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LOCAL SINGLE RING THEOREM
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The single ring theorem, by Guionnet, Krishnapur and Zeitouni in Ann.
of Math. (2) 174 (2011) 1189-1217, describes the empirical eigenvalue dis-
tribution of a large generic matrix with prescribed singular values, that is, an
N x N matrix of the form A = UTYV, with U, V some independent Haar-
distributed unitary matrices and 7 a deterministic matrix whose singular val-
ues are the ones prescribed. In this text, we give a local version of this result,
proving that it remains true at the microscopic scale (log N)™ 1/4 On our way
to prove it, we prove a matrix subordination result for singular values of sums
of non-Hermitian matrices, as Kargin did in Ann. Probab. 43 (2015) 2119—
2150 for Hermitian matrices. This allows to prove a local law for the singular
values of the sum of two non-Hermitian matrices and a delocalization result
for singular vectors.

Introduction. The single ring theorem, by Guionnet, Krishnapur and Zeitouni
in [22], describes the empirical eigenvalue distribution of a large generic matrix
with prescribed singular values, that is, an N x N matrix of the foom A =UTV,
with U, V some independent Haar-distributed unitary matrices and 7' a determin-
istic matrix whose singular values are the ones prescribed. More precisely, under
some technical hypotheses, as the dimension N tends to infinity, if the empirical
distribution of the singular values of A (i.e., of T') converges to a compactly sup-
ported limit probability measure v on the real line, then the empirical eigenvalue
distribution of A converges to a limit probability measure p on the complex plane
which depends only on v. The limit measure p is radial, has support

(1 S:= {z eCa<|z| < b} fora?:= /x‘z dv(x); b* = /x2 dv(x)

and density p satisfying

82| + 98—z
2
(v* is the symmetrization of v, see (10), and H is the additive free convolution

[1, 30, 33]). In the left image of Figure 1, we plotted the spectrum of an exam-
ple of such a matrix A with size N = 500, illustrating the convergence of the

1
2)  p):= ZAZ (/ log |x|voo,z(dx)) with v ; ;= v B
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(a) (b)

F1G. 1. Repulsion (eigenvalues of A)/lack of repulsion (independently distributed points). (a) Spec-
trum of the 500 x 500 matrix A = UTV when the singular values of T are uniformly distributed on
(0.5,4). (b) 500 points uniformly distributed on the support of the limit spectral distribution of A.

empirical spectral measure. In the right image of Figure 1, we plotted 500 inde-
pendent random points with uniform distribution on the ring S. Our point was
not to compare the limit spectral distribution of A with the uniform distribution
on §, but to compare both point processes at microscopic scale: we see that the
500 eigenvalues of A fill the ring way more regularly than the independent points,
which reflects the so-called eigenvalues repulsion phenomenon. Some of the math-
ematical manifestations of such phenomenons are the so-called local laws (see,
e.g., [16, 17, 19]). Here, we will prove a local law for the single ring theorem
on scale ey = (log N)~1/4+€ in the interior of S, which means roughly that the
number of eigenvalues of A in any ball B(zp, ) contained in S is asymptotic to
w(B(zp, r)) x N not only for fixed r but also for r ~ ey.

To give an idea of the techniques used in the proofs and of the difficulties we
had to overcome, let us compare them with those of another local law for non-
Hermitian matrices. Recently, in the series of papers [16, 17, 34], Bourgade, Yau
and Yin proved a local law for non-Hermitian matrices with i.i.d. entries. It is
well known that the empirical spectral distribution of a random matrix with size N
whose entries are i.i.d., centered, with variance 1/N and subject to no symmetry
tends to the uniform measure on the unit disc of C when the dimension tends to
infinity (see [32]). In [16, 17, 34], the authors gave an almost optimal result about
the local accuracy of the approximation of the empirical spectral distribution by its
limit: they proved, through C? test functions, that the approximation stays correct
as long as we consider test sets with surface at least N =1 for any € > 0. As a
subset of the unit disc with normalized surface S should contain approximately
N x § eigenvalues, this is not far from the best one could do by considering sets
with more than finitely many eigenvalues. In the local law we give here, we are
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far from this optimal scale, but the set of tools we have at disposal lacks several
key elements. The proofs, in [16, 17, 34] as well as in the present paper, are based
on the so-called Hermitization technique, which expresses the empirical spectral
distribution of a non-Hermitian matrix A as the Laplacian of the function f(z) =
%TrloglA — z|, with |[A — z| = /(A —2)(A — 2)* [see (45)]. In [16, 17, 34],
where A is a matrix with i.i.d. entries, A — z is a matrix of the type “information
plus noise”, a model well understood. It allows the authors of [16, 17, 34] to prove,
thanks to the Schur complements formula, that for any z, the empirical eigenvalues
distribution of |A — z| is close to its limit at local scale N€~!. Then, as the limit
spectral distribution of |A — z| has a smooth density whose singularity points are
well understood and as the smallest singular values of z — A are not likely to be
too close to zero, the authors of [16, 17, 34] approximate % Trlog |A — z]| by its
theoretical limit quite well. Here, the Schur complements formula is not an option
because suppressing a row and a column breaks the symmetry of the Haar measure.
Instead, we use the matrix subordination, a technique proposed by Kargin in [28]:
in Theorem 1.5, we prove that for any matrix B independent of A =UTYV, the
resolvants G, Gg and Gy of the matrices

(0 A\, (0 B . 0 A+ B
(DD me (L 8) wa (0, 40P

atz=FE+in,n> N1/8 satisfy

1
Nn6
1
@) EGu(z) = GB(Z + Sa (z)) + (error term with operator norm < W)
n

(3) EGu(z) =Ga(z+ Sp(2)) + <error term with operator norm <

for some complex-valued functions S4, Sp such that Im S p(z) > —N+]7. Equa-

tions (3) and (4) have to be compared with the ones defining the free convolution
H thanks to Stieltjes’ transforms subordination (see Theorem A.10):

5 m ysmys (2) =mys (Z + S/,L(Z)); Im S, (z) >0,
(6) m s (2) = mys (2 + $,(2)); Im S, (z) > 0.

The Hermitization technique described above brings us to use these equations with
B = —zI and p = §|;, so that u® B v® = vy ;. Ideally, equations (3)—(6) should
give an upper bound on Eﬁ Tr Gu(z) — mysmys (z) which could be turned into an
upper bound on

1
@) N Trlog H| — /log lx|dp’ B v (x).

The problem here is that the upper bound on E% Tr Gu(z) — mysmys (z) deduced
from equations (3)—(6) involves the inverse of a certain 2 x 2 determinant [see
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(31)], which can vanish for z close to the real line (to control this determinant for
z close to the real line, one would need precise informations about the density of
Vso,z» Which have, except for the case of i.i.d. matrices, remained out of reach so
far, despite several studies of these questions as in [5, 7, 9]).! However, using only
some bounds on the operator norms of A and B, we can deduce from (3)—(6) that
for |z| large enough,

1 C
(®) Eﬁ TrGu(z) —musmvs (2)| < N
The necessity to have |z| large for such a bound to be proved is a real problem
in the perspective of establishing a local law for the eigenvalues of A. We fix it
(at the price of a quite poor microscopic scale ¢y ) using Hadamard’s three circles
theorem, an idea introduced by Kargin in [26]. This theorem, with some standard

concentration inequalities, allows to deduce from (8) that for n ~ \/ﬁ, we have

1
9) ~ TrGu(z) — mysmw (2) K 1.

To complete the proof, we need to turn (9) into a control on (7): this is done thanks
to the Helffer—Sj6strand functional calculus and to a recent theorem by Rudelson
and Vershynin in [31] about the smallest singular value of A — z.

The recent preprints [2, 3] by Bao, Erdés and Schnelli give local laws for the
close model A + UBU* when s — (o and g — g as N — oo. Their local
laws are established at some better scales than the ones we give here for UT V* —z,
but, seemingly facing the same problem as us, they had to specify the part B, @,
of the real line where they establish these laws, avoiding a set of singular points
(see [2], Theorem 2.7, and [3], Theorem 2.5). It should be possible to adapt their
proofs to our model UT V* — z, but at the current level of understanding of the
densities of the laws v ;, we do not know exactly what the sets Bvoo,z look like
and how to deal with their complementaries, thus it is today not possible to convert
such local laws into a local version of the single ring theorem.

