n ⊂ �n ∩Hβ(R) is
a sequence satisfying infx∈[0,1] f0,n(x) ≤ 1

2R1/(β+1)n−β/(β+1) and {f ∈ Hβ(cR) : c−1f0,n ≤ f ≤ cf0,n} ⊂ �n for all
n ≥ 2, then

δ
(
ED

n (�n),EG
n (�n)

) ≥ 0.007 + o(1) > 0.
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The assumption is that the parameter space �n is rich enough to contain a function f0,n that somewhere falls
below the threshold n−β/(β+1), together with all the functions in Hβ(cR) lying in the band x �→ [c−1f0,n(x), cf0,n(x)]
around f0,n. An explicit expression for c can be obtained from the proof, see (15). As a particular example, the norm
balls �n =Hβ(R) satisfy the above assumptions.

Corollary 1. For any β > 0 and sufficiently large R ≥ R0(β),

	
(
ED

n

(
Hβ(R)

)
,EG

n

(
Hβ(R)

)) ≥ 0.007 + o(1) > 0.

Proof of Corollary 1. For β > 0, consider the density f (x) = (β + 1)xβ . For any integer 0 ≤ j < β , f (j)(x) =
[
(β + 2)/
(β − j + 1)]xβ−j , where 
(t) denotes the Gamma function. This implies that ‖f ‖∞ + ‖f (	β
)‖∞ ≤
(β + 1) + 
(β + 2)/
(β − 	β
 + 1) and |f |Hβ = max1≤j<β 
(β + 2)β/j
(β − j + 1)−β/j (β + 1)−(β−j)/j . For
any z ∈ [0,1] and γ ∈ [0,1], 1 ≤ zγ + (1 − z)γ , which implies |xγ − yγ | ≤ |x − y|γ for x, y ≥ 0. Hence, |f |Cβ ≤

(β + 2)/
(β − 	β
 + 1), so that ‖f ‖Hβ ≤ Cβ for some finite constant Cβ depending only on β . Let c > 1 be
the constant in Theorem 1. If R ≥ Cβc, we may apply Theorem 1 with the constant sequence f0,n = f , since then
(f0,n)n ⊂Hβ(Cβ) ⊂Hβ(R/c). By Theorem 1 with �n =Hβ(R) and R replaced by R/c, the assertion follows. �

Since ‖f ‖Hβ ≥ ‖f ‖∞ ≥ 1 for any density f on [0,1], the radius R in the previous corollary must be larger than
some R0(β), otherwise the parameter space Hβ(R) is empty. For small densities, the Gaussian white noise model (1)
can be asymptotically more informative than density estimation. This result is only interesting in the case β > 1/2,
since for β ≤ 1/2, asymptotic equivalence can fail even if all densities are uniformly bounded away from zero [4].

Under general conditions, if �n ⊂Hβ(R) for 1/2 < β ≤ 1 and inff ∈�n infx∈[0,1] f (x) � n
− β

β+1 log8 n, the squared
Le Cam deficiencies between density estimation and the Gaussian model (1) are exactly of the order

min

{
1, n

1−2β
2β+1 sup

f ∈�n

∫ 1

0
f (x)

− 2β+3
2β+1 dx

}
, (4)

see Theorem 4 of [22]. In particular, if f is uniformly bounded away from zero we recover the rate min{1,

n(1−2β)/(2β+1)}, so that the experiments are asymptotically equivalent if and only if β > 1/2. As we now show by
example, in view of (4), the threshold n−β/(β+1) obtained in Theorem 1 is essentially sharp up to a logarithmic factor.

Consider the densities f0,n(x) ∝ xβ + n
− β

β+1 Mn with Mn � log8 n diverging, which satisfy infx∈[0,1] f0,n(x) ∝
n

− β
β+1 Mn � n

− β
β+1 and f0,n ∈Hβ(R) for R > 0 large enough. For c > 0 the constant from Theorem 1, set

�n = {
f ∈ Hβ(cR) : c−1f0,n ≤ f ≤ cf0,n

}
.

