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An Adaptive Sequential Monte Carlo Sampler

Paul Fearnhead * and Benjamin M. Taylor �

Abstract. Sequential Monte Carlo (SMC) methods are not only a popular tool
in the analysis of state–space models, but offer an alternative to Markov chain
Monte Carlo (MCMC) in situations where Bayesian inference must proceed via
simulation. This paper introduces a new SMC method that uses adaptive MCMC
kernels for particle dynamics. The proposed algorithm features an online stochas-
tic optimization procedure to select the best MCMC kernel and simultaneously
learn optimal tuning parameters. Theoretical results are presented that justify
the approach and give guidance on how it should be implemented. Empirical re-
sults, based on analysing data from mixture models, show that the new adaptive
SMC algorithm (ASMC) can both choose the best MCMC kernel, and learn an
appropriate scaling for it. ASMC with a choice between kernels outperformed
the adaptive MCMC algorithm of Haario et al. (1998) in 5 out of the 6 cases
considered.

Keywords: Adaptive MCMC, Adaptive Sequential Monte Carlo, Bayesian Mixture
Analysis, Optimal Scaling, Stochastic Optimization

1 Introduction

Sequential Monte Carlo (SMC) is a class of algorithms that enable simulation from
a target distribution of interest. These algorithms are based on defining a series of
distributions, and generating samples from each distribution in turn. SMC was initially
used in the analysis of state-space models. In this setting there is a time–evolving hidden
state of interest, inference about which is based on a set of noisy observations (Gordon
et al. 1993; Liu and Chen 1998; Doucet et al. 2001; Fearnhead 2002). The sequence of
distributions is defined as the set of posterior distributions of the state at consecutive
time-points given the observations up to those time points. More recent work has looked
at developing SMC methods that can analyse state-space models which have unknown
fixed parameters. Such methods introduce steps into the algorithm to allow the support
of the sample of parameter values to change over time, for example by using ideas from
kernel density estimation (Liu and West 2001), or Markov chain Monte Carlo (MCMC)
moves (Gilks and Berzuini 1999; Storvik 2002; Fearnhead 2002).

Most recently, SMC methods have been applied as an alternative to MCMC for
standard Bayesian inference problems (Neal 2001; Chopin 2002; Del Moral et al. 2006;
Fearnhead 2008). In this paper the focus will be on methods for sampling from the
posterior distribution of a set of parameters of interest. SMC methods for this class of
targets introduce an artificial sequence of distributions running from the prior to the
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posterior, and sample recursively from these using a combination of Importance Sam-
pling and MCMC moves. This approach to sampling has been demonstrated empirically
to often be more effective than using a single MCMC chain (Jasra et al. 2007, 2008a).
There are heuristic reasons for why this may true in general: the annealing of the target
and spread of samples over the support means that SMC is less likely to be become
trapped in posterior modes.

Simply invoking an untuned MCMC move within an SMC algorithm would likely
lead to poor results because the move step would not be effective in combating sample
depletion. The structure of SMC means that at the time of a move there is a sample
from the target readily available, this can be used to compute posterior moments and
inform the shape of the proposal kernel as in Jasra et al. (2008b); however, further
refinements can lead to even better performance. Such refinements include the scaling
of estimated target moments by an optimal factor, see Roberts and Rosenthal (2001)
for example. For general targets and proposals no theoretical results for the choice of
scaling exist, and this has led to the recent popularity of adaptive MCMC (Haario et al.
1998; Andrieu and Robert 2001; Roberts and Rosenthal 2009; Craiu et al. 2009; Andrieu
and Thoms 2008). In this paper the idea of adapting the MCMC kernel within an SMC
algorithm will be explored.

To date there has been little work at adapting SMC methods. Exceptions include the
method of Jasra et al. (2008b), whose method assumes a likelihood tempered sequence
of target densities (see Neal (2001)) and the adaptation procedure both chooses this
sequence online and computes the variance of a random walk proposal kernel used
for particle dynamics. Cornebise et al. (2008) also considers adapting the proposal
distribution within SMC for state-space models. Assuming that the proposal density
belongs to a parametric family with parameter θ, their method proceeds by simulating
a number of realisations for each of a range of values of θ and selecting the value that
minimises the empirical Shannon entropy of the importance weights; new samples are
then re–proposed using this approximately optimal value. Further related work includes
that of Douc et al. (2007) and Cappé et al. (2008) on respectively population Monte
Carlo and adaptive importance sampling and also Schäfer and Chopin (2013).

The aims of this paper are to introduce a new adaptive SMC algorithm (ASMC)
that automatically tunes MCMC move kernels and chooses between different proposal
densities and to provide theoretical justification of the method. The algorithm is based
on having a distribution of kernels and their tuning parameters at each iteration. Each
current sample value, called a particle, is moved using an MCMC kernel drawn from
this distribution. By observing the expected square jumping distance (Craiu et al. 2009;
Sherlock and Roberts 2009) for each particle it is possible to learn in some sense which
MCMC kernels are mixing better. The information thus obtained can then be used to
update the distribution of kernels. The key assumption of the new approach is that the
optimal MCMC kernel for moving particles does not change much over the iterations
of the SMC algorithm; we note that this assumption is more intrinsic to SMC methods
and not confined to our proposed algorithm. As will be discussed and shown empirically
in Section 5, this can often be achieved by appropriate parameterisation of a family of
MCMC kernels.
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The structure of the paper is as follows. In the next section, the model of interest
will be introduced and followed by a review of MCMC and SMC approaches. Then in
Section 3, the new adaptive SMC will be presented. Guidelines on implementing the
algorithm as well as some theory on the convergence will be presented in Section 4. In
Section 5 the method will be evaluated using simulated data. The results show that
the proposed method can successfully choose both an appropriate MCMC kernel and
an appropriate scaling for the kernel. The paper ends with a discussion.

