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Big Data Bayesian Linear Regression and
Variable Selection by Normal-Inverse-Gamma

Summation

Hang Qian∗

Abstract. We introduce the normal-inverse-gamma summation operator, which
combines Bayesian regression results from different data sources and leads to a
simple split-and-merge algorithm for big data regressions. The summation oper-
ator is also useful for computing the marginal likelihood and facilitates Bayesian
model selection methods, including Bayesian LASSO, stochastic search variable
selection, Markov chain Monte Carlo model composition, etc. Observations are
scanned in one pass and then the sampler iteratively combines normal-inverse-
gamma distributions without reloading the data. Simulation studies demonstrate
that our algorithms can efficiently handle highly correlated big data. A real-world
data set on employment and wage is also analyzed.
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1 Introduction

Advances in computation and storage technologies have led to exponential growth of
data volume, velocity and variety. Data scientists face the challenge of scaling up the
existing Bayesian inference methods when the data are too large to be processed by a
single machine. It is natural to split the big data and merge the results obtained from
a plurality of data sources. Scott et al. (2016) propose the consensus Monte Carlo, in
which data are partitioned among multiple machines and the data-distributed results
are averaged by appropriate weights. Neiswanger et al. (2014) show that combination
of subsample results obtained from parallel simulation is asymptotically consistent, and
they also bound the rate of convergence. For linear regression models, Miroshnikov
et al. (2015) resort to the summary statistics as the input to Markov chain Monte Carlo
(MCMC) simulation. Ordonez et al. (2014) discuss the generalized sufficient statistics
in stochastic search variable selection (SSVS) by George and McCulloch (1993). Ghosh
and Reiter (2013) study the partitioned data for secure Bayesian model averaging.

Conjugate Bayesian linear regressions are discussed in almost every Bayesian text-
book, but we study the normal-inverse-gamma (NIG) distributions from a new per-
spective, namely the NIG summation operator, which effectively combines the data-
distributed results and facilitates the marginal likelihood computation. Our approach is
applicable to Bayesian linear regressions and a variety of Bayesian hierarchical shrink-
age and variable selection methods, including Bayesian ridge regressions, Bayesian least
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absolute shrinkage and selection operator (LASSO), SSVS, MCMC model composition
(MC3) by Madigan et al. (1995), Bayesian calibration to frequentist Akaike/Bayesian
information criteria (AIC/BIC) (George and Foster, 2000), the pseudo-prior method by
Carlin and Chib (1995) and a form of reversible jump MCMC (Green, 1995). We put
them in a unified framework that involves two stages. First, out-of-memory data are
processed by a split-and-merge NIG summation algorithm. Second, in-memory MCMC
samplers (or analytic solvers) iteratively combine NIG distributions to learn the poste-
riors without reloading data.

In this paper, big data refer to the large number of observations (n), while the
number of variables (k) is moderate in the sense that it remains feasible to store and
manipulate k× k matrices in memory.1 The conventional wisdom is that variable selec-
tion techniques are mostly ideal for large-k applications. We demonstrate that variable
selection methods are also useful when several hundred variables exhibit near-perfect
multicollinearity. Our algorithms can efficiently identify the promising predictors for
successful out-of-sample forecast.

The remainder the paper is organized as follows. Section 2 reviews Bayesian linear
regressions and Section 3 introduces the NIG summation operator and a split-and-merge
algorithm for big data regressions. Section 4 applies the NIG summation operator to
Bayesian variable selection methods. Section 5 is devoted to simulation studies and com-
putational complexity analysis. Section 6 analyzes a real-world wage data set. Section 7
concludes the paper and suggests promising directions of future research.

2 Bayesian Linear Regression

Consider the multiple linear regression model:

Y = Xβ + σε, (1)

where Y is a n × 1 response vector, X is a n× k predictor matrix and ε is a vector of
independent standard normal disturbances.

Definition 1. The k-dimensional regression coefficients and the disturbance variance
(β, σ2) follow the distribution NIG(μ,Λ, a, b) if

p
(
β, σ2

)
∝

(
σ2

)−(a+ k
2+1)

e−σ−2[b+ 1
2 (β−μ)′Λ(β−μ)].

Also, (β, σ2) is said to have a non-informative prior, denoted by NIG(0k, 0k×k,−k
2 , 0),

if p(β, σ2) ∝ σ−2.

For notational convenience, we parameterize the NIG distribution by the precision
matrix Λ. That is, NIG(μ,Λ, a, b) indicates that p(β|σ2) is multivariate normal with
the mean μ and the precision σ−2Λ. The covariance matrix is σ2Λ−1.

1There is a large body of literature on high-dimensional (i.e., many variables) model selection
methods, see Fan and Lv (2010), Johnson and Rossell (2012), Lin et al. (2011), to name a few.
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Textbook Bayesian results show that the posterior distributions are analytically
tractable under the conjugate and non-informative priors. As we will frequently refer to
those results, we state them as Proposition 1 and 2.

Proposition 1. Under the conjugate prior NIG(μ,Λ, a, b) and n observations X,Y , the
posterior distribution is given by NIG(μ,Λ, a, b), where μ = (Λ+X ′X)−1(Λμ+X ′Y ),
Λ = Λ+X ′X, a = a+ n

2 , b = b+ 1
2Y

′Y + 1
2μ

′Λμ− 1
2μ

′Λμ.

Proposition 2. Under the non-informative prior p(β, σ2) ∝ σ−2 and n observations

X,Y , the posterior distribution is given by NIG(μ̃, Λ̃, ã, b̃), where μ̃ = (X ′X)−1X ′Y ,

Λ̃ = X ′X, ã = n−k
2 , b̃ = 1

2Y
′Y − 1

2Y
′X(X ′X)−1X ′Y .

If the prior hyperparameters are calibrated to (μ,Λ, a, b) = (0k, 0k×k,−k
2 , 0), then

the posterior distribution in Proposition 1 reduces to the result shown in Proposition 2.
The non-informative prior p(β, σ2) ∝ σ−2 is not a proper NIG distribution. As far as
the posterior distribution is concerned, we treat the non-informative prior as a special
case of the calibrated NIG distribution, hence our notation NIG(0k, 0k×k,−k

2 , 0).

Proposition 2 has an inverse problem: is it possible to recover observations if we
are given NIG(μ̃, Λ̃, ã, b̃)? Proposition 3 provides a pseudo-observation interpretation
of the NIG distribution.

Proposition 3. For a k-dimensional NIG(μ̃, Λ̃, ã, b̃) such that Λ̃ is positive definite,

ã > 0, b̃ > 0 and n ≡ 2ã + k is a positive integer, let X1 = Λ1/2, Y1 = Λ1/2μ̃,

X2 = 0(n−k)×k, Y2 =

√
b̃/ã·1(n−k)×1, where Λ

1/2 is the upper triangular Cholesky factor

of Λ̃. Then, under the non-informative prior and the pseudo observations (X1

X2
), ( Y1

Y2
),

the posterior distribution is NIG(μ̃, Λ̃, ã, b̃). Furthermore, if another data set X∗, Y ∗

yields the same posterior distribution, the data must satisfy X∗′X∗ = Λ̃, X∗′Y ∗ = Λ̃μ̃,
Y ∗′Y ∗ = 2b̃+ μ̃′Λ̃μ̃.

Proposition 3 illustrates the observations extracted from the NIG distribution:X1, Y1

are informative on both β and σ2, whileX2, Y2 are not informative about β, but the non-
zero Y2 can update the distribution of σ2. The Gaussian likelihood function p(Y |β, σ2) ∝
e−

1
2σ

−2(Y−Xβ)′(Y−Xβ) can be expressed as a function of X ′X, X ′Y , Y ′Y . Therefore,
the pseudo observations are determined up to those sufficient statistics.

3 NIG Summation and Big Data Regression

Motivated by the pseudo-observation interpretation of the conjugate distributions, we
define the NIG summation operator. The sum of two NIG distributions can be thought
as the posterior distribution induced by concatenation of the observations extracted
from two NIG distributions.