Since inff ∈�n infx∈[0,1] f (x) � n
− β

β+1 log8 n, applying (4),

	
(
ED

n (�n),EG
n (�n)

)2 
 n
1−2β
2β+1

∫ 1

0
f0,n(x)

− 2β+3
2β+1 dx 
 M

(1−2β)(β+1)
β(2β+1)

n → 0

for 1/2 < β ≤ 1, so that density estimation and the Gaussian model (1) with parameter spaces �n are asymptotically

equivalent. In summary, asymptotic equivalence always fails below the threshold n
− β

β+1 , but may still hold for any

level larger than n
− β

β+1 log8 n, thereby showing that Theorem 1 is sharp up to a logarithmic factor. The log8 n factor
is a technical artifact arising from the proof of (4).

Asymptotic equivalence for small densities in parametric settings

Asymptotic nonequivalence due to small densities is a feature of fully nonparametric models and our conclusions do
not necessarily apply in parametric models. We illustrate this via an example, whose proof we defer to the end of the
article.
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Proposition 1. Consider the probability density g(x) = 960x2(1/2 − x)21[0,1/2](x). For K ⊂ (0,1/2) a compact in-
terval, consider the location family �(K) = {fθ (x) = g(x − θ) : θ ∈ K}. For this parameter space, density estimation
and the Gaussian model (1) are asymptotically equivalent, that is as n → ∞,

	
(
ED

n

(
�(K)

)
,EG

n

(
�(K)

)) → 0.

The densities in the location family �(K) are not bounded away from zero on [0,1], with fθ equal to zero on
[0, θ ] ∪ [θ + 1/2,1], yet asymptotic equivalence still holds. The reason for this is that for areas of [0,1] where there
are too few observations to admit a Gaussian approximation, the required information is provided by the parameter
estimates for θ . A sufficient condition for this is finite Hellinger metric dimension in the density model, not to be
confused with finite vectorial dimension of the parameter space, see Assumption (A3) of Le Cam [13]. Recall that a
family (fθ : θ ∈ �′) of density functions is said to have finite Hellinger metric dimension if there exists a number D ≥
0 such that every subset of (fθ : θ ∈ �′) which can be covered by an ε-ball in Hellinger distance H , can be covered by
at most 2D ε/2-balls in H , where D does not depend on ε. For example, the family of densities {C exp(−|x − θ |α) :
θ ∈ R} on R for some α ∈ (0,1/2) has vectorial dimension one yet does not have finite Hellinger metric dimension,
see Remark 2 after Theorem 4.3 of Le Cam [13]. In this sense, Theorem 1 is truly a nonparametric result.

One can extend this further by considering parameter spaces with a-priori known zeroes. For instance Mariucci
[17] establishes asymptotic equivalence for densities of the form fg, where f ∈ Cβ , β > 1, is an unknown function
uniformly bounded away from zero and g is a given known function that is possibly small. In view of the above,
one may interpret this as a form of semiparametric model, with a parametric part g determining the density for small
values and the nonparametric part f doing so for large values. Thus for areas of [0,1] with sufficient observations,
one can fit a Gaussian approximation based on f as usual, whereas for regions with insufficient observations, one
must use the information provided by the parameter estimate for g, which in this particular example arises from a
zero-dimensional family since g is known exactly.

Overview of the proof

The proof of Theorem 1 is based on a reduction to binary experiments and a direct comparison of the total variation
distances between the parameters using the following lemma.

Lemma 1. Let Eb
1 = (�1,A1, (P1,i : i ∈ {1,2})) and Eb

2 = (�2,A2, (P2,i : i ∈ {1,2})) be binary experiments. Then

δ
(
Eb

1 ,Eb
2

) ≥ 1

2

(‖P2,1 − P2,2‖TV − ‖P1,1 − P1,2‖TV
)
.

Proof. We have the explicit formula δ(Eb
1 ,Eb

2 ) = sup0≤ξ≤1[g1(ξ)−g2(ξ)] with gj (ξ) = inf[(1−ξ)Pj,1φ+ξPj,2(1−
φ)] the error function in Eb

j , j ∈ {1,2}, and where the infimum is over all tests φ, see Strasser [24], Corollary 15.7
and Definition 14.1. Notice that the definition of deficiency in [24], Definition 15.1, has an additional factor 1/2. The
result then follows with gj (1/2) = 1

2 (1 − ‖Pj,1 − Pj,2‖TV) ([24], page 71). �

To establish asymptotic nonequivalence for a discrete experiment and its continuous analogue, a standard approach
is to consider a sequence of binary experiments such that the total variation distance in the discrete model is zero (i.e.
both measures are the same) but the total variation distance in the continuous model is positive. Lemma 1 then yields
asymptotic nonequivalence.

