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THE HOFFMANN–JØRGENSEN INEQUALITY
IN METRIC SEMIGROUPS1
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We prove a refinement of the inequality by Hoffmann–Jørgensen that is
significant for three reasons. First, our result improves on the state-of-the-art
even for real-valued random variables. Second, the result unifies several ver-
sions in the Banach space literature, including those by Johnson and Schecht-
man [Ann. Probab. 17 (1989) 789–808], Klass and Nowicki [Ann. Probab.
28 (2000) 851–862], and Hitczenko and Montgomery-Smith [Ann. Probab.
29 (2001) 447–466]. Finally, we show that the Hoffmann–Jørgensen inequal-
ity (including our generalized version) holds not only in Banach spaces but
more generally, in a very primitive mathematical framework required to state
the inequality: a metric semigroup G . This includes normed linear spaces as
well as all compact, discrete or (connected) abelian Lie groups.

1. Introduction. In this paper, our goal is to present a broad generalization of
the Hoffmann–Jørgensen inequality (see Theorem A). This is a classical result in
the literature, which is widely used in bounding sums of independent random vari-
ables, with several different versions proved in the general setting of a separable
Banach space (see [3, 5, 11, 13]). We recall a “first version” from the literature.

THEOREM 1 (Ledoux and Talagrand, [13], Proposition 6.7). Suppose B is a
separable Banach space, and (�,A ,μ) is a probability space with X1, . . . ,Xn ∈
L0(�,B) independent random variables. For 1 ≤ j ≤ n, define Sj := X1 + · · · +
Xj and Un := max1≤j≤n ‖Sj‖. Then

Pμ(Un > 3t + s) ≤ Pμ(Un > t)2 + Pμ

(
max

1≤j≤n
‖Xj‖ > s

)
, ∀s, t ∈ (0,∞).

This version incorporates results by Kahane [6] and Hoffmann–Jørgensen [4].
(See also [3] for a detailed history of the inequality.)

Theorem 1 has seen subsequent generalizations by several authors, includ-
ing Johnson and Schechtman [5], Klass and Nowicki [11], and Hitczenko and
Montgomery-Smith [3]. This last variant is now stated as the following.
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THEOREM 2 (Hitczenko and Montgomery-Smith, [3], Theorem 1). (Notation
as in Theorem 1.) For all K ∈ N and s, t ∈ (0,∞),

Pμ

(
Un > 2Kt + (K − 1)s

) ≤ 1

K!
(
Pμ(Un > t)

Pμ(Un ≤ t)

)K

+ Pμ

(
max

1≤j≤n
‖Xj‖ > s

)
.

While isoperimetric methods provide more powerful techniques to work with,
the aforementioned manifestations of the Hoffmann–Jørgensen inequality for Ba-
nach spaces also have numerous consequences in estimating the magnitude and
behavior of the quantities ‖Sn‖ and Un, as explained in [3, 11], for instance.

We now present several motivations behind the present paper. First, our main
result in Theorem A provides an improvement on Theorems 1 and 2 above. Note,
Theorem 2 has a variant via the order statistics of the variables Yj := ‖Xj‖
(see [3]). Our result improves on this strengthening as well.

Second, it is not clear if either of Theorems 1 or 2 follows from the other, or if
they are even logically related. Our result (Theorem A) simultaneously unifies and
significantly generalizes both of these results.

A third motivation arises out of independent mathematical and applied inter-
est. Note that to state the above inequalities, one requires merely the notions of
a metric and a binary associative operation. Thus, a question of interest is to as-
certain whether the result holds in the more general setting of a separable metric
semigroup G (defined below).

