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The onset of several silent, chronic diseases such as diabetes can be de-
tected only through diagnostic tests. Due to cost considerations, self-reported
outcomes are routinely collected in lieu of expensive diagnostic tests in large-
scale prospective investigations such as the Women’s Health Initiative. How-
ever, self-reported outcomes are subject to imperfect sensitivity and speci-
ficity. Using a semiparametric likelihood-based approach, we present time to
event models to estimate the association of one or more covariates with a
error-prone, self-reported outcome. We present simulation studies to assess
the effect of error in self-reported outcomes with regard to bias in the estima-
tion of the regression parameter of interest. We apply the proposed methods
to prospective data from 152,830 women enrolled in the Women’s Health
Initiative to evaluate the effect of statin use with the risk of incident diabetes
mellitus among postmenopausal women. The current analysis is based on
follow-up through 2010, with a median duration of follow-up of 12.1 years.
The methods proposed in this paper are readily implemented using our freely
available R software package icensmis, which is available at the Comprehen-
sive R Archive Network (CRAN) website.

1. Introduction. The onset of several chronic diseases such as diabetes are
asymptomatic and can be detected only through diagnostic tests. For example, dia-
betes can be detected by measuring levels of fasting blood glucose or glycosylated
hemoglobin levels (HbA1c). However, the costs of such gold standard diagnostic
tests can be prohibitive in large-scale epidemiological studies such as the Women’s
Health Initiative (WHI) that enroll and follow over a hundred thousand subjects.
Disease prevalence and incidence in large observational cohorts are often ascer-
tained through error-prone, self-reported questionnaires. In this paper, we propose
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a semiparametric model to assess the association of specific covariates of interest
with a silent time to event outcome that is assessed through periodic, error-prone
self-reports.

Using data from postmenopausal women enrolled in the WHI, the motivating
application in this paper is the evaluation of the hypothesis that the use of choles-
terol lowering medications (statins) can result in an increased risk of diabetes. The
WHI recruited women (N = 161,808) aged 50–79 at 40 clinical centers across the
U.S. from 1993–1998 with ongoing follow-up [Anderson et al. (1998)]. Prevalent
and incident diabetes during the course of follow-up was ascertained by self-report
obtained at each annual visit. In a recent paper, Culver et al. (2012) presented an
analysis of the effects of statin use on the risk of incident diabetes in the WHI
using Cox proportional hazards models. The analyses were conducted based on
the assumption that self-reported outcomes of prevalent and incident diabetes are
error-free. The validity of self-reports of incident and prevalent diabetes have been
evaluated using data from a substudy nested within the WHI—when compared to
fasting glucose levels (treated as the gold standard), diabetes self-reports had a
positive predictive value of 74% and negative predictive value of 97% [Jackson
et al. (2014), Margolis et al. (2008)]. Other studies such as the Nurses’ Health
Study, Physicians’ Health Study and the Finnish Public Sector Study also com-
monly use self-reported outcomes [He et al. (2010), Hu et al. (2001), Oksanen
et al. (2010)].

When a perfect diagnostic test is given sequentially at different points in time
to the same individual, the time until the event of interest can be determined to
lie in the interval between the last negative test and the first positive test—that
is, the time until the event is interval censored. In this context, methods for esti-
mating the survival distribution and assessing the effect of covariates have been
developed [Finkelstein (1986), Turnbull (1976)]. However, when error-prone di-
agnostic procedures such as self-reports are used, standard methods for interval
censored outcomes are rendered invalid. Previous work in this area includes meth-
ods for error-prone outcomes with application to data collected from laboratory-
based diagnostic tests in studies in HIV, HPV and STD [Balasubramanian and La-
gakos (2001, 2003), McKeown and Jewell (2010), Meier, Richardson and Hughes
(2003)]. Balasubramanian and Lagakos (2003) developed a formal likelihood
framework to estimate the distribution of the time to mother to child transmis-
sion of HIV. The proposed methods were applied to data from imperfect DNA
PCR diagnostic tests to detect the presence of HIV in infants who were born to
HIV-positive pregnant women. Meier, Richardson and Hughes (2003) extended
the discrete proportional hazard model to incorporate outcomes and covariates.
In related work, several papers proposed generalized Cox models in settings in-
volving time to event outcomes with incomplete event adjudication [Cook (2000),
Cook and Kosorok (2004), Snapinn (1998)]. Other related work includes that pro-
posed by McKeown and Jewell (2010) in the context of HPV studies, where the
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authors accommodate misclassification by incorporating ideas of binary general-
ized linear models with outcomes subject to misclassification [Neuhaus (1999)].
The problem of error-prone time to event outcomes can also be handled through
the Hidden Markov Model (HMM) framework. Previous applications of HMM-
based methods include the areas of breast cancer [Chen, Duffy and Tabar (1996)],
HIV [Guihenneuc-Jouyaux, Richardson and Longini (2000), Satten and Longini
(1996)], lung transplantation [Jackson and Sharples (2002)] and cervical smear
tests [Kirby and Spiegelhalter (1994)]. Jackson et al. (2003) present a general
framework for staged Markov models to handle misclassification due to error-
prone screening tests. Other recent methodological advances within the general
area of outcomes measured with error include the papers by García-Zattera et al.
(2012) and Lyles et al. (2011), as well as works on covariate measurement er-
ror with application to the WHI and the Nurses Health Study [Shaw and Prentice
(2012), Spiegelman, Rosner and Logan (2000)]. However, none of the previous
literature specifically considers error-prone, self-reported time to event outcomes.