This approach cannot be used here and the proof of Theorem 1 requires a much more careful choice of the sequence
of binary experiments. Consider a sequence of binary experiments {P n

fn
,P n

gn
} in the density estimation setting with

corresponding binary experiments {Qn
fn

,Qn
gn

} in the Gaussian white noise model. The following result shows that
the total variation distance in one experiment tends to zero if and only if the total variation in the other experiment
also tends to zero. The same holds if the total variation distances both tend to one. Thus, in order to construct a lower
bound via Lemma 1, such sequences cannot be used.
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Lemma 2. Let (fn)n and (gn)n be arbitrary sequences of densities in both experiments ED
n (�) and EG

n (�). For P n
f

the product probability measure for density estimation and Qn
f the law of the Gaussian white noise model (1),

∥∥P n
fn

− P n
gn

∥∥
TV → 0 ⇔ ∥∥Qn

fn
− Qn

gn

∥∥
TV → 0 ⇔ n

∫
(
√

fn − √
gn)

2 → 0 (5)

and ∥∥P n
fn

− P n
gn

∥∥
TV → 1 ⇔ ∥∥Qn

fn
− Qn

gn

∥∥
TV → 1 ⇔ n

∫
(
√

fn − √
gn)

2 → ∞. (6)

If H 2(P,Q) = ∫
(
√

dP − √
dQ)2 denotes the Hellinger distance, then for n > 1,

H 2(Qn
fn

,Qn
gn

) ≤ H 2(P n
fn

,P n
gn

) ≤ H 2(Qn
fn

,Qn
gn

) + 2 logn

n
. (7)

Proof. We first prove (7). By Lemma 5 below, H 2(Qn
fn

,Qn
gn

) = 2 − 2 exp(−n
2 ‖√fn − √

gn‖2
2). Together with Lem-

mas 2.17 and 2.19 of [24], this proves

H 2(Qn
fn

,Qn
gn

) ≤ H 2(P n
fn

,P n
gn

) ≤ H 2(Qn
fn

,Qn
gn

) + 1

2

∫
(
√

fn − √
gn)

2.

Distinguishing whether the term n
2

∫
(
√

fn − √
gn)

2 is larger or smaller than logn, and using that H 2(Qn
fn

,Qn
gn

) ≥
2 − 2n−1 if it is, then establishes (7).

To verify the first two assertions of the lemma, notice that by Le Cam’s inequalities (Lemma 2.3 in [25]), for any
probability measures P , Q,

1

2
H 2(P,Q) ≤ ‖P − Q‖TV ≤ min

{
H(P,Q),

(
1 − 1

2

(
1 − 1

2
H 2(P,Q)

)2)}
. (8)

Consequently, the total variation of two sequences (Pn) and (Qn) converges to zero if and only if H 2(Pn,Qn) → 0.
Similarly, ‖Pn − Qn‖TV → 1 if and only if H 2(Pn,Qn) → 2. Using (7) and H 2(Qn

fn
,Qn

gn
) = 2 − 2 exp(−n

2 ‖√fn −√
gn‖2

2), (5) and (6) follow. �

In view of this, we must construct sequences such that the total variation distances in the two experiments tend
neither to zero nor one and are separated for n large enough.

In the following we describe the ideas that finally lead to a lower bound. As a first step, we use Lemma 4 below to
show that in the density estimation model,

∥∥P n
f − P n

g

∥∥
TV ≤ 1 −

(
1 − ‖f − g‖1

2

)n

.

In the Gaussian white noise model, we have by Lemma 5 that ‖Qn
f − Qn

g‖TV = 1 − 2�(−√
n‖√f − √

g‖2) with �

the distribution function of a standard normal random variable. For the Le Cam deficiency of the binary experiments
with parameter space � = {f,g}, Lemma 1 then implies the following lower bound:

δ
(
ED

n

({f,g}),EG
n

({f,g})) ≥ 1

2

(
1 − ‖f − g‖1

2

)n

− �
(−√

n‖√f − √
g‖2

)
. (9)

