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Abstract: We consider a Gaussian sequence space model Xλ = fλ + ξλ,

where the noise variables (ξλ)λ are independent, but with heterogeneous
variances (σ2

λ
)λ. Our goal is to estimate the unknown signal vector (fλ) by

a model selection approach. We focus on the situation where the non-zero
entries fλ are sparse. Then the heterogenous case is much more involved
than the homogeneous model where σ2

λ
= σ2 is constant. Indeed, we can no

longer profit from symmetry inside the stochastic process that one needs to
control. The problem and the penalty do not only depend on the number
of coefficients that one selects, but also on their position. This appears also
in the minimax bounds where the worst coefficients will go to the larger
variances. With a careful and explicit choice of the penalty, however, we are
able to select the correct coefficients and get a sharp non-asymptotic control
of the risk of our procedure. Some finite sample results from simulations
are provided.
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1. Introduction

1.1. Motivation and main results

We consider the following sequence space model

Xλ = fλ + ξλ, λ ∈ Λ, (1.1)

where (fλ) are the real-valued coefficients of a signal and the noise variables
(ξλ) ∼ N (0,Σ) have a diagonal covariance matrix Σ = diag(σ2

λ). Here Λ is
a finite, but large index set. This heterogeneous model may appear in several
frameworks where the variance is fluctuating, for example in heterogeneous re-
gression, coloured noise, fractional Brownian motion models or especially in
statistical inverse problems. For the latter setting the general literature is quite
exhaustive, e.g. Johnstone and Silverman (1997); Abramovich and Silverman
(1998); Cavalier et al. (2002); Cavalier (2004); Cavalier and Raimondo (2007);
Cohen et al. (2004); Cavalier (2011); Donoho (1995); Hoffmann and Reiß (2008);
Johnstone and Paul (2013); Rochet (2013), but mostly focusses on specific ques-
tions like universal thresholding, asymptotic minimax rates or level-wise thresh-
olding. The goal here is to estimate the unknown parameter vector (fλ) from the
observations (Xλ) under general and unknown sparsity constraints. To this end
a penalised empirical risk criterion, based on the so-called risk hull approach, is
proposed for general families of possibly data-driven selection rules. This can be
viewed as a (data-dependent) model selection procedure and results in a sparse
oracle-type inequality.

Model selection is a core problem in statistics. One of the main reference
in the field dates back to the information criterion AIC by Akaike (1973), but
there is a huge amount of more recent work on this subject, in particular a
precise analysis for high-dimensional and sparse data, see e.g. Birgé and Massart
(2001); Golubev (2002); Abramovich et al. (2006); Massart (2007); Golubev
(2011); Rochet (2013); Wu and Zhou (2013). Model selection is usually linked
to the choice of a penalty and its precise choice is the main difficulty in model
selection both from a theoretical and a practical perspective. Moreover, there
is a close relationship between model selection and the popular thresholding
procedures, where coefficients below a certain noise-related level are suppressed,
cf. Golubev (2002); Abramovich et al. (2006); Massart (2007). The idea is that
the search for a “good penalty” in model selection is indeed very much related
to the choice of a “good threshold” in wavelet procedures. There exists also
a fascinating connection between the false discovery rate control (FDR) and
both thresholding and model selection, as studied in Abramovich et al. (2006);
Benjamini and Hochberg (1995), which will become apparent in the second part
of our paper. Our main structural assumption is that the parameter vector (fλ)
of interest is sparse, while we do neither know the position nor the number of
non-zero entries. Sparsity is one of the leading paradigms nowadays and signals
with a sparse representation in some basis (for example wavelets) or functions
with sparse coefficients appear in many scientific fields, compare the discussions
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in Abramovich et al. (2006); Golubev (2002, 2011); Wu and Zhou (2013) among
many others.

In this paper, we consider the sequence space model with heterogeneous er-
rors. Our goal is then to select among a family of models the best possible one,
by use of a data-driven selection rule. In particular, one has to deal with the
special heterogeneous nature of the observations, which must be reflected by
the choice of the penalty. The heterogenous case is much more involved than
the direct (homogeneous) model. Indeed, there is no more symmetry inside the
stochastic process that one needs to control, since each empirical coefficient has
its own variance. The problem and the penalty do not only depend on the num-
ber of coefficients that one selects, but also on their position. The penalty is in
this sense non-local. We treat the case of general families of data-driven selec-
tion rules first and then specify to the full subset selection procedures and the
computationally much easier thresholding rules via an FDR-type control. Using
our model selection approach, the procedures are almost exact minimax (up to
a factor 2). Moreover, the procedure is fully adaptive. Indeed, the sparsity in-
dex γn is unknown and we obtain an explicit penalty, valid in the mathematical
proofs and directly applicable in simulations.

The heterogeneity also appears in the minimax lower bounds where the co-
efficients in the least favourable model will go to the larger variances. In the
case of known sparsity γn, we consider also a non-adaptive threshold estimator
and derive its minimax upper bound. This estimator exactly attains the lower
bound for typical specifications of the noise levels (σ2

λ) and is then minimax.

The paper is organized as follows. In the following subsection we give ex-
amples of problems where our heterogeneous model appears. Section 2 specifies
our method and a provides a general oracle-type inequality for general families
of selection rules. In Section 3 we consider the sparsity assumptions and obtain
concrete results for the full subset selection and thresholding procedures. Sec-
tion 4 presents the results on minimax lower and upper bounds. In Section 5
we present numerical results that document the finite-sample properties of the
methods and we discuss implementation issues. All proofs are deferred to Sec-
tion 6.

1.2. Examples

Heterogeneous regression

Consider first a model of heterogeneous regression

Yi = f(xi) + σ(xi)εi, i = 1, . . . , n,

where εi are i.i.d. standard Gaussian, but their variance are fluctuating depend-
ing on the design points xi and f is some spiky unknown function. In this model
Λ = {1, . . . , n}. By spiky function we mean that f(xi) is close to zero apart from
a small subset of all design points xi. These signals are frequently encountered in
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applications (though rarely modeled in theoretical statistics), e.g. when measur-
ing absorption spectra in physical chemistry (i.e. rare well-localised and strong
signals) or jumps in log returns of asset prices (i.e. log-price increments which
fluctuate at low levels except when larger shocks occur).

Coloured noise

Often in applications coloured noise models are adequate. Let us consider here
the problem of estimating an unknown function observed with a noise defined
by some fractional Brownian motion,

dY (t) = f(t)dt+ εdW−α(t), t ∈ [0, 1], (1.2)

where f is an unknown 1−periodic function in L2(0, 1),
∫ 1

0 f(t)dt=0, ε is the
noise level and W−α is a fractional Brownian motion of index α (e.g., see Sowell
(1990)). The fractional Brownian motion appears in econometric applications
to model the long-memory phenomena, e.g. in Comte and Renault (1996). We
are not interested in the fractional Brownian motion itself, but we want to
estimate the unknown function f based on the noisy data Y (t), as in Cavalier
(2004); Johnstone (2011); Wang (1996). The model (1.2) is close to the standard
Gaussian white noise model, which corresponds to the case α = 0. Here, the
behaviour of the noise is different. Let us point out the potential use of our
approach here.