In this paper, we provide a positive answer to the above question. Thus, we
show Theorem A in a very primitive mathematical setting required to state the
Hoffmann–Jørgensen inequality. Our motivations in so doing are both modern as
well as traditional. Classically, a cornerstone of twentieth-century probability the-
ory has been the systematic and rigorous development of the field, for random
variables taking values in Banach spaces. At the same time, general results on
Fourier analysis and Haar measure for compact abelian groups, and the study of
random variables with values in metric groups [2, 15] motivate the need to develop
results in the greatest possible generality. The present paper lies squarely in this
area.

Additionally, an increasing number of modern-day settings involve working
outside the traditional Banach space paradigm. Indeed, settings of compact and
abelian Lie groups are studied in the literature, including permutation groups, lat-
tices and other discrete (semi)groups, circle groups and tori. Moreover, modern
data are manifold-valued—including in real/complex Lie groups—as opposed to
the traditionally well-studied normed linear spaces. Other modern settings include
the space of graphons with the cut-norm [14], as well as the space of labelled
graphs G (V ) on a fixed vertex set V , which was studied in [7, 8]. The space G (V )

turns out to be a 2-torsion group, and hence cannot embed as a subgroup into
a normed linear space. Thus, Banach space methods are not adequate to study
stochastic phenomena in modern-day settings. To this end, this paper allows for
studying tail estimates and bounding random sums in greater generality.
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2. Metric semigroups and the main result. We now set some notation and
state our main result.

DEFINITION 3. A metric semigroup is defined to be a semigroup (G , ·)
equipped with a metric dG : G × G → [0,∞) that is translation-invariant:

(1) dG (ac, bc) = dG (a, b) = dG (ca, cb), ∀a, b, c ∈ G .

Equivalently, (G , dG ) is a metric space equipped with a associative binary op-
eration · such that dG is translation-invariant.

Metric (semi)groups are ubiquitous in probability theory. Examples include Ba-
nach spaces such as function spaces, discrete semigroups (including finite groups
as well as labelled graph space G (V ) [7, 8]), and all compact or (connected)
abelian Lie groups, which include the circle and tori (via, e.g., [16], Theorem
V.5.3). Among other examples are amenable groups (see [1], Proposition 4.12, and
the discussion around it) and abelian Hausdorff metrizable topologically complete
groups [12].

DEFINITION 4. Suppose (G , dG ) is a separable metric semigroup, with Borel
σ -algebra BG . Given integers 1 ≤ j ≤ n and random variables X1, . . . ,Xn :
(�,A ,μ) → (G ,BG ), define

(2) Sj (ω) := X1(ω) · · ·Xj(ω), Mj (ω) := max
1≤i≤j

dG
(
z0, z0Xi(ω)

)
,

where z0 ∈ G is arbitrary. (We show below, Mj is independent of z0 ∈ G .)

We now state our main result, namely, the aforementioned generalization of the
Hoffmann–Jørgensen inequality, for separable metric semigroups.

THEOREM A. Suppose (G , dG ) is a separable metric semigroup, z0, z1 ∈
G are fixed, and X1, . . . , Xn ∈ L0(�,G ) are independent. Also fix integers
k,n1, . . . , nk ∈ N and nonnegative scalars t1, . . . , tk, s ∈ [0,∞), and define

(3) Un := max
1≤j≤n

dG (z1, z0Sj ), I0 :=
{

1 ≤ i ≤ k : Pμ(Un ≤ ti)
ni−δi1 ≤ 1

ni !
}
,

where δi1 denotes the Kronecker delta. Now if
∑k

i=1 ni ≤ n + 1, then

Pμ

(
Un > (2n1 − 1)t1 + 2

k∑
i=2

niti +
(

k∑
i=1

ni − 1

)
s

)

≤ Pμ(Un ≤ t1)
11/∈I0

∏
i∈I0

Pμ(Un > ti)
ni

∏
i /∈I0

1

ni !
(
Pμ(Un > ti)

Pμ(Un ≤ ti)

)ni

(4)

+ Pμ(Mn > s).
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More generally, define

K :=
k∑

i=1

ni, Yj := dG (z0, z0Xj),

Y(1) := min(Y1, . . . , Yn), . . . , Y(n) := max(Y1, . . . , Yn),

so that Y(j) are the order statistics of the Yj . Then the above inequality can be
strengthened by replacing Pμ(Mn > s) by

Pμ

(
n∑

j=n−K+2

Y(j) > (K − 1)s

)
.