To prove asymptotic nonequivalence, we therefore want to construct sequences (fn)n, (gn)n ⊆ � such that the total
variation ‖fn − gn‖1 is small while the Hellinger distance ‖√fn − √

gn‖2 is large. The largest value of the Hellinger

distance is given by Le Cam’s inequalities (8), ‖√fn − √
gn‖2 ≤ ‖fn − gn‖1/2

1 . An inspection of the proof shows that
equality is achieved if for all x, either fn(x) = 0, gn(x) = 0 or fn(x) = gn(x). This is a first indication that the bound
(9) is particularly useful for small densities.
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We now provide a heuristic showing that the reduction to a binary experiment can only be used if the parameter
space contains small densities. Observe that in view of Lemma 2, we need ‖fn − gn‖1 
 ‖√fn − √

gn‖2
2 
 1/n to

show that the Le Cam deficiency is lower bounded by a positive constant. The standard approach for nonparametric
two hypothesis lower bounds is to consider one function as a local perturbation of the other. For fixed fn and K �≡ 0
a smooth function with

∫
K = 0 and support in [−1,1], set

gn = fn + hβ
nK

( · − x0

hn

)
, (10)

where x0 ∈ (0,1) is fixed and hn > 0. If fn is a β-Hölder smooth function, a standard argument shows that gn is also
β-Hölder smooth. If the perturbation is small enough, then gn ≥ 0 is a density since

∫
K = 0. The perturbation has

height O(h
β
n) and support of length 2hn, which means that the total variation distance is of the order h

β+1
n . To ensure

that ‖fn − gn‖1 
 1/n, we therefore take hn 
 n−1/(β+1). On the other hand, the squared Hellinger distance satisfies

‖√fn − √
gn‖2

2 =
∫

(fn − gn)
2

(
√

fn + √
gn)2


 h
2β+1
n

fn(x0) + h
β
n

. (11)

To ensure the right-hand side is of order 1/n, we consequently need f (x0) = O(h
β
n) = O(n

− β
β+1 ). If all densities are

bounded away from zero, a different approach based on a multiple testing problem is needed to obtain sharp lower
bounds [22].

To summarize, we have used that in the density estimation model the total variation of the product measures P n
f

and P n
g can be bounded in terms of the total variation between the densities f and g. On the contrary, in the Gaussian

white noise model the total variation distance is a function of the Hellinger distance of f and g. The total variation
distance is bounded from below by the squared Hellinger distance and from above by the Hellinger distance via (8).
Nonequivalence can therefore be established using the inequality (9) if the total variation between f and g behaves
like the squared Hellinger distance, which happens exactly when the densities are small.

3. Proofs

We construct two test functions and use that the Le Cam deficiency is bounded from below by the difference of the
total variation distances. To prove Theorem 1, it is by (9) enough to show that for some densities f1,n, f2,n ∈ �n,

1

2

(
1 − ‖f1,n − f2,n‖1

2

)n

− �
(−√

n‖√f1,n − √
f2,n‖2

) ≥ 1

2
e− 3

2

(
1 −

√
e

π

)
+ o(1)

≥ 0.007 + o(1). (12)

We henceforth omit the index n for convenience, writing f1 = f1,n and f2 = f2,n. Before we describe the construction
of f1, f2, we first recall the following basic property of functions in the flat Hölder space Hβ .

Lemma 3 (Lemma 1 in [21]). Suppose that f ∈ Hβ with β > 0 and let a = a(β) > 0 be any constant satisfying
(ea − 1) + aβ/(	β
!) ≤ 1/2. Then for

|h| ≤ a

( |f (x)|
‖f ‖Hβ

)1/β

,

we have∣∣f (x + h) − f (x)
∣∣ ≤ 1

2

∣∣f (x)
∣∣,

implying in particular, |f (x)|/2 ≤ |f (x + h)| ≤ 3|f (x)|/2.
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Fig. 1. Plot of the densities f0 (black), f1 (red), f2 (blue).

Construction of f1, f2 ∈ �n: For a given density f0, we consider two perturbations of f0 for an x0 such that
f0(x0) 
 n−β/(β+1). This choice is natural in view of (11). The way we construct the perturbations is for technical
convenience slightly different than in (10). By assumption there exist densities f0 := f0,n ∈ Hβ(R) such that for some

x0 := x0,n ∈ [0,1], R1/(β+1)(2n)
− β

β+1 ≤ f0(x0) ≤ R1/(β+1)n
− β

β+1 for all n. Without loss of generality, we may assume
that x0 ≤ 1/2. We must ensure that we can apply Lemma 3 on the support of the perturbations, which motivates the
following definitions. With 0 < a ≤ 1/4 a solution of ea − 1 + aβ/	β
! ≤ 1/2, set