2 Model

The focus of this article will be on Bayesian inference for parameters, θ, from a model
where independent identically distributed data is available. Note that the ideas behind
the proposed adaptive SMC algorithm can also be applied to the non i.i.d. case, see
Section 6. Let π(θ) denote the prior for θ and π(y|θ) the probability density for the
observations. The aim will be to calculate the posterior density,

π(θ|y1:n) ∝ π(θ)
n∏

i=1

π(yi|θ), (1)

where, here and throughout, π will be used to denote a probability density, and y1:n
means y1, . . . , yn.

In general, π(θ|y1:n) is analytically intractable and so to compute posterior func-
tionals of interest, for example expectations, Monte Carlo simulation methods are often
employed. Sections 2.1 and 2.2 provide a brief description of two such Monte Carlo
approaches.

2.1 MCMC

An MCMC transition kernel, Kh, is a probability law governing the transition between
states of a discrete Markov chain with some stationary distribution of interest, for
example a posterior. Kh comprises a proposal kernel, here and throughout denoted
qh (the subscript h indicates dependence on a tuning parameter) and an acceptance
ratio that depends on the target and, in general, the proposal densities (see Gilks et al.
(1995); Gamerman and Lopes (2006) for reviews of MCMC methodology). The most
generally applicable MCMC method is Metropolis–Hastings, described in Algorithm 1
(Metropolis et al. 1953; Hastings 1970).

Probably the simplest MH algorithm is random walk Metropolis (RWM). The pro-
posal kernel for RWM is a symmetric density centred on the current state, the most
common example being a multivariate normal, qh(θ

(i−1), θ̃) = N (θ̃; θ(i−1), h2Σ̂π), where
Σ̂π is an estimate of the target covariance. Both the values of Σ̂π and h are critical
to the performance of the algorithm. If Σ̂π does not accurately estimate the posterior
covariance matrix, then the likely directions of the random walk moves will probably
be inappropriate. On the other hand, a value of h that is too small will lead to high
acceptance rates, but the samples will be highly correlated. If h is too large then the
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Algorithm 1 Metropolis–Hastings Algorithm (Metropolis et al. 1953; Hastings 1970)

1: Start with an initial sample, θ(0), drawn from any density, π0.
2: for j = 1, 2, . . . do
3: Propose a move to a new location, θ̃, by drawing a sample from qh(θ

(i−1), θ̃).
4: Accept the move (i.e., set θ(i) = θ̃) with probability,

min

{
1,

π(θ̃|y1:n)
π(θ(i−1)|y1:n)

qh(θ̃, θ
(i−1))

qh(θ(i−1), θ̃)

}
, (2)

else set θ(i) = θ(i−1).
5: end for

algorithm will rarely move, which in the worst case scenario could lead to a degenerate
sample.

These observations on the rôle of h point to the idea of an optimal scaling, a h
somewhere between the extremes that promotes the best mixing of the algorithm. In
the case of elliptically symmetric unimodal targets, an optimal random walk scaling
can sometimes be computed numerically; this class of targets includes the Multivariate
Gaussian (Sherlock and Roberts 2009). Other theoretical results include optimal accep-
tance rates which are derived in the limit as the dimension of θ, d → ∞ (see Roberts
and Rosenthal (2001) for examples of targets and proposals). In general however, there
are no such theoretical results.

One way of circumventing the need for analytical optimal scalings is to try to learn
them online (Andrieu and Robert 2001; Atchadé and Rosenthal 2005), this can include
both learning a good scaling, h, and estimating the target covariance, Σ̂π (Haario et al.
1998). Recent research in adaptive MCMC has generated a number of new algorithms
(see for example Andrieu and Thoms (2008); Roberts and Rosenthal (2009); Craiu
et al. (2009)), though some care must be taken to ensure that the resulting chain has
the correct ergodic distribution.

2.2 Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a class of simulation–based methods for sampling
from a target density of interest (see Doucet et al. (2001); Del Moral et al. (2006)
for a review). The main idea behind SMC is to introduce a sequence of densities
leading from the prior to the target density of interest and to iteratively update an
approximation to these densities. For the application considered here, it is natural to
define these densities as πt(θ) = π(θ|y1:t) for t = 1, . . . , n; this ‘data tempered’ schedule
will be used in the sequel. The approximations to each density are defined in terms of a

collection of particles, θ
(j)
t , together with their respective weights, w

(j)
t , for j = 1, . . . ,M ,

produced so that asM →∞, Monte Carlo sums converge almost surely to their ‘correct’
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expectations: ∑M
j=1 w

(j)
t ζ(θ

(j)
t )∑M

i=1 w
(i)
t

a.s.−→ Eπt(θt)[ζ(θt)],

for all πt–integrable functions, ζ. Such a collection of particles and their respective

weights will be denoted by {θ(j)t , w
(j)
t }Mj=1; notice that we do not assume the sum of

the weights is equal to one. Furthermore, we will often write {θ(j)t , w
(j)
t }Mj=1 ∼ πt(θt) or

{θ(j)t , w
(j)
t }Mj=1 ∼ πt to make this explicit. When each particle, or sample, has weight

1/M , we will sometimes write {θ(j)t , 1/M}Mj=1 and other times {θ(j)t }Mj=1.