Organization of the article: We postpone the proof of our key result, the matrix
subordination result (Theorem 1.5) to Section 5. We will first prove its main con-
sequence, Proposition 2.1, in Section 2. Then the short proofs of the local law for
the singular values of A + B (Theorem 1.10) and of the singular vectors delocal-
ization for A + B (Theorem 1.12) will be given in Section 3. The proof of the local
single ring theorem will be given in Section 4, followed in Section 5 by the proof
of Theorem 1.5 and in the Appendix by several results we will use here.

IThe lack of information on the order of the density of v, 7 at its singularities is also what makes
the use of the estimates of Guionnet, Krishnapur and Zeitouni, like [23], equation (12), ineffective
here.
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Notation: Throughout this text, z = E +in, E € R, n > 0 denotes an element of
C*:={& € C;Imé& > 0}. For 1 a signed measure on the real line, we define

(10) w(X) = %(,u(X) + u(—X)) (symmetrization of 1),

(11) my(z) = / C:M(t) (Stieltjes transform of )

and for M € My (C) (the set of N x N complex matrices), we define wys as the
empirical eigenvalue distribution of M:

1 N
12 = — S A, ..., An: eigenvalues of M),
(12) = 1:21 A (A1 N:eig )
whereas vy denotes the empirical singular value distribution of M:

(13) V= ZSSI. (s1,...,sn: singular values of M).

Note that we have
0O M
(14) Vi = UM for M := (M* 0).

We denote by || M| the canonical operator norm of M. When M is Hermitian, we
also define, forz=FE +in, E € R, n > 0,

(15) my(2) :==my,, (2) = %TrGM(Z),
for Gy the resolvant matrix of M:

(16) Gu@ =M —2)7".

For X an L' random variable,

(17) X=X —EX.

Note that for any X, Y € L2,

(18) E[XY]=EXEY + E[XY].

For f a function of a real variable and £ > 0, f©) denotes the £th derivative of f.
For E € R and § > 0, [E &£ §] denotes the interval [E — §, E + 6].
For X =Xy and Y =Yy, X < Y means that X/Y — 0 as N — oo.
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1. Main results.

1.1. Local law for the single ring theorem. Let A be an N x N matrix (de-
pending implicitly on N) of the foom A = UTV, with U, V some independent
Haar-distributed unitary matrices and 7" a deterministic matrix.

We make the following hypothesis.

HYPOTHESIS 1.1. (i) There is K > 0 independent of N such that ||T|| < K.
(ii) There is v a probability measure, 1o > 0 and Cq independent of N such that

n=Imz>n = |my,_,()|<CoN"
where m is the Stieltjes’ transform defined at (11) and (15).

(iii) There are C, ¢ > 0 independent of N such that Imm,,, (z) < C whenImz >
N~°.

Then we know, by [22, 31],% that ;4 converges in probability to a law  with
density p given by (2) and support S = {z € C; a < |z| < b} given by (1).

Here is our main result. It will be proved in Section 4 as a consequence of the
local law for the singular values proved in Theorem 1.7, which is in turn proved
using the matrix subordination result in Theorem 1.5 and its consequence in Propo-
sition 2.1.

THEOREM 1.2 (Local Single Ring Theorem). Fix zg such that a < |zo| < b,
a € (0,1/4) and define en := (log N)~%. Then for f € CCZ(C) and

_ A =20
FZ(),gN:M—>8N2f< ),

EN
we have the convergence in probability, as N — oo,

f FZOﬁN (A dpuad) — / FZ(J,8N A)dur) — 0,

where | is the limit spectral law of A, introduced above.

REMARK 1.3.  Why do we call it a local law? The convergence of w4 towards
w can be considered as local with scale ¢y at zp when for any test function f,

19 [ 7“2 ) auato - [ £(*2 ) autn < [ (2 duoo

As for a test function f with enough decay at infinity, the RHT of (19) should have
order at most i (B(zg, en)) ~ 812v, this rewrites

ff(k;NZ())duA(A)—ff(kg_NZO)du(A) <%,

which is precisely the contents of the theorem.

2For the single ring theorem to hold, these hypotheses can even be weakened, as proved by Basak
and Dembo in [4].
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REMARK 1.4. Note that we focus on the interior of the support S [it is nec-
essary at (46)]. It has been proved in [11, 23] that there is no eigenvalue at a
macroscopic distance of S, but the case of the border of S (i.e., |z0| = a or b) is
not treated here.

1.2. Matrix subordination. In order to prove this local law, we need to prove a
matrix subordination result, as called by Kargin in [28], where he introduced this
idea for Hermitian matrices. Let A, B be deterministic, depending implicitly on
N, N x N matrices such that there is K independent of N such that

(20) Al 1Bl < K.
Let U, V be some independent N x N Haar-distributed unitary matrices and
1) B:=UBV*.

We introduce the matrices:

0 A 0 B
A'=(A* o) B'=<B* 0>’

(22) 0
o U > *
w._<0 v)’ B:= WBW",
. 0 A+B\ | =
(23) H._((A+B)* 0 >—A+B.

Note that the matrices A, B and H have eigenvalues the singular values of respec-
tively A, B and A + B (and their opposites).

THEOREM 1.5. There are some complex valued functions S4(z), Sp(z) of
z=E +in € C' and some matrices R (z) and Rp(z) such that we have

(24) EGH(z) = Ga(z + SB(2)) + Ra(2),

(25) EGu(z) = GB(z + Sa(2)) + Rp(2),

such that the functions Ss(z), Sp(z), whose formulas are given at (67), satisfy
C

(26) NP >C = ImSa(z),ImSp() > —N7
n

and such that the matrices R4 (z), Rg(z2), whose formulas are given at (68), satisfy

(27) Np¥>C = |Ra(z)

El

C
R <—
)] = N b
for a constant C depending only on the K of (20).

REMARK 1.6. Theorem 1.5, which will be proved in Section 5, has to be
compared with Theorem A.10 and Remark A.11 of the Appendix, which give the
definition of the free convolution H in terms of subordination of Stieltjes’ trans-
forms and interpret subordination as a regularity criterion.
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1.3. Local laws for the singular values of A + B and singular vectors delocal-
ization. On the way to deduce Theorem 1.2 from Theorem 1.5, we will prove a
key result, Proposition 2.1. Then, for almost free, we get the two following results
(Theorems 1.10 and 1.12).

Let us suppose that besides the hypothesis || A||, || B|| < K, there are some prob-
ability measures vy # &g and vy, # §¢ such that as N — oo,

(28) VA —> Va; Vg —> Vp.
It is well known [10, 24] that we then have the convergence in probability
(29) Vol —> Vs
with v the probability measure on R, whose symmetrization v* [see (10)] satisfies
(30) v =y, Byp.
The two next theorems give conditions for the convergence of (29) to hold at local
levels.

THEOREM 1.7 (Local law 1 for the singular values of A + E). Suppose that
there are ng, Co independent of N such that

=m0 = |my,—u, @]+ Mz, (@] < CoN.

Let p > 0 and let ¢ be a sequence of smooth functions. Then there are C, ¢ >
(é gflpilgnding only on K, vy, vy, Co, no, p such that with probability at least 1 —
Clign ™ lloo

|(Vf4+§ — U;Eﬂvg)(¢N)| = W

We define, for u, v, compactly supported probability measures on R and z €
CT,

k(@) = {m], (2 + (@) +m), (2 + 5u(D) 2 + S (@) + Sv(2) 7>
—m), (24 Su(2))m',(z + S (2)),

where the functions S, S, are the subordination functions introduced in Theo-
rem A.10.
We use the definition introduced by Kargin in [28].