Definition 2. Consider the k-dimensional NIG(μ1,Λ1, a1, b1) and NIG(μ2,Λ2, a2, b2).
If a distribution NIG(μ,Λ, a, b) satisfies

1. μ = (Λ1 + Λ2)
−1(Λ1μ1 + Λ2μ2),
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2. Λ = Λ1 + Λ2,

3. a = a1 + a2 +
k
2 ,

4. b = b1 + b2 +
1
2 (μ1 − μ2)

′(Λ−1
1 + Λ−1

2 )−1(μ1 − μ2),

then it is said to be the sum of two NIG distributions, denoted by

NIG (μ,Λ, a, b) = NIG (μ1,Λ1, a1, b1) +NIG (μ2,Λ2, a2, b2) ,

or more compactly, NIG(μ,Λ, a, b) =
∑2

i=1 NIG(μi,Λi, ai, bi).

Occasionally, it is inconvenient to invert Λ1 or Λ2. By completing the squares, we
can rewrite Rule 4 in Definition 2 as

b = b1 + b2 +
1

2
(μ1 − μ)

′
Λ1 (μ1 − μ) +

1

2
(μ2 − μ)

′
Λ2 (μ2 − μ) .

Proposition 4. The NIG summation operator satisfies

1. Commutativity:

NIG(μ1,Λ1, a1, b1) +NIG(μ2,Λ2, a2, b2)

= NIG(μ2,Λ2, a2, b2) +NIG(μ1,Λ1, a1, b1),

2. Associativity:

3∑
i=1

NIG(μi,Λi, ai, bi) = NIG(μ1,Λ1, a1, b1) +
3∑

i=2

NIG(μi,Λi, ai, bi),

3. Identity element:

NIG(μ,Λ, a, b) +NIG

(
0k, 0k×k,−

k

2
, 0

)
= NIG(μ,Λ, a, b).

Proposition 4 is derived from Definition 2. Note that NIG(0k, 0k×k,−k
2 , 0) serves as

the “zero” in summation. Two use cases of the NIG summation operator are given by
Proposition 5 and 6. Proofs of all propositions are provided in Supplementary Material
(Qian, 2017).

Proposition 5. Let the posterior distribution, under the prior NIG(μ,Λ, a, b), be
NIG(μ,Λ, a, b) by Proposition 1. Let the posterior distribution, under the non-informa-

tive prior, be NIG(μ̃, Λ̃, ã, b̃) by Proposition 2. Then we have

NIG
(
μ,Λ, a, b

)
= NIG (μ,Λ, a, b) +NIG

(
μ̃, Λ̃, ã, b̃

)
.
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Proposition 6. Let the posterior distribution, under the non-informative prior and
full-sample observations, be NIG(μ̃, Λ̃, ã, b̃). Split the observations X,Y into m subsets
Xi, Yi, i = 1, . . . ,m. Let the subset posterior distribution, under the non-informative
prior and the data Xi, Yi, be NIG(μ̃i, Λ̃i, ãi, b̃i). Then we have

NIG
(
μ̃, Λ̃, ã, b̃

)
=

m∑
i=1

NIG
(
μ̃i, Λ̃i, ãi, b̃i

)
.

An immediate consequence of Proposition 5 and 6 is a split-and-merge algorithm for
big data Bayesian linear regressions.

Algorithm 1. Consider Bayesian linear regression under the conjugate prior
NIG(μ,Λ, a, b) and the observations X,Y , in which the sample size is so large that
data cannot be stored and/or processed by a single machine. The posterior distribution
NIG(μ,Λ, a, b) shown in Proposition 1 can be obtained by the following split-and-merge
algorithm.

Step 1 partition the big data into m subsets Xi, Yi, i = 1, . . . ,m.

Step 2 run subset Bayesian linear regressions under the non-informative prior and
obtain the subset posterior distributions NIG(μ̃i, Λ̃i, ãi, b̃i), i = 1, . . . ,m, where

μ̃i, Λ̃i, ãi, b̃i are given by Proposition 2 using Xi, Yi.

Step 3 gather and sum up the subset posterior distributions:

NIG
(
μ̃, Λ̃, ã, b̃

)
=

m∑
i=1

NIG
(
μ̃i, Λ̃i, ãi, b̃i

)
.

Step 4 sum up the prior and the combined subset posterior distributions:

NIG
(
μ,Λ, a, b

)
= NIG (μ,Λ, a, b) +NIG

(
μ̃, Λ̃, ã, b̃

)
.

Some remarks on implementation of Algorithm 1. First, subset sizes are not necessar-
ily the same. Second, there is no dependency betweenm subset regressions, which can be
processed in an embarrassingly parallel fashion. Third, the NIG summation operator is
associative, so Step 3 can be processed recursively by pairs. Fourth, Step 3 tolerates ma-
chine failures. If some subset regression fails to add, μ̃ reweighs the remaining regressions
and the precision Λ̃ decreases without breakdown. Fifth, commutativity and associativ-
ity justify online updating for flow data. For example, when new data Xm+1, Ym+1 come

in, we can update the distribution: NIG(μ,Λ, a, b) +NIG(μ̃m+1, Λ̃m+1, ãm+1, b̃m+1).

An application of Algorithm 1 is the big data ridge regression, which can be inter-
preted as Bayesian linear regression under the conjugate prior NIG(0k,Λ, a, b), where
Λ = λIk×k and λ is the regularization parameter. The posterior distribution is

p
(
β, σ2 |Y

)
∝

(
σ2

)−(a+n+k
2 +1)

e−
1
2σ

−2[2b+(Y−Xβ)′(Y−Xβ)+λβ′β].

The posterior mean and mode of β is given by μ = (Λ+X ′X)−1X ′Y , which is the ridge
point estimator, regardless of the hyperparameter values for a and b.
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4 Bayesian Variable Selection

4.1 Big Data Bayesian LASSO

The LASSO of Tibshirani (1996) is a popular shrinkage and variable selection technique.
It has a Bayesian interpretation with the double exponential priors imposed on the
regression coefficients. Park and Casella (2008) propose an efficient Gibbs sampler for
Bayesian LASSO. Consider the model (1) with the priors:

p
(
β, σ2

)
∝

(
σ2

)−(a+ k
2+1)

e
−bσ−2−

∑k
j=1 λj

∣∣∣ βj
σ

∣∣∣
, (2)

where λ1, . . . , λk are regularization parameters. The posterior density is

p
(
β, σ2 |Y

)
∝

(
σ2

)−(a+n+k
2 +1)

e
−bσ−2− 1

2
σ−2(Y −Xβ)′(Y −Xβ)−

∑k
j=1 λj

∣∣∣∣ βj
σ

∣∣∣∣
.

The posterior mode of β coincides with the classic LASSO estimator conditional on
σ2 = 1.2 The double exponential distribution has a scale mixture representation. By

augmenting latent variables ψ = (ψ1, . . . , ψk)
′ with the prior p(ψ) =

∏k
j=1 e

− 1
2λ

2
jψj ,

we have the conditional distribution β, σ2|ψ ∼ NIG(0k,Λ(ψ), a, b), where Λ(ψ) =
diag(ψ−1

1 , . . . , ψ−1
k ). The posterior conditional distribution of ψ is also tractable:

p
(
ψ

∣∣β, σ2, Y
)
∝

k∏
j=1

ψ
− 1

2
j e−

1
2λ

2
jψj− 1

2σ
−2β2

jψ
−1
j ,

which indicates that ψ−1
j |β, σ2, Y follows an inverse Gaussian distribution with param-

eters |λjσ
βj

| and λ2
j (see Park and Casella, 2008, p. 682). Therefore, Bayesian LASSO

can be handled by a Gibbs sampler that alternately samples from the inverse Gaussian
distributions and the posterior NIG distributions. By Proposition 5 and 6, an efficient
algorithm with one pass of big data is summarized below.

Algorithm 2. Consider Bayesian LASSO regression (1) and (2) with the big data
X,Y . We have the following Gibbs sampling algorithm:

Step 1–3 the same as those in Algorithm 1. After Step 3, save NIG(μ̃, Λ̃, ã, b̃) only.

Step 4 iterate the sub-steps until (β, σ2, ψ) draws converge to stationary distributions:

4.1 given the current draw of ψ, construct Λ(ψ) = diag(ψ−1
1 , . . . , ψ−1

k ); compute

NIG(μ,Λ, a, b) = NIG(0k,Λ(ψ), a, b) +NIG(μ̃, Λ̃, ã, b̃); generate a draw for
(β, σ2) from NIG(μ,Λ, a, b).

4.2 given the current draw of (β, σ2), generate a draw for each ψ−1
j from the

inverse Gaussian distribution with parameters |λjσ
βj

| and λ2
j , j = 1, . . . , k.