An important tool is fractional integration. In this framework, if the function
f is supposed to be 1−periodic, then the natural way is to consider the periodic
version of fractional integration (given in (1.3)) such that

d−αf(x) =

∫ x

−∞

(x− t)α−1

Γ(α)
f(t)dt, (1.3)

and thus (see p.135 in Zygmund (1959)),

d−αe2πikx =
e2πikx

(2πik)α
. (1.4)

By integration and projection on the cosine (or sine) basis and using (1.4),
one obtains the sequence space model (as in Cavalier (2004)),

Xλ = fλ + ξλ, λ ∈ Λ = N,

where {ξλ} are independent with (ξλ)λ ∼ N (0,Σ), where Σ = diag(σ2
λ) and

σ2
λ = ε2(2πλ)2α.

Inverse problems

Consider the following framework of a general inverse problem

Y = Af + ε Ẇ ,
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where A is a known injective compact linear bounded operator, f an unknown d-
dimensional function, Ẇ is a Gaussian white noise and ε > 0 the noise level. We
will use here the framework of Singular Values Decomposition (SVD), see e.g.
Cavalier (2011). Denote by ϕλ the eigenfunctions of the operator A∗A associated
with the strictly positive eigenvalues b2λ > 0. Remark that any function f may
be decomposed in this orthonormal basis as f =

∑

λ∈Λ fλϕλ, where λ ∈ Λ.

Let {ψλ}λ∈Λ be the normalized image basis ψλ = b−1
λ Aϕλ. By projection and

division by the singular values, we may obtain the empirical coefficients

b−1
λ 〈Y, ψλ〉 = b−1

λ 〈Af, b−1
λ Aϕλ〉+ b−1

λ 〈εẆ , ψλ〉 = 〈f, ψλ〉+ b−1
λ 〈εẆ , ψλ〉.

We then obtain a model in the sequence space (see Cavalier et al. (2002))

Xλ = fλ + ξλ, λ ∈ Λ,

with (ξλ)λ ∼ N (0,Σ) and Σ = diag(ε2b−2
λ ).

2. Data-driven-subset selection

We consider the sequence space model (1.1) for coefficients of an unknown L2-
function f with respect to an orthornormal system (ψλ). The estimator over an
arbitrary large, but finite index set Λ is then defined by

f̂(h) =
∑

λ∈Λ

f̂λ(h)ψλ with f̂λ(h) := hλXλ,

where h = (hλ)λ ∈ {0, 1}Λ. The empirical version of f is defined as

f̃ =
∑

λ∈Λ

Xλψλ.

We write |h| = #{hλ = 1} and n = #Λ for the cardinality of Λ. By ‖A‖ we
denote the operator norm, i.e. the largest absolute eigenvalue.

The random elements (Xλ)λ take values in the sample space X = R
Λ. We now

consider an arbitrary family H ⊆ H0 := {h : X → {0, 1}Λ} of Borel-measurable
data-driven subset selection rules. Define an estimator by minimizing in the
family H the penalized empirical risk:

h⋆ = argmin
h∈H

{

‖f̂(h)− f̃‖2 + 2Pen(h)
}

. (2.1)

Remark that h⋆ is defined in an equivalent way by

h⋆ = argmin
h∈H

R̄pen(X,h),

where
R̄pen(X,h) = −

∑

λ∈Λ

hλX
2
λ + 2Pen(h).
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Then, define the data-driven estimator

f⋆ =
∑

λ∈Λ

h⋆λXλψλ. (2.2)

In order to find an explicit and adequate penalty, we follow Cavalier and
Golubev (2006) and apply the concept of a risk hull ℓ(f, h). The function ℓ
provides an upper bound for the stochastic error in estimating f uniformly over
possibly random selction rules h. Although it may thus still be stochastic, it is
much easier to work with since it does no longer depend on (Xλ) directly. The
following penalty function turns out to be natural:

Pen(h) = 2

|h|
∑

j=1

σ2
(j)h

(log(ne/j) + j−1 log+(n‖Σ‖)), (2.3)

where σ2
(j)h

denotes the j-th largest value among {hλσ2
λ} and log+(z) =

max(log z, 0). In general the second summand is of lower order and mainly pro-
vides non-asymptotic control. Note further that in the homogeneous case σλ = σ

the close approximation
∑|h|

j=1 log(ne/j) ≈ |h| log(ne/|h|) shows that the typi-

cal 2σ2k log(n/k)-form of the penalty for the sparsity index k is recovered, see
Abramovich et al. (2006) for a survey of different results in this direction.

The next lemma shows that the penalty indeed provides a risk hull. The proof
is based on bounding the tails of the corresponding order statistics and on worst-
case permutations of the entries. We are not going to dwell on measurability
issues there, taking outer expectations if necessary, which is easily justified by
the arguments.

2.1 Lemma. The function

ℓ(f, h) =
∑

λ∈Λ

(1− hλ)f
2
λ + Pen(h) +

√
2min

(

1
n , ‖Σ‖

)

, (2.4)

with the penalty from (2.3) is a risk hull, i.e. we have

E sup
h∈H0

(

‖f̂(h)− f‖2 − ℓ(f, h)
)

6 0. (2.5)

Based on this lemma we are able to derive a general oracle inequality for data-
driven subset selection, which form the first fundamental result of the paper.

2.2 Theorem. Let h⋆ be the data-driven rule defined in (2.1). For any δ ∈
(0, 1), we have

Ef ‖f̂(h⋆)− f‖2

6 (1 + δ)Ef

[

inf
h∈H

(

∑

λ∈Λ

(1− hλ)f
2
λ −

∑

λ∈Λ

hλ(X
2
λ − f2

λ) + 2Pen(h)
)

]

+Ωδ,

where

Ωδ := 4
√
2min

(

1
n , ‖Σ‖

)

+
2

δ

∑

λ∈Λ

min(f2
λ , σ

2
λ).
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3. Sparse representations

Let us consider the intuitive version of sparsity by assuming a small proportion
of nonzero coefficients, in the spirit of Abramovich et al. (2006), i.e. the family

F0(γn) :=
{

f :
∑

λ∈Λ

1(fλ 6= 0) 6 nγn

}

where γn denotes the maximal proportion of nonzero coefficients.
Throughout, we assume that this proportion γn is such that asymptotically

γn → 0 and nγn → ∞.

We first derive the results for the interesting cases of full subset selection and
adaptive thresholding before discussing their relevance and comparing them
with the literature.

Full subset selection

The goal here is to study the accuracy of the full model selection over the whole
family of estimators, which offers 2n possibilities to select a sub-model. Each
coefficient may be chosen to be inside or outside the model. Let us consider the
case where H denotes all deterministic subset selections,

H =
{

h : X → {0, 1}Λ |h(x) = 1Λ′ , Λ′ ⊆ Λ
}

. (3.1)

We strive for an oracle inequality that involves only the noise levels of the truly
active coordinates, i.e. involving hf := 1(fλ 6= 0)λ∈Λ. To this end, write Σh for
the covariance matrix of the ξλ restricted to the indices λ for which hλ = 1, i.e.