3D

DEFINITION 1.8. We say that the pair (i, v) of probability measures on R is
well behaved ar E € R if:

(a) the subordination functions S,,, S, have finite limits® with positive imagi-

nary parts at E,

31t has been proved in [6] that for x, v compactly supported, Sy, S, extend continuously to the
whole real line, with values in Ct UR U {co}.
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(b) the value of the analytic continuation® of the function Kuv(z) at E is
nonzero.

REMARK 1.9. Sufficient conditions have been given, for example, by Belin-
schi in [5], for (a) of the previous definition to occur. As far as (b) is concerned,
Kargin gave sufficient conditions in [27]. Besides, if (a) is satisfied, by the analytic
continuation principle and an analysis of the function «, ,(z) at infinity, we see
that the set of E’s where (a) holds and not (b) is discrete.

THEOREM 1.10 (Local law 2 for the singular values of A + B). Suppose that
the pair (vy, vy) is well behaved at E € R and that there is no = no(N) such that

SUp 01y, — v, (2)| 4+ 0 Mg —uy | < N7V/4,
n=no
Then we have
- varg([E £n))
maX{ﬁO,N 1/8}<<7}<<1 > L_),O(E)

2n

for the convergence in probability, where p is the density, at E, of the limit of
VAL, that is, of vy B vy,

REMARK 1.11. The statement of Theorem 1.10 is close, in nature, from the
one of Theorem 1.7. However, the statement of Theorem 1.10 (local law at scale
N~1/8) is stronger than the one of Theorem 1.7 (local law at logarithmic scale),
but relies on stronger hypotheses [we need to know that (v, vy) is well behaved at
E € R, which is usually hard to prove, given how little explicit formulas for 5 are].
This dichotomy is reflected in an essential difference in their proofs: the proof of
Theorem 1.10 relies on Erdds, Schlein and Yau’s method via the approximation of
the Stieltjes transform of v, EH v} by the one of v, 3 at distance 7 from the real line
(see Theorem A.17), whereas the proof of Theorem 1.7 relies on Hadamard’s three
circles theorem and the approximation of the Stieltjes’ transform of v; H v} by the
one of v, ,  at macroscopic distance from the real line (see Corollary A.21).

Let us now state a result about the delocalization of the singular vectors of A + B
which will also come for free once Theorem 1.5 and Proposition 2.1 are proved.

Let s, (a=1,..., N) denote the singular values of A + B and let u, (a =
1,...,N), v, (@a=1,..., N) denote some 0rth0~normal bases such that for e~ach
a, (ug, vy) is a pair of singular vectors for A 4+ B associated to s, (i.e., A+ B =
> aSauqv)). Foreach a,i, u, (i), v, (i) denote the ith components of u,, v,.

41t has been proved at Theorem 3.3 of [5] that (a) implies that the functions S, and S, have analytic
continuations to a neighborhood of E, which implies that «, 1 (z) does so.

51t follows from Theorem 7.4 of [13] and Theorem 4.1 page 146 of [5] that there is an open set U C
R and an analytic positive function p on U such that the limit v of v A+p s ady + Ly (x)p(x)dx
for o := ((va + vp) ({(0) — D¢
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THEOREM 1.12 (Singular vectors delocalization for A + B). If the pair
(va, vy) is well behaved at each point in [E — ¢, E + €] (E € R, & > 0) and the
hypotheses of Theorem 1.10 hold, then we have

P(3a, i; |hg — E| < & and (Jua(i)|* > CN~/®1log(N)
or [ua()* > CN~¥log(N)))
<e VN

’

for some constants c, C depending only on the parameters of the hypotheses.

Note about the constants c, C: In the proof of the local single ring theorem
(Theorem 1.2) ¢, C will denote some respectively small and large constants that
might change from line to line and that depend only on the constant parameters
introduced in the statement of Theorem 1.2 and in Hypothesis 1.1. In the same
way, in the proofs of the matrix subordination result (Theorem 1.5), the local law
for singular values and the singular vectors delocalization (Theorems 1.10 and
1.12), as well as Proposition 2.1, ¢, C might change from line to line and depend
only on the parameters introduced in the hypotheses.

2. Statement and proof of Proposition 2.1. For u, v, compactly supported
probability measures on R and z € C*, besides the number «, ,,(z) defined at (31),
when k), (z) # 0, we define the numbers:

|24 S.(2) + Su@) |72+ 1m), (2 + Su @) + Im), (2 + Su(2))]

|Ku,v(Z)|
(33) Bun(@ =2+ 8. (@) + Su@| 7+ |mll (2 + Su(@)| + |m)(z + Su(2))

where the functions S, S, are the subordination functions introduced in Theo-
rem A.10.

The following consequence of Theorem 1.5 will be a key result in the proof of
the local version of the single ring theorem. Kargin stated very similar results in
[27, 28] but to prove the local single ring theorem, we need to give more accurate
upper bounds than the ones given in Kargin’s works. We sill use this proposition
for small vaues of 5 in the proofs of Theorems 1.10 and 1.12 and macroscopic, as
large as needed, values of 1 in the proof of Theorem 1.7, which is a key step in the
proof of the local single ring theorem.

(32) au(2):=

’

k]

PROPOSITION 2.1. Lets € (0, ¢) and z = E +in € CT be such that
C

Ky () #0;  Nnb>c¢;  Np°> ,
Ay g (D) Buguz (2)

vz eC, Imz'>n = |mVa (Z/) — My, (Z/)| =y,
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then the following inequalities hold.:

(34) 1S4(2) = S5 (D] < caong s ((N1) ™ +5),
(35) Sp(2) = Sy (2)] < Cav;,ug(z)((Nn6)_l +5),

ety s (N~ +5)
24+ Sy (@) + Sy (D7

(36) [Emu(z) — mymy (2)] <

PROOF. Note first that, by Theorem 1.5 (whose proof is postponed to Sec-
tion 5),

1
7+ Sa(z) + Sp(2)
Indeed, with our definition of (67) [and its analogue for S4(z)], we have

Elzmu(z) — fp(2) — fa(2)]

1
(37 Emp(z) = IN Tr(EGu(z)) = —

2+ S4(@) + Sp(2) =

E[mpu(z)]

_ Elyy Tr((z — A — WBW*)(A + WBW* — 2)~ )]

B E[mu(2)]

B 1

~ Elma@]
Besides,

1
vy (2) = Sz Su@)+ Sy (@)

hence

Svg(2) + Su; (2) = Sa(z) — SB(2)
(24 Sa(2) + Sp(2))(z + Suy(2) + S, (2))

and the third equation of the lemma follows from its two first ones. Let us prove
them.
For z € C, we define the set

0.:={(s1,52) €C;s1+s2#—2,2+ 51,2+ 52€CT}

Emu(z) — sy (2) =

and for w, v probability measures on R, we define the function Fy, , ,: O, — C?
by

F (Sl) o myus(2+52) + (2 + 51+ 52)7" _
Pilsa) T \my(z+s)+ @ +s1+52)7"

With the notations of Theorem A.10, we have

o9 e (£25) = o)
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We shall apply it for u = v, and v = vy, yielding

Svg (Z) _ 0
(39) Fua,vh,z (Svls) (Z)) — <0> .
A similar system can be written for S4 and Sp: by (37), (24) and (25)
1 1
40 mal(z+ S + =——TrR =r ,
(40) A(z+S5(2) ST 5@ 5y TTRA@) =174 (2)
1

—iTrRB(Z) =:rg(2),

@D meGH SOt o O e T N

so that
Sa@)\ _ (ra()
@ Pz (s555) = (155)
and that by hypothesis,
Sa()\ _ (7a(@)
Fram2 <SB (z)> B (fB (z))
(43)

with |F4(2) —ra@)| + |[Fa(2) —re(@)| <s.

Let us now consider the intermediate system:

Sa(2) (rA <z>>

44 F = = .
“4) Ya:vh 2 (SB (z)) rp(2)
First, we shall upper-bound the distance between the solution (Sys(z), Sug (2)) of
(39) and the solution (S’ 4(2), S B(2)) of (44) [using Kantorovich’s Theorem A.15
and the fact that the derivative of F,, , . is not too small and that r4(z), rp(2)
are small]. Second, we shall upper-bound the distance between (S (z), Sp(z)) [as
a solution of (44) again] and the solution (S4(z), Sp(z)) of (43) (using the same
ideas).