In this paper we present a likelihood-based approach to incorporate time-
varying covariate effects specific to the setting in which the prevalence and inci-
dence (time to event) of a chronic condition such as diabetes is ascertained through
error-prone self-reports. We incorporate the situation where an unknown propor-
tion of subjects who have already experienced the event of interest at baseline are
mistakenly included into the study, due to the use of error-prone self-reports at
study entry. We also provide a freely available R software package and illustrate
its use [Gu and Balasubramanian (2013)]. In Section 2 we present notation, form
of the likelihood function, address issues related to estimation and extensions to
incorporate misclassification of subjects at study entry. In Section 3 we perform
simulation studies to evaluate the effects of various degrees of error in self-reports.
We investigate the effects of erroneous inclusion of subjects who have already
experienced the event of interest due to imperfect negative predictive values as-
sociated with self-reports. In Section 4 we evaluate the association between statin
use with the risk of incident diabetes in a subset of 152,830 women enrolled in the
WHI. Last, in Section 5 we discuss the findings of this study and highlight future
directions.

2. Methods. In this section we present notation, form of the likelihood and
extensions to incorporate the possibility of misclassification at study entry.

2.1. Notation, likelihood, estimation. Let X refer to the random variable de-
noting the unobserved time to event for an individual, with associated survival,
density and hazard functions denoted by S(x), f (x) and λ(x), for x ≥ 0, respec-
tively. The time origin is set to 0, corresponding to the baseline visit at which all
subjects enrolled in the study are event-free. In other words, Pr(X > 0) = 1. With-
out loss of generality, we set X = ∞ when the event of interest does not occur.
Let N denote the number of subjects and ni denote the number of visits for the ith
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subject. At each visit, we assume that each subject would self-report their disease
status. For example, in the WHI, information on incident diabetes was collected
at periodically scheduled visits using self-reported questionnaires. For the ith sub-
ject, we let Ri and ti denote the 1 × ni vectors of self-reported, binary outcomes
and corresponding visit times, respectively. In particular, Rij is equal to 1 if the j th
self-report for the ith subject is positive (indicating occurrence of the event of inter-
est such as diabetes) and 0 otherwise. We assume that self-reports are collected at
prescheduled visits up to the time of the first positive self-report, thus, the vectors
of test results (Ri), visit times (ti) and the number of self-reports collected per sub-
ject (ni) are random. Let τ1, . . . , τJ denote the distinct, ordered visit times in the
data set among N subjects, where 0 = τ0 < τ1 < · · · < τJ < τJ+1 = ∞, thus, the
time axis can be divided into J + 1 disjoint intervals, [0, τ1), [τ1, τ2), . . . , [τJ ,∞).

The joint probability of the observed data for the ith subject can be expressed
as

g(Ri , ti , ni) =
J+1∑
j=1

Pr(τj−1 < Xi ≤ τj )Pr(Ri , ti , ni |τj−1 < Xi ≤ τj )

=
J+1∑
j=1

θj Pr(Ri , ti , ni |τj−1 < Xi ≤ τj ),

where θj = Pr(τj−1 < X ≤ τj ), τ0 = 0 and τJ+1 = ∞.
To simplify the form of the expression above, we make the assumption that

given the true time of event Xi , an individual’s ni self-reports are independent.
That is,

Pr(Ri |Xi, ti) =
ni∏

k=1

Pr(rik|Xi, tik).

This assumption implies that the observed values of other self-reported outcomes
do not provide additional information about the distribution of a particular self-
reported outcome from that provided by the actual time of the event.

Based on the derivation in Balasubramanian and Lagakos (2003), it can be
shown that the joint probability of the observed data for the ith subject can be
simplified as

g(Ri , ti , ni) =
J+1∑
j=1

θj

[
ni∏

k=1

Pr(rik|τj−1 < Xi ≤ τj , tk)

]

(2.1)

=
J+1∑
j=1

θjCij ,

where Cij = [∏ni

k=1 Pr(rik|τj−1 < Xi ≤ τj , tk)]. We assume that the probability of
a positive self-report at the kth visit (rik = 1) conditional on the interval containing
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the true event time and visit time can be expressed as

Pr(rik = 1|τj−1 < Xi ≤ τj , tk) =
{

ϕ1, tk ≥ τj ,
1 − ϕ0, tk ≤ τj−1.