Theorem A generalizes the original Hoffmann–Jørgensen inequality in many
ways: mathematically it is a significant generalization of Theorem 1 (which itself
generalizes the classical Hoffmann–Jørgensen inequality for Euclidean, Hilbert
and Banach spaces). To see this, set

G = B, z0 = z1 = 0, k = 2, n1 = n2 = 1, t1 = t2 = t.

Now Theorem 1 follows from Theorem A with I0 = {1,2}.
Moreover, Theorem A also generalizes [3], Theorem 1, that is, Theorem 2—

which has different bounds than Theorem 1. To see this, set G = B, z0 = z1 =
0, k = 1, n1 = K, t1 = t . Now the first expression on the right-hand side of equa-
tion (4) can be rewritten as follows:

(5)
k∏

i=1

Pμ(Un > ti)
ni min

(
1,

1

ni ! · Pμ(Un ≤ ti)ni−δi1

)
.

Thus, with the above values, Theorem 2 follows from Theorem A:

Pμ

(
Un > 2Kt + (K − 1)s

)
≤ Pμ

(
Un > (2K − 1)t + (K − 1)s

)
≤ Pμ(Mn > s) + Pμ(Un > t)K min

(
1,

1

K! · Pμ(Un ≤ t)K−1

)

≤ Pμ(Mn > s) + 1

K!
(
Pμ(Un > t)

Pμ(Un ≤ t)

)K

.

Second, in [3] it is not shown whether or not the variant of the Hoffmann–
Jørgensen inequality (Theorem 2) can be reconciled with Theorem 1. Our result
achieves this goal, thus unifying and simultaneously generalizing variants from the
literature, including by Johnson and Schechtman [5], Klass and Nowicki [11] and
Hitczenko and Montgomery-Smith [3].

Finally, Theorem A does not require a norm, group structure, commutativity
or completeness, but is valid in the primitive mathematical setting of separable
metric semigroups. Thus, the result is a significant generalization of the original
inequality by Hoffmann–Jørgensen.
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3. Proof of the theorem. In order to prove Theorem A, we first study basic
properties of metric semigroups G . We begin with the triangle inequality in G ,
which is straightforward, and used without further reference:

(6) dG (y1y2, z1z2) ≤ dG (y1, z1) + dG (y2, z2), ∀yi, zi ∈ G .

We also require the following lemma, which provides a work around for the
“norm” in a metric semigroup, when there is no identity element.

LEMMA 5. Given a metric semigroup (G , dG ), and a, b ∈ G ,

(7) dG (a, ba) = dG
(
b, b2) = dG (a, ab)

is independent of a ∈ G .

PROOF. Compute using the translation-invariance of dG :

dG (a, ba) = dG
(
ba, b2a

) = dG
(
b, b2) = dG

(
ab, ab2) = dG (a, ab). �

Now we show the main result of the paper.

PROOF OF THEOREM A. Our proof follows in part the argument in [3]; how-
ever, we are able to streamline some of the steps and provide novel techniques that
help generalize the result to its present form. For convenience, the proof is divided
into steps.

Step 1. Define K := ∑k
i=1 ni , and given 1 ≤ l ≤ K , let t ′l := ti if

∑i−1
j=1 nj < l ≤∑i

j=1 nj . Also define

(8) ζ := (2n1 − 1)t1 + 2
k∑

i=2

niti +
(

k∑
i=1

ni − 1

)
s, Y :=

n∑
j=n−K+2

Y(j).