Σh = diag(σ2
λ)λ∈Λ(h)

with Λ(h) = {λ : hλ = 1}.
3.1 Theorem. Let h⋆ be the data-driven rule defined in (2.1) with H as in
(3.1). We have, for n→ ∞, uniformly over f ∈ F0(γn),

Ef ‖f̂(h⋆)− f‖2 6 (4 + o(1))‖Σhf ‖
(

nγn log(γ
−1
n ) + log(nγn) log+(n‖Σ‖)

)

+ 4
√
2min

(

1
n , ‖Σ‖

)

. (3.2)

In particular, if log+(‖Σ‖) = O(log n) (i.e., any polynomial growth for ‖Σ‖
is admissible) and

‖Σ
hf ‖

‖Σ‖ max(n‖Σ‖, 1)nγn log(γ−1
n ) → ∞, then we obtain

Ef ‖f̂(h⋆)− f‖2 6 (4 + o(1))‖Σhf ‖nγn log(γ−1
n ). (3.3)

In Section 5 we shall propose a greedy algorithm to find approximately the
full subset selection rule. As the results there indicate, however, the statistical
properties of the full subset selection rule are not so impressive that a profound
study of algorithmic ways to overcome the complexity bound O(2n) seems nec-
essary. In fact, adaptive thresholding not only in practice, but also theoretically
offers a simple and quite successful way to perform sparse model selection.
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Threshold estimators

Consider now a family of adaptive threshold estimators. The problem is to
study the data-driven selection of the threshold. Let us consider the case where
H denotes the threshold selection rules with arbitrary threshold values t > 0:

H =
{

h((Xλ)λ) = 1(λ : |Xλ| > σλt) | t > 0
}

. (3.4)

Note that H consists of n = #Λ different subset selection rules only and can be
implemented efficiently using the order statistics of (|Xλ|/σλ)λ.
3.2 Theorem. Let h⋆ be the data-driven rules defined in (2.1) with H as in
(3.4). If ‖Σhf

‖ log(γ−1
n ) → ∞, then we have, for n → ∞, uniformly over f ∈

F0(γn)

Ef ‖f̂(h⋆)− f‖2 6
(

4nγn(‖Σhf
‖ log(γ−1

n ) + 8‖Σ‖γn(log(γ−1
n ))1/2)

+ 2 log+(n‖Σ‖)(2‖Σhf
‖ log(nγn) + 4‖Σ‖ log+(nγ2n))

)

(1 + o(1)). (3.5)

Assuming for Σ the growth bounds

‖Σ‖ = O(‖Σhf
‖γ−1

n ) and ‖Σ‖ log+(n‖Σ‖) = o(‖Σhf
‖nγn log(γ−1

n )/ log+(nγ
2
n)),

with the second condition always verified if log+(nγ
2
n) = 0, this inequality sim-

plifies to
Ef ‖f̂(h⋆)− f‖2 6 (4 + o(1))‖Σhf ‖nγn log(γ−1

n ).

Discussion

Heterogeneous case. One may compare the method and its accuracy with other
results in related frameworks. For example, Rochet (2013) considers a very close
framework of model selection in inverse problems by using the SVD approach.
This results in a noise (ξλ) which is heterogeneous and diagonal. Johnstone
(2011); Johnstone and Paul (2013) study the related topic of inverse problems
and Wavelet Vaguelette Decomposition (WVD), built on Birgé and Massart
(2001). The framework in Johnstone (2011) is more general than ours. However,
this leads to less precise results. In all their results Johnstone and Paul (2013);
Rochet (2013) use universal constants which are not really controlled. This is
even more important for the constants inside the method, for example in the
penalty. Our method contains an explicit penalty. It is used in the mathematical
results and also in simulations without additional tuning. A possible extension
of our method to the dependent WVD case does not seem straight-forward.

Homogeneous case. Let us compare with other work for the homogeneous setting
Σ = σ2Id. There exist a lot of results in this framework, see e.g. Abramovich et
al. (2006); Johnstone (2011); Massart (2007); Wu and Zhou (2013). Again those
results contain universal constants, not only in the mathematical results, but
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even inside the methods. For example, constants in front of the penalty, but also
inside the FDR technique, with an hyper-parameter qn which has to be tuned.

The perhaps closest paper to our work is Golubev (2011) in the homogeneous
case. Our penalty is analogous to “twice the optimal” penalty considered in
Golubev (2011). This is due to difficulties in the heterogenous case, where the
stochastic process that one needs to control is much more involved in this setting.
Indeed, there is no more symmetry inside this stochastic process, since each
empirical coefficient has its own variance. The problem and the penalty do not
only depend on the number of coefficients that one selects, but also on their
position. It is not obvious how the theory of ordered processes, the main tool in
the homogeneous case, extends to the heterogeneous setting.

This leads to our main risk term 4‖Σ‖nγn log(γ−1
n ), while the risk

2σ2nγn log(γ
−1
n ) is obtained in Golubev (2011). The potential loss of the fac-

tor 2 in the heterogeneous framework is possibly avoidable in theory, but in
simulations the results seem comparably less sensitive to this factor than to
other modifications, e.g. to how many data points, among the nγn non-zero
coefficients, are close to the critical threshold level, which defines some kind
of effective sparsity of the problem (often much less than nγn). This effect is
not treated in the theoretical setup in most of the FDR-related studies, where
implicitly a worst case scenario of the coefficients’ magnitude is understood.

4. Minimax bounds

Lower bound

First we present a lower bound in the minimax sense over F0(γn). The proof is
achieved by exhibiting a least favourable Bayesian prior on the signal coefficients.
This reveals the statistical complexity of the model selection problem.

4.1 Theorem. For any estimator f̂n based on n observations we have the min-
imax lower bound

sup
f∈F0(γn)

Ef [‖f̂n − f‖2] > sup
αn∈SΛ(nγn,cn)

2
(

1 + o(1)
)

(

∑

λ∈Λ

σ2
λαλ,n log(α

−1
λ,n)

)

for some cn → 0 where SΛ(R, c) = {α ∈ [0, c]Λ | ∑λ αλ 6 R(1 − c)} denotes
the intersection of c-times the n-dimensional unit cube with R(1− c)-times the
n-simplex and where o(1) → 0 as n→ ∞.