Here, ϕ1 and ϕ0 denote the sensitivity and specificity of self-reports, respectively.
Thus, the terms Cij , for j = 1, . . . , J + 1, in equation (2.1) can be expressed as a
product involving the constants ϕ1 and ϕ0. Thus, in the absence of covariates, the
log likelihood for a random sample of N subjects can be expressed as

l(θ) = log
(
L(θ)

) =
N∑

i=1

log

(
J+1∑
j=1

Cij θj

)
.(2.2)

For the special case where self-reports are perfect (ϕ1 = ϕ0 = 1), equation (2.2)
reduces to the nonparametric likelihood for interval censored observations given
in Turnbull (1976).

In most settings, including the WHI, it is of interest to evaluate the association
of a vector of covariates with respect to the time to event of interest. Let Z denote
the P × 1 vector of explanatory variables with the corresponding P × 1 vector of
regression coefficients denoted by β . To incorporate the effect of covariates, we
assume the proportional hazards model, λ(t |Z = z) = λ0(t)e

z′β , or, equivalently,

S(t |Z = z) = S0(t)
ez′β

.
To derive the form of the log-likelihood based on the assumption of the propor-

tional hazards model, we first reparameterize the log likelihood in (2.2) in terms
of the survival function, S = (1 = S1, S2, . . . , SJ+1)

T , where Sj = Pr(X > τj−1).
Since Sj = ∑J+1

l=j θl , the vector of interval probabilities can be expressed as
θ = TrS, where Tr is the (J + 1) × (J + 1) transformation matrix. Let C = [Cij ]
denote the N × (J + 1) matrix of the coefficients, Cij , and let the N × (J + 1)

matrix D be defined as DN×(J+1) = C × Tr . Then, the log-likelihood function for
the one-sample setting in (2.2) can be expressed as

l(S) =
N∑

i=1

log

(
J+1∑
j=1

DijSj

)
,(2.3)

where S1 = 1 and S2, S3, . . . , SJ+1 are the unknown parameters of interest.
Let 1 = S1 > S2 > · · · > SJ+1 denote the baseline survival functions (i.e.,

corresponding to Z = 0), evaluated at the left boundaries of the intervals
[0, τ1), [τ1, τ2), . . . , [τJ ,∞). Then, for subject i, with corresponding covariate

vector zi , S
(i)
j = (Sj )

e
z′
i
β

. Thus, the log-likelihood function for a random sample
of N subjects can be expressed as

l(S,β) =
N∑

i=1

log

(
J+1∑
j=1

Dij (Sj )
e

z′
i
β

)
.(2.4)
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The elements of the D matrix are functions of the observed data including
the visit times and corresponding self-reported results, as well as the constants
ϕ0, ϕ1. Assuming that ϕ0, ϕ1 are known constants, the maximum likelihood es-
timates of the unknown parameters β1, . . . , βP , S2, . . . , SJ+1 can be obtained by
numerical maximization of the log-likelihood function, subject to the constraints
that 1 > S2 > S3 > · · · > SJ+1 > 0. Statistical inference regarding the parameters
of interest (β1, . . . , βP , S2, . . . , SJ+1) can be made by using asymptotic properties
of the maximum likelihood estimators [Cox and Hinkley (1979)]. The estimated
covariance matrix of the maximum likelihood estimates can be obtained by invert-
ing the Hessian matrix. Hypothesis tests regarding the unknown parameters can be
carried out using the likelihood ratio or Wald test.

2.2. Misclassification at study entry. In this section we incorporate the setting
in which a self-report of being event(disease)-free at baseline or study entry is used
as the inclusion criterion. The evaluation of the association between statin use and
risk of incident diabetes in the WHI was based on all women who self-reported to
be diabetes-free at baseline [Culver et al. (2012)]. However, diabetes self-reports
at study entry in the WHI have been found to be less than perfect—the study by
Margolis et al. (2008) found that the negative predictive value of prevalent diabetes
at baseline was approximately 97%, that is, 3% of women who self-reported as
being diabetes-free were, in fact, diabetic. In this situation, the assumption that
S(0) = 1 is invalid.

For the ith subject, let Gi denote the baseline binary self-report, where Gi = 1
denotes a self-report indicating that the event of interest has already occurred and
Gi = 0 denotes otherwise. Similarly, let Bi denote the true event status at baseline.

In other words, Bi = 1 def= Xi ≤ 0 and Bi = 0 def= Xi > 0. Consider a subject who
has a negative self-report at baseline (i.e., Gi = 0) and is thus included in the data
set. As before, let the vector of observed self-reports for the ith subject be denoted
by Ri . Let the negative predictive value of self-reports at baseline be denoted by η,
that is, Pr(Bi = 0|Gi = 0) = η. Then the likelihood function for the ith subject can
be expressed as

Li = Pr(Ri , ti , ni |Gi = 0)

= η Pr(Ri , ti , ni |Bi = 0,Gi = 0)(2.5)

+ (1 − η)Pr(Ri , ti , ni |Bi = 1,Gi = 0).