Now if Y > (K − 1)s, then it is clear that Mn > s. Thus, the inequality is
strengthened by replacing Pμ(Mn > s) by Pμ(Y > (K − 1)s). (Note that this
strengthening of the inequality was originally suggested in the setting of Banach
spaces by Rudelson in [3].) Now set �1 := {ω ∈ � : Un(ω) > ζ,Y (ω) ≤ (K −1)s}.
Then

Pμ(Un > ζ) ≤ Pμ

(
Y > (K − 1)s

) + Pμ(�1).

Thus, we will restrict ourselves to �1. Define m0 = m0(ω) := 0, and let
m1(ω) > 0 be the smallest integer such that dG (z1, z0Sm1(ω)) > t1. Note that such
an m1(ω) exists because t1 ≤ ζ and ω ∈ �1.

Step 2. For this step, fix ω ∈ �1. In this step, we inductively define integers

ml = ml(ω) with 0 = m0 < m1 < m2 < · · · < mK ≤ n
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as follows: m1 is as above, and given ml−1 for l > 1, define ml to be the least
integer >ml−1 such that dG (Sml−1, Sml

) > 2t ′l . To do so, we first claim that such
an integer ml exists for all 1 ≤ l ≤ K .

To show this claim, suppose to the contrary that such an ml does not exist (for
the smallest such l > 1). Then for all β > ml−1, dG (Sml−1, Sβ) ≤ 2t ′l . We now
make the sub-claim that

dG
(
z1, z0Sα(ω)

) ≤ t ′1 +
l∑

j=2

2t ′j + (K − 1)s ≤ ζ, ∀1 ≤ α ≤ n.

Notice that the sub-claim contradicts the fact that we are restricted to ω ∈ �1,
thereby proving the claim. Thus, it suffices to show the sub-claim. To do so, we
consider various cases: if α < m1, then dG (z1, z0Sα) ≤ t ′1, so we are done. Next, if
α ∈ (mi,mi+1) for some 0 < i < l − 1, then compute using equation (7), and that
Y ≤ (K − 1)s on �1:

dG (z1, z0Sα)

≤ dG (z1, z0Sm1−1) + dG (z0Smi−1, z0Smi
) + dG (z0Smi

, z0Sα)

+
i∑

j=2

[
dG (z0Smj−1−1, z0Smj−1) + dG (z0Smj−1, z0Smj−1)

]

≤ t1 +
i∑

j=2

(
Ymj−1 + 2t ′j

) + Ymi
+ 2t ′i+1 ≤ t ′1 + 2

l−1∑
j=2

t ′j + Y

≤ t ′1 + 2
l−1∑
j=2

t ′j + (K − 1)s.

There are two other cases with similar computations (hence are skipped):

• If α = mi for some i < l, then

dG (z1, z0Sα) ≤ t ′1 + 2
i∑

j=2

t ′j + (i + 1)s ≤ t ′1 + 2
l−1∑
j=2

t ′j + (K − 1)s.

• If α ∈ (ml−1, n], then the sub-claim follows by using that dG (Sml−1, Sα) ≤ 2t ′l
from above.

Proceeding by induction on l, the above analysis in this step proves the claim
about the existence of 0 = m0(ω) < · · · < mK(ω) ≤ n, for all ω ∈ �1.

Step 3. Given a strictly increasing sequence m := (m1, . . . ,mK) such that 0 =
m0 < m1 < · · · < mK ≤ n, define �m to be the subset of all ω ∈ �1 such that
mi(ω) = mi for all i. Then �1 is the disjoint union of the �m.
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Now given 0 ≤ α < β ≤ n and t > 0, define

pα,β,t := Pμ

(
dG (z0Sα, z0Sβ) > 2t ≥ dG (z0Sα, z0Sj ) ∀α ≤ j < β

)
,

(9)
pβ,t := Pμ

(
dG (z1, z0Sβ) > t ≥ dG (z1, z0Sj ) ∀0 ≤ j < β

)
,

where by equation (7), we may disregard the z0’s occurring in pα,β,t except for
α = 0, in which case we define z0S0 := z0. Then by independence of the Xj [and
equation (7)],

Pμ(�m) ≤ pm1,t
′
1

K∏
j=2

pmj−1,mj ,t ′j .