F := af0(x0)
β+1
β

4R
1
β

≤ 1

16n

and observe that F ≥ a/(8n). Given x0, pick x1 < x2 such that
∫ x1
x0

f0(x) dx = ∫ x2
x1

f0(x) dx = F . By Lemma 3,∫ x0+af0(x0)
1/β/R1/β

x0
f0(x) dx ≥ 2F , which implies

x2 ≤ x0 + af0(x0)
1/β/R1/β ≤ 1/2 + R

− 1
β(β+1) n

− β
β+1 , (13)

so that x2 ≤ 1 for n ≥ n0(R,β) large enough.
Let K ∈ Cβ(R) be a non-negative function supported on [0,1] and satisfying

∫ 1
0 K(u)du = 1. For γ the solution

of
√

1 + γ := 1 + 1/
√

nF , consider the two test functions

fj (x) = f0(x)

(
1 − γF + γK

(
F0(x) − F0(xj−1)

F

))
, j ∈ {1,2}, (14)

where F0 is the distribution function of f0. Figure 1 displays an example of this construction. Since γ = 1/(nF) +
2/

√
nF , it follows that γF ≤ 3/(2n) and 1 − γF > 0 for n ≥ 2. By substitution,

∫ 1
0 fj (x) dx = 1 and thus the fj are

densities. Moreover, f1 − f0 and f2 − f0 have disjoint support. We also have the following proposition that is proved
below.

Proposition 2. There exists a finite constant C, not depending on R, such that f1, f2 ∈ Hβ(CR).

Using γF ≤ 3/(2n) and γ ≤ (1 + √
8/a)2 gives

1 − 3

2n
≤ fj (x)

f0(x)
≤ 1 + (1 + √

8/a)2‖K‖∞.

It therefore follows that f1, f2 ∈ {f ∈Hβ(cR) : c−1f0 ≤ f ≤ cf0} for

c = max
(
C,4,1 + (1 + √

8/a)2‖K‖∞
)

(15)

and thus by assumption f1, f2 ∈ �n. We now establish (12) for these f1, f2 ∈ �n.
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Lower bound for 1
2 (1 − 1

2‖f1 − f2‖1)
n: Using

∫ 1
0 K(u)du = 1 and substituting u = (F0(x) − F0(xj−1))/F , we

get ‖f1 − f2‖1 = 2γF . Since γF ≤ 3/(2n),

1

2

(
1 − ‖f1 − f2‖1

2

)n

≥ 1

2

(
1 − 3

2n

)n

→ 1

2
e− 3

2 . (16)

Upper bound for �(−√
n‖√f1 − √

f2‖2): This is equivalent to lower bounding ‖√f1 − √
f2‖2. Splitting the

integral
∫ 1

0 into
∫ x1
x0

+ ∫ x2
x1

+ ∫
[x0,x2]c , using the properties of K , substitution and the Cauchy–Schwarz inequality

yields

‖√f1 − √
f2‖2

2 = 2F

∫ 1

0

(√
1 − γF + γK(u) − √

1 − γF
)2

du

≥ 2F(1 − γF)

∫ 1

0

(√
1 + γK(u) − 1

)2
du

= 2F(1 − γF)

(
γ + 2 − 2

∫ 1

0

√
1 + γK(u)du

)
≥ 2F(1 − γF)(

√
1 + γ − 1)2

= 2 − 2γF

n

≥ 2

n
− 3

n2
,

where in the last two lines we have used the definition of γ and γF ≤ 3/(2n). For x > 0, we find using the standard
Gaussian tail bound �(−x) = 1 − �(x) ≤ (2π)−1/2x−1e−x2/2, so that we finally obtain

�
(−√

n‖√f1 − √
f2‖2

) ≤ �
(−√

2
(
1 + o(1)

)) → �(−√
2) ≤ 1

2e
√

π
.

The last bound and (16) together imply (12), which completes the proof of Theorem 1. �

Proof of Proposition 2. In this proof we write an � bn if an ≤ Cbn for a constant C which does not depend on
R, but might depend on β and K . Note that γ ≤ (1 + √

8/a)2. Recall that the support of fj − f0 is [xj−1, xj ] and
that by Lemma 3, 1

2f0(x) ≤ f0(x0) ≤ 2f0(x) for all x ∈ [x0, x2]. The sup-norm can be easily bounded by ‖fj‖∞ ≤
‖f0‖∞(1 + γ ‖K‖∞) � R.