We assume that subjects who self-report negative (Gi = 0) and are truly neg-
ative for event at baseline (Bi = 0) are a random sample from all subjects
who are true negative at baseline. Then we have Pr(Ri , ti , ni |Bi = 0,Gi = 0) =
Pr(Ri , ti , ni |Bi = 0), which corresponds to the likelihood function derived in

Section 2.1. Thus, Pr(Ri , ti , ni |Bi = 0,Gi = 0) = ∑J+1
j=1 Dij (Sj )

e
z′
i
β

. Moreover,

Pr(Ri , ti , ni |Bi = 1,Gi = 0) = Di1(S1)
e

z′
i
β

.
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The likelihood function for the ith subject has the form

Li(β,S) = η

J+1∑
j=1

Dij (Sj )
e

z′
i
β + (1 − η)Di1(S1)

e
z′
i
β

(2.6)

=
J+1∑
j=1

D′
ij (Sj )

e
z′
i
β

,

where D′
i1 = Di1 and D′

ij = ηDij for j > 1. Thus, the likelihood function incor-
porating baseline misclassification has the same general form as in equation (2.4).
The likelihood function in equation (2.4) can be obtained as a special case when
η = 1 in equation (2.6).

2.3. Time-varying covariates. We consider the situation where covariate val-
ues can change with time and are collected at each visit. Let zij denote the p × 1
vector of covariate values for subject i at time τj . In extending the likelihood func-
tion [equation (2.4)] to handle time-varying covariates, we make the additional
assumption that the values of the covariates zij remain constant during the inter-
val [τj , τj+1). Let �j denote the cumulative hazard function during the period of
[τj , τj+1) for the subjects in the reference group (i.e., Z = 0). Under the model
λzi

(t) = λ0(t)e
βzi , the corresponding cumulative hazard function during the pe-

riod [τj , τj+1) for subject i is equal to �j exp(z′
ijβ). The survival function at τj−1

can then be expressed as

S
(i)
j = exp

(
−

j−2∑
j ′=0

�j ′ exp
(
z′
ij ′β

))
,

where j = 2, . . . , J + 1, where S
(i)
1 = 1. The log-likelihood function can be ex-

pressed as a function of the derived S
(i)
j ,

l(S,β) =
N∑

i=1

log

(
J+1∑
j=1

DijS
(i)
j

)
.

The log-likelihood function can be optimized with respect to the parameters
�0, . . . ,�J−1 and β1, . . . , βP subject to constraints �j ≥ 0. In practice, if a sub-
ject has missing visits or missing covariate values at some visits, one can carry
forward the last observation as one approach to impute missing covariate values.
However, unless the proportion of missing is very small, these ad hoc approaches
toward handling missing data may result in biased estimates of parameters and
their associated standard errors.
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2.4. Unknown sensitivity and specificity. Identifiability of the sensitivity and
specificity parameters is closely tied to the study design and the paradigm used
for determining number and timing of visits (tests). For example, in several epi-
demiological cohorts in which self-reported outcomes of chronic diseases such as
diabetes are collected, data collection on the incidence of the condition ceases fol-
lowing the first positive self-report. In such study designs, it is implicitly assumed
that self-reports following the first positive self-report will be positive with proba-
bility 1, thus, subsequent self-reports are noninformative. In settings that incorpo-
rate an adaptive testing paradigm, the form of the likelihood is shown in equation
(2.4)—while this is a function of the constants ϕ1, ϕ0 that characterize the sensi-
tivity and specificity of self-reports, these parameters cannot be estimated jointly
with the parameters of interest, namely, β1, . . . , βp, S2, . . . , SJ+1. If the sensitiv-
ity and specificity parameters are unknown, an augmented study design in which
a subset of subjects are given a perfect diagnostic test in addition to self-reported
questionnaires could be considered. In these studies, the parameters ϕ1, ϕ0 can be
jointly estimated with the unknown parameters of interest. A similar approach was
proposed by Lyles et al. (2011) for mismeasured outcomes in logistic regression
models.

In other clinical settings, the mismeasured outcome arises from laboratory-
based diagnostic tests characterized by imperfect sensitivity and specificity. When
the testing paradigm involves giving the diagnostic test according to a predeter-
mined testing schedule, the form of the likelihood can be shown to be identical
to that in equation (2.4) [Balasubramanian and Lagakos (2003)]. In this case, it
is possible to observe seemingly inconsistent patterns of test results where one or
more negative test results follow a positive result. Examples include data collected
from DNA PCR assays to detect HIV infection in infants in pediatric HIV clinical
trials. Studies in which subjects are tested according to a predetermined testing
schedule, the sensitivity, specificity parameters (ϕ1, ϕ0) can be jointly estimated
with the unknown parameters of interest [Meier, Richardson and Hughes (2003)].