Let us upper-bound the distance between the solutions of (39) and (44) thanks
to Kantorovich’s Theorem A.15. For

Svg (@) . . ’ -
b= (Svf,(z)> ’ M, = ”(F”a,Vb,Z(SZ)) ]

B

by Theorem A.15, we have
1S4(2) = Sy (@] + [Sp(2) = Sy ()| < 100M(|ra(2)| + |rp(2)])
as soon as

100M ([ra@| + rs @ F, 1y (S <1

VA,VB,Z
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(the 100 is here to avoid any norm choice issue, as Theorem A.15 is stated for the
Euclidean norm). The derivative

51

Fron.z (sZ)
_ —(z+ 51 +52)72 —(z+s1 +S2)_2+m:);(z+52)
- —(z—l—sl—i—sz)_z—i—m/vls)(z—l—sl) —(z 451 +52)72

has determinant

51
detFy . . (s2>

- {m@;(z +52) + m;ls)(z +s)}(z+s1+ 59) "2 — m;;(z + sz)m()ls)(z +51),
so that
M; < ay; 1 (2).
Its second derivative is bounded by
100845 2)-
This proves that under the hypotheses of the lemma, the distance between the
Sa(2)

. . Sy3(2)
solutions of (39) and (44), that is, between ( S (Z)) and (Sg(z)

by the first part of the common right-hand side of (34) and (35).

Upper-bounding the distance between the solutions of (44) and (43) goes along
the same lines, and gives the second part (the one involving s) of the common
right-hand side of (34) and (35). O

), is upper-bounded

3. Proofs of Theorems 1.7, 1.10 and 1.12 (Local laws and singular vectors
delocalization for A + B).

3.1. Proof of Theorem 1.7 (Local law 1).

LEMMA 3.1. Let K be a fixed compact subset of Ct. Then there is C =
C(K) > 0 such that for any § > 0,

(sup}mH(z) Emu(z)| > 8) < CeC¥N?,

zek

PROOF. The lemma can be proved as Corollary 6 of [26]. [J

Let us now prove Theorem 1.7. By Lemma A.13, Proposition 2.1, Lemma 3.1
and Corollary A.21, we know that there are C, ¢ > 0 such that we have, with prob-
ability at least 1 — Ce™",

cz=E+in, |E|<3K,n= }SCe_WIOgN.

C
J1og N

sup{|m S5~ VA,

By Corollary A.19, we conclude.
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3.2. Proof of Theorem 1.10 (Local law 2). The proof is a direct application
of Lemma 3.1 and Proposition 2.1 and of Erd6s, Schlein and Yau’s method (see
Theorem A.17 in the Appendix).

3.3. Proof of Theorem 1.12 (Singular vectors delocalization). The proof is a
copy of the one of Theorem 4 in [27]. Let us give the main lines. First, we note
that for any a, as (u,4, v,) of unit singular vectors associated to the singular value
sq of A+ B, the vector

1
Wq,+ = _Z(Ma +vg)

7

is an eigenvector of H associated to the eigenvalue +s,,.
Then we use the classical trick by Erdds, Schlein and Yau that for £ = =+s,,

|wa =@ < 1|Gu(E +in)l;.
Then we prove that if 1 > 1 > max{ng, N -1/ 8}, then
|EGu(x +in| = 0(1),
uniformly on E on x € [E % ¢], so that
[EGH(E +in)ii| = 0(1).

Then some concentration estimates allow to conclude.

4. Proof of Theorem 1.2 (Local single ring theorem). It is well known (see,
e.g., [15], Section 4) that for any A € My (C) and any F € CS(C),

1
(45) /F(A)dMA(k) - g/ECAF(z)(/ 10g|s|de_A(s)>dRe(z)dIm(z).

Here, we get

/&MAmmm@>
1 N
=— Fapey(hi)
N i=1

= ! AF, 1 d dR dIl
—§f<zwmm/%MvHM)e@ m(z)

_ ! /(Af)(z_ZO)/log|s|de_A(s)dRe(z)dIm(z)

4
2mey EN

1
=— / Af(Z) / log |s|dvytey—a(s) dRe(z") dIm(Z).
2mey
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In the same way, we have [using an integration by parts at (46) because zg has been
chosen in the interior of the support of the function p of (2)],

[ Fraey G du

1 —
== f(z sNZO)p(Z) dRe(z)dIm(z)

EN

(46) _ ! ff(z8_ZO)AZUlog|x|voo,z(dx))dRe(z)dIm(z)
N

- 2
2mey

1 _
= [@n(Z=2) [log v @ndRe(z) dIm)

4
2mey

1
= /(Af)(z’)/log|x|voo,zO+8Nz/(dx)dRe(z’)dIm(z/).

2
2mey

Hence, to prove that both expressions are equal up to an error term tending to zero
in probability as N — oo, by Lemma 3.1 of [32], we need to prove that:

(i) for any 7z’ € C, we have, for the convergence in probability,

— 0,
N—o0

-2
e [ 108 1614002 o0 = Vo) @)

(i1) for any R > 0, the sequence

2} dRe(z') dIm(z)

—4
°N //EB(O R)E[Vlog 1z texz—a = Voo.zg+ewz) (X)
< ,

is bounded.

We shall in fact prove that for any R > 0, uniformly in z’ € B(0, R),

2
— 0,
N—o00

8;]4EH/ log x| d(”zg—l—sNz’—A - Voo,zg—i—sNz’)(x)

which will prove (i) and (ii) in the same time.
So let us fix R > 0.
Let us now choose a positive integer p and € > 0 such that

(47) da(p+2)+2(p+1)<p
(which is possible since 4o < 1) and set
(48) iy := (log N)~Ca+e),
Then (47) implies that

(=D
(49) N«

(log N)P/?



LOCAL SINGLE RING THEOREM 3865

and as € > 0, for any k > 1,
(50) tv|login|* < &3

Let ¢, be a smooth function with support contained in [ty /2, 3K + 1], taking
values in [0, 1], equal to 1 on [ty, 3K ]. We can construct a sequence of such func-

tions such that for a certain constant C independent of N, forall £ =0,..., p+1,
i —_

(51) o o0 = Ciy".

We set

(52)  logs;, (x) :=¢sy (x)log(x) and log_, (x):= (1 — @z (X)) log(x).

Then we have, for £ = zg + enz/,

‘/log |x| d(ve—a — Voo,e)(x)

(53) < ' [ 10821, 15104 = v ) ()

+ ‘/logqN lx] dve_a (x)

+

/10g<tN |x] dveo, £ (x)

Let us treat the three terms in the RHS of (53) separately.
e By Theorem 1.7, (51) and (49), with probability at least 1 — Ce~™*, uniformly
in 7/ € B(0, R), we have

1;(174‘1)
<C—F—F—~-.
=" (og Ny

‘ f log.,, 1x]d(ve_4 — Voo £) ()

But by (49), the RHT is « 8,2v. As, on the complementary of the above event, we
have the domination inequality

2

8;,4‘/ log.,, 1x|d(Vg—a — o £) ()| <4log N(|logry|+ K)* < Ce™",

we deduce that uniformly in 7’ € B(0, R),

2
(54) E[ng‘/logzm X1 d(ve—a = Voo.g) (x) ] Nooo 0

e Let us now treat the close-to-zero terms.

LEMMA 4.1. Let K be a compact subset of C which does not contain 0.

(a) Let C be as in Hypothesis 1.1(iii). Then for any £ € C, t € (0, 1),

‘/[0 ’ log|x|(voo,g)(dx)‘ < Ct(1 —log(?)).
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(b) There are some constants Ay, ax > O such that for all N large enough, for
all¢ e Kandall y >0,

E[vi—a([—y, y])] < Ax max{y, N~}

(c) Let N > 1 and v be a probability measure on R such that for some constants
A,a>0,forall y >0,

v([—y, y]) < Amax{y, N~¢}.