This allows us to continue the computations toward proving the result

Pμ(Un > ζ) ≤ Pμ

(
Y > (K − 1)s

) + Pμ(�1)
(10)

≤ Pμ

(
Y > (K − 1)s

) + ∑
m

pm1,t
′
1

K∏
j=2

pmj−1,mj ,t ′j .

Step 4. For the next steps in the computations, we bound
∑γ

β=α+1 pα,β,t in two
different ways, where α,β, γ ∈ N. First,

γ∑
β=α+1

pα,β,t = Pμ

(
max

β∈(α,γ ]dG (Sα, Sβ) > 2t
)

≤ Pμ

(
max

β∈(α,γ ]dG (z1, z0Sα) + dG (z1, z0Sβ) > 2t
)

≤ Pμ(2Uγ > 2t) = Pμ(Uγ > t).

(Here, Uγ is defined similar to Un.) Similarly,
γ∑

β=1

pβ,t = Pμ

(
max

β∈[1,γ ]dG (z1, z0Sβ) > t
)

= Pμ(Uγ > t).

Next, if Pμ(Uα ≤ t) > 0, then using the independence of the Xj ,
γ∑

β=α+1

pα,β,t

= Pμ

(
max

β∈(α,γ ]dG (Sα, Sβ) > 2t
)

= Pμ

(
max

β∈(α,γ ]dG (Sα, Sβ) > 2t |Uα ≤ t
)

≤ Pμ(maxα<β≤γ dG (z1, z0Sβ) > t and max1≤β≤α dG (z1, z0Sβ) ≤ t)

Pμ(Uα ≤ t)

= 1

Pμ(Uα ≤ t)

γ∑
β=α+1

pβ,t .
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These calculations are summarized in the following system of inequalities:
γ∑

β=α+1

pα,β,t ≤ Pμ(Uγ > t) =
γ∑

β=1

pβ,t ,

(11)
γ∑

β=α+1

pα,β,t ≤ 1

Pμ(Uα ≤ t)

γ∑
β=α+1

pβ,t .

Step 5. We now perform what is in a sense the “main step” of the computa-
tion. More precisely, we use the previous step to bound from above the following
expression from equation (10):

S̃ := ∑
m

pm1,t
′
1

K∏
j=2

pmj−1,mj ,t ′j ,

where the summation is over all 0 < m1 < · · · < mK ≤ n.
For 1 ≤ i ≤ k + 1, define si := ∑i−1

j=1 nj . Then t ′l = ti for si < l ≤ si + ni .

Suppose k > 1. We bound S̃ via induction on k, presented here in a reverse manner.
Namely, we sum first over mj for j ∈ (sk, sk+1] = (K − nk,K]; then over j ∈
(sk−1, sk]; and so on, reducing to the base case k = 1 (addressed in the next step).
In the present step, we stop after one round of summation

S̃ = ∑
mk

pm1,t
′
1

sk∏
j=2

pmj−1,mj ,t ′j · ∑
α0=msk

<α1<···<αnk
≤n

nk∏
j=1

pαj−1,αj ,tk ,

where the outer sum is over mk := {mj : j ≤ sk}. We claim that for all fixed mj for
j /∈ (sk, sk + nk], the inner sum can be bounded above by an expression occurring
in Theorem A [see (5)]. More precisely, we claim∑

α0=msk
<α1<···<αnk

≤n

nk∏
j=1

pαj−1,αj ,tk

(12)