3. Simulation. In this section we present results from simulation studies to
illustrate the effects of (1) error-prone self-reported outcomes; and (2) misclassifi-
cation at study entry. We present the effects of these factors with regard to the bias
associated with the estimated regression parameter of interest.

3.1. Effects of error-prone self-reported outcomes. We present average results
from 1000 simulated data sets in which 1000 subjects were randomly assigned
to two exposure groups with equal proportion, assuming all subjects were event-
free at baseline (i.e., Xi > 0 for all i). We assumed that there is a single binary
covariate of interest Zi , corresponding to the exposure status of the ith subject.
The associated regression parameter in the likelihood [equation (2.4)] was set to
β = 1. For each subject, self-reported questionnaires were collected at 8 scheduled
visits over a duration of 8 years, each with a random missing probability of 30%.
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TABLE 1
Comparing estimates of the regression parameter β from an “adjusted” analysis that accounts for

the error in self-reported outcomes to an “unadjusted” analysis that incorrectly assumes that
self-reports are perfect

ϕ1 ϕ0 SJ+1 Analysis type Bias (%) Std Err RMSE Coverage (%)

0.75 1.00 0.90 Adjusted 0.3 0.17 0.17 96.8
0.75 1.00 0.90 Unadjusted 0.1 0.17 0.17 97.0

1.00 0.75 0.90 Adjusted −6.7 0.82 0.82 93.8
1.00 0.75 0.90 Unadjusted −90.2 0.07 0.90 0.0

0.61 0.995 0.90 Adjusted 1.4 0.21 0.22 94.9
0.61 0.995 0.90 Unadjusted −16.4 0.17 0.23 82.9

0.75 1.00 0.50 Adjusted 0.1 0.09 0.09 95.1
0.75 1.00 0.50 Unadjusted −1.9 0.09 0.09 93.5

1.00 0.75 0.50 Adjusted 0.2 0.19 0.19 94.4
1.00 0.75 0.50 Unadjusted −59.2 0.07 0.60 0.0

0.61 0.995 0.50 Adjusted 0.5 0.09 0.09 94.2
0.61 0.995 0.50 Unadjusted −6.9 0.08 0.11 86.7

All self-reports following the first positive report were assumed to be positive with
probability 1. The simulation mechanism assumed that the time to the event of
interest X followed an exponential distribution. The hazard rate λ governing the
time to the event of interest in the reference group (Zi = 0) was set to equal 0.0132
or 0.0866, corresponding to a cumulative incidence by study end (1 − SJ+1) of
0.10 or 0.50, respectively. As shown in Table 1, we compare results across several
sets of values for the parameters (ϕ1, ϕ0), corresponding to the sensitivity and
specificity of self-reports.

In Table 1, for each parameter setting, we present estimates of bias, associated
standard error, root mean square error (RMSE) and coverage probability associated
with the estimation of β . Coverage probability was calculated as the proportion of
data sets in which the 95% confidence interval for β contains its true value. We
compare results from two sets of analyses for estimating β: (a) maximizing the
likelihood presented in equation (2.4), assuming that the true values of ϕ1, ϕ0 are
known; and (b) maximizing the likelihood presented in equation (2.4), assuming
that self-reports are perfect (i.e., ϕ1 = ϕ0 = 1). In general, when the true values of
ϕ0, ϕ1 are incorporated into the analysis, the estimates of β are nearly unbiased.
Similarly, the true coverage probability corresponding to a 95% confidence interval
is close to its nominal value. On the other hand, when self-reports are incorrectly
assumed to be perfect, the estimates of β may be significantly biased, especially
in settings where ϕ0 is low. When ϕ0 � 1, early false positive self-reports result
in significant loss of information due to premature cessation of data collection. In
this case, coverage probabilities deviated significantly from 95%. Last, incorporat-
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ing the uncertainty in error-prone self-reports increases the standard error of the
maximum likelihood estimates of β .

We note that while the true event times were simulated based on the exponen-
tial distribution, the proposed methods make no distribution assumptions. Thus,
the performance of the proposed methods does not depend on the underlying dis-
tributions of the event times. When event times were simulated based on a Weibull
distribution, similar results were observed (results available upon request).

3.2. Effects of misclassification at study entry. In this simulation we incorpo-
rate the setting in which an error-prone, self-report of being event(disease)-free at
study entry is used as the inclusion criterion. As before, let η denote the negative
predictive value of the baseline self-report. That is, each subject included in the
study has a probability of 1 − η of having already experienced the event of inter-
est prior to study entry. Each simulated data set included 1000 subjects, of whom
1000 × (1 − η) had already experienced the event of interest prior to entry into
the study (i.e., X < 0). The data were simulated as described in Section 3.1, where
ϕ1 = 0.61 and ϕ0 = 0.995. We compare results for various settings by varying the
cumulative incidence of the event of interest (1 − SJ+1) to equal 0.10 or 0.50, and
by varying the value of η to equal 0.99, 0.96 or 0.93.