Then there is A’ = A’ (A, a) such that for any t € [N~%, 1], we have
/ llog |x||* dv(x) < A’(t]log]> + N~ log N|?).
[N=4,r]

(d) There are some positive constants cx, Cx: such that for N > 1 large enough,
forallE e K, u >0,

P(Smin(g - A) =< M) < C}CMCKNC’C
and such that for any § > 0, we have, for all £ € K,

E[[log(smin(6 — A)[*L,  e_ay=n-s] < CxNETK (log N)*.

PROOF. (a)For C as in Hypothesis 1.1(iii), by Lemma A.16, we have Imm, <
C on C*, hence Imm,s < C on C*. So by Lemma A.16, for any & € C, voo ¢ =
V¥ B 8|s€| has a density with respect to the Lebesgue measure, which is bounded by

C/m. Thus, for ¢ € (0, 1),

t
] / 10g|x|(voo,s)(dx)‘§—(C/n) [ 1ogxax
[0,7] 0

= —(C/m)t(log(t) — 1).

(b) Follows directly from Lemmas 13 and 15 of [22] (the fact that the estimate
is uniform in & as & stays bounded and bounded away from zero follows from a
careful look at the arguments of [22]).

(c) Can be found in the proof of [22], Proposition 4(i), page 1208.

(d) The first part follows from Theorem 1.1 of [31] by Rudelson and Vershynin,
as for & #£0, smin(§ — A) = |E|smin (U*V* — T/€). Then to compute the expecta-
tion, we will use the fact that for any positive random variable X, any o > 0 and
any ¢ € (0, 11,

E[[log(X)["1x<]

3 d
:a/ P(X < u)|logu|"‘_1—u +P(X <e¢)|logel”,
0 u
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so that
EHIOg(Smin(g - A))|4]lsmin(5_A)fN_5]

-3

N
< —2CkNCK f uc~og? (u) du + Cex S NCE K8 (log N)*
0
< CleNEET3K (1 + (log N)H). O

We know that for N large enough, for any & € B(zp, Ren), the support of
Voo,e = V' H SISSI and the spectrum of |£ — A| are contained in [-3K, 3K, so their
intersection with the support of the function log_,, defined at (52) is contained in
[0, zx]. As the function ¢y, only takes values in [0, 1], we have

(55) f log_yy |xdvoo,g (x)| < =2 log x dve ¢ (x)
[0,x1]
and
’/10g<tN |x| dl)g_A(x) <-2 log x dl)g_A(x)
[0,n1]
<-2 log x dvg_4(x)
[0,N79]
(56)
-2 logx dvg_4(x)
[N=8, NTK]

—2/ logx dve_4(x),
[NTIK,tn]

where § > 0 is chosen such that for cx, Cx is in (d) of the previous lemma, we
have Cx — écxe < 0.
ee By (55), (a) of Lemma 4.1 and (50), we know that

57) ‘/log<w ] dvog, g (x)
ee Let us now treat the three terms of the RHS of (56).
First term of the RHS of (56): We always have

,/[0,N5]|10g |x||dl)§—A(X) < Vg_A([O, N_B])“Og(smin(é}_ - A))’]]'Smin(s—A)EN_‘S‘

2
Ley.

Let us now take the second moment. By Cauchy—Schwarz, we have

E[</[O,N5] [log |x|| dng(x))z]

< E[(ve-([0, N™]))* [log(smin(§ — A)) "Ly, - y<nv-2]

< VE[ve ([0, N=)) JE[log(smin (& — A)[ 1, ¢ ay2n-s].
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Then we use (b) of Lemma 4.1 (plus the fact that x* <x when x €0, 1]) to upper
bound E[v:_4 ([0, N~3])*] and (d) of Lemma 4.1 to upper bound E[|log(smin(§ —
A))|41smin(§—A)§N—5]' As we chose § so that Cx — dcc < 0, we get that

2
E(/ log x dvg _ x)i|<<84.
[ ON~4] gx dvg_a(x) N

Second term of the RHS of (56): We have

2
IE/ log x dve _ :|<510 NE[ve_a([N7%, N~
[ e dvea o] | <8108 NEDe—a )

< C8(log N)N ™K L &y,
where we used (b) of Lemma 4.1.

Third term of the RHS of (56): By (b) and (c) of Lemma 4.1 and (50) (using
Cauchy—Schwarz again, as above), we can claim that

2
E[(/ logxdvg_A(x)> }<< ex.
[NTK,tN]

e Let us conclude the proof. By what precedes, we have proved that the RHS
of (56) has second moment < ej‘v, uniformly in z' € B(0, R). Besides, by (57),
we have proved that the (deterministic) RHT of (55) is < 8]2\,, uniformly in 7' €
B(0, R). This proves that the close-to-zero terms in (53) have second moments
< ej‘\,, uniformly in z’ € B(0, R). At (54), we proved that the same holds for the
far-from-zero term in (53). This completes the proof of the theorem.

5. Proof of Theorem 1.5 (Matrix subordination). This proof goes roughly
along the same lines as the one of Theorem 2 of the paper [28] by Kargin. The
main difficulty is to give a Schwinger-Dyson equation adapted to our context
(Lemma 5.2), which forces us to introduce the linear form t of (59) (from the
point of view of quantum probability theory, which identifies the normalized trace
to an expectation, T can be assimilated to a conditional expectation).

5.1. Preliminaries. First, one can easily see, by left and right invariance of
the Haar measure, that one can suppose that A and B are diagonal matrices with
nonnegative entries, so that
(58) A* = A, B* = B.

To state our forthcoming equation (63), we define the map:

My (C) MN((C)) (MN((C) 0 )
T. M C == ( — )
MO = My© My© 0 My(©
(59) |
< A B> . N TrA 0
1
¢ D 0 —TrD

N

’
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where the complex numbers % Tr A and % Tr D are assimilated to the correspond-
ing scalar matrices.

REMARK 5.1. Let us introduce the matrix:

0 I
(60) P = <I O)

(I denotes the identity matrix), which satisfies

X1 Y1\ p,-1_ (X2 12
61) VX1, X2, Y1, Y2 € My (C), P(Y2 X2)P —(m X1>'

Thus by (58), A and B are invariant under conjugation by P and the matrix W is
invariant, in law, under conjugation by P. We deduce that the (random or deter-
ministic) matrices H, Gg(z) and EGg(z) are invariant, in law, under conjugation
by P. It implies that

E[r(Gu@)];  E[r(Gu()B)]
are scalar 2N x 2N matrices equal to respectively E[mpu(z)]/ and E[ fp(z)]I for
1 ~
(62) fB(2) = N Tr(Gu(z)B).
The following lemma is the Schwinger—Dyson equation of our problem.

LEMMA 5.2. For any z,

(63) E[z(Gu(z))BGu(2)] =E[r(Gu(2)B)Gu(2)].

PROOF. It suffices to prove that the element of My (C) @ Moy (C)
(64) E[Gu(z) ® (BGu(2))] - E[(Gu(2)B) ® Gu(2)]

belongs to the kernel of the linear map X ® Y +— t(X)Y. We shall prove that (64)
belongs to the space:

((mﬁg 8)®(va)<<c> Mﬁ(@)))

0 Mn(@© Mpy(@C) Mpy(C)
EB((0 MN«C))@( 0 0 ))

(65)

which is of course enough. Let us define

U Moy (C) @ Moy (C) = L(Man(0))
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to be the linear map defined by (X ® Y)(M) = XMY. It is easy to see that the
space of (65) is precisely the space of elements of T € My (C) @ Moy (C) such
that

</\/l ~n(©) 0

0 MN(C)> CkerW (T).

Hence, it suffices to prove that for any Z, Z' € My (C),
Z 0\gzm ~(7 0
66 Eeue (g )Bon@ -Gu@B(g 5)6n@|=0

By linearity, one can suppose that Z, Z’ are Hermitian. Then one recognizes eas-
ily that the LHT of (66) is (up to a constant factor) the derivative, at ¢t = 0, of
E[GH, (2)], where

ei[Z O e—ilZ O
Hl :A+ ( 0 eilz/> WBW* ( O e—ilZ/ .
By invariance of the Haar measure, we have
eitZ 0 law
< O eitZ/> W = W’

hence the above derivative is null. This proves the lemma. [J

Let
_ ELfp()]
E[my(2)]

for fp(z) and myg(z) defined at (62) and (15). For X, Y matrices, let [X, Y] :=
XY — Y X denote the commutant of X and Y.