One step of an SMC algorithm can involve importance reweighting, resampling and
moving the particles via an MCMC kernel (Gilks and Berzuini 1999; Chopin 2002). For
concreteness, this paper will focus on the iterated batch importance sampling (IBIS)
algorithm of Chopin (2002).

The simplest way to update the particle approximation in model (1) is to let θ
(j)
t =

θ
(j)
t−1 and w

(j)
t = w

(j)
t−1π(yt|θ

(j)
t ). However such an algorithm will degenerate for large t, as

eventually only one particle will have non-negligible weight. With IBIS, resample–move
steps (sometimes referred to here as simply ‘move steps’) are introduced to alleviate
this. In a move step, the particles are first resampled so that the expected number of

copies of particle θ
(j)
t is proportional to w

(j)
t . This process produces multiple copies of

some particles. In order to create particle diversity, each resampled particle is moved
by an MCMC kernel. The MCMC kernel is chosen to have stationary distribution πt.
The resulting particles are then assigned a weight of 1/M .

The decision of whether to apply a resample-move step within IBIS is based on the
effective sample size (ESS, see Kong et al. (1994); Liu and Chen (1998)). The ESS is a
measure of variability of the particle weights; using this to decide whether to resample
is justified by arguments within Liu and Chen (1995) and Liu et al. (1998). Full details
of IBIS are given in Algorithm 2.

Whilst the focus of this article is on the IBIS algorithm, the ideas presented here
can be applied to more general SMC algorithms (Del Moral et al. 2006). The use
of an MCMC-Kernel move within IBIS is itself probably the most common approach
for implementing SMC in practice (and corresponds to the implementation described
in Section 3.3.2.3 of Del Moral et al. (2006)). Furthermore, the adaptive method de-
veloped in Section 3 immediately applies to algorithms that use a different sequence
of target distributions, for example likelihood tempering (Neal 2001). The likelihood
tempered target sequence is πt(θ) = π(θ)π(y1:n|θ)ξt , where {ξt} is a sequence of real
numbers starting at 0 (the prior) and ending on 1 (the posterior). The focus here is
on data tempering, πt(θ) = π(θ|y1:t), because for the application considered in Section
5.2, calculating the likelihood has a cost which increases linearly with the number of
observations.

The SMC algorithm of Del Moral et al. (2006) also implements moves at each iter-
ation of the algorithm. However the approach in this article is closely related, and is
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Algorithm 2 Chopin’s IBIS algorithm

1: Initialise from the prior {θ(j)0 , w
(j)
0 }Mj=1 ∼ π0.

2: for t = 1, . . . , n do

3: Reweight w
(j)
t = w

(j)
t−1πt(θ

(j)
t−1)/πt−1(θ

(j)
t−1). Result: {θ

(j)
t−1, w

(j)
t }Mj=1 ∼ πt.

4: if particle weights not degenerate (see text) then

5: {θ(j)t , w
(j)
t }Mj=1 ← {θ

(j)
t−1, w

(j)
t−1}Mj=1

6: t→ t+ 1.
7: else
8: Resample: let K = {k1, . . . , kM} ⊆ {1, . . . ,M} be the resampling indices, then

{θ(k)t−1, 1/M}k∈K ∼ πt. Relabel: kj ← j, the jth resampling index so that

{θ(j)t−1, 1/M}Mj=1 ∼ πt.
9: Move via πt–invariant MCMC kernel. Result: {θ(j)t , 1/M}Mj=1 ∼ πt.

10: end if
11: end for

equivalent to using a sequence of targets, π̃j(θ) = π(θ|y1:tj ), where tj is the iteration
where IBIS resamples for the jth time. IBIS is thus similar to SMC, with π̃j(θ) as
the sequence of targets. As such, IBIS itself can be viewed as choosing the sequence
of targets in an adaptive way based on the closeness of successive targets, π̃j−1(θ) and
π̃j(θ), as measured by the variability of the importance weights (Del Moral et al. 2010).

The efficiency of an algorithm such as IBIS depends on the mixing properties of
the associated MCMC kernel. Within SMC there is the advantage of being able to use
the current set of particles to help tune an MCMC kernel. For example, the weighted
particles can give an estimate of the posterior covariance matrix, which can be used
within a random walk proposal. However even in this case, the proposal variance still
needs to be appropriately scaled (Roberts and Rosenthal 2001; Sherlock and Roberts
2009). In the next section the new adaptive SMC procedure will be introduced. The
new algorithm can learn an appropriate tuning for the MCMC kernel, and can also be
used to choose between a set of possible kernels.