Table 2 presents the simulation results, averaged over 1000 data sets. We present
results from an “adjusted” model that properly accounts for misclassification at
baseline based on the likelihood presented in equation (2.6) compared to the model

TABLE 2
Comparing estimates of the regression parameter β from an “adjusted” analysis that incorporates

the possibility of misclassification at baseline to an “unadjusted” analysis that incorrectly
assumes that all subjects are event-free at study entry or that η = 1. We assume that

ϕ1 = 0.61 and ϕ0 = 0.995

SJ+1 η Analysis type Bias (%) Std Err RMSE Coverage (%)

0.90 0.99 Adjusted 2.6 0.22 0.23 95.0
0.90 0.99 Unadjusted −4.5 0.20 0.21 94.1

0.90 0.96 Adjusted 1.2 0.24 0.24 95.8
0.90 0.96 Unadjusted −22.9 0.17 0.29 72.7

0.90 0.93 Adjusted 0.1 0.25 0.25 95.2
0.90 0.93 Unadjusted −36.4 0.15 0.40 36.3

0.50 0.99 Adjusted 0.0 0.09 0.09 95.2
0.50 0.99 Unadjusted −1.5 0.09 0.09 94.1

0.50 0.96 Adjusted 0.1 0.10 0.10 94.2
0.50 0.96 Unadjusted −5.7 0.09 0.11 89.2

0.50 0.93 Adjusted 0.6 0.10 0.10 94.1
0.50 0.93 Unadjusted −9.4 0.09 0.13 80.9
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in equation (2.4) that incorrectly assumes that η = 1 (denoted “unadjusted”). In
both models, the true values of the sensitivity and specificity are assumed. As ex-
pected, the adjusted model is nearly unbiased and has uniformly lower bias when
compared to the unadjusted model. The bias of the unadjusted model increases
with decreasing values of negative predictive value (η), and it is more pronounced
when the cumulative incidence is low (1 − SJ+1 = 0.10). In general, the inclusion
of subjects who have already experienced the event of interest at study entry results
in the exposure groups becoming less distinguishable. Thus, ignoring this issue in
data analysis results in estimates of exposure effects (β) that are biased toward the
null. In contrast, incorporating the effect of baseline misclassification increases the
standard error of β̂ . The effects on the bias and the standard error of β̂ are reflected
in the RMSE values—the adjusted model has smaller RMSE than the unadjusted
model in all settings except when SJ+1 = 0.9 and η = 0.99. The coverage proba-
bility of the adjusted model is approximately 95% in all settings considered in this
study. However, the coverage probability of the unadjusted model decreases with
decreasing negative predictive value (η) due to increased bias.

4. Application: Risk of diabetes mellitus with statin use in the Women’s
Health Initiative.

Background. We analyze data collected on 152,830 women from the Women’s
Health Initiative (WHI) to evaluate the effects of statin use on the risk of incident
diabetes mellitus (DM). Culver et al. (2012) reported an increased risk of incident
DM with baseline statin use (multivariate-adjusted HR, 1.48; 95% CI, 1.38–1.59).
These results were based on Cox proportional hazards models where the time to
event variable was calculated as the interval between enrollment date and the ear-
liest of the following: (1) date of annual medical history update when new diabetes
is self-reported (positive outcome); (2) date of last annual medical update during
which diabetes status can be ascertained (censorship); or (3) date of death (censor-
ship). The methods used in Culver et al. (2012) were based on the assumptions that:
(1) all subjects who self-reported as being diabetes-free at baseline were truly not
diabetic (i.e., η = 1); and (2) the self-reports of incident diabetes at each follow-up
visit were error-free (i.e., ϕ1 = ϕ0 = 1). We compare the results from Culver et al.
(2012) to results based on application of the likelihood-based methods described
in this paper.

Diabetes self-reports. Prevalent diabetes at baseline and incident diabetes
were assessed through self-reported questionnaires in the WHI. At baseline and at
each annual visit, participants were asked whether she has ever received a physi-
cian diagnosis of and/or treatment for diabetes when not pregnant since the time
of the last self-report (visit). Using data from a WHI substudy, estimates of sen-
sitivity, specificity and baseline negative predictive value of self-reported diabetes
outcomes were obtained by comparing self-reported outcomes to fasting glucose
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levels and medication data [Margolis et al. (2008)]. A woman was considered
to be truly diabetic if she had either taken anti-diabetic medication and/or had a
fasting glucose level ≥126 mg/dl. From a representative subset of 5485 women,
with information at baseline on self-reported diabetes, fasting glucose levels and
medication inventory, we estimated that self-reports have a sensitivity of 0.61, the
specificity of 0.995, and a negative predictive value of 0.96 at baseline. These esti-
mated parameter values are used in our analysis. We used the following definitions:
(1) sensitivity: proportion of diabetics with a positive self-report; (2) specificity:
proportion of nondiabetics with a negative self-report; and (3) negative predictive
value: proportion of subjects who were diabetes-free among those with a negative
self-report. In practice, estimating measurement error parameters from validation
studies should proceed with caution as validation studies may differ from their
study populations.