For 0 < β ≤ 1, using the definition of F ,

|fj |Cβ ≤ |f0|Cβ

(
1 + γ ‖K‖∞

) + 2γf0(x0)

∣∣∣∣K(
F0(·) − F0(xj−1)

F

)∣∣∣∣
Cβ

≤ R
(
1 + γ ‖K‖∞

) + 2γf0(x0)|K|Cβ sup
x,y∈[xj−1,xj ]:x �=y

|F0(x) − F0(y)|β
Fβ |x − y|β

≤ R
(
1 + γ ‖K‖∞

) + 2β+1γf0(x0)
β+1|K|Cβ F−β

≤ R
(
1 + γ ‖K‖∞ + 16a−βγ |K|Cβ

)
.

Since |fj |Hβ = 0 for 0 < β ≤ 1 by definition, it follows that ‖fj‖Hβ � R.
We now bound |fj |Cβ for β > 1. Since |f0(1−γF)|Cβ ≤ R, it remains to show |f0 · (K ◦vj )|Cβ � R with vj (x) :=

(F0(x)−F0(xj−1))/F . Let 1 ≤ r ≤ 	β
. For two r-times differentiable functions g, h, (gh)(r) = ∑r
q=0

(
r
q

)
g(q)h(r−q).
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Moreover, by Faà di Bruno’s formula,

(K ◦ vj )
(q) =

∑ q!
m1! · · ·mq !

(
K(Mq) ◦ vj

) q∏
s=1

(
v

(s)
j

s!
)ms

=
∑

cm1,...,mq

K(Mq) ◦ vj

FMq

q∏
s=1

(
f

(s−1)
0

)ms ,

where the sum is over all non-negative integers m1, . . . ,mq with m1 + 2m2 + · · · + qmq = q and Mq := ∑q

s=1 ms .
The r th derivative of f0 · (K ◦ vj ) therefore equals

(K ◦ vj )f
(r)
0 +

r∑
q=1

(
r

q

)∑
cm1,...,mq

K(Mq) ◦ vj

FMq
f

(r−q)

0

q∏
s=1

(
f

(s−1)
0

)ms , (17)

where the second sum is over the same set of integers as above. We bound the | · |Cβ -seminorm by proving a
Hölder bound for each of the terms in (17) individually, starting with the terms in the sum. For 1 ≤ q ≤ r and
mq = (m1, . . . ,mq) a q-tuple as above, write

ϕ(x) = ϕmq (x) = F−Mq
(
K(Mq) ◦ vj

)
(x)f

(r−q)

0 (x)

q∏
s=1

f
(s−1)
0 (x)ms ,

so that we wish to prove |ϕ(x) − ϕ(y)| � R|x − y|β−	β
. For any x, y ∈ [x0, x2],

∣∣ϕ(x) − ϕ(y)
∣∣ ≤ 1

FMq

∣∣K(Mq) ◦ vj (x) − K(Mq) ◦ vj (y)
∣∣∣∣∣∣∣f (r−q)

0 (x)

q∏
s=1

f
(s−1)
0 (x)ms

∣∣∣∣∣
+ 1

FMq

∣∣∣∣∣K(Mq) ◦ vj (y)

(
f

(r−q)

0 (x)

q∏
s=1

f
(s−1)
0 (x)ms − f

(r−q)

0 (y)

q∏
s=1

f
(s−1)
0 (y)ms

)∣∣∣∣∣. (18)

Using the definition (3) of Hβ and that
∑q

s=1 sms = q ,∣∣∣∣∣f (r−q)

0 (x)

q∏
s=1

f
(s−1)
0 (x)ms

∣∣∣∣∣ ≤ R
r−q
β f0(x)

β−(r−q)
β

q∏
s=1

R
(s−1)ms

β f0(x)
(β−s+1)ms

β = R
r−Mq

β f0(x)
β−r+(β+1)Mq

β . (19)

Observe that by (13) and the definition of F , for any 1 ≤ � < β and x, y ∈ [x0, x2],∣∣K(�)
(
vj (x)

) − K(�)
(
vj (y)

)∣∣ � f0(x0)F
−1|x − y|β−	β
|x2 − x0|1−(β−	β
)

� R
β−	β


β f0(x0)
	β
−β

β |x − y|β−	β
.

Combining the previous two displays and again using the definition of F , the first term in (18) is O(R
β−	β
+r

β ×
f0(x0)

	β
−r
β |x − y|β−	β
) = O(R|x − y|β−	β
) as required.