The introduction of the sequence (cn) is used to have a uniform control of
the coefficients and to make deviations from expectations sufficiently small. In
specific cases the expression remains asymptotically the same when the supre-
mum is taken over all sequences (αλ) with αλ ∈ [0, 1] and

∑

λ αλ 6 nγn. A
more concrete lower bound is given in the following corollary.
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4.2 Corollary. Distributing mass uniformly over the rn indices with largest
values σλ in Theorem 4.1 yields the lower bound, as n→ ∞,

sup
f∈F0(γn)

Ef [‖f̂n − f‖2] > 2nγn log(γ
−1
n )
(

1 + o(1)
) 1

rn

rn
∑

i=1

σ2
(i)

in terms of the inverse order statistics σ2
(i), provided log(n/rn) = o(log(γ−1

n ))

(i.e., rn must be somewhat larger than nγn).
For polynomial growth σ2

(i) ∼ (n − i)β, β > 0, the lower bound simplifies to,
as n→ ∞,

sup
f∈F0(γn)

Ef [‖f̂n − f‖2] > 2
(

1 + o(1)
)

‖Σ‖nγn log(γ−1
n ).

Remark that the lower bound is a kind of weighted entropy. In contrast to
the upper bounds above the minimax (and the Bayes) lower bound does not
involve the quantity ‖Σhf

‖, individual to each unknown f . In the proof for
this heterogeneous model, conceptually we need to allow for a high complexity
of the class F0(γn), leading to the entropy factor log(γ−1

n ), and to put more
prior probability on coefficients with larger variance, which explains the abstract
weighted entropy expression.

Upper bound

Consider now the setting where the sparsity γn is known and a correctly tuned
threshold estimator is applied in order to identify the unknown positions of
the significant non-zero coefficients fλ. This leads to the following non-adaptive
minimax upper bound.

4.3 Theorem. Consider the threshold estimator defined coordinate-wise by

f̂λ = Xλ1{X2

λ
>2σ2

λ
log(α−1

λ,n
)} with αλ,n := e−βn/σ

2

λ

and βn > 0 chosen such that
∑

λ∈Λ αλ,n = nγn. Then, as n→ ∞,

sup
f∈F0(γn)

Ef [‖f̂n − f‖2] 6 2nγnβn(1 + o(1))

holds. This implies that, as n→ ∞,

sup
f∈F0(γn)

Ef [‖f̂n − f‖2] 6 2nγn log(γ
−1
n )‖Σ‖(1 + o(1)),

which is minimax optimal for at most polynomial growth in (σ2
λ) by the lower

bound in Corollary 4.2.

Let us mention that for faster growth than polynomial, we might well have
βn = log(γ−1

n )o(‖Σ‖). So, in general the upper bound matches exactly the lower
bound with respect to the term 2nγn log(γ

−1
n ), while the influence of the het-

erogeneous noise depends on the specific case. This procedure, however, is non-
adaptive since the threshold relies on the knowledge of the sparsity γn.
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Fig 1. Coefficients (fλ) (blue), observations (Xλ) (green circle in full subset, green cir-
cle/yellow box in adaptive threshold, magenta open circle not taken) and universal/minimax
thresholds as black lines (parameter values: n = 200, γn = 0.25, σλ = 0.01λ for λ = 1 . . . n).

5. A numerical example

In Figure 1 a typical realisation of the coefficients fλ is shown in blue with
50 non-zero coefficients chosen uniformly on [−6, 6] and increasing noise level
σλ = 0.01λ for every λ = 1, . . . , 200. The inner black diagonal lines indicate the
minimax threshold (with oracle value of γn) and the outer diagonal lines the
universal threshold. For each λ the non-blue points depict noisy observationsXλ,
obtained by adding N(0, σ2

λ) noise to the blue point fλ. Observations included
in the adaptive full subset selection estimator are coloured green, while those
included for the adaptive threshold estimator are the union of green and yellow
points (in fact, for this sample the adaptive thresholding selects all full subset
selected points), the discarded observations are in magenta.

We have run 1000 Monte Carlo experiments for the parameters n = 200,
σλ = 0.01λ in the sparse (γn = 0.05) and dense (γn = 0.25) case. In Figure 2 the
first 100 relative errors are plotted for the different estimation procedures in the
dense case, which offers more detailed sample information than mere boxplots.
The errors are taken as a quotient with the sample-wise oracle threshold value
applied to the renormalised Xλ/σλ. Therefore only the full subset selection can
sometimes have relative errors less than one. Table 1 lists the relative Monte
Carlo errors for the two cases. The last column reports the relative error of the
oracle procedure with hλ = 1(fλ 6= 0) that discards all observations Xλ with
fλ = 0 (not noticing the model selection complexity).

The simulation results are quite stable for variations of the setup. Altogether
the thresholding works globally well. The (approximate) full subset selection
procedure (see below for the greedy algorithm used) is slightly worse and exhibits
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Fig 2. First 100 Monte Carlo relative errors as in Table 1: adaptive (blue), universal (ma-
genta) and minimax (yellow) thresholding, full subset selection (green).

Table 1

Relative errors from 1000 Monte Carlo simulations as in Figure 1

γn Adaptive Thr. Universal Thr. Sparse Thr. Full Subset Known Model

0.05 1.81 1.80 2.26 1.86 0.55
0.25 1.22 1.62 1.39 1.33 0.53

a higher variability, but is still pretty good. By construction, in the dense case the
oracle minimax threshold works better than the universal threshold, while the
universal threshold works better in very sparse situations. The reason why the
minimax threshold even with a theoretical oracle choice of γn does not work so
well is that the entire theoretical analysis is based upon potentially most difficult
signal-to-noise ratios, that is coefficients fλ of the size of the threshold or the
noise level. Here, however, the effective sparsity is larger (i.e., effective γn is
smaller) because the uniformly generated non-zero coefficients can be relatively
small especially at indices with high noise level, see also Figure 1.

Let us briefly describe how the adaptive full subset selection procedure has
been implemented. The formula (2.3) attributes to each selected coefficient Xλ

the individual penalty phλ = 2σ2
λ(log(ne/rλ(h)) + log+(n‖Σ‖)/rλ(h) with the

inverse rank rλ(h) of (hλσ
2
λ)λ (e.g., rλ(h) = 1 if hλσ

2
λ = maxλ′ hλ′σ2

λ′). Due to
phλ 6 2σ2

λ(log(ne) + log+(n‖Σ‖)) all coefficients with

X2
λ/σ

2
λ > 4(log(ne) + log+(n‖Σ‖))

are included into h∗1 in an initial step. Then, iteratively h∗i is extended to h∗i+1
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by including all coefficients with

X2
λ/σ

2
λ > 4(log(ne/rλ(h

∗
i )) + log+(n‖Σ‖)/rλ(h∗i )).

The iteration stops when no further coefficients can be included. The estimator
h∗I at this stage definitely contains all coefficients also taken by h∗. In a sec-
ond iteration we now add in a more greedy way coefficients that will decrease
the total penalized empirical risk. Including a new coefficient Xλ0

, adds to the
penalized empirical risk the (positive or negative) value

−X2
λ0

+ 4σ2
λ0
(log(ne/rλ0

(h∗I)) + log+(n‖Σ‖))/rλ0
(h∗I)

− 4
∑

λ:σλ<σλ0

(h∗I)λσ
2
λ(log(1 + 1/rλ(h

∗
I)) + log+(n‖Σ‖)/(rλ(h∗I)(rλ(h∗I) + 1))).