Methods. The analysis data set included 152,830 women out of a total of
161,808 women enrolled in the WHI. Women who self-reported diabetes at base-
line or those who ever took Cerivastatin were excluded. In addition, women with
missing data at baseline on diabetes status or medication inventory were excluded
[Culver et al. (2012)]. The results presented here are based on follow-up until 2010.
The median duration of follow-up was 12.1 years, including 1,688,967 person-
years of total follow-up. During the course of follow-up, 10.4% of women self-
reported being diagnosed with diabetes. Information on statin use was obtained
from medical inventory information, which was available for selected follow-
up years. Information on statin use was available for 152,830, 59,505, 128,507,
55,043 and 12,039 subjects at baseline, years 1, 3, 6 and 9, respectively. Models
included either baseline statin use or statin use as a time-varying covariate—in the
latter case, the most recent medication inventory data available was carried forward
for time points at which current medication use was not collected. In multivariable
models, other covariates included race, smoking status, alcohol intake, age, educa-
tion, WHI study, BMI, recreational physical activity, dietary energy intake, family
history of diabetes and hormone therapy use [Culver et al. (2012)]. We assumed
that self-reports following the first report of incident diabetes are noninformative.
Annual visit times were rounded to the nearest year in order to limit the number of
parameters estimated to describe the baseline survival function (S2, . . . , SJ+1).

Results. Table 3 presents the estimated hazard ratio (95% confidence interval)
for statin use by modeling statin use at baseline or as a time-varying covariate. For
each, we present results from univariable models as well as multivariable models
incorporating potential confounders. In each setting, the results from the methods
proposed in this paper are compared to results from Cox models. In all models, by
incorporating the imperfect sensitivity and specificity of self-reports and the po-
tential misclassification at study entry, the hazard ratio of statin use is consistently
increased when comparing to the corresponding Cox models. Using the proposed
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TABLE 3
Analysis of the effects of statin use on incident diabetes mellitus risk in the WHI

Univariable/ Hazard ratio
Statin variable type Type of analysis multivariable∗ N (95% CI)

Baseline statin Proposed model Univariable 152,830 2.33 (2.12, 2.56)
Baseline statin Proposed model Multivariable 138,338 1.81 (1.65, 1.99)

Baseline statin Cox model Univariable 152,830 1.69 (1.60, 1.78)
Baseline statin Cox model Multivariable 138,338 1.54 (1.46, 1.63)

Time-varying statin Proposed model Univariable 152,830 2.49 (2.31, 2.68)
Time-varying statin Proposed model Multivariable 138,338 1.88 (1.75, 2.02)

Time-varying statin Cox model Univariable 152,830 1.65 (1.59, 1.72)
Time-varying statin Cox model Multivariable 138,338 1.48 (1.42, 1.54)

∗Covariates adjusted include race, smoking status, alcohol intake, age, education, WHI study, BMI,
recreational physical activity, dietary energy intake, family history of diabetes and hormone therapy
use.

methods in equation (2.6), the hazard ratio for baseline statin use from univariate
analysis was 2.33 (95% CI: 2.12–2.56). In the multivariable model, the hazard ratio
of baseline statin use was 1.81 (95% CI: 1.65–1.99), suggesting a relatively strong
confounding effect. When statin use was modeled as a time-varying covariate, the
hazard ratios of statin use from univariate and multivariate models were 2.49 (95%
CI: 2.31–2.68) and 1.88 (95% CI: 1.75–2.02), respectively.

The goodness of fit of the multivariable model incorporating statin use as a time-
varying covariate was assessed in an augmented model that included 2 additional
terms corresponding to the interactions of time periods (in years) (3,6] and (6,16]
with statin use. This model allows the effect of statin use to vary between the time
periods (0,3], (3,6] and (6,16] years. The Wald test p values corresponding to
the interactions of statin use with the time periods (3,6] and (6,16] were 0.89 and
0.11, respectively; these results indicate that the augmented model provided no
improvement in fit when compared to the model without the additional interaction
terms.