2The posterior mode matching the frequentist LASSO estimator without conditioning on σ2 can be

achieved by an alternative prior p(β, σ2) ∝ (σ2)−(a+ k
2
+1)e−bσ−2−σ−2 ∑k

j=1 λj |βj |. Park and Casella
(2008) note that the posterior density is concave and unimodal under (2), hence a preferable form.
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4.2 Big Data SSVS

George and McCulloch (1993) develop a variable selection method in which the regres-
sion coefficients have a hierarchical mixture prior that involves small and large variance
terms. The posterior mixture probabilities identify the promising subset of predictors.

Let γ ≡ (γ1, . . . , γk)
′, where γj ∈ {0, 1} is the variable selection indicator for the jth

predictor. For most applications, it is appropriate to adopt an independent prior:

p (γ) =

k∏
j=1

w
γj

j (1− wj)
1−γj . (3)

The hyperparameter wj is the prior probability of variable inclusion. To exempt a
variable (e.g., the intercept term) from exclusion, we can put wj = 1. Following George
and Mcculloch (1997), we assume a conditionally conjugate prior for (β, σ2):

β, σ2 |γ ∼ NIG (0k,Λ (γ) , a, b) , (4)

where Λ(γ) = [diag(Dγ1d1−γ1 , . . . , Dγkd1−γk)]−1 and the hyperparameters satisfy D >
d > 0. By marginalizing γ, we see that βj |σ2 follows a zero-mean Gaussian mixture
distribution: one component has a large variance σ2D, and the other has a small variance
σ2d. Furthermore, β|σ2 has a 2k-component mixture prior, which uses observations
to assign larger posterior probabilities to the more promising components. The crux
of SSVS is a Gibbs sampler that iteratively generates draws from p(β, σ2|γ, Y ) and
p(γ|β, σ2, Y ), which circumvents the overwhelming problem of calculating the posterior
probabilities for all 2k subsets of predictors.

We note that the hierarchical prior structure in SSVS is similar to that in Bayesian
LASSO. Both are Gaussian mixture models that involve latent variables (i.e., the dis-
crete γ in SSVS and the continuous ψ in LASSO), and both contain a conjugate Bayesian
linear sub-structure conditional on the latent variables. Proposition 5 and 6 suggest a
big data SSVS sampler analogous to Algorithm 2.

Algorithm 3. Given the prior (3) and (4), the likelihood (1) and the big data X,Y ,
we have the following SSVS Gibbs sampling algorithm:

Step 1–3 the same as those in Algorithm 1. After Step 3, save NIG(μ̃, Λ̃, ã, b̃) only.

Step 4 iterate the sub-steps until (β, σ2, γ) draws converge to stationary distributions:

4.1 given the current draw of γ, construct Λ(γ) = [diag(Dγ1d1−γ1 , . . . ,
Dγkd1−γk)]−1; compute NIG(μ,Λ, a, b) = NIG(0k,Λ(γ), a, b) +

NIG(μ̃, Λ̃, ã, b̃); generate a draw for (β, σ2) from NIG(μ,Λ, a, b).

4.2 given the current draw of (β, σ2), generate a draw for each γj from the

Bernoulli distribution with the probability
wjφ(βj ;0,σ

2D)
wjφ(βj ;0,σ2D)+(1−wj)φ(βj ;0,σ2d) ,

where φ(·) denotes the normal density.
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4.3 Big Data MC3

SSVS does not strictly exclude variables from the regression. The prior variance d must
be small but positive, or Algorithm 3 yields a reducible Markov chain that violates the
MCMC convergence conditions. MC3 proposed by Madigan et al. (1995) and Raftery
et al. (1997) can handle variable selection in the presence of degenerate distributions,
which are analytically integrated out of the posterior distributions. Similar marginal-
ization techniques are discussed in Geweke (1996) and Smith and Kohn (1996). In this
subsection, we adapt MC3 for big data applications.

Consider (4) with d = 0. Given a particular γ, we have the partition β = ( [c]cβγ

βo
),

where βγ (and βo) represents the coefficients of the predictors included in (and excluded
from) the regression. Then (4) can be decomposed as

p
(
β, σ2 |γ

)
= p

(
βγ , σ

2 |γ
)
p

(
βo

∣∣γ, βγ , σ
2
)
,

where p(βo|γ, βγ , σ
2) is the Dirac delta with a spike at zero, and

βγ , σ
2 |γ ∼ NIG (μγ ,Λγγ , a, b) . (5)

By (4), the hyperparameters μγ is a vector of zeros and Λγγ equals D−1 times an
identity matrix. In practice, μγ ,Λγγ can take a more general form (see below). Since βo

is essentially a vector of zeros, the model (1) is reduced to

Y = Xγβγ + σε, (6)

where Xγ is a sub-matrix of X with columns selected by γ.

For variable selection, we are mostly interested in p(γ|Y ), which is proportional to
the product of the prior probability p(γ) and the marginal likelihood p(Y |γ). Note that
(5) and (6) constitute a conjugate regression with a subset of variables. Employing the
NIG summation operator, we evaluate the marginal likelihood by the Bayes formula:

p (Y |γ ) =
p

(
βγ , σ

2 |γ
)
p

(
Y

∣∣βγ , σ
2, γ

)
p (βγ , σ2 |Y, γ ) , (7)

where p(βγ , σ
2|γ) is the prior density of NIG(μγ ,Λγγ , a, b), while p(βγ , σ

2|Y, γ) is the
posterior density of NIG(μγ ,Λγγ , aγ , bγ) obtained by Proposition 5 using the data
Xγ , Y . Note that (7) holds for all βγ and σ2 values. We pick βγ = 0 and an arbi-
trary σ2 so that the likelihood function p(Y |βγ , σ

2, γ) remains a constant for all γ. The
implication is that the term p(Y |βγ , σ

2, γ) can be dropped if we just evaluate (7) up to
a proportionality constant.

If the sample size were small, MC3 would be straightforward once the marginal
likelihood had been evaluated by (7). However, it is too costly to reload the big data
Xγ , Y in each MCMC iteration. The following dimension-reduction propositions resolve
that problem.

Proposition 7. Let (β, σ2) ∼ NIG(μ̃, Λ̃, ã, b̃). Let γ be the selection vector and o = 1−γ

be the complement selection vector. Partition β = ( βγ

βo
), μ̃ = (

μ
γ

μ
o
), Λ̃ = (

Λγγ Λγo

Λoγ Λoo
), where
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βγ , βo are sub-vectors of β selected by γ, o, respectively. Assume their lengths are kγ and
ko. Other sub-vectors/sub-matrices are defined similarly. Given βo = 0, the conditional

distribution is given by βγ , σ
2|βo ∼ NIG(μ̃γ , Λ̃γγ , ãγ , b̃γ), where μ̃γ = μ

γ
+ Λ−1

γγΛγoμo
,

Λ̃γγ = Λγγ , ãγ = ã+ ko

2 , b̃γ = b̃+ 1
2μ

′
o
(Λoo − ΛoγΛ

−1
γγΛγo)μo

.

Proposition 8. Let the k-dimensional NIG(μ̃, Λ̃, ã, b̃) be the posterior distribution ob-
tained by the full data X,Y under the non-informative prior. Let the kγ-dimensional

NIG(μ̃γ , Λ̃γγ , ãγ , b̃γ) be the posterior distribution obtained by the data Xγ , Y under the

non-informative prior. Then NIG(μ̃γ , Λ̃γγ , ãγ , b̃γ) is given by Proposition 7.

Proposition 7 and 8 are useful for Bayesian linear regressions with a subset of predic-
tors. First, by Proposition 2 we obtain NIG(μ̃, Λ̃, ã, b̃). Second, by Proposition 7 and 8

we recover NIG(μ̃γ , Λ̃γγ , ãγ , b̃γ). Third, by Proposition 5 we insert the prior information

by NIG summation: NIG(μγ ,Λγγ , aγ , bγ) = NIG(μγ ,Λγγ , a, b)+NIG(μ̃γ , Λ̃γγ , ãγ , b̃γ).
Fourth, we use (7) for evaluating p(Y |γ) and p(γ|Y ) up to a proportionality constant.

It is seldom feasible to enumerate p(γ|Y ) for all 2k scenarios. We resort to MC3 by a
random-walk Metropolis-Hastings sampler. Following Raftery et al. (1997), we define a
neighborhood nbd(γ) which consists of γ itself and the sets of models that select either
one variable more or fewer than γ. Loosely speaking, we randomly change one element
of γ as the proposal draw. We summarize the big data MC3 algorithm in Algorithm 4.