(67) Sp(2) =

LEMMA 5.3. Let
Aaz) = —E[t(Gu(2))Gu(2)]
—E[[t(Gu(2), Ga()]BGu ()] — E[t (Gu()B)Gn(2)]
and

_ Galz+ Sp(@))A = 2)Aa()

(68) Ra2): Elmu(z)]

Then we have

E[Gu(z)] = Ga(z + SB(2)) + Ra(2).
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PROOF. By Remark 5.1, E[t(Gg(z))] is a scalar 2N x 2N matrix equal to
E[mu(z)]I. Thus, using successively (18), the resolvant identity and the previous
lemma, we get

E[mu(2)|E[Gn(2)]
=E[t(Gu(2)[E[Gu(2)]
= E[t(Gu(2))Gu(2)] - E[t(Gu(2))Gu(2)]
e
E[r(Gu(2)){Ga(2) — Ga(2)BGu()}] — &1
E[mu(2)]Ga(2) — E[1(Gu(2))Ga(2)BGu(2)] — &1
E[mu(2)]Ga(2) — E[[t(Gu(2)), GA(2)|BGu(2)]

—E[GA()T(Gu())BGH()] — &1
=E[mu(2)]Ga(2) — GAE[r(Gu(2)B)Gu(2)] — &1 — &2
(
]

=E[mu(2)]Ga(z) — GA(E[r GH(Z)ﬁ)]E[GH(Z)]
— GAE[t(Gu(@B)Gu@)] —¢1 — &
=E[mu(2)]Ga2) — GA(E[t(Gu(2)B)|E[Gu(2)] — &1 — &2 — &3

=E[mu(2)]Ga(2) — GAQRE[fp(2)]|E[Gu(z)] — &1 — &2 — €3.

Dividing by the complex number E[mpg(z)] and multiplying on the left by A — z,
one gets

(A—2)E[GH(z)] =1 + Sp()E[Gu(2)] — &] — &) — &5,
_ (A=2)g

for ¢ := Eimp (5]~ This gives
(A =z = Sp))E[GuR)] =1 -] — & — &5,
that is,
E[Gu(z)] = Ga(z + Sp(2)) — & — &5 — &5,
for

"._ ’_ Ga(z+ Sp(2)(A —2)g
el :=Ga(z+ Sp(2)¢; = Eimn )]

To conclude, it suffices to notice that
Ra(z) = —e] — & — &5,

up to the fact that in the second term of R4 (z), we have [t (éH (z)), Ga(2)] instead
of [t(Gu(2)), GA(z)]. But as E[t(GH(z))] is a scalar matrix, both are equal. [
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LEMMA 5.4. Let Wp(z) := m(A — DE[AA(R)] and Ya(z) := (I +
Wa(2)~ ' = 1. Then
(69) Sp(2)] = —(EGu() "+ A — 2+ Ya(2)(A —z — S5(2)).

where I denotes the identity matrix.

PROOF. By the previous lemma,

EGu(z) = Gz + S5(2)) (1 + (A — z)]EAA)

Emy(z)
=Ga(z+ S())(I +Ya(2)

= Galz+S5@)(I +Ya2) ™"

hence
(EGu()) "= (I +Ya@@)(A - (z+ Sz(2)))

which allows to conclude. [

LEMMA 5.5. Let p be a probability measure supported by [—K, K| and |z| <
K. Then

U]
I > —.
mm,(z) > 5K?

PROOF. It suffices to note that for any A € [—K, K], Im %_Z = m >
n
(2K)2+K?* M

It follows from this lemma that there is ¢ depending only on K such that

|[Emu(z)| ~ n
and
_|EfBR)|_ ¢
7D |SB(Z)‘_|EmH(z) =

LEMMA 5.6. Forany é > 0,

o 827]6
P(I7(Gn()Gn()| = 8) = exp( —er V),

. - 82778 5
P(|[z(Gu(z)), GA(2)|BGu ()| > §) < 4exp<—c ||B||4N )

and

o ~ 82n° 2
]P’(“‘L’(GH(Z)B)GH(Z)” = 6) = 4exp<—c “3”4(1 + ﬁ)ZN >
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1

PROOF. To prove it, as for any Hermitian matrix M, |Gy (2)|| <n~ ", it suf-

fices to prove that for any § > 0,

O 52 4
P(|7(Gu()] = 8) < 46"p<_c ||BT|2 N2>

and

o . 527’]4 2)
>§) < —
P(|z(Gu(z)B)| = 6) < 4exp< 0”3”4(1 n ﬁ)zN )

We shall apply the Lemma A.14 of the Appendix. Note first that a Haar-
distributed unitary matrix can be realized as the product of a Haar-distributed SU
matrix by a uniform random phase, hence up to a randomization of B by multi-
plication by an independent uniform phase, one can suppose that U and V are
independent Haar-distributed SU y matrices.

Let P, P> be the 2N x 2N matrices defined by

I 0 0 0
Pl:(o 0)’ PZ‘:(O 1)’

so that for any M € My (C),
N 'TrPMP, 0 )

M) =
(M) < 0 N-'TrP,M P,

Let ¢;, ¥; (i =1, 2) be the functions defined on (SU )2 by

¢i(U,V):= N"'"Tr(P,Gu(z) P, Y (U, V) := N Tr(P,Gu(z)BP;)

with the notation of (22), (23). We need to prove that under the sole hypothesis
that [|A[l, | B|l, |z| < K, the numbers

NLGn'. NLyn*
IBIZ" IBIF + )

(i=1,2)

are bounded uniformly in N.
For X, Y skew-Hermitian matrices with null traces and U, V € SU y,

d.1—00i (XU, e V) = =N~ Tr(P;Gu(z)(ZB — BZ)Gyu(2) P,).

with Z := (’é ?), so that

1 ~
Voi(U,V) = _NW*P([B’ Gu(2) PiGu(2)]),

where P is the orthogonal projection from My (C) onto the tangent space at /, of
(SUN)?. As this projection does not enlarge the norm, the usual noncommutative
Hélder inequalities (see Appendix A.3 of [1]) allow to claim that

2 4
NLgn
I B|?
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is bounded.
In the same way,

Ot 1=0Vi (etXU’ e'’ V)
= N"!'Tr|Pi(~Gu(z)(ZB — BZ)Gu(2)B + Gu(z)(ZB — BZ)) P},
hence
1 - -
Vi (U, V) = NW*P([B, —Gu()BPiGu(2) + PiGu(2)]),

and one concludes as above. [

LEMMA 5.7. We have

: I B
E|t(Gn(2))Gu()| < N
E[[r(Gu(). Ga@[BGu(@)| <clo [
Nn*
and
PN IBI( + )
E|z(Gu(2)B)Gu()| < CN—773””'
Hence, if |z|, | Bll < K, then
7 [aa@] e [a@] eqs
Nn Nn
and
72 Nitzoe = V@)=
Nnd

PROOF. The three first inequalities follow from the previous lemma and stan-
dard queues-moments relations. The upper bound on ||A4(z)| follows from the
very definition of A4(z) at Lemma 5.3. The upper bound on ||W4(z)| follows
from its definition

WA(z) =

e (A —2)E[AA(2)]

and from (70). At last, (73) follows from the definition Y4 (z) = (I + W4(z)) "' =1
and from the well-known inequality:

IXi<1/2 = [d-x""=1]<2IX]|. O

Adapting the proof of Lemma 4.7 of [9], we get the following lemma.
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LEMMA 5.8. LetU C My(C) be a compact Lie group and let L be the com-
plex linear subspace of My (C) spanned by its Lie algebra. Let us fix M € My (C)
and, for b € My (C) such that b — uMu™" is invertible for any u € U, define
the random matrix R(b) := (b — UMU YY", where U is Haar-distributed in U.
Then:

(i) forany Y € L, we have E[R(D)]Y — YE[R(b)] =E[R(b)(Yb — bY)R(D)],
(ii) the matrix E[R(b)] commutes with any matrix in L commuting with b.