To evaluate how the results depend on the choice of parameters such as sensi-
tivity, specificity and baseline negative predictive value of self-reported diabetes,
we performed a sensitivity analysis by varying each of these parameters. Table 4
presents how the estimated hazard ratio of statin use changes with different com-
binations of the parameters. Statin use was modeled as a time-varying covariate
while simultaneously adjusting for potential confounders. We observed that the
estimated hazard ratio of statin use is most sensitive to change in specificity. This
is largely due to the fact that the cumulative incidence of diabetes was low (10.4%),
and thus false positive self-reports due to imperfect specificity have a big influence
on estimated parameters. In general, the hazard ratio of statin use decreases as
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TABLE 4
Statin use versus risk of incident diabetes mellitus in the WHI—sensitivity analysis for varying

sensitivity (ϕ1), specificity (ϕ0) and baseline negative predictive value (η) associated with
diabetes self-reports. All models incorporate statin use as a time-varying covariate and

adjust for potential confounders

Negative predictive Hazard ratio
Sensitivity (ϕ1) Specificity (ϕ0) value (η) (95% CI)

0.50 0.993 0.96 2.11 (1.92, 2.31)
0.50 0.993 0.98 2.10 (1.92, 2.30)

0.50 0.995 0.96 1.93 (1.79, 2.08)
0.50 0.995 0.98 1.93 (1.79, 2.07)

0.50 0.997 0.96 1.76 (1.65, 1.88)
0.50 0.997 0.98 1.77 (1.66, 1.88)

0.61 0.993 0.96 2.05 (1.88, 2.24)
0.61 0.993 0.98 2.06 (1.89, 2.24)

0.61 0.995 0.96 1.88 (1.75, 2.02)
0.61 0.995 0.98 1.89 (1.76, 2.03)

0.61 0.997 0.96 1.73 (1.63, 1.84)
0.61 0.997 0.98 1.74 (1.64, 1.84)

0.70 0.993 0.96 2.02 (1.85, 2.20)
0.70 0.993 0.98 2.03 (1.86, 2.21)

0.70 0.995 0.96 1.86 (1.73, 2.00)
0.70 0.995 0.98 1.87 (1.74, 2.00)

0.70 0.997 0.96 1.71 (1.61, 1.82)
0.70 0.997 0.98 1.72 (1.62, 1.82)

specificity increases. Changes in sensitivity and negative predictive value at base-
line have modest effects on the resulting model fit.

The models presented here can be implemented using our freely available R
software package icensmis [Gu and Balasubramanian (2013)] as described in the
supplemental material [Gu, Ma and Balasubramanian (2015)].

5. Discussion. Due to cost considerations, the use of self-reported outcomes
is common to diagnose prevalent and incident disease in large-scale epidemiologic
investigations. In this paper we present a likelihood-based framework to model
the association of a time-varying covariate with a time to event outcome, that is
observed through periodically collected, error-prone, self-reported data. We incor-
porate the possibility of erroneous inclusion of subjects who have already experi-
enced the event of interest prior to study entry as a result of the use of self-reported
outcomes at baseline in determining the study population. R code for implement-
ing the models proposed here are presented in the supplemental material [Gu, Ma
and Balasubramanian (2015)].
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We presented results from simulation studies to assess the impact of ignoring
error in self-reported outcomes—in all cases considered, the use of statistical mod-
els that correctly accommodate the error inherent in self-reports resulted in nearly
unbiased estimates of the regression parameter of interest. The largest bias as a
result of ignoring error in self-reported outcomes was found in settings where the
cumulative incidence was low and specificity was less than perfect. Models that
correctly accommodate error in self-reports also resulted in increased variance of
the estimated regression parameters. However, in most settings, the RMSE values
that combine the impact of bias and variance of the estimated regression parame-
ter favored the use of methods that appropriately account for error in self-reported
outcomes.

The methods proposed in this paper were applied to prospective data from
152,830 women enrolled in the WHI to evaluate the effect of statin use and risk
of incident diabetes. By accounting for the imperfect sensitivity, specificity and
negative predictive value at baseline for diabetes self-reports, we observed that the
hazard ratio for statin use was significantly larger than that estimated in naive anal-
yses that ignored the error in self-reported outcomes. In particular, the hazard ratio
of statin use in a multivariable model adjusted for potential confounders was 1.88
(95% CI: 1.75–2.02) as compared to the multivariable hazard ratio estimate from
Cox model 1.48 (95% CI: 1.42–1.54).

In the methods developed here, we assumed that the sensitivity and specificity
of self-reported outcomes are invariant with respect to time since entry and inde-
pendent of covariates. In many real-world settings, this assumption may result in
over-simplified models, particularly in applications in which visits are unequally
spaced. In addition, the methods developed here assumed that the parameters gov-
erning the characteristics of self-reported outcomes are known. However, in many
cases these are estimated values—in this context, it would be useful to extend the
methods proposed here to consider study designs including validation subsets that
would allow joint estimation of the sensitivity and specificity of self-reported out-
comes together with the other parameters of interest.

Acknowledgments. We are grateful to the Editors and referees for their help-
ful comments.

SUPPLEMENTARY MATERIAL

Tutorial for using the R package icensmis (DOI: 10.1214/15-AOAS810SUPP;
.pdf). We present a short tutorial using the R package icensmis to perform the anal-
ysis described in this paper.
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