Algorithm 4. Given the prior (3) and (5), the model (6) and the big data X,Y , we
have the following MC3 algorithm:

Step 1–3 the same as those in Algorithm 1. After Step 3, save NIG(μ̃, Λ̃, ã, b̃) only.

Step 4 iterate the sub-steps until draws of γ converge to stationary distributions:

4.1 let the current draw be γ∗. Propose a new draw γ from nbd(γ∗) by randomly
changing one element of γ∗.

4.2 reduce NIG(μ̃, Λ̃, ã, b̃) to NIG(μ̃γ , Λ̃γγ , ãγ , b̃γ) by Proposition 7 and 8.

4.3 insert prior information by NIG summation:

NIG(μγ ,Λγγ , aγ , bγ) = NIG(μγ ,Λγγ , a, b) +NIG(μ̃γ , Λ̃γγ , ãγ , b̃γ).

4.4 evaluate the marginal likelihood up to a proportionality constant: p(Y |γ) ∝
p(βγ ,σ

2|γ)
p(βγ ,σ2|Y,γ) , where p(βγ , σ

2|γ) is the density of NIG(μγ ,Λγγ , a, b), and

p(βγ , σ
2|Y, γ) is the density of NIG(μγ ,Λγγ , aγ , bγ). Both densities should

be evaluated at βγ = 0 and a fixed σ2.

4.5 evaluate the posterior model probability up to a proportionality constant:
p(γ|Y ) ∝ p(γ)p(Y |γ). Meanwhile, p(γ∗|Y ) has been computed previously.

4.6 accept γ with the probability min[1, p(γ|Y )
p(γ∗|Y ) ]. Upon acceptance, reset γ as the

current model. Otherwise, γ∗ remains the current model. The proportionality
constants in 4.4 and 4.5 do not affect the acceptance probability.
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An interesting application of Algorithm 4 is Bayesian calibration to frequentist in-
formation criteria for model selection. The prior precision matrix Λγγ in (5) is not
necessarily a diagonal matrix. Instead, we may adopt a g-prior (Zeller, 1986) such that
Λγγ = c−1X ′

γXγ . George and Foster (2000) show that model selection by the infor-
mation criteria such as AIC and BIC corresponds to selection of maximum posterior
models by calibrating the prior hyperparameters. Specifically, if the hyperparameter c
and the probability w are calibrated such that 1+c

c [2 ln 1−w
w + ln(1 + c)] = 2, then the

highest posterior model coincides with the model that minimizes AIC. Furthermore, if
1+c
c [2 ln 1−w

w +ln(1+ c)] = lnn, then the highest posterior model minimizes BIC.3 Such
correspondence implies that Algorithm 4 is also a big data algorithm for frequentist
model selection by the information criteria.

4.4 Other Bayesian Variable Selection Techniques

In addition to Bayesian LASSO, SSVS and MC3, various Bayesian variable selection
techniques are proposed in the literature, such as the indicator-in-regression method by
Kuo and Mallick (1998), the pseudo-prior settings by Carlin and Chib (1995), reversible
jump MCMC (RJMCMC) by Green (1995) and the composite space approach by Godsill
(2001). We review those techniques and propose a general-purpose algorithm for big data
applications.

Kuo and Mallick (1998) introduce an indicator-in-regression method. Consider (1)

and decompose β such that βj = β̂jγj , j = 1, . . . , k. Given a particular γ, we have

the selected β̂γ and the unselected β̂o depending on γj equals to 1 or 0. The priors

are given by β̂γ , σ
2|γ ∼ NIG(μγ ,Λγγ , a, b), β̂o|γ, β̂γ , σ

2
∼ N(μo, Vo), where N(μo, Vo)

is a pseudo prior (Carlin and Chib, 1995) that has no impact on the likelihood, and
μo, Vo are tuning parameters for efficient MCMC operation. The posterior conditional
distribution p(β̂γ , σ

2|Y, γ) is the density of NIG(μγ ,Λγγ , aγ , bγ) (refer to Step 4.3 in

Algorithm 4), while p(β̂o|Y, γ, β̂γ , σ
2) remains the pseudo prior density.

Godsill (2001) further explores the idea of pseudo priors and demonstrates that
RJMCMC, a powerful trans-dimensional model selection approach by Green (1995),
can be derived from a composite model with fixed dimension. Each γ defines a model
with parameters θγ ≡ (βγ , σ

2). Conditional on γ, the likelihood depends on θγ , but not
on the unused parameters denoted by θ−γ . Let θ = (θ0, . . . , θ2k−1).

4 The priors are

p (γ, θ) = p (γ) p (θγ |γ ) p (θ−γ |γ, θγ ) ,
where p(θγ |γ) is the genuine prior given by (5), while p(θ−γ |γ, θγ) is the pseudo prior.
Carlin and Chib (1995) resort to the Gibbs sampler, in which the posterior conditional

3The calibration results hold exactly under a known σ2, which may be replaced by an estimate σ̂2

such as the mean squared residuals. The mean and variance of IG(a, b) are b
a−1

, b2

(a−1)2(a−2)
, respec-

tively. If the prior hyperparameters are calibrated such that b, a are large and their ratio approximately
equals σ̂2, the prior density is concentrated around σ̂2 and the variance tends to zero. By Proposition 1
and 2, the posterior density for σ2 is close to the prior density. Therefore, we obtain an approximation
to the regression results with σ2 fixed at σ̂2.

4For notational convenience, θγ is indexed by the decimal representation of k × 1 binary vector γ.
For example, if k = 4, the vector γ = (1, 0, 0, 1)′ corresponds to the decimal number 9, hence θ9.
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distributions are given by

p (γ |Y, θ ) ∝ p (γ) p (θγ |γ ) p (θ−γ |γ, θγ ) p (Y |γ, θγ ) ,
p (θ |Y, γ ) = p (θγ |Y, γ ) p (θ−γ |Y, γ, θγ ) ,

where p(θγ |Y, γ) is NIG(μγ ,Λγγ , aγ , bγ) and p(θ−γ |Y, γ, θγ) remains the pseudo prior.
The sampler is computationally intensive in that p(θ−γ |γ, θγ) involves parameters in
2k−1 models. Godsill (2001) considers the Metropolis-Hastings sampler with a proposal
q from the current state (γ∗, θ∗γ∗ , θ∗−γ∗) to a new state (γ, θγ .θ−γ) such that

q
(
γ∗, θ∗γ∗ , θ∗−γ∗ → γ, θγ .θ−γ

)
= q1 (γ

∗ → γ) q2
(
θ∗γ∗ → θγ

)
p (θ−γ |γ, θγ ) ,

where q1, q2 denote the model and parameter transition, respectively. A new state will
be accepted with the probability given by min(1, α), where

α =
p (γ) p (θγ |γ ) p (Y |γ, θγ )

p (γ∗) p
(
θ∗γ∗ |γ∗

)
p

(
Y

∣∣γ∗, θ∗γ∗
) ·

q1 (γ → γ∗) q2
(
θγ → θ∗γ∗

)
q1 (γ∗ → γ) q2

(
θ∗γ∗ → θγ

) .
Since the pseudo priors are canceled in α, drawing θ−γ is conceptual and not per-

formed in practice. This is a form of RJMCMC, in which the “dimension matching”
variables, denoted by u∗ and u, are chosen such that (θγ , u) = (u∗, θ∗γ∗) with the Jaco-
bian term being one. Also, if the model transition q1 is a random change of an element
of the current model γ∗, and the parameter transition q2 is independent to the current
parameters θ∗γ∗ , with θγ drawn from NIG(μγ ,Λγγ , aγ , bγ), then the sampler reduces to

a version of MC3, because
p(θγ |γ)p(Y |γ,θγ)

q2(θ∗
γ∗→θγ)

is the marginal likelihood and α is determined

by the Bayes factor of the two models.

To implement any of those variable selection techniques, the MCMC sampler requires
at most three data-related inputs: the posterior distribution p(θγ |Y, γ), the likelihood
function p(Y |θγ , γ) and the marginal likelihood p(Y |γ). They are functions of Xγ , Y ,
which vary as the value of γ updates in MCMC iterations. Recall that Proposition 3
introduces pseudo observations. If they are used in MCMC simulations, then only k,
instead of n, observations are cached in memory. Proposition 9 demonstrates that pseudo
observations are the perfect substitute for the big data for Bayesian inference.