3 The Adaptive SMC Sampler

First consider the case where the move step in the IBIS algorithm involves one type of
MCMC kernel. Let πt be an arbitrary continuous probability density (the target) and
Kh,t a πt–invariant MCMC kernel with tuning parameter, h. The parameter h is to be
chosen to maximise the following utility function,

g(t)(h) =

∫
πt(θt−1)Kh,t(θt−1, θt)Λ(θt−1, θt)dθt−1dθt, (3)

= E [Λ(θt−1, θt)] ,

where Λ(θt−1, θt) > 0 is a measure of mixing of the chain. Most MCMC adaptation
criteria can be viewed in this way (Andrieu and Thoms 2008). Note that for simplicity
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of presentation, Λ only depends on the current and subsequent state, though the idea
readily extends to more complex cost functionals, for example involving multiple tran-
sitions of the MCMC chain. The function g(t) is the average performance of the chain
with respect to Λ, which would normally be some measure of mixing. A computationally
simple measure of mixing is the expected square jumping distance (ESJD). Maximising
the ESJD is equivalent to minimising the lag-1 autocorrelation; this measure is often
used within adaptive MCMC, see for example Sherlock and Roberts (2009) and Pasarica
and Gelman (2010).

In the following it will be assumed that the proposal distribution can depend on
quantities calculated from the current set of particles (for example estimates of the
posterior variance), but this will be suppressed in the notation. The main idea of
ASMC is to use the observed instances of Λ(θt−1, θt) to help choose the best h. The
tuning parameter will be treated as an auxiliary random variable. At time-step t the
aim is to derive a density for the tunings, π(t)(h); note this should not be confused with
the target densities on the parameters, πt(θ). If a move step is invoked at this time, a

sample of M realisations from π(t)(h), denoted {h(j)t }Mj=1, will be drawn and ‘allocated’
to particles at random.

When moving the jth resampled particle, the tuning parameter h
(j)
t will be used

within the proposal distribution. Let θ
(j)
t−1 be the jth resampled particle (see step 8 of

Algorithm 2). In moving this particle, θ̃
(j)
t is drawn from q

h
(j)
t
(θ

(j)
t−1, · ), and accepted

with probability α
h
(j)
t
(θ

(j)
t−1, θ̃

(j)
t ), given by (2). If the proposed particle is accepted then

θ
(j)
t = θ̃

(j)
t otherwise θ

(j)
t = θ

(j)
t−1.

We recommend that low-variance resampling methods such as residual, or stratified
sampling be used for resampling both the particles as well as the tunings (Whitley 1994;
Kitagawa 1996; Liu et al. 1998; Carpenter et al. 1999).

In practice, we use a Rao-Blackwellised, unbiased estimate of the utility function,

g(h
(j)
t ),

Λ̃(θ
(j)
t−1, θ̃

(j)
t ) = α

h
(j)
t
(θ

(j)
t−1, θ̃

(j)
t )Λ(θ

(j)
t−1, θ̃

(j)
t ). (4)

The approach in this paper is to use the observed Λ̃(θ
(j)
t−1, θ̃

(j)
t ) to update the distri-

bution π(t)(h) to a new distribution π(t+1)(h) in a way that moves towards values of h

with a higher ESJD. In particular each h
(j)
t will be assigned a weight, f(Λ̃(θ

(j)
t−1, θ̃

(j)
t )),

for some function f : R+ → R+. The new density of scalings will be defined,

π(t+1)(h) ∝
M∑
j=1

f(Λ̃(θ
(j)
t−1, θ̃

(j)
t ))R(h− h(j)t ), (5)

where R(h−h(j)t ) is a density for h which is centred on h
(j)
t . Simulating from π(t+1)(h)

is achieved by first resampling the h
(j)
t s with probabilities proportional to their weight

and then adding noise to each resampled value; the distribution of this noise is given
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by R( · ). If there is no resampling at step t then π(t+1)(h) = π(t)(h). In practice, the
scheme can be initiated with an arbitrary distribution π(h).

In computing a new density of the tunings, a function f will be used to weight the

h
(j)
t s. The function f should be increasing with Λ̃, so that more weight is placed on

tunings that produce bigger moves. The specific choice of f considered in this paper is
a simple linear weighting scheme,

f(Λ̃) = a+ Λ̃, a ≥ 0. (6)

Theoretical justification for this choice is given in the next section. This approach is
similar in spirit to that of genetic algorithms (Jennison and Sheehan 1995).

The motivation for adding noise to the resampled h–values is to avoid the distri-
butions π(t)(h) degenerating too quickly to a point-mass on a single value. It can be
viewed as a form of kernel density estimation, and as such it is natural to allow the
variance of the noise to depend on the variance of π(t)(h) and the number of particles,
M . Asymptotic results for kernel density estimation suggest that this variance should
decrease to 0 as M increases. Similar ideas are used in dynamic SMC methods for
dealing with fixed parameters, for example West (1993); Liu and West (2001).

An initial collection of tuning parameters is drawn from a density, π(0)(h). In the
examples considered here, this density was taken to be a uniform density on an ap-
propriate support. For adaptive random walk kernels, an appropriate support may be
constructed quickly by using ideas similar to those in Section 5.1 to compute g(h) (de-
fined in (3)) for a Gaussian of the appropriate dimension, and then choosing a wide
interval around the mode.