Here, rλ0
(h∗I) is to be understood as the rank at λ0 when setting (h∗I)λ0

=
1. Consequently, the second iteration extends h∗I each time by one coefficient
Xλ0

for which the displayed formula gives a negative value until no further
reduction of the total penalized empirical risk is obtainable. This second greedy
optimisation does not necessarily yield the optimal full subset selection solution,
but most often in practice it yields a coefficient selection h∗ with a significantly
smaller penalized empirical risk than the adaptive threshold procedure. The
numerical complexity of the algorithm is of order O(n2) due to the second
iteration in contrast to the exponential order O(2n) when scanning all possible
subsets. A more refined analysis of our procedure would be interesting, but might
have minor statistical impact in view of the good results for the straight-forward
adaptive thresholding scheme.

6. Proofs

6.1. Proof of Lemma 2.1

Recall n = #Λ and introduce the stochastic term

η(h) =
∑

λ∈Λ

hλξ
2
λ. (6.1)

Remark that ‖f̂(h)− f‖2 =
∑

λ∈Λ(1− hλ)f
2
λ + η(h) such that

E sup
h∈H0

(

‖f̂(h)− f‖2 −
∑

λ∈Λ

(1− hλ)f
2
λ − Pen(h)−

√
2min

(

1
n , ‖Σ‖

)

)

6 0

(6.2)
follows from

E sup
h∈H0

(η(h)− Pen(h)) 6
√
2min

(

1
n , ‖Σ‖

)

. (6.3)
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Let us write ζλ = σ−1
λ ξλ ∼ N (0, 1) and let rλ(h) denote the inverse rank of

hλσ
2
λ in (hλ′σ2

λ′)λ′ (e.g., rλ(h) = 1 if hλσ
2
λ = maxλ′ hλ′σ2

λ′) such that

η(h)− Pen(h) =
∑

λ∈Λ

hλσ
2
λ

(

ζ2λ − 2
(

log
( ne

rλ(h)

)

+ rλ(h)
−1 log+(n‖Σ‖)

))

.

Note that for any enumeration (λj)j=1,...,k of {λ |hλ = 1} by monotonicity:

∑

λ∈Λ

hλσ
2
λ

(

log(ne/rλ(h)) + rλ(h)
−1 log+(n‖Σ‖)

)

>

k
∑

j=1

σ2
λj

(

log(ne/j) + j−1 log+(n‖Σ‖)
)

holds. We therefore obtain with the inverse order statistics (σ2
(i)) and (ζ2(i)) (i.e.

σ2
(1) > σ2

(2) > · · · etc.) of (σ2
λ)λ∈Λ and (ζ2λ)λ∈Λ, respectively,

E
[

sup
h∈H0

(η(h)− Pen(h))+

]

6 E
[

n
∑

j=1

σ2
(j)

(

ζ2(j) − 2(log(ne/j) + j−1 log+(n‖Σ‖))
)

+

]

.

It remains to evaluate E[(ζ2(j)−2(log(ne/j)+ j−1 log+(n‖Σ‖)))+]. We obtain by

independence, log(
(

n
k

)

) 6 k log(ne/k) and by the Mill ratio inequality P (ζλ >

t) 6 t−1e−t2/2

P (ζ2(j) > κ) = P (∃i1, . . . , ij∀l ∈ {1, . . . , j} : ζ2il > κ)

6

(

n

j

)

P (ζ2λ > κ)j 6 κ−1/2 exp(j log(ne/j)− jκ/2).

This implies for any p > 0

E[(ζ2(j) − p)+] =

∫ ∞

p

P (ζ2(j) > κ) dκ 6 2j−1p−j/2 exp(j log(ne/j)− jp/2).

We conclude

E
[

n
∑

j=1

σ2
(j)

(

ζ2(j) − 2(log(ne/j) + j−1 log+(n‖Σ‖))
)

+

]

6 2‖Σ‖
n
∑

j=1

j−1(2 log(ne/j))−j/2 exp(− log+(n‖Σ‖))

6 min
(

1
n , ‖Σ‖

)

sup
n

2

n
∑

j=1

j−1(2 log(ne/j))−j/2 6
√
2min

(

1
n , ‖Σ‖

)

,

where σ2
(j) 6 ‖Σ‖ and the supremum is attained at n = 1 with value

√
2.
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6.2. Proof of Theorem 2.2

In view of Lemma 2.1,

ℓ(f, h) =
∑

λ∈Λ

(1− hλ)f
2
λ + Pen(h) +

√
2min

(

1
n , ‖Σ‖

)

(6.4)

is a risk hull, and therefore we have

Ef‖f̂(h⋆)− f‖2 6 Ef ℓ(f, h
⋆). (6.5)

On the other hand, since h⋆ minimizes R̄pen(X,h) we have

Ef R̄pen(X,h
⋆) = Ef

[

min
h∈H

R̄pen(X,h)
]

. (6.6)

In order to combine the inequalities (6.5) and (6.6), we rewrite ℓ(f, h⋆) in terms
of R̄pen(X,h

⋆)

ℓ(f, h⋆) = R̄pen(X,h
⋆) + ‖f‖2 +

√
2min

(

1
n , ‖Σ‖

)

+
∑

λ∈Λ

h⋆λξ
2
λ +

∑

λ∈Λ

2fλh
⋆
λξλ

+ Pen(h⋆)− 2Pen(h⋆). (6.7)

Therefore, using this equation and (6.5, 6.6), we obtain

Ef‖f̂(h⋆)− f‖2 6Ef

[

min
h∈H

R̄pen(X,h)
]

+ ‖f‖2 +
√
2min

(

1
n , ‖Σ‖

)

+ 2Ef

∑

λ∈Λ

h⋆λfλξλ +Ef

[

∑

λ∈Λ

h⋆λξ
2
λ − Pen(h⋆)

]

. (6.8)

Remark now that for any deterministic index set Λ′ ⊆ Λ

Ef

∑

λ∈Λ′

2h⋆λfλξλ +Ef

∑

λ∈Λ′

2(1− h⋆λ)fλξλ = Ef

∑

λ∈Λ′

2fλξλ = 0. (6.9)

This implies for Λ1 := {λ ∈ Λ : f2
λ > σ2

λ}

Ef

∑

λ∈Λ

2h⋆λfλξλ = −Ef

∑

λ∈Λ1

2(1− h⋆λ)fλξλ +Ef

∑

λ∈Λ∁
1

2h⋆λfλξλ. (6.10)

Then, by the general inequality 2AB 6 δ
2A

2 + 2
δB

2 for A,B, δ > 0 we obtain

∣

∣

∣

∣

∣

Ef

∑

λ∈Λ1

2(1− h⋆λ)ξλfλ

∣

∣

∣

∣

∣

6 δ
2Ef

∑

λ∈Λ

(1− h⋆λ)f
2
λ + 2

δEf

∑

λ∈Λ1

(1− h⋆λ)ξ
2
λ. (6.11)