Proposition 9. Consider the model (1) with the big data X,Y . Let NIG(μ̃, Λ̃, ã, b̃) be
the posterior distribution obtained by Proposition 2 under the non-informative prior.
Let X1, Y1, X2, Y2 be the pseudo observations extracted from NIG(μ̃, Λ̃, ã, b̃) by Propo-
sition 3. Let γ be the variable selection indicator under which the regression is reduced
to (6). For an arbitrary prior on θγ ≡ (βγ , σ

2), the genuine and pseudo observations
yield the same posterior, likelihood and marginal likelihood. That is,

1. p(θγ |Y, γ) = p(θγ |Y1, Y2, γ),

2. p(Y |θγ , γ) = p(Y1, Y2|θγ , γ),

3. p(Y |γ) = p(Y1, Y2|γ).
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Though the sample size of the pseudo observations is n, only the first k observations
X1, Y1 contain dense data, while the remaining observations are trivial: the predictors
are zeros and the response values are the same. Therefore, we only need to store X1, Y1

as well as a scalar element of Y2 in the computer memory. Proposition 9 leads to a
generic big-data algorithm suitable for many Bayesian variable selection methods.

Algorithm 5. Consider Bayesian variable selection for Gaussian linear regressions
with big data X,Y . We have the following general-purpose algorithm:

Step 1–3 the same as those in Algorithm 1. After Step 3, save NIG(μ̃, Λ̃, ã, b̃) only.

Step 4 extract pseudo observations from NIG(μ̃, Λ̃, ã, b̃) by Proposition 3.

Step 5 treat pseudo observations as if they were the genuine data, and apply variable
selection methods (e.g., Bayesian LASSO, SSVS, MC3, RJMCMC, etc.) designed
for in-memory computation.

Algorithm 5 is not necessarily the most computationally efficient algorithm, but it is
the simplest method that addresses the storage and computation burden induced by big
data. The original data are scanned only once and then replaced by pseudo observations.
The existing variable selection techniques designed for small data inputs are applicable
with minimum adaption.

5 Synthetic Data Examples

In this section, we evaluate the performance of Algorithm 1 – 5 by synthetic data. We
consider two regimes: 1) a correctly specified model with highly correlated predictors,
and 2) a regression with non-Gaussian (skewed and leptokurtic) disturbances, which are
resampled from regression residuals of real-world data used by Section 6.

5.1 Variable Selection with Highly Correlated Predictors

The data generating process (DGP) is given by (1) with n = 108, k = 100, σ = 10,
β = (1, 0.9, . . . , 0.1, 0, . . . , 0)′. That is, among the 100 predictors, only the first 10 have
non-zero coefficients. Each row of X is randomly sampled from a zero-mean multivariate
normal distribution with the correlation 0.99 for all variable pairs. The DGP shows two
characteristics of big data: volume (large n) and veracity (large σ and multicollinearity).

The double-floating regression data occupy 80GB disk space, and they are saved in
1000 text files; each file contains 100 thousand observations. As the full-sample data
cannot be loaded into our computer memory, we resort to the split-and-merge method
(Algorithm 1). We consider the following factors regarding data partition: 1) the sub-
sample size should be small enough to allow in-memory computing of X ′

iXi, X
′
iYi, Y

′
i Yi;

2) the subsample size should be large enough so that the rank of Xi equals k; 3) as we
implement Algorithm 1 via MATLAB datastore and tall array objects, the subsample
size should be large enough to take advantage of the matrix computing platform; 4) the
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Figure 1: Posterior means of regression coefficients. Regressors have high collinearity
with pairwise correlation 0.99. The first 10 of 100 predictors have non-zero coefficients:
β = (1, 0.9, . . . , 0.1, 0, . . . , 0)′.

computing cost increases slightly with more subsets (see Section 5.3). However, when
n is large, it hardly has any impact on computing speed; and 5) the data-file location
matters for partition. In this example, MATLAB tall array works efficiently when it
reads all observations in a text file. About 80MB data are loaded into the computer
memory for the subset regressions.

Though we run Bayesian regressions, Step 3 of Algorithm 1 also produces the ordi-
nary least squares (OLS) results. The posterior mean μ̃ equals the OLS estimator. As
is shown in Figure 1, the OLS estimator is volatile due to multicollinearity.

The big data are scanned only once, and then we reuse NIG(μ̃, Λ̃, ã, b̃) for Bayesian
LASSO, SSVS, MC3 by Algorithm 2 – 4, and RJMCMC with pseudo observations by
Algorithm 5. Figure 1 plots the posterior means of the regression coefficients E(βj |Y ),
j = 1, . . . , k, which are Bayesian model averaging results. Table 1 reports the posterior
probabilities p(γj |Y ), which indicate Bayesian model selection results, for SSVS, MC3

and RJMCMC.

Variable selection is challenging because of high collinearity between predictors, but
the big data algorithms work well. SSVS strongly favors the first 8 predictors in that
E(γj |Y ) ≈ 1, and the estimated coefficients are close to the true values specified by the
DGP. The true coefficients for the 9th and 10th predictors are 0.2 and 0.1. SSVS tends
to exclude them. Given the fact that the OLS standard error is about 0.1, it is not
surprising that SSVS rejects “insignificant” predictors. The estimated coefficients and
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Index SSVS MC3 RJMCMC Index SSVS MC3 RJMCMC
1 1.0000 1.0000 1.0000 91 0.0013 0.1771 0.0139
2 1.0000 1.0000 1.0000 92 0.0015 0.2132 0.0070
3 1.0000 1.0000 1.0000 93 0.0032 0.3365 0.0171
4 1.0000 1.0000 1.0000 94 0.0008 0.1938 0.0043
5 1.0000 1.0000 1.0000 95 0.0012 0.2253 0.0047
6 1.0000 1.0000 1.0000 96 0.0010 0.1738 0.0069
7 0.9757 1.0000 0.9992 97 0.0011 0.2046 0.0140
8 0.9629 0.9940 0.9810 98 0.0010 0.2054 0.0153
9 0.0014 0.3110 0.0183 99 0.0010 0.2097 0.0050
10 0.0026 0.3671 0.0174 100 0.0008 0.2015 0.0168

Table 1: Posterior probabilities p(γj |Y ) for the first and last 10 predictors.

probabilities for the remaining predictors are close to zero, which indicate that they are
decisively excluded from the regression. RJMCMC produces similar results (the solid
line and the dot-cross line largely overlap in Figure 1), though RJMCMC is slower.
MC3 calibrated to BIC produces acceptable results. The first 10 estimated coefficients
are close to the OLS results, and MC3 suppresses most spikes produced by the OLS
estimator for the remaining coefficients. Bayesian LASSO estimator is also reasonable.
Though the shrinkage estimator is slightly smaller compared to other estimators, LASSO
effectively excludes most predictors whose true coefficients are zero by the DGP.

5.2 Regression with Skewed and Leptokurtic Disturbances

Before we analyze the real-world wage data in Section 6, we generate some synthetic
data. The predictors X are copied from the real data, and the noises ε are resampled
from OLS residuals using the real data. The noises have the sample skewness 2.7 and
kurtosis 33.9. The synthetic response variable is constructed such that Y = Xβ + ε,
where β = (5, 4.9, . . . , 0.1, 0, . . . , 0)′. That is, the first 50 of the 327 predictors have
non-zero coefficients.

As is seen in Figure 2, the synthetic-data OLS estimator substantially departs from
zero, and the 171st and 172nd coefficients are extremely large in magnitude (see Section 6
for an explanation; they correspond to Treating and Diagnosing). In contrast, Bayesian
LASSO, SSVS and RJMCMC effectively shrink the estimators towards zero after the
50th predictor. Meanwhile, the estimators for the first 50 coefficients are close to the
true values specified by the DGP.

5.3 Computational Complexity

We measure complexity by floating point operations (flops). By convention, a floating-
point addition, subtraction, multiplication, or division is counted as a flop. Solving a
k-dimensional linear equation is assumed to take 2

3k
3 flops.

Algorithm 1 has the complexity O(k2n)+O(k3m), where n, k,m denote the number
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Figure 2: Posterior means of regression coefficients. Noises are skewed and leptokurtic.
The first 50 of 327 predictors have non-zero coefficients: β = (5, 4.9, . . . , 0.1, 0, . . . , 0)′.

of observations, variables and subsets, respectively. Specifically, for the full-sample re-
gression without data partition, the required flops are about 2k2n+ 2

3k
3. With data split

into m subsets, flops increase by 4
3k

3m, which is mild compared to 2k2n when n is large.