One assumption of the proposed approach is that a good choice of h at one time-step
will be a good choice at nearby time-steps. Note that this is based on an implicit as-
sumption within SMC that successive targets are similar (see Chopin (2002); Del Moral
et al. (2006) for example). Furthermore, using estimates of posterior variances within
the proposal distribution can also help ensure that good values of h at one time-step will
be a good choice at nearby time-steps. Some theoretical results concerning this matter
will be presented in Section 4. We note that for improved performance, but at an ad-
ditional computational cost, an MCMC move step could be applied at any iteration of
the algorithm.

To choose between different types of MCMC kernel is now a relatively straight-
forward extension of the above. Assume there are nK different MCMC kernels, each
defined by a proposal distribution qh,i, where i ∈ {1, . . . , nK}. Instead of just resam-
pling the tuning parameters after the particle resampling step, now both the kernels and
their associated parameters are resampled. The algorithm learns a set of distributions,
π(t)(h, i), for the pair of kernel type and associated tuning parameter. Each particle is
assigned a random kernel type and tuning drawn from this distribution, with the pair,

(h
(j)
t−1, i

(j)
t−1), associated with θ

(j)
t−1. The algorithm proceeds by weighting this pair based
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on the observed Λ̃(θ
(j)
t−1, θ̃

(j)
t ) values as before, and updating the distribution,

π(t)(h, i) ∝
M∑
j=1

f(Λ̃(θ
(j)
t−1, θ̃

(j)
t ))R(h− h(j)t−1)δi(j)t−1

(i) (7)

where δ
i
(j)
t−1

(i) is a point mass on i = i
(j)
t−1.

The method is described in detail below, see Algorithm 3. Within the specific im-

plementation described, the pairs, {(h(j)t , i
(j)
t )}Mj=1, sampled from π(t)(h, i) are allocated

to particles randomly immediately after the resample–move step at iteration t. These
pairs are then kept until the next time a resample–move step is called.

Algorithm 3 The Adaptive SMC algorithm. Here, π0( · ), . . . , πn( · ) are an arbitrary
sequence of targets; an MCMC kernel is assumed for particle dynamics.

1: Initialise from the prior {θ(j)0 , w
(j)
0 }Mj=1 ∼ π0.

2: Draw a selection of pairs of MCMC kernels with associated tuning parameters,

{(h(j)0 ,K
(j)
h,0)}Mj=1 ≡ {(h

(j)
0 , i

(j)
0 )}Mj=1 ∼ π(h, i), and attach one to each particle arbi-

trarily.
3: for t = 1, . . . , n do

4: Reweight w
(j)
t = w

(j)
t−1πt(θ

(j)
t−1)/πt−1(θ

(j)
t−1). Result: {θ

(j)
t−1, w

(j)
t }Mj=1 ∼ πt.

5: if particle weights not degenerate (see text) then

6: {θ(j)t , w
(j)
t }Mj=1 ← {θ

(j)
t−1, w

(j)
t−1}Mj=1

7: {(h(j)t ,K
(j)
h,t)}Mj=1 ← {(h

(j)
t−1,K

(j)
h,t−1)}Mj=1

8: t→ t+ 1.
9: else

10: Resample: let K = {k1, . . . , kM} ⊆ {1, . . . ,M} be the resampling indices, then

{θ(k)t−1, 1/M}k∈K ∼ πt. Relabel: kj ← j, the jth resampling index so that

{θ(j)t−1, 1/M}Mj=1 ∼ πt. DO NOT resample kernels or tuning parameters at this
stage.

11: Move θ
(j)
t−1 via the πt–invariant MCMC kernel, K

(j)
h,t , and tuning parameter

h
(j)
t−1, denote the proposed new particle as θ̃

(j)
t and accepted/rejected particle

as θ
(j)
t . Result: {θ(j)t , 1/M}Mj=1 ∼ πt.

12: To obtain {(h(j)t ,K
(j)
h,t)}Mk=1 ≡ {(h

(j)
t , i

(j)
t )}, sample M times from (7). Allocate

the new selection to particles at random.
13: end if
14: end for

The new method treats the tuning parameters as auxiliary random variables, but
this is not the only way to choose good tuning parameters. One option would be to
directly optimise g(t)(h) at each iteration, however this function is typically intractable
(except for a small subset of targets and MCMC kernels). Another option would be to
use stochastic optimisation at each move step in the style of Andrieu and Thoms (2008).
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4 Theoretical Results

In this section the proposed algorithm will be justified by a series of theoretical results;
guidance as to how it should best be implemented will also be given. The results
presented here apply in the limit as the number of particles, M →∞.

We assume a multivariate tuning parameter, h, and that there are finitely many
types of MCMC kernel to choose from. In this section, we further assume that the
variance of the kernel R( · ) in (5) is 0. Lastly, we assume that the choice of MCMC
kernels can be represented as a random variable I, taking values in a finite set, i ∈ I :=
{i1, . . . , inK

}. The extension to a countable choice of kernels is trivial, but irrelevant
from a practical point of view. For notational simplicity we assume h can take values
in the same set H regardless of the value i, though generalising this is trivial.