PROOF. (ii) is a direct consequence of (i). Besides, by linearity, it suffices to
prove (i) for Y in the Lie algebra of /. For such a matrix Y, differentiating at O the
constant function f(r) :==E[(b —eYUMU'e™"V)~1], we get

E[R(B)(UMU™'Y —YUMU YR(b)]=0.

Then, using RMWUMUY = —1 4+ R(b)b and UBU~'R(b) = —I + bR(b), we
get (i) directly. [

LEMMA 5.9. The matrix EGy(z) commutes with A.

Uuo
ov):

for U, V unitary matrices (so that £ is the space of matrices (g )?,), for X, X' €
Mpy(C)), M =B and b = 7 — A. Tt states that EGg(z) commutes with any matrix
of £ commuting with A, for example with any matrix of the type (lg g), with D
diagonal. We deduce that

PROOF. Let us apply the previous lemma for I/ the group of matrices (

E6u=(] )

with J, K, L, M some N x N diagonal matrices. But by Remark 5.1, the matrix
EGHu(z) is invariant under conjugation by the matrix P introduced at (60). By (61),
it implies that / = M and K = L. It suffices to conclude. [

5.2. Proof of Theorem 1.5 (Matrix subordination). Note first that the state-
ment is symmetric in A and B, so we shall prove it for Sp and R4 only.
By Lemmas 5.3 and 5.4, we have

E[Gu(2)] = Ga(z + SB(2)) + Ra(2)

with
Ga(z+ SB(2)(A —2)Aa(2)
74 R =
(74) A(2) Elm ()]
and

Sp(2)] = —(EGu(2)) '+ A — 2+ Ya(2)(A — z — Sp(2)).
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By Proposition 2 of [27], we know that

—(EGu())™"

has all its eigenvalues with imaginary part > n. But by Lemma 5.9, EGg(z) com-
mutes with A, hence the eigenvalues of —(EGu()"!+ A — z have nonnegative
imaginary parts. Thus, by standard perturbation analysis (see, e.g., [18], Chap-
ter 4),

ImSp(z) > |Ya(2)(A -z~ Sp(2)].

Then (71) and (73) give directly the lower-bound (26) on the imaginary part of
Sp(2).

The upper bound (27) on ||R4(z)]| follows directly from the expression (74),
the upper bound (72) on ||A4(2)]|, and the fact that for N large enough, Im(z +

Sp(2) = 1.

APPENDIX

A.1. Free convolution and subordination. Let us first recall one of the ways
to define the free convolution [5, 8, 14].

THEOREM A.10 (Definition of the free convolution via subordination). Let
W, v be probability measures on the real line with compact supports. Then the
system

m(z) = mu(z + Sv(Z)),
m(z) =my(z+ S,.(2)),

1
—(z + m) =8,(2) + 8,(2)

has a unique solution (m(-), S,.(-), Sv(+)) in the class of triplets of analytic func-
tions on CT satisfying, as |z| — +o0,

m@)=—z"'+0(?),
(75)
1S.(D)] + [Sv(2)| = 0().

The function m(z) is then the Stieltjes’ transform of a unique probability measure,
which is W B v. Moreover, S, and S, take values in Ct.

REMARK A.11. Note that this result, in addition to define the free convolu-
tion, is a first regularity result for this convolution. Indeed, for any n > 0 and any
probability measure p on the real line, the function z — m,(z +in) is the Stieltjes’
transform of an analytic regularization of p (namely its classical convolution with
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1 nd
the Cauchy law - +’f] .

line, the equation

). Hence, for u, p some probability measures on the real

my(z) =my () with Imz" > Imz

implies roughly that p is more regular than u.
The following lemmas will be used in this text.

LEMMA A.12. Let X,Y be free self-adjoint elements of a tracial W*-
probability space (A, T) with respective distributions v, v. Then for any 7z € CT,
we have
TX(X+Y -2 S(@__ﬂﬂX+Y—©*)

(X+Y -2’ ' (X+Y -2’

SM(Z) = -

PROOF. Let us focus for example on S, . It is equivalent to prove that

TXX+Y-2) 1(@—-XX+Y-27h
((X+Y-27H) (X +Y-27h

z+Su(@) =z -
that is,

(76) Z+ S @) (X+Y -2 HN=t(E-X)X+Y -2)7").

Let 7y denote the conditional (noncommutative) expectation given the W*-algebra
generated by Y. We know, by Theorem 3.1 of [14], that

1 1
o )= ,
z—X-Y 2+ S -Y

so that

2+ S =Y + (TY(Z_X%Y>)_1

(the miracle of [14] being precisely that despite the Ty in the RHT, z + §,(z) is a
scalar) and

1 1
E— N _ 1.
(Z+Sﬂ(z))ty(Z_X_Y) TY(z—X—Y)—i_
Let us now apply 7. As z + S, (z) € C, we get
4+ S @D)t(G=X-VHN=c(Ye=-X -1 +1,
which is exactly (76). U
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LEMMA A.13. Let K > 0 be fixed. Then there are Mi = M;(K) >0(i =1,2)
such that for any pair , v of probability measures with supports contained in
[—K, K], for any |z| > My, the numbers S5 (z), Sys (z) (defined at Theorem A.10),
Ky s (2), s v (2) and Bys vs (2) [defined at (31), (32) and (33)] satisfy

1

<
Qs s (Z),B/H,vs (x) —

Kps s (2) > ——; M;;

M;

Qs vs () <
124 S (@) + Sws (21> ~

M.

PROOF. First, by the previous lemma, we know that the estimate (76) is
uniform in all pairs u,v of probability measures with supports contained in
[—K, K]. Besides, it is obvious, from the series expansion, that the estimates
—zkmff) (z) — 1,k=0,1,2, as |z] —> o0, are uniform in probability measures
w with support contained in [— K, K]. Then, going back to the formulas defining
the functions of interest here, we get the desired estimates. [

A.2. Concentration of measure for the Haar measure. By the lemma of
Gromov and Milman (see, e.g., [1], page 299) and Proposition 1.11 of [29], we

have the following.

LEMMA A.14. Let f be a smooth real-valued function on (SUy)?* and let

Lyi= max (VAU V)VFU V).
(U, V)e(SUN)?

Then for U,V independent Haar-distributed SU 5 matrices, for any § > 0,

2
B(lf.V) =B V)]| 28) < 2exp( % )
ALY
A.3. Kantorovich’s theorem on Newton’s method. Let us give the simpli-
fied version of Kantorovich’s theorem that we need (particular case of [21], Theo-
rem 1). We let || - || denote the canonical Euclidian norm on R¢ or the associated
operator norm on £(R?).

THEOREM A.15. Let O be an open subset of R and F : O — R? be a C!
function. Let xo € O such that F'(xq) is invertible and yo € RY. Suppose that for

IF (x0) ™ (F'(x) = F' )

L:= ;b= |F'(x0)” (F(x0) — o) |
x#yeO lx — ¥l
we have 2bL < 1. Define
2b 14+4/1-2bL



LOCAL SINGLE RING THEOREM 3879

and choose p € [ry, rys) such that B(xg, p) C O. Then the equation F(x) = yo
has a unique solution x, in B(xo, p) and this solution satisfies

[l — xoll < rx.
A.4. Local laws and Stieltjes’ transforms.
A.4.1. Density and upper bound on the Stieltjes’ transform.

LEMMA A.16. For p probability measure on the real line and M > 0, we
have equivalence between:

(i) m admits a density p with respect to the Lebesgue measure such that

lollee =M,
(ii) Immy, is uniformly bounded, on C*, by 1 M.

Moreover, in this case, for any probability measure v on R, u B v also admits a
density with respect to the Lebesgue measure which is bounded by M.