If Algorithm 2, 3, 4 and 5 receive NIG(μ̃, Λ̃, ã, b̃) produced by Algorithm 1 as the
input, then they only add O(k3r) flops for MCMC simulations, where r denotes the
number of draws. With the NIG summation operator, the MCMC samplers will not
be more computationally expensive as n increases. For big data applications, Bayesian
LASSO and SSVS might run as fast as the OLS regression, because O(k2n) can be
much larger than O(k3r).

To be specific, in the first synthetic data example, the OLS regression without data
partition costs 2× 1012 flops. Splitting data into 1000 subsets for Algorithm 1, we add
1.3× 109 flops, which is less than 0.1% of the OLS computing costs. Given the outputs
of Algorithm 1, we count the run-time flops for Bayesian variable selection MCMC
simulations with 105 draws. Both Bayesian LASSO and SSVS take about 2.2 × 1011

flops. MC3 and RJMCMC cost 1.4× 1012 and 1.5× 1012 flops, respectively.

6 Application

Occupational employment and wage are of interest to both researchers and the public.
Despite various publications on highest paying jobs, many studies rely on survey data
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and self-reported incomes, which are prone to the mis-reporting problem that could
induce bias or inflate the variance of the estimator. We study the Labor Condition
Application (LCA) disclosure data by the Office of Foreign Labor Certification, within
the Department of Labor. When a U.S. employer sponsors an H1B visa, the employer
files an LCA, on behalf of the worker, that includes the job title, Standard Occupational
Classification (SOC) code, rate of pay (actual wage offered for the position), and the
prevailing wage for the same position in that area. Since an LCA is legal instrument
prepared by employers’ attorneys, we believe the job and pay information is accurate.
The publicly available data contain 3 million observations for the year 2011 – 2016.5 H1B
wages are typically for technical jobs that require advanced degrees. The median annual
wage equals 72.4K (where K stands for thousand dollar) and the standard deviation (sd.)
is 33.0K. We generate regressors by extracting 200 highest frequency (HF) words from
the job titles and SOC names, as well as 100 HF employer names. We also add the
year dummies, the census division and region dummies (such as New England, South
Atlantic, etc.), 10 most affluent metropolitan area dummies (such as California Bay
Area, New York, etc.), the employment length and part-time position dummies. There
are 327 predictors in total. Details on data cleaning and processing are provided in
Supplementary Material.

Table 2 illustrates the job HF words and the average wages of the subsamples that
contain the key words. HF words cover occupations (e.g., Engineer, Analyst), indus-
tries (e.g., Software, Finance), experience (e.g., Senior, Assistant), positions (e.g., Man-
ager, Lead), skills (e.g., Database, SAS), countries (e.g., USA, India), etc. Some HF
words are associated with high wages, say Manager (99.3K) and Senior (97.6K), while
other words such as Researcher (68.5K) and Accountant (65.8K) correspond to lower
wages.

Table 3 shows the top employers and the mean wages they offer. The most generous
employers are Facebook (137.6K) and Google (131.4K). The largest H1B sponsors are
multinational consultancy services such as Infosys (78.9K) and Tata (68.7K). University
of Michigan (67.4K) and Johns Hopkins University (65.8K) are also among the top 100
sponsors.

6.1 OLS Results

The OLS estimator is obtained from μ̃ by running Step 1–3 of Algorithm 1. Split and
merge are performed by MapReduce-like (Dean and Ghemawat, 2008) MATLAB tall
array operations.

Predictors with the largest positive and negative coefficients are listed in Table 4.
Physician (+88.4K) and Lawyer (+55.1K) are among the highest paying jobs, while
words like Preschool (-20.3K) and Assistant (-17.4K) have substantially negative impact
on the rate of pay. We can also learn the joint effects of multiple regressors. For example,
Resident Physician has the net effect -105.3K + 88.4K = -16.9K, which is reasonable

5Data were retrieved from www.foreignlaborcert.doleta.gov/performancedata.cfm on April 18,
2017. Observations include new, renewed, transferred and cap-exempt LCA.

www.foreignlaborcert.doleta.gov/performancedata.cfm
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Word Frequency Wage Word Frequency Wage
Computer 1.2e6 76.1 Accountant 5.6e4 65.8
Analyst 9.6e5 75.4 Assistant 5.5e4 78.2
System 7.0e5 81.3 Operation 5.4e4 85.6
Engineer 6.0e5 89.0 Physician 5.1e4 160.4
Developer 5.5e5 91.4 Network 5.0e4 75.6
Software 5.4e5 92.3 Marketing 5.0e4 77.9
Program 5.0e5 69.4 Auditor 4.8e4 64.5
Application 4.2e5 92.1 Database 4.6e4 78.4
Senior 2.9e5 97.6 Physicist 4.5e4 66.0
Manager 2.7e5 99.3 Information 4.4e4 109.4
Occupational 1.9e5 76.6 Assurance 4.4e4 74.0
Technology 1.8e5 80.6 Mechanical 4.1e4 77.7
Specialist 1.6e5 68.1 Staff 4.1e4 94.9
Consultant 1.5e5 87.2 Market 3.9e4 64.3
Researcher 1.4e5 68.5 Director 3.8e4 118.3
USA 1.2e5 79.8 Professor 3.8e4 92.1
Business 1.2e5 78.4 Product 3.8e4 92.9
Lead 1.1e5 86.2 Postdoctoral 3.2e4 48.9
Associate 1.1e5 76.8 Chemist 3.0e4 59.4
Administrator 9.1e4 75.2 Surgeon 2.9e4 150.5
Tester 7.8e4 75.7 Principal 2.9e4 121.7
Scientist 7.1e4 69.9 Biologist 2.9e4 58.0
Architect 7.0e4 93.0 Industrial 2.9e4 76.9
Teacher 7.0e4 67.6 General 2.7e4 153.0
Project 6.9e4 86.7 Support 2.7e4 75.2
Finance 6.7e4 95.9 IT 2.7e4 84.7
Electronic 6.4e4 89.4 Data 2.7e4 85.1
Designer 6.3e4 75.7 Service 2.5e4 85.1
Hospital 6.1e4 95.5 Web 2.5e4 73.4
Quality 6.0e4 75.6 Therapist 2.5e4 69.3

Table 2: Highest frequency words of job titles and wage offers. The table shows the top
60 words with the corresponding frequencies and the mean annual wages (in thousand
dollar) of the subsamples that contain the words.

because it is a stage of graduate medical training. More examples include Assistant
Professor (-17.4K + 28.2K), Principal Economist (30.8K + 24.5K), etc.

The dummy variables are informative. As we include all the 9 census region dummies,
their coefficients represent the intercept terms (i.e., baseline salaries) specific to the
regions. Workers in Pacific (74.0K) have the highest income, followed by New England
(70.5K), Mid Atlantic (67.9K), West South Central (67.0K), Mountain (66.1K), South
Atlantic (66.0K), West North Central (65.6K), East North Central (64.7K) and East
South Central (64.0K). In addition, metropolitan workers in New York (+10.6K) and
Bay Area (+10.0K) earn substantially more.
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Employer Frequency Wage Employer Frequency Wage
Infosys 1.4e5 78.9 KPMG 4.4e3 73.6
Tata 6.5e4 68.7 Goldman Sachs 4.3e3 101.0
Deloitte 5.0e4 90.0 Yash 4.1e3 67.1
Capgemini 4.2e4 79.8 Mindtree 4.0e3 72.9
Wipro 4.2e4 71.3 Capital One 3.9e3 89.1
IBM 3.9e4 81.7 HTC 3.9e3 70.0
Accenture 3.3e4 78.0 KPIT 3.9e3 66.6
Tech Mahindra 2.7e4 74.4 Facebook 3.7e3 137.6
HCL 2.6e4 72.4 Ebay 3.6e3 125.8
Microsoft 2.2e4 118.8 Synechron 3.5e3 81.6
Ernst Young 1.8e4 92.2 System Soft 3.5e3 72.8
Larsen Toubro 1.8e4 66.7 BOA 3.5e3 98.4
Cognizant 1.6e4 72.9 Compunnel 3.3e3 66.7
Google 1.3e4 131.4 Randstad 3.3e3 105.8
UST Global 1.2e4 67.3 WalMart 3.2e3 116.7
Intel 1.1e4 91.7 Hitachi 2.9e3 87.3
Qualcomm 9.7e3 96.0 CVS 2.9e3 112.1
Amazon 9.6e3 111.8 Cisco 2.9e3 103.9
Dell 8.2e3 97.5 Paypal 2.9e3 125.4
Oracle 7.9e3 99.9 Salesforce 2.8e3 122.9
PWC 6.8e3 87.5 CSC 2.7e3 70.3
Apple 6.8e3 125.1 Persistent Systems 2.7e3 72.7
JP Morgan 6.5e3 103.6 HP 2.7e3 97.5
NTT 5.7e3 83.9 Itech 2.7e3 81.3
Syntel 5.4e3 75.8 Vsoft 2.6e3 65.6
Mphasis 5.2e3 73.0 Yahoo 2.6e3 108.6
Fujitsu 5.2e3 83.8 VMware 2.5e3 123.7
Mastech 5.1e3 87.6 Astir 2.5e3 66.4
Hexaware 5.0e3 70.2 Headstrong 2.5e3 79.0
Cummins 4.6e3 70.5 Ericsson 2.4e3 86.4