Note that in terms of the trace norm ‖M‖tr =
∑

iMii for positive-definite
matrices

2

δ
Ef

∑

λ∈Λ1

(1− h⋆λ)ξ
2
λ 6 2

δ ‖ΣΛ1
‖tr (6.12)
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since |1− h⋆λ| 6 1. By (6.11) and (6.12) we obtain
∣

∣

∣

∣

∣

Ef

∑

λ∈Λ1

2(1− h⋆λ)fλξλ

∣

∣

∣

∣

∣

6 2
δ ‖ΣΛ1

‖tr + δ
2Ef

∑

λ∈Λ

(1− h⋆λ)f
2
λ . (6.13)

In a similar way, we obtain
∣

∣

∣

∣

∣

∣

Ef

∑

λ∈Λ∁
1

2h⋆λξλfλ

∣

∣

∣

∣

∣

∣

6 δ
2Ef

∑

λ∈Λ

h⋆λξ
2
λ + 2

δEf

∑

λ∈Λ∁
1

h⋆λf
2
λ. (6.14)

Note that
2
δEf

∑

λ∈Λ∁
1

h⋆λf
2
λ 6 2

δ

∑

λ∈Λ∁
1

f2
λ (6.15)

since |h⋆λ| 6 1. Using (6.14) and (6.15) one has
∣

∣

∣

∣

∣

∣

Ef

∑

λ∈Λ∁
1

2h⋆λfλξλ

∣

∣

∣

∣

∣

∣

6 2
δ

∑

λ∈Λ∁
1

f2
λ + δ

2Ef

∑

λ∈Λ

h⋆λξ
2
λ. (6.16)

Note also that, since hλ ∈ {0, 1}, we have

Ef‖f̂(h⋆)− f‖2 = Ef

∑

λ∈Λ

(1− h⋆λ)f
2
λ +Ef

∑

λ∈Λ

h⋆λξ
2
λ.

Insertion of (6.13) and (6.16) into (6.10) yields
∣

∣

∣

∣

∣

Ef

∑

λ∈Λ

2h⋆λfλξλ

∣

∣

∣

∣

∣

6 δ
2Ef‖f̂(h⋆)− f‖2 + 2

δ ‖ΣΛ1
‖tr + 2

δ

∑

λ∈Λ∁
1

f2
λ. (6.17)

By using the risk hull as in Lemma 2.1, one obtains

Ef

[

∑

λ∈Λ

h⋆λξ
2
λ − Pen(h⋆)

]

6
√
2min

(

1
n , ‖Σ‖

)

. (6.18)

Inserting (6.13), (6.16) and (6.18) into (6.8) yields

Ef‖f̂(h⋆)− f‖2 6 Ef

[

min
h∈H

R̄pen(X,h)
]

+ ‖f‖2 +
√
2min

(

1
n , ‖Σ‖

)

+ 2
δ

∑

λ∈Λ

min(f2
λ, σ

2
λ) +

√
2min

(

1
n , ‖Σ‖

)

+
δ

2
Ef‖f̂(h⋆)− f‖2.

(6.19)

Using (6.19) we obtain,

(1− δ
2 )Ef‖f̂(h⋆)− f‖2

6 Ef

[

min
h∈H

R̄pen(X,h) + ‖f‖2
]

+ 2
√
2min

(

1
n , ‖Σ‖

)

+
2

δ

∑

λ∈Λ

min(f2
λ, σ

2
λ).
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Finally, we let the bias explicitly appear in

R̄pen(X,h) + ‖f‖2 =
∑

λ∈Λ

(1− hλ)f
2
λ −

∑

λ∈Λ

hλ(X
2
λ − f2

λ) + 2Pen(h)

and the result follows from (1 − δ
2 )

−1 6 1 + δ for δ ∈ [0, 1].

6.3. Proof of Theorem 3.1

For f ∈ F0(γn) the right-hand side in Theorem 2.2 can be bounded by consid-
ering the oracle hf = 1({λ : fλ 6= 0}) such that

(1 + δ)Ef

[

(

−
∑

λ∈Λ

hfλ(X
2
λ − f2

λ) + 2Pen(hf)
)

]

+Ωδ 6 (1 + δ)2Pen(hf ) + Ωδ.

(6.20)

We will use the following inequality, as J → ∞,

J
∑

j=1

(log(ne/j)+j−1 log+(n‖Σ‖)) 6 (J log(ne/J)+log(J) log+(n‖Σ‖))(1+o(1)),

(6.21)
by comparison with the integral. Since |hf | 6 nγn, we obtain that

Pen(hf ) 6 2‖Σhf‖





|hf |
∑

j=1

(log(ne/j) + j−1 log+(n‖Σ‖))





6 2‖Σhf ‖
(

nγn log(γ
−1
n ) + log(nγn) log+(n‖Σ‖)

)

(1 + o(1)),

as n→ ∞. On the other hand, we have

Ωδ = 4
√
2min

(

1
n , ‖Σ‖

)

+
2

δ

∑

λ:fλ 6=0

min(σ2
λ, f

2
λ).

We use
∑

λ:fλ 6=0 σ
2
λ 6 nγn‖Σhf ‖ which shows

Ωδ 6
4
√
2

n
+

2

δ
nγn‖Σhf ‖.

Choosing δ → 0 such that δ−1 = o(log(γ−1
n )), e.g. δ = 1/ log log(γ−1

n ), we thus
find, as n→ ∞,

2

δ
nγn‖Σhf‖ = o

(

‖Σhf ‖nγn log(γ−1
n )
)

. (6.22)

Using Theorem 2.2, Equation (6.22) we have (3.2). Moreover, using the bounds
on ‖Σhf ‖ and ‖Σ‖ we obtain (3.3).
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6.4. Proof of Theorem 3.2

Let us now evaluate the right-hand side of the oracle inequality in Theorem 2.2
for the threshold selection rules with arbitrary threshold values t > 0 defined
in (3.4). Given an oracle parameter t0 > 1 (to be determined below), we set
τλ := σλt

0. We obtain with Rλ denoting the (inverse) rank of the coefficient
with index λ among (σ2

λ1(|Xλ| > τλ))λ∈Λ

Ef

[

inf
h∈H

(

∑

λ∈Λ

(1− hλ)f
2
λ −

∑

λ∈Λ

hλ(X
2
λ − f2

λ) + 2Pen(h)
)

]

(6.23)

6 Ef

[

∑

λ∈Λ

(

1(|Xλ| 6 τλ)f
2
λ − 1(|Xλ| > τλ)(X

2
λ − f2

λ) (6.24)

+ 4σ2
λ1(|Xλ| > τλ)(log(en/Rλ) +R−1

λ log+(n‖Σ‖))
)]

. (6.25)

Let us first show that Ef [1(|Xλ| > τλ)(X
2
λ − f2

λ)] is always non-negative.
By symmetry X ′

λ := fλ − ξλ has the same law as Xλ. Defining the function
g(ξ) := 1(|fλ + ξ| > τλ)((fλ + ξ)2 − f2

λ), we check by considering the different
cases that g(ξ) + g(−ξ) > 0 holds. We conclude

Ef [1(|Xλ| > τλ)(X
2
λ − f2

λ)] =
1
2 Ef [g(ξλ) + g(−ξλ)] > 0.