PROOF. Forz=F +in (E € R, n > 0), we have

1 _ n
;Immu(z) —/

4.
wew (E— )2 12

Hence if (i) holds, then
U]

n
Imm z:/ ———pXQ)dr <M ————dA < Mnm.
a2 AeR(E—A)2+n2p( ) reR (E — 1) +1n?
Reciprocally, let us suppose that Imm,, is uniformly bounded, on C*, by 7 M. The
law

L tmmy (i) 7dx
—Imm i =k —s—
n . 7 T
converges weakly to u as n |, 0, hence for any x < y,

1 Yy
w([x, y]) = lim —/ Imm,, (A +in)dxr
r]—)OT[ X

(indeed, by [5], Lemma 2.17, (2), n has no atom), so for any x < y, u([x, y]) <
M(y — x). This implies that the cumulative distribution function of u is
M -Lipschitz, hence is almost everywhere differentiable, with derivative < M and
is the integral of its derivative, which is exactly (i).

The last statement follows from the subordination for H: by Theorem A.10,
there is a function S : C* — CT such that on C*, m m,(z) = m,(z + S(2)),
which allows directly to conclude by what precedes. [
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A.4.2. Erdds, Schlein and Yau’s method.

THEOREM A.17 (Erd6s, Schlein, Yau). Let v be a signed measure on R, E €
R and n, M > 0. Then Ngﬂi/[;M"])l is upper-bounded by
n

_ VI([E £ 2Mn])
c<||mu(- L e ey vE T

VI(IE —2My £ /Myl U[E +2Mn + M) | Imm),(E +iMn)
" o ]

for a certain universal constant C.

PROOF. Let us briefly present the ideas of the proof of Corollary 4.2 in [19].
: 1 n
It suffices to notice that for R(A) := = fipapry) [EE Yy dx, there are some func-

tions T, 1o, T3 such that R(A) = Ljp—g|<pm + T1(A) + To(X) + T3(2), with:
o [Ti]loo = ﬁ and supp(7T1) C [E +£2Mn],
o 1Tl < 1 and supp(T>) C [E — 2Mn £ /My] U[E +2Mn £ v/ Mn),

CMn?
o [T3(M)] < m
Hence, as [, .g R(A)dv(A) = %f[EiMn] Imm, (x 4in) dx, we have

1
v([E £ Mnl)= ;/[EiMn] Imm,(x +in)dx

- A GR(Tl 1) + (W) + T3(0)) dv(h),

which proves the theorem. [

A.4.3. Helffer-Sjostrand functional calculus. The use of this method in ran-
dom matrix theory is quite recent (see [1], Proof of Lemma 5.5.5, or [20], Proof of
Lemma B.1). As we shall use it in a noncommon scale (see Corollary A.19), we
state it precisely here.

THEOREM A.18. Let v a signed measure on R, p > 1 and ¢ a CP*! com-
pactly supported function on the real line. Suppose that there are Nmin,d > 0,
o €10, p+ 1) such that

(77) (E esupp(¢) and n > nmin) = |my(E +in)| <én~“.
Then
Lll¢P Vo

plm
for L the Lebesgue measure of the support of ¢.

P b
|v|<R>("mm + )
p

[ oo < P
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PROOF. e The function
nmy,(E +in) if n >0,
78 vi(E,n)eR x[0,+00)— {. .
(78)  fu:(E.n) R x[0,+00) [w({E}) 0,

satisfies || fy [lco < |V|(R). Indeed, for n > 0, we have
dv( )
(B, )| = | [awie.

e Choose ¢ : R — [0, 1] a smooth functlon with value 1 in a neighborhood of
0 and supported by [—1, 1]. Then set W(x + iy) := Zf:o %d)(z)(x)go(y)yz. Note
that for 8 := 9, + idy, the function

AW (E +in)

(719) (E,n) eRx[0,400)—> 1., 1"
(D) .
—!¢ (E)p(0) ifn=0,

if n >0,

is continuous and bounded. Indeed, we have

_ P
(80) W (E +in) = 5¢><P+”<E)¢<n)np
so that the continuity is obvious and
IV (E
(81) sup ﬂ' H¢<p+l) ||
EeR,n>0

o Using this remark in the particular case where p =1, we get

W(t)dv(z)
teR

QW (E +i
:n_lRe(/f Mﬁmv(E—i—in)dEdn).
(E,n)eRx[0,+00) n

Indeed, (82) is continuous in v (for the topology defined by bounded continuous
functions) and linear in v, so it suffices to prove it for v = §;, with A € R. Then it
is the content of [12], Proposition C.1.

e As a consequence, as ¢ and W coincide on R, using (82), (77) and (81), we
get

(82)

AW (E +i
‘/¢(X)V(dx)‘§n_l‘// anmv(E—l-in)dEdn)
(E.n)esupp(¢)x(0,1] n?

Nmin 1
s(p!n)‘lL||¢><P+”||oo|v|<R)( /0 2 dy 48 fo n‘”_"‘dn>

d 5
5(p!n)“LHd)(”“)||oo|V|(R)(nr;m+p_a+1)- 0
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COROLLARY A.19. Let p > 1, let vy be a sequence of signed measures. Sup-
pose that for some constants C, D, ¢ > 0, we have

Re(z)| < K,

El

C
<Imz <D} < Ce VgV,
JIogN — - }_

Let ¢ be a sequence of smooth compactly supported functions. Then there is

C’' = C/'(c, C) such that

sup{|muN ()

1
Clow | R Ly g 1o
(p+ D!(log NP2
where Ly is the Lebesgue measure of the support of ¢ .

ln (pn)] <

PROOF. We apply Theorem A.18 with 5pin = ﬁ § = Ce cVIogN o —0.
O

A.4.4. An application of Hadamard’s three circles theorem. The following
use of Hadamard’s three circles theorem is due to Kargin, in [26]. All ideas of the
proof of Theorem A.20 can be found in [26], but as it is not stated clearly, we give
a short proof.

THEOREM A.20. Let a > 0. There is §o = §o(a) > 0 such that for all § €
(0, 80), for all signed measure v,

. e+ei9
sup{\mu(z) iz =ia———, 60 €0, 271]} <4
e —elf

—  sup |my(x)| <e VTR

Z€H, 1 (5)

where ¢ :=2|v|(R)/a, r(8) :=e~*=¢/19¢% gnd fora, r > 0, H, , denotes the disc

1+r 142

1=r ya =1 C CT, that is, the disc with center ia - and radius

with diameter [ia | =

2r
1—r

a==.

PROOF. The starting point of the proof is the so-called Hadamard three circles
theorem [25], stating that for f: D :={§ € C; [§]| < 1} — C analytic, the function
M(r) .= SUP ¢ |= | f(&)| is nondecreasing and the function M (s) := log(M (e*))
is convex on (—oo, 0). If we suppose moreover that f is such that for a certain
constant ¢, forall r < 1,

(83) (I=r)M(r) <c,
then there is 69 = §p(c) > 0 such that for all § € (0, &p), we have

M) <8 = M) <&,
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with 7 (8) := e™*V=¢/1020 and g.(8) := e~V 1089 Indeed, it is equivalent to prove
that there is my = mq(c) < 0 such that for all m < m(, we have

M-)<m = M(-4/c/im]) < —Jclm],

which follows from the convexity of M (applied at —1 < —4/c/|m| < —4/c/Im]).
Then one concludes by noticing that for a, v as in the statement of the theorem
and f (&) := mv(iag), (83) is satisfied for ¢ := 2|v|(R)/a. O

COROLLARY A.21. Let uy, u be probability measures such that for a certain
a > 0 and a certain C > 0, we have
. e+el -1
sup{ [myuy - (D)]; 2 =ia———5,0 €[0, 271 < N7\,

Then for any K > 0, there is No = No(a, C, K) such that for N > Ny,

. 16 —1

< o~ 8VIoEN/CY/a_

PROOF. We apply the previous theorem: here, ¢ = 4/a, § = CN~!, so that
r(8) = e 8/valogWW/C) Thys | — r(8) <8//a log(N/C) and it is easy to see that
for N large enough, the disc H, () contains the set in question here. [J
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