Table 3: Highest frequency employers and wage offers. The table shows the top 60 em-
ployers with the corresponding frequencies and their mean annual wages (in thousand
dollar). The remaining high frequency employers used in the regression are SAP, Di-
aspark, Bloomberg, Morgan Stanley, Birlasoft, Marlabs, Broadcom, Virtusa, Verizon,
University of Michigan, Reliable Software, CGI, MathWorks, Sapient, Johns Hopkins
University, Avco, Marvell, LinkedIn, Management Health, Ciber, Symantec, Schlum-
berger, ERP, ITC, Mayo Clinic, Pyramid, Micron, Kforce, Experis, Everest, Citibank,
NIH, Rite Aid, Global Foundries, Netapp, Technosoft, Cyberthink, Texas Instruments,
Merrill Lynch, Credit Suisse.

Wage prediction can be performed in two steps. First, we specify the work-site region

and employment terms. For example, Boston is in New England (70.5K) and one of the

affluent metropolitan areas (+1.4K). For a 3-year full-time appointment, the predicted

base salary is 71.9K in 2016 dollar. Second, we describe the job, say “financial analyst,
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Word Coeff Sd. Wage Word Coeff Sd. Wage
Physician 88.36 0.22 160.38 Resident -105.30 0.24 57.53
Lawyer 55.07 0.27 125.70 Fellow -39.89 0.21 56.32
Facebook 48.59 0.38 137.58 Intern -28.27 0.34 53.83
Rite Aid 43.87 0.64 132.80 Drafter -28.22 0.38 50.09
Dentist 42.80 0.35 126.52 Landscape -23.82 0.53 59.87
Google 42.05 0.21 131.45 Preschool -20.27 0.50 42.73
NIH 41.84 0.62 75.17 Food -19.99 0.36 60.01
Petroleum 40.24 0.44 114.06 Community -19.52 0.52 61.51
Apple 35.59 0.29 125.07 Music -18.13 0.51 56.80
Surgeon 34.16 0.24 150.52 School -17.44 0.35 49.62
Bloomberg 33.62 0.48 130.89 Assistant -17.35 0.16 78.22
Director 31.91 0.13 118.30 Wholesale -17.06 0.48 63.11
Principal 30.78 0.15 121.70 Editor -16.41 0.44 57.65
Professor 28.18 0.24 92.10 Persistent Systems -16.25 0.45 72.69
Mayo Clinic 27.61 0.64 102.05 Pyramid -16.14 0.58 65.21
Microsoft 27.28 0.16 118.82 Birlasoft -15.34 0.49 61.94
CVS 27.08 0.48 112.06 Market -14.70 0.21 64.34
General 26.19 0.20 152.96 Graphic -14.40 0.26 59.44
Economist 24.54 0.37 101.87 Diagnosing -14.11 10.40 62.23
Paypal 24.52 0.45 125.42 Lab -13.87 0.48 55.75
Ebay 24.36 0.40 125.76 UST Global -13.70 0.22 67.27
Credit Suisse 23.85 0.78 108.86 ERS -13.55 0.33 79.14
Morgan Stanley 23.07 0.49 111.14 Public -13.31 0.47 58.92
Treating 22.65 10.39 62.31 Instructor -12.32 0.23 61.37
CitiBank 22.59 0.59 113.44 Worker -12.11 0.34 51.96
WalMart 22.50 0.41 116.67 Postdoctoral -11.64 0.16 48.85
Pharmacist 22.01 0.24 123.92 Scholar -11.50 0.36 51.50
Practitioner 21.35 0.40 67.34 Legal -11.35 0.45 77.65
Amazon 21.28 0.24 111.82 KPIT -11.22 0.38 66.61
Hydrologist 21.23 0.88 98.77 Global Foundries -11.13 0.61 88.70

Table 4: Bayesian linear regression under the non-informative prior. The table shows
the predictors with the largest positive (Column 1–4) and negative (Column 5–8) coeffi-
cients measured by posterior means (OLS estimators). Posterior standard deviations are
displayed in Column 3 and 7. Mean annual wages (in thousand dollar) of the subsamples
that contain the words are shown in Column 4 and 8.

senior quant developer, Fidelity”, which involves HF words Finance (+13.7K), Analyst

(-1.8K), Senior (+15.8K), Developer (+4.7K). Thus, our regression predicts the wage

104.3K. Since we only include 100 top employers, Fidelity does not enter our regression

and the word is ignored.

A problem of the OLS regression is that HF words have heterogeneous predictive

power and accuracy. Some coefficients are close to zero (by posterior mean); some non-

zero coefficients are inaccurate (by large posterior sd.), and many predictors are appar-
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ently correlated. Also, there is an anomaly in Table 4: Treating has a large posterior
mean 22.7K with a surge of sd. to 10.4K. Though the coefficient remains “significant”
(in frequentist terminology), the unusually large sd. hints at the possibility of multi-
collinearity.6 After visual inspection of the predictors, we found that Treating mostly
comes from the SOC name “Health Diagnosing and Treating Practitioners”. Both Treat-
ing and Diagnosing enter the regression, and the latter has the coefficient -14.1K with sd.
10.4K. Near-perfect multicollinearity is difficult to detect when predictors are machine
generated, especially in big data applications (because sd. decreases with the sample
size, rendering all coefficients “significant”). As is shown below, Bayesian shrinkage and
variable selection can overcome multicollinearity.

6.2 Bayesian LASSO Results

We implemented Algorithm 2 with a sequence of LASSO regularization parameters
λ = 500, 1000, 2000, 5000 for HF words and employers. As for the 27 geographic and
time dummy variables, they enter the regression by economic, rather than statistical,
significance, and we intend not to shrink them. As the Gibbs sampler cannot proceed
under λ = 0, we put a small value 0.1 for those dummy variables. Note that big data
are scanned once regardless of multiple rounds of LASSO regressions under different
regularization parameters, because Step 1–3 of Algorithm 2 have no reference to λ
values.7

Table 5 demonstrates that the magnitude of shrinkage is negatively related to “t-
statistics”. For example, FINANCE has a large “t-statistics”128.2. As λ increases, the
LASSO estimators are stable: 14.5K, 15.2K, 15.7K and 14.7K, all of which are close
to the OLS estimator 13.7. In comparison, TREATING has a small “t-statistics”2.2.
Even under mild regularization, its estimator shrinks substantially, from 22.7K (OLS
estimator) to 2.6K (LASSO with λ = 500). As λ increases to 1000, 2000 and 5000,
its estimator quickly drops to 0.38K, 0.04K and 0.01K, respectively. Bayesian LASSO
overcomes multicollinearity and effectively discards predictors with inflated variances.

Frequentist LASSO is a popular variable selection method, as L1-penalized least
squares yield corner solutions, rendering some coefficients exactly zero. Bayesian LASSO
can shrink the posterior mode of weak predictors to zero, but the mode does not reveal
itself from MCMC draws. Nevertheless, variable selection can be achieved by visual
inspection of the posterior means. Table 5 indicates that there is a dichotomy between
the strong and weak predictors, especially when λ exceeds 1000. For example, if we
exclude a variable if its posterior mean is less than 0.1, most predictors are either
substantially larger or substantially smaller than the threshold. Under that criterion,
Bayesian LASSO selects 282, 228, 175, 105 variables when λ = 500, 1000, 2000, 5000
respectively.