Hence, the term with a minus sign in (6.23) can be discarded for an upper
bound.

Let us now consider the coefficients that contain a signal part (i.e. with
fλ 6= 0). The following inequality will be helpful to obtain a bound independent

of the size of |fλ|. Let us denote by rfλ the corresponding inverse rank within
(σ2

λ1(fλ 6= 0))λ∈Λ. With f2
λ 6 (|ξλ|+ τλ)

2 on the event {|Xλ| 6 τλ} we obtain

∑

λ∈Λ,fλ 6=0

(

1(|Xλ| 6 τλ)f
2
λ + 4σ2

λ1(|Xλ| > τλ)(log(en/Rλ) +R−1
λ log+(n‖Σ‖))

)

6
∑

λ∈Λ,fλ 6=0

max
(

(|ξλ|+ τλ)
2, 4σ2

λ(log(en/Rλ) +R−1
λ log+(n‖Σ‖))

)

6
∑

λ∈Λ,fλ 6=0

max
(

(|ξλ|+ τλ)
2, 4σ2

λ(log(en/r
f
λ) + (rfλ)

−1 log+(n‖Σ‖))
)

, (6.26)

where for the last inequality we have used that for nγn distinct values Rλ ∈ N

the expression is maximal in the case Rλ = rfλ.
The general identity E[max(Z, c)] = c +

∫∞
c P (Z > z)dz applied to Z =

(|ξλ|+ τλ)
2 and deterministic cλ > τ2λ yields

E[max((|ξλ|+ τλ)
2, cλ)] 6 cλ +

∫ ∞

cλ

P (|ξλ| >
√
z − τλ) dz

6 cλ + 2e−(
√
cλ−τλ)

2/(2σ2

λ). (6.27)
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In order to ensure τ2λ 6 cλ := 4σ2
λ(log(en/r

f
λ)+(rfλ)

−1 log+(n‖Σ‖)) whenever
fλ 6= 0, we are lead to choose

t0 =
√

4 log(e/γn). (6.28)

In the sequel we bound σ2
λ simply by ‖Σhf

‖ in the case fλ 6= 0. Then using
again the bound on sums of logarithms (6.21) and #{fλ 6= 0} 6 nγn as well
as the concavity of e−x for bounding the sum of exponentials, we obtain that
(6.23) over the signal part satisfies

Ef

[

∑

λ:fλ 6=0

(

1(|Xλ| 6 τλ)f
2
λ + 4σ2

λ1(|Xλ| > τλ)(log(en/Rλ) +R−1
λ log+(n‖Σ‖))

)]

6
∑

λ∈Λ,fλ 6=0

(cλ + 2e−(
√
cλ−τλ)

2/(2σ2

λ)) 6 nγn(Cn‖Σhf
‖+ 2e−(Cn−(t0)2)/2),

where

Cn = (4 + o(1))(log(γ−1
n ) + log+(n‖Σ‖) log(nγn)/(nγn)). (6.29)

Owing to Cn‖Σhf
‖ → ∞ we even have

Ef

[

∑

λ:fλ 6=0

(

1(|Xλ| 6 τλ)f
2
λ + 4σ2

λ1(|Xλ| > τλ)(log(en/Rλ) +R−1
λ log+(n‖Σ‖))

)]

6 ‖Σhf
‖nγnCn(1 + o(1)). (6.30)

On the other hand, for the non-signal part fλ = 0, we introduce Nτ :=
∑

λ∈Λ 1(|ξλ| > τλ) and we use the large deviation bound:

E[Nτ ] = nP (|ξλ| > τλ) 6 2n(t0)−1e−(t0)2/2.

Again by considering worst case permutations instead of the ranks, using (6.21)
and by Jensen’s inequality for the concave functions log(x), x log(en/x) we infer:

Ef

[

∑

λ:fλ=0

(

1(|Xλ| 6 τλ)f
2
λ + 4σ2

λ1(|Xλ| > τλ)(log(en/Rλ) +R−1
λ log+(n‖Σ‖))

)]

6 4‖Σ‖Ef

[

∑

λ∈Λ

1(|ξλ| > τλ)(log(en/Rλ) +R−1
λ log+(n‖Σ‖))

]

6 4‖Σ‖E
[

Nτ
∑

j=1

(log(en/j) + j−1 log+(n‖Σ‖))
]

6 4‖Σ‖E
[

(Nτ log(en/Nτ ) + log(Nτ ) log+(n‖Σ‖))
]

(1 + o(1))

6 4‖Σ‖(2n(t0)−1e−(t0)2/2(1 + t20/2) + (logn− (t0)2/2) log+(n‖Σ‖))(1 + o(1))

6 2‖Σ‖(2ne−(t0)2/2t0 + (2 logn− (t0)2) log+(n‖Σ‖))(1 + o(1)). (6.31)
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For the t0 chosen, the total bound over (6.23) is thus, by (6.30), (6.31) and by
definition of Cn in (6.29),

nγn(1 + o(1))
(

‖Σhf
‖Cn + 2‖Σ‖(2e−(t0)2/2t0 + (2 logn− (t0)2)

log+(n‖Σ‖)
nγn

)
)

= nγn(1 + o(1))
(

4‖Σhf
‖(log(γ−1

n ) + log+(n‖Σ‖) log(nγn)/(nγn))

+ 2‖Σ‖(4γn
√

log(γ−1
n ) + 2 log(nγ2n) log+(n‖Σ‖)/(nγn))

)

.

This yields the asserted general bound and inserting the bound for log+(n‖Σ‖)
gives directly the second bound.

6.5. Proof of Theorem 4.1

Consider for each coefficient fλ the following Bayesian prior, which turns out to
be asymptotically least favorable:

πλ = (1− αλ,n)δ0 + αλ,nδµλ,n
, λ ∈ Λ,

with some µλ,n > 0. Without loss of generality we may assume cn ↓ 0 so
slowly that cn

√
nγn → ∞. Introducing the number of non-zero entries N :=

∑

λ 1(fλ 6= 0) and writing P for the joint law of prior and observations, we
deduce by Chebyshev inequality

P (f /∈ F0(γn)) = P (N > nγn) = P (N − nγn(1− cn) > nγncn)

6
Var(N)

(cnnγn)2
6

nγn
(cnnγn)2

→ 0.

The property P (f ∈ F0(γn)) → 1 then implies that the Bayes-optimal risk,
derived below, will be an asymptotic minimax lower bound over F0(γn).

We need to calculate the Bayes risk and find the posterior law of fλ ∈
{0, µλ,n} for each coordinate λ:

P (fλ = µλ,n|Xλ = x) =
αλ,nϕµλ,n,σ2

λ
(x)

(1− αλ,n)ϕ0,σ2

λ
(x) + αλ,nϕµλ,n,σ2

λ
(x)

.