For 1 ≤ � < 	β
, m ∈ N and x, y ∈ [x0, x2] with x < y, we have using (3), (13) and the mean value theorem, that
for some ξ = ξx,y ∈ [x, y],∣∣f (�)

0 (x)m − f
(�)
0 (y)m

∣∣ ≤ m
∣∣f (�+1)

0 (ξ)
∣∣∣∣f (�)

0 (ξ)
∣∣m−1

(x2 − x0)
1−(β−	β
)|x − y|β−	β


� R
β−	β
+�m

β f0(x0)
	β
−β+(β−�)m

β |x − y|β−	β
.

Noting that for � = 	β
, m� only takes values 0 or 1 in the sum in (17), one can extend the previous display to
� = 	β
 by directly using the Hölder continuity of f

(	β
)
0 . For the second term in (18), we repeatedly apply the

triangle inequality, each time changing the variable in a single derivative. Fix an integer 1 ≤ k ≤ q and define vectors
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(zs)
q

s=1 and (z̃s)
q

s=1, which are identically equal to x or y in all entries except the kth-coordinate, where zk = x and
z̃k = y. Then using the previous display, a similar argument to (19) and the definition of F ,

1

FMq

∣∣f (r−q)

0 (x)
∣∣∣∣∣∣∣

q∏
s=1

f
(s−1)
0 (zs)

ms −
q∏

s=1

f
(s−1)
0 (z̃s)

ms

∣∣∣∣∣
= 1

FMq

∣∣f (r−q)

0 (x)
∣∣∣∣∣∣∣

q∏
s=1,s �=k

f
(s−1)
0 (zs)

ms

∣∣∣∣∣∣∣f (k−1)
0 (x)mk − f

(k−1)
0 (y)mk

∣∣
� R

β−	β
+r
β f0(x0)

	β
−r
β |x − y|β−	β


� R|x − y|β−	β
,

where is the last line we have used that r ≤ 	β
 and ‖f0‖∞ ≤ R. The same inequality can be established for
F−Mq |f (r−q)

0 (x) − f
(r−q)

0 (y)||∏q

s=1 f
(s−1)
0 (y)ms |. Since ‖K(Mq) ◦ vj‖∞ � 1, by repeatedly applying the triangle

inequality and the last display, the second term in (18) is O(R|x − y|β−	β
), so that |ϕ(x) − ϕ(y)| � R|x − y|β−	β

as required. A similar, but simpler, argument shows that the first term in (17) satisfies |K ◦ vj (x)f

(r)
0 (x) − K ◦

vj (y)f
(r)
0 (y)| � R|x − y|β−	β
. This shows that every term in (17), and hence the whole of (17), satisfies the required

Hölder bound, so that |f0 · (K ◦ vj )|Cβ � R.

We now prove that |fj |Hβ � R for β > 1. By (3), it suffices to show |f (r)
j (x)| ≤ (CR)

r
β |fj (x)| β−r

β for all x ∈ [0,1]
and r = 1, . . . , 	β
 and a constant C that does not depend on R. Since K ≥ 0 and γF ≤ 3/(2n), it is enough to show

that |f (r)
j (x)| ≤ (C′R)

r
β |f0(x)| β−r

β for all x ∈ [0,1] and a possibly different constant C′. This follows if |(f0γ (K ◦
vj ))

(r)(x)| ≤ (C′′R)
r
β |f0(x)| β−r

β for all x ∈ [0,1], r = 1, . . . , 	β
 and some C′′ < ∞. This last inequality follows

from (17), (19), the definition of F and that f0 ∈Hβ(R). This also shows that ‖f (	β
)
j ‖∞ � R

	β

β ‖f0‖

β−	β

β∞ � R. �

Lemma 4. For P and Q dominated probability measures, the product measures P ⊗n = P ⊗ · · · ⊗ P and Q⊗n =
Q ⊗ · · · ⊗ Q satisfy∥∥P ⊗n − Q⊗n

∥∥
TV ≤ 1 − (

1 − ‖P − Q‖TV
)n

.