6In this particular case, it appears that multicollinearity inflates the variances of the correlated pairs
without contaminating other predictors. We removed Treating and run the regression again, the results
are largely the same as those reported in Table 4.

7An interpretation of multiple values is an unknown regularization parameter with a uniform prior
over the points in the selected grid.
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Words Coeff(t-stat) L500 L1000 L2000 L5000 SSVS MC3

Software 5.70 (67.83) 5.77 5.80 5.71 5.38 6.54 5.70
USA 1.68 (8.87) 0.39 0.01 -0.01 -0.01 0.00 1.68
Finance 13.73 (128.22) 14.53 15.17 15.71 14.73 13.34 13.73
Marketing 5.54 (32.54) 4.90 4.18 2.53 0.00 5.38 5.54
Professor 28.18 (116.00) 29.56 30.13 27.58 20.94 28.36 28.13
IT 2.07 (14.21) 1.56 1.07 0.20 0.01 0.00 2.06
Sales 8.49 (48.97) 7.81 7.09 5.59 1.27 8.64 8.50
Resident -105.30 (-447.19) -102.95 -100.65 -96.66 -85.15 -105.51 -105.33
Secondary 1.39 (3.46) -0.04 -0.03 -0.01 0.00 0.00 1.30
Lawyer 55.07 (202.88) 53.25 51.16 47.51 37.02 56.24 55.18
Artist -5.50 (-14.82) -3.31 -2.64 -1.24 -0.01 -5.13 -5.49
Family 16.30 (47.19) 13.78 11.29 5.99 0.01 16.19 16.32
Care -3.51 (-8.82) -1.25 -0.09 -0.02 0.00 -2.88 -3.52
Integration 5.69 (16.65) 2.94 0.59 0.02 0.00 5.96 5.69
Cost -1.05 (-1.48) -1.26 -1.12 -0.03 0.00 0.00 0.00
Warehouse 2.42 (5.91) 0.11 0.02 0.01 0.00 0.00 2.40
Estimator -8.39 (-10.50) -4.40 -0.85 -0.03 0.00 -8.91 -9.40
Treating 22.65 (2.18) 2.57 0.38 0.04 0.01 10.11 8.60
Diagnosing -14.11 (-1.36) 1.83 0.34 0.04 0.01 0.00 0.00
Geoscientist 11.17 (12.89) 9.40 7.60 3.66 0.01 11.25 11.17
Preschool -20.27 (-40.26) -14.55 -8.64 -0.17 -0.01 -20.72 -20.32
Registered -6.10 (-12.67) -0.41 -0.02 0.00 0.00 -5.47 -6.10
IBM 0.19 (1.50) 0.12 0.08 0.03 0.01 0.00 0.17
Intel 4.71 (19.45) 3.23 2.05 0.14 0.01 4.62 4.68
Mphasis -4.86 (-14.96) -2.64 -0.44 -0.02 0.00 -4.42 -4.86
HTC 6.21 (16.52) 3.29 0.40 0.02 0.00 6.08 6.20
Hitachi 0.99 (2.31) 0.01 0.00 0.00 0.00 0.00 0.00
Yahoo 8.04 (17.32) 2.60 0.06 0.01 0.00 7.32 8.03
Marlabs 5.67 (11.23) 0.50 0.03 0.01 0.00 5.50 5.66
Avco -6.76 (-12.54) -0.82 -0.04 -0.01 0.00 -6.96 -6.81
Pyramid -16.14 (-27.83) -8.86 -1.44 -0.02 0.00 -16.36 -16.18
Technosoft 2.33 (3.87) 0.03 0.01 0.00 0.00 0.00 2.33
New England 70.49 (715.09) 70.15 69.98 70.15 71.06 69.34 70.48
New York 10.58 (142.95) 10.78 10.97 11.27 11.45 10.47 10.58
Two Year 3.75 (55.64) 3.65 3.57 3.46 3.10 3.84 3.75

Table 5: Bayesian linear regression with variable selection. The first column lists the pre-
dictors No. 6, 16, 26, . . . , 326 (due to the space limit; full results available upon request)
as well as Treating and Diagnosing. In the second column, Coeff represents posterior
means under the non-informative prior (OLS estimator), and “t-stat” in parenthesis
are simply the ratio of the posterior mean and standard deviation. Column 3 – 6 corre-
spond to the Bayesian LASSO with regularization parameters λ = 500, 1000, 2000, 5000.
Column 7 and 8 are the results for SSVS and MC3.
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6.3 SSVS and MC3 Results

In our implementation of Algorithm 3 and 4 for SSVS and MC3, the prior probability
of selecting each HF word is assumed to be 0.5, and that of the geographic and time
dummies equals 1 (so that the posterior probability still equals 1). SSVS involves the
large and small variances of the mixture distribution as the tuning parameters. We ex-
perimented several pairs such as 10/0.001, 100/0.001, 1000/0.001, and the results are
similar. Again, big data are scanned once under multiple pairs of tuning parameters.
The Gibbs sampler generates draws for the model indicators, and we favor the most
frequently visited model, which is likely to be a model with a high, if not the highest,
posterior probability. SSVS selects 229 out of the 300 predictors on occupations and
employers. As is seen from Table 5, our previously identified strong predictors, such as
Finance, Professor, Resident and Lawyer, are also selected by SSVS and their coeffi-
cients are close to those under the LASSO regression. Unlike LASSO shrinkage on both
Treating and Diagnosing, SSVS selects the former and discards the latter, which offers
an alternative solution to the multicollinear anomaly in our regression.

Table 5 also reports the regression results for the most frequently visited model
under MC3 by Algorithm 4. We adopt the g-prior and hyperparameters are calibrated
to the frequentist AIC criterion. See George and Foster (2000). 276 variables are selected.
Coefficients of the strong predictors are close to those under SSVS.

6.4 Forecast Evaluation

Lastly, we perform out-of-sample forecast using the latest release LCA data from Octo-
ber 2016 to March 2017. We consider LCA cases in which job titles contain at least one
of the 200 HF words and employers belong to one of the 100 HF employers. There are
about 112 thousand observations for forecast evaluation. The mean absolute deviation
(MAD) of the forecast by the OLS regression is 15.1K, which is reasonable as the sample
sd. amounts to 33.0K. The MAD of LASSO regression is given by 14.5K, 14.0K, 13.3K,
13.6K when λ = 500, 1000, 2000, 5000 respectively. The MAD of SSVS and MC3 are
both near 15.1K. It appears that Bayesian LASSO regression with λ = 2000 works best
for the current application.

7 Conclusion

The primary advantage of the NIG summation operator is the ability to merge the sub-
set posterior distributions with data split into manageable pieces. It is also useful for
Bayesian variable selection methods in which priors have mixture NIG representations,
as the MCMC samplers can iteratively combine NIG distributions with a single pass of
big data. Computational complexity analysis demonstrates that Bayesian variable selec-
tion algorithms with NIG summations are computationally efficient, and some MCMC
samplers may run almost as fast as the OLS regression, when the sample size is large.

NIG summation can be extended to subtraction and scalar multiplication. Subtrac-
tion can be thought as taking some observations out of the NIG distribution, and scalar
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multiplication rescales the precision of regression data. Consider online statistical learn-
ing in which data become available in a sequential order. For example, to study the
time-varying beta in the capital asset pricing model, it is common practice to employ
rolling-window regressions with five or ten years of moving observations (see Ang and
Chen, 2007). With NIG summation (for sequential addition of newest observations)
and subtraction (for data point retirement of oldest observations), the rolling regression
complexity can drop from O(k2n2) + O(k3n) to O(k3n). Another use case is recur-
sive least squares with a forgetting factor δ ∈ (0, 1) (see Branch and Evans (2006) for a
macroeconomic forecasting application), which discounts past observations at geometric

rate. NIG summation and scalar multiplication like
∑m

i=1 δ
m−iNIG(μ̃i, Λ̃i, ãi, b̃i) lead

to a weighted regression. Another direction of extending the current approach is that a
collection of NIG distributions closed under summation and scalar multiplication may
constitute a linear space that might have interesting theoretic properties. That will be
left for future research.

Supplementary Material

Supplementary Material for Big Data Bayesian Linear Regression and Variable Selection
by Normal-Inverse-Gamma Summation (DOI: 10.1214/17-BA1083SUPP; .pdf). Proofs
of Proposition 1–9 and data cleaning procedures in Section 6 (in a separate document).
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