For a slight notational simplification, the criterion Λ will be used, rather than Λ̃
(as suggested in algorithm 3); this does not affect the validity of any of the arguments,
which also hold for Λ̃. The section is split into two parts.

Firstly, in section 4.1, it is of interest to examine what happens to the distribution
of (h, i)s after one step of reweighting and resampling; this result will lead to a criterion
for the choice of weight function that guarantees MCMC mixing improvement with
respect to Λ. In section 4.2, the sequential improvement of (h, i)s will be considered
over many steps of the ASMC algorithm and with a changing target. General conditions
for convergence of ASMC to the optimal kernel and tuning parameter will be provided.

4.1 One Step Improvement and Weighting Function

In this section and in the relevant proofs, it is appropriate to temporarily drop the t

superscript, e.g., g(t) ≡ g, h
(j)
t ≡ h(j), θt−1 ≡ θ, θt ≡ θ′, and πt−1(θ) ≡ π(θ). For a

given number of particles M we will have that the θ are drawn from a density π[M ](θ)
which is the SMC approximation to π(θ).

To study the effect of reweighting and resampling on the distribution of the hs and

is, suppose that currently {(h(j), i(j))}Mj=1
iid∼ π(H|I)π(I), the joint pdf of a random

variable, (H, I). The weight attached to any pair (h, i) is random. Therefore, since
these pairs are assigned to particles independently of the value of the particle, the weight
has mean,

w[M ](h, i) =

∫
π[M ](θ)K

(i)
h (θ, θ′)f(Λ(θ, θ′))dθdθ′.

Now if we define a weight based on the conditional expection of f(Λ) when θ ∼ π(θ):

w(h, i) = EΘ,Θ′|H,I [f(Λ)|H = h, I = i] =

∫
π(θ)K

(i)
h (θ, θ′)f(Λ(θ, θ′))dθdθ′ (8)

then standard SMC results give that under regularity conditions, we will have that as
M → ∞ that w[M ](h, i) → w(h, i) in probability, see Crisan (2001) and Del Moral
(2004).
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The following proposition, which is used repeatedly in subsequent results, shows how
reweighting and resampling affects π(h, i).

Proposition 1. Suppose θ ∼ π[M ](θ) and {(h(j), i(j))}Mj=1
iid∼ π(H|I)π(I), the joint pdf

of a random variable, (H, I), independent of θ. Let w(h, i) be the weighting function
defined as in (8). Assume as M →∞ we have w[M ](h, i)→ w(h, i) in probability; also
suppose that

∑
i∈I

∫
H w(h, i)π(h, i)dh > 0 and is finite.

Then in the limit as M → ∞, the distribution of the reweighted and subsequently
resampled (h, i)s is,

π⋆(h, i) =
w(h, i)π(h, i)∑

i∈I

∫
H w(h, i)π(h, i)dh

. (9)

Proof: See Appendix 1. 2

Since ASMC uses a selection of kernels each with a selection of hs, it is appropriate
as a starting point to look for conditions under which their distribution is improved.
It would be desirable if, over π⋆(h, i), the objective function would on average take a
higher value, for then the new distribution would on average perform better with respect
to Λ than the old. This criterion can be stated in mathematical form: conditions on f
are sought for which,∑

i∈I

∫
H
π⋆(h, i)g(h, i)dh ≥

∑
i∈I

∫
H
π(h, i)g(h, i)dh

where

g(h, i) =

∫
π(θ)K

(i)
h (θ, θ′)Λ(θ, θ′)dθdθ′.

Lemma 1. Assuming g is π(h, i)–integrable, in the limit as M →∞,

Eπ⋆(h,i)[g(h, i)] ≥ Eπ(h,i)[g(h, i)]

⇐⇒ covπ(h,i)[g(h, i), w(h, i)] ≥ 0.
(10)

That is, provided there is positive correlation between the objective function g(h, i) and
the weighting function, w(h, i), the new distribution of (h, i)s will on average perform
better (on g(h, i)) with respect to Λ than the old.

Proof: The result is obtained by expanding definitions in (10):

Eπ⋆(h,i)[g(h, i)] ≥ Eπ(h,i)[g(h, i)],

⇐⇒ Eπ(h,i)[w(h, i)g(h, i)] ≥ Eπ(h,i)[w(h, i)]Eπ(h,i)[g(h, i)],

⇐⇒ covπ(h,i)[g(h, i), w(h, i)] ≥ 0.

2

Although this result does not directly yield a general form for f , it does give a simple
criterion that must be fulfilled by any candidate function. An immediate corollary gives
more concrete guidance:
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Corollary 1. A linear weighting scheme, f(Λ) = a+ Λ, where a ≥ 0, satisfies (10).

Proof: This is trivially verified using the linearity property of the covariance. 2

A consequence of this lemma is that the ASMC algorithm with linear weights will
lead to sequential improvement with respect to Λ under very weak assumptions on the
target and initial density for (h, i). A linear weighting scheme may at first glance seem
sub–optimal, and that it should be possible to learn (h, i) more quickly using a function
f(Λ) that increases at a super–linear rate. It is conjectured that such functions will not
always guarantee an improvement in the distribution of (h, i). For example consider
f(Λ) = Λ2, where the weighting function takes the form, w(h, i) = g(h, i)2 + V[Λ|H =
h, I = i]. Because of the V[Λ|H = h, I = i] term, which may be large for values of (h, i)
where g(h, i) is small, it is no longer true that covπ(h,i)[g(h, i), w(h, i)] ≥ 0 in general.