Since we deal with quadratic loss, the Bayes estimator f̂λ equals the conditional
expectation E[fλ|Xλ] and the Bayes risk the expectation of the conditional
variance, which is calculated as

E[Var(fλ |Xλ)] = E[f2
λ]−E[E[fλ|Xλ]

2]

= µ2
λ,n

(

αλ,n −
∫

α2
λ,nϕµλ,n,σ2

λ
(x)2

(1− αλ,n)ϕ0,σ2

λ
(x) + αλ,nϕµλ,n,σ2

λ
(x)

dx
)

.

(6.32)
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The integral can be transformed into an expectation with respect to Z ∼ N (0, 1)
and bounded by Jensen’s inequality:

∫

α2
λ,nϕµλ,n,σ2

λ
(x)2

(1− αλ,n)ϕ0,σ2

λ
(x) + αλ,nϕµλ,n,σ2

λ
(x)

dx

= αλ,n E
[(

1 + α−1
λ,n(1− αλ,n) exp(σ

−1
λ Z − µ2

λ,n/(2σ
2
λ))
)−1]

6 αλ,n

(

1 + α−1
λ,n(1− αλ,n)E[exp(σ

−1
λ Z − µ2

λ,n/(2σ
2
λ))]
)−1

= αλ,n

(

1 + α−1
λ,n(1− αλ,n) exp((1− µ2

λ,n)/(2σ
2
λ))
)−1

.

Since αλ,n → 0 uniformly by the choice of cn → 0, we just select

µλ,n = σλ

√

2(1− (log c−1
n )−1/2) log(α−1

λ,n)

such that E[Var(fλ |Xλ)] is larger or equal to

2σ2
λαλ,n(1−(log c−1

n )−1/2) log(α−1
λ,n)(1−((1+(1−αλ,n)α

−(log c−1

n )−1/2

λ,n e1/(2σ
2

λ)))−1).

Noting α
−(log c−1

n )−1/2

λ,n → ∞ uniformly over λ, the overall Bayes risk is hence
uniformly lower bounded by

2
(

1 + o(1)
)

(

∑

λ∈Λ

σ2
λαλ,n log(α

−1
λ,n)

)

.

The supremum at n is attained for

αλ,n = exp
( σ̄2

n

σ2
λ

log(eγn(1− cn))− 1
)

= e−1(eγn(1− cn))
σ̄2

n/σ2

λ ,

where σ̄n > 0 is such that
∑

λ αλ,n = nγn(1− cn) holds, provided αλ,n 6 cn for
all λ. The latter condition is fulfilled if σ̄2

n & maxλ σ
2
λ.

6.6. Proof of Corollary 4.2

Let us write αλ,n = nγn(1− cn)wλ,n and the entropy expression in Theorem 4.1
becomes

2
(

1 + o(1)
)

nγn sup
wλ,n

(

∑

λ∈Λ

σ2
λwλ,n

(

log(w−1
n,λ)− log(nγn)

)

)

where the wλ,n ∈ [0, (nγn(1 − cn))
−1] sum up to one:

∑

λwλ,n = 1. From this
representation we immediately infer the lower bound

2nγn log(γ
−1
n )
(

1 + o(1)
) 1

n

∑

λ∈Λ

σ2
λ

using the uniform weights wλ,n = 1/n.
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Note that for polynomial growth σ2
(i) ∼ (n − i)β, β > 0, and for rn = o(n),

we have σ2
(rn)

/σ2
(1) → 1 and the lower bound is indeed

sup
f∈F0(γn)

Ef [‖f̂n − f‖2] > 2
(

1 + o(1)
)

‖Σ‖nγn log(γ−1
n ).

6.7. Proof of Theorem 4.3

Introduce the threshold value τλ,n =
√

2 log(α−1
λ,n) and note maxλ αλ,n → 0. We

can split the error as follows:

E[(f̂λ−fλ)2] = f2
λ P((ξλ+fλ/σλ)

2 6 τ2λ,n)+E[σ2
λξ

2
λ1{(ξλ+fλ/σλ)2>τ2

λ,n}] =: I+II.

For fλ > τλ,nσλ term I is estimated by

I 6 f2
λ P(ξλ 6 τλ,n − fλ/σλ) 6 f2

λ exp(−(τλ,n − fλ/σλ)
2/2).

Together with a symmetric argument for fλ < −τλ,nσλ and a direct bound for
f2
λ 6 τ2λ,nσ

2
λ, we thus obtain a bound for general fλ:

I 6
(

f2
λ exp(−(τλ,n − |fλ|/σλ)2/2)

)

∨ τ2λ,nσ2
λ.

Since for τλ,n → ∞ we have supx>1 x
2e−τ2

λ,n(x−1)2/2 → 1, we consider x =
|fλ|/(τλ,nσλ) and infer

I 6 σ2
λτ

2
λ,n(1 + o(1)) uniformly in λ.

Inserting the choice of the thresholds, we conclude

I 6 σ2
λτ

2
λ,n(1 + o(1))1{fλ 6=0} = 2σ2

λ log(α
−1
λ,n)(1 + o(1))1{fλ 6=0}.

For term II and fλ 6= 0 the immediate estimate II 6 σ2
λ suffices, while for

fλ = 0 we integrate out explicitly and obtain:

II = σ2
λ E[ξ2λ1{ξ2λ>τ2

λ,n}] = σ2
λ2(τλ,n+1)e−τ2

λ,n/2 = 2σ2
λ

√

2 log(α−1
λ,n)αλ,n(1+τ

−1
λ,n).

The overall risk of our estimator is therefore bounded by

∑

λ∈Λ

Ef [(f̂λ − fλ)
2]

6
∑

λ:fλ 6=0

(

2σ2
λ log(α

−1
λ,n)(1 + o(1)) + σ2

λ

)

+
∑

λ:fλ=0

2σ2
λ

√

2 log(α−1
λ,n)αλ,n(1 + o(1))

6 (2 + o(1))
(

∑

λ:fλ 6=0

log(α−1
λ,n)σ

2
λ +

√
2max

λ

αλ,n
√

log(α−1
λ,n)

∑

λ:fλ=0

σ2
λ log(α

−1
λ,n)

)

.
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Choosing αλ,n = e−βn/σ
2

λ , with βn > 0 satisfying
∑

λ∈Λ αλ,n = nγn, minimises
the last bound (asymptotically) and yields

∑

λ∈Λ

Ef [(f̂λ − fλ)
2] 6 (2 + o(1))nγnβn

because by maxλ(log(α
−1
λ,n))

−1/2αλ,n → 0 the second term is of smaller order.

The last result is a direct consequence. Indeed, we always have βn 6 log(γ−1
n )‖Σ‖

by bounding σ2
λ 6 ‖Σ‖, which is minimax optimal for at most polynomial growth

in (σ2
λ) by the lower bound in Theorem 4.1.
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