≤ Pμ(Un > tk)
nk min

(
1,

1

nk! · Pμ(Un ≤ tk)nk

)
(note, k > 1). To see why, using (11), the sum in (12) is bounded above by∑

α0=msk
<α1<···<αnk

≤n

nk∏
j=1

pαj−1,αj ,tk

= ∑
α0=msk

<α1<···<αnk−1≤n

nk−1∏
j=1

pαj−1,αj ,tk ·
n∑

αnk
=αnk−1+1

pαnk−1,αnk
,tk

≤ ∑
α0=msk

<α1<···<αnk−1≤n

nk−1∏
j=1

pαj−1,αj ,tk · Pμ(Un > tk)
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≤ Pμ(Un > tk)
∑

α0=msk
<···<αnk−2≤n

nk−2∏
j=1

pαj−1,αj ,tk

×
n∑

αnk−1=αnk−2+1

pαnk−2 ,αnk−1 ,tk .

Continuing inductively, we obtain an upper bound of Pμ(Un > tk)
nk .

Next, if Pμ(Un ≤ tk) > 0, then we bound the sum in (12) using (11), as in the
proof of [3], Theorem 1; this yields an upper bound of

∑
α0=0<α1<···<αnk

≤n

nk∏
j=1

pαj−1,αj ,tk

≤ 1

Pμ(Un ≤ tk)nk

∑
1≤α1<···<αnk

≤n

nk∏
j=1

pαj ,tk .

Since nk distinct numbers may be arranged in nk! ways, adopting an argument
in the proof of [3], Theorem 1, shows the right-hand side is at most

1

nk!
1

Pμ(Un ≤ tk)nk

(
n∑

β=1

pβ,tk

)nk

(13)

= 1

nk!
Pμ(Un > tk)

nk

Pμ(Un ≤ tk)nk
.

This analysis proves the claim in (12). Note as in (5), the minimum corresponds
precisely to whether or not k ∈ I0, as in the statement of the theorem. [The state-
ment of the result also includes the case when Pμ(Un ≤ tk) = 0.]

Step 6. Starting from (10), we now have a nested sum over mj , j ∈ [1, sk], as
the estimate obtained in (13) can be taken outside the sum over the mj . Repeat
the computation in Step 5, summing over the mj with j ∈ (sk−1, sk]; then over
j ∈ (sk−2, sk−1]; and so on. This yields the expression for k = 1:

S̃ ≤ ∏
1<i∈I0

Pμ(Un > ti)
ni

∏
1<i /∈I0

1

ni !
(
Pμ(Un > ti)

Pμ(Un ≤ ti)

)ni

× ∑
{mj :j∈[1,n1]}

pm1,t1

n1∏
j=2

pmj−1,mj ,t1 .

It remains to find an upper bound for this last summation. To do so, follow the
computations in the previous step, using equation (11). Thus, on the one hand, this
summation is again at most Pμ(Un > t1)

n1 . On the other hand, it is bounded above,
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assuming that Pμ(Un ≤ t1) > 0, by

1

Pμ(Un ≤ t1)n1−1

∑
1≤m1<···<mn1≤n

n1∏
j=1

pmj ,t1

≤ 1

Pμ(Un ≤ t1)n1−1

1

n1!
(

n∑
β=1

pβ,t1

)n1

= Pμ(Un > t1)
n1 · 1

n1! · Pμ(Un ≤ t1)n1−1 ,

and by equation (5), this completes the proof of the theorem. �

Concluding remarks. The validity of the Hoffmann–Jørgensen inequality in
the metric semigroup setting suggests further work along two directions. First,
the Banach space version of this inequality is an important result in the literature
that is widely used in bounding sums of independent Banach space-valued ran-
dom variables. Having proved Theorem A, we apply it in related work [9] to ob-
tain similar tail bounds for sums of independent metric semigroup-valued random
variables. Additionally, in [10] we study other probability inequalities for metric
(semi)groups, such as the Khinchin–Kahane inequality, together with its connec-
tions to embedding abelian normed metric groups into (minimal) Banach spaces.
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