4.2 Convergence Over a Number of Iterations

The goal of this section is to provide a theoretical result concerning the ability of
ASMC to update the distribution of (h, i)s with respect to a sequence of targets,
π1(θ1), . . . , πn(θn). To simplify notation, it will be assumed that a move occurs at
each iteration of the algorithm. The result can be extended to the case where moves
occur intermittently, providing they incur infinitely often in the limit as the number of
data points goes to infinity.

Define a set of functions, {g(t)(h, i) : A → R≥0}nt=1,

g(t)(h, i) =

∫
πt(θt−1)K

(i)
h,t(θt−1, θt)Λ(θt−1, θt)dθt−1dθt,

where A = H× I; and for each t, Kh,t is a πt–invariant MCMC kernel. We assume for
each (h, i) ∈ A that g(t)(h, i) is integrable for all t.

For a linear weighting scheme,

π(t)(h, i) ∝ π(h, i)
t∏

s=1

(a+ g(s)(h, i)).

Below it will be shown that as t→∞ if the sequence of functions, {g(t)(h, i)}, converges
quickly enough to a fixed function, g(h, i), and if g has a unique global maximum,
(hopt, iopt), then π

(t)(h) will converge to a point mass on (hopt, iopt).

The main assumption of this theorem regards the convergence of the sequence of
functions {g(t)(h, i)}, condition (11) below. The existence of a limiting g(h, i) informs
the choice of parameterisation for the MCMC kernel. Though this assumption may seem
restrictive, the key to understanding the utility of the theorem in practice is that the
proposal should be adapted to suit the changing target in some way independent of the
tuning parameter. For example, standard Bayesian asymptotics (Ghosal 1999) suggest
that if θ0 is the true parameter value and Σt is the posterior variance after t observations,

then the posterior for Σ
−1/2
t (θt− θ0) will converge to a standard Gaussian distribution.
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In a random walk kernel, for example, the variance should therefore be parameterised
as h2Σ̂t, where Σ̂t is an estimate of the posterior variance given t observations. This
choice of parametrisation should mean that g(t)(h) converges to the the expected square
jump distance for a standard Gaussian target, given RWM with proposal variance hId,
where Id is the d× d identity matrix. The assumption is also linked to the idea that a
good value of (h, i) for the target at time t is required to be a good value at times later
on. As mentioned above, the motivation behind SMC is that successive targets should
be similar. These issues will be explored empirically in the next section.

Theorem 1. Let π(h, i) = π(h|i)π(i) be the initial density for the tuning parameter
with support A = H × I and a > 0. Define, as above,

π(t)(h, i) ∝ π(h, i)
t∏

s=1

(a+ g(s)(h, i)).

Suppose there exists a function (random variable) g : A → R≥0 such that

sup
A
|g(t) − g| ≤ kgt−α, α ∈ (0, 1), kg ∈ R>0. (11)

Furthermore, suppose g has a unique global maximum, (hopt, iopt) ∈ A, with the property
that for iopt there exists an open set around hopt in which g is continuous.

Then as t → ∞, π(t)(h, i) tends to a Dirac mass centred on the optimal pair of
kernel and associated scaling, (hopt, iopt).

Proof: See Appendix 2. 2

5 Results

This section is organised as follows. In Section 5.1, the convergence of h to an optimal
scaling will be demonstrated empirically using a linear Gaussian model. Then in Section
5.2 the problem of Bayesian mixture analysis will be introduced. In Sections 5.3 and
5.4 the proposed method will be evaluated in simulation studies using the example of
Bayesian mixture posteriors as defining the sequence of targets of interest.

As per Sherlock and Roberts (2009), the expected (Mahalanobis) square jumping
distance will be considered as an MCMC performance criterion:

Λ(θt−1, θt) = (θt−1 − θt)T Σ̂−1
πt

(θt−1 − θt),

where θt−1 and θt are two points in the parameter space and Σ̂πt is an empirical estimate
of the target covariance obtained from the current set of particles.

Two different MCMC kernels will be considered; these are defined by the following
two proposals:

qrw(θt−1, θ̃t) = N (θt−1, h
2Σ̂πt),

qlw(θt−1, θ̃t) = N (αθt−1 + (1− α)θ̄t, h2Σ̂πt),
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where θ̄t and Σ̂πt are respectively estimates of the target and covariance and in the
latter, h ∈ (0, 1] and α =

√
1− h2. The first of these is a random–walk proposal. The

second is based upon a method for updating parameter values in Liu and West (2001),
here named the ‘Liu/West’ proposal. The Liu/West proposal has mean shrunk towards
the mean of the target and the imposed choice of α =

√
1− h2 sets the mean and

variance of proposed particles to be the same as that of the current particles. Note
that if the target is Gaussian, then this proposal can be shown to be equivalent to a
Langevin proposal (Roberts and Tweedie 1996).

5.1 Convergence of h

It is of interest to examine some examples of g(h) and demonstrate convergence of
one of the proposed algorithms to the optimal scaling and kernel in the context of a
choice between two candidate proposal densities. In this section, we take as an example
the g(h) arising from (1) a Gaussian proposal and (2) a t proposal, both exploring a
Gaussian target and with mixing criterion Λ being the squared jumping distance.

The results in this section are based on 100 observations simulated from a 5–
dimensional standard Gaussian density, y1:100

iid∼ N (0, I5). The observation variance
was assumed to be known and therefore the probability model, or likelihood, was spec-
ified as,

π(y|θ) = N (y; θ, I5).

The prior on the unknown parameter, θ, the vector of means, was set to N (0, 5I5).
ASMC with a random walk proposal was used to generate M = 2000 particles from
the posterior. We allowed the algorithm to choose between two potential random walk
kernels: a multivariate Gaussian or a multivariate t. We fixed the multivariate t random
walk to have 3 degrees of freedom, giving the algorithm the option to choose a heavy-
tailed proposal (which as will be seen in this case, is sub-optimal). Resampling was
invoked when the ESS dropped below M/2 and no noise was added to the hs after
resampling. The initial distribution for h was chosen to be uniform on (0, 10) for both
proposal kernels. We note that for the target in consideration here, the sequence of
functions {g(t)} for either of the proposal kernels does not change much since each
intermediate target is exactly Gaussian and each proposal is scaled by the approximate
variance of the target. The optimum scaling for the Gaussian proposal kernel, hopt, was
computed using 1-dimensional numerical integration and Theorem 1 of Sherlock and
Roberts (2009).

The left plot in Figure 1 shows g(h) for this target explored by the Gaussian proposal
kernel (black) and the multivariate t proposal (green). This plot was produced by
simulation using standard Metropolis Hastings MCMC for a range of potential values
for h; the expected square jumping distance was computed empirically from 10000
samples. The plot shows that of the two proposals, we expect the random walk to be
chosen as it has the higher g(h), we further note that the optimal value of h for the
Gaussian proposal is slightly larger than the optimal value of h for the t proposal.

The right plot illustrates several features of the adaptive algorithm: the resampling
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frequency, when the multivariate t kernel is rejected as sub-optimal, that the algorithm
does indeed converge to the true optimal scaling for the Gaussian random walk and
the approximate rate of this convergence. Note also that just before rejecting the t
proposal, the method had approximately converged to the best scaling in that case as
well – slightly lower than the value for the Gaussian proposal, as expected.

Figure 1: Left plot: g(h) for a 5–dimensional Gaussian target, explored with a random
walk Metropolis algorithm (Gaussian proposal in black and t proposal in green) and with
ESJD as the optimization criterion. Right plot: convergence of h for the same density
based on 100 simulated observations; the horizontal line is the approximately optimal
scaling, 1.06; the dashed line indicates at each iteration the proportion of proposal
kernels that were Gaussian random walks.

5.2 Bayesian Mixture Analysis

The ability of the ASMC algorithm to learn MCMC tuning parameters in more compli-
cated scenarios is now evaluated using simulated data from a range of mixture likelihoods
(for a complete review of this topic, see Frühwirth-Schnatter (2006)). Let p1, . . . , pr > 0
be such that

∑r
i=1 pi = 1. Let N ( · ;µ, v) denote the normal density function with mean

µ and variance v. Let θ = {p1:r−1, v1:r, µ1:r}.

The likelihood function for a single observation, yi, is

π(yi|θ) =
r∑

j=1

pjN (yi;µj , vj). (12)

The prior θ was multivariate normal, on a transformed space using the generalised logit
scale for the weights, log scale for variances, and leaving the means untransformed.
The components of θ were assumed independent a priori; the priors were log(pj/pr) ∼
N (0, 12), log(vj) ∼ N (−1.5, 1.32) and µj ∼ N (0, 0.752), where j = 1, . . . , r − 1 in
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RWfixed Random walk ordered by means, with h chosen based on the the-
oretical results for Gaussian targets (Roberts and Rosenthal 2001;
Sherlock and Roberts 2009).

RWadaptive Adaptive random walk MCMC ordered on means with uniform
prior on h.

LWmean Adaptive Liu/West type proposal ordered by means.
LWvariance Adaptive Liu/West proposal ordered by variances.
Kmix Adaptive choice between random walk ordered by means,

Liu/West ordered using means and a Liu/West ordered on vari-
ances.

Table 1: Details of algorithms compared in the simulation study.

the case of the weights and j = 1, . . . , r for the means and variances. The MCMC
moves within the SMC algorithm were performed in the transformed space, with the
appropriate inverse transformed values to compute the likelihood in (12).

An issue with mixture models is that for the above choice of prior, the likelihood
and posterior are invariant to permutation of the component labels (Stephens 2000).
As a result the posterior distribution has a multiple of r! modes, corresponding to each
possible permutation. One way of overcoming this problem is by introducing a constraint
on the parameters, such as labelling the components so that µ1 < µ2 < · · · < µr, or so
that v1 < v2 < · · · < vr. In the MCMC literature, constraints such as these are often
imposed post–processing, see for example Celeux et al. (2000). This choice will affect
the empirical moments of the resulting posterior and hence the proposal distribution
of the MCMC kernel – both the random walk and Liu/West proposals depend on the
posterior covariance, the latter also