Proof. For probability measures P̃ , Q̃ on the same measurable space, we have ‖P̃ − Q̃‖TV = 1 − ∫
dP̃ ∧ Q̃. If p,q

denote the densities of P , Q with respect to some dominating measure ν,

∥∥P ⊗n − Q⊗n
∥∥

TV = 1 −
∫ n∏

i=1

p(xi) ∧
n∏

i=1

q(xi) dν(xi) ≤ 1 −
n∏

i=1

∫
p(xi) ∧ q(xi) dν(xi)

and the right-hand side can be rewritten as 1 − (1 − ‖P − Q‖TV)n. �

Lemma 5. For a function b and σ > 0, denote by Qb,σ the distribution of the path (Yt )t∈[0,1] with dYt = b(t) dt +
σ dWt , where W is a Brownian motion. If � denotes the distribution function of the standard normal distribution,
then

‖Qb1,σ − Qb2,σ ‖TV = 1 − 2�

(
− 1

2σ
‖b1 − b2‖2

)
,

H 2(Qb1,σ ,Qb2,σ ) = 2 − 2 exp

(
− 1

8σ 2
‖b1 − b2‖2

2

)
.

Proof. This follows from Girsanov’s formula dQb,σ /dQ0,σ = exp(σ−1
∫ 1

0 b(t) dWt − 1
2σ−2‖b‖2

2) together with

‖P − Q‖TV = 1 − P(
dQ
dP

> 1) − Q(dP
dQ

≥ 1) and H 2(P,Q) = 2 − 2
∫
(dP dQ)1/2. �
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Proof of Proposition 1. We verify the conditions of Proposition 1.2 of Nussbaum [18], which is a specialized version
of the more general Theorem 4.3 of Le Cam [13]. We first begin with the regularity conditions stated in Section 10 of
[18]. Since g′(x) = 960x(1/2 − x)(1 − 4x), for any θ ∈ (0,1/2) the Fisher information equals

I (θ) =
∫ θ+1/2

θ

g′(x − θ)2

g(x − θ)
dx =

∫ 1

0

g′(x)2

g(x)
dx = 960

∫ 1/2

0
(1 − 4x)2 dx = 160,

from which we observe that I (θ) is both constant and finite for all θ ∈ (0,1/2). For �̇θ = f −1
θ

∂
∂θ

fθ , one can show
explicitly that for θ, θ + h ∈ (0,1/2),∫ 1

0

[√
fθ+h − √

fθ − 1

2
h�̇θ

√
fθ

]2

= 960h4,

so that the family (fθ : θ ∈ K) is differentiable in quadratic mean uniformly on compact sets K ⊂ (0,1/2) in the sense
of page 578 of Le Cam [14]. Together, these verify the regularity conditions of Proposition 1.2 of [18], see Section 10
of [18] or Proposition 1, Chapter 17.3 of [14].

We now verify the crucial condition that the family �(K) has finite Hellinger metric dimension. Using the explicit
form of g and directly integrating, one can show after some calculations that for any θ ∈ (0,1/2),∫ 1

0

√
g(x − θ)g(x) dx =

∫ 1/2

θ

√
g(x − θ)g(x) dx = 1 − 20θ2(1 − 2θ + 8θ3/5

)
,

so that the Hellinger distance equals

H 2(Pfθ ,Pg) = 2 − 2
∫ 1

0

√
g(x − θ)g(x) dx = 40θ2(1 − 2θ + 8θ3/5

)
.

By a change of variable, H(Pfθ ,Pfθ ′ ) = H(Pf|θ−θ ′ | ,Pg) for any θ, θ ′ ∈ (0,1/2), so that H 2(Pfθ ,Pfθ ′ ) = 40|θ −
θ ′|2 + O(|θ − θ ′|3). In particular, there exists a constant c̃ > 1 such that c̃−1|θ − θ ′|2 ≤ H 2(Pfθ ,Pfθ ′ ) ≤ c̃|θ − θ ′|2
for all θ, θ ′ ∈ (0,1/2).

To establish finite Hellinger metric dimensionality, we must show that for any ε > 0, {fθ ′ : H(fθ ′ , fθ ) ≤ ε} can
be covered in Hellinger distance by a finite number of ε/2 balls, independently of ε. By the above results, it suffices
to show that {θ ′ : |θ ′ − θ | ≤ c̃1/2ε} can be covered by N balls {θ ′ : |θ ′ − θi | ≤ c̃−1/2ε/2}, i = 1, . . . ,N , for some
N independent of ε. This is simply covering a compact interval in R and can be done with N = 2c̃ such ε/2 balls,
thereby giving the required finite metric dimension D ≤ log2(2c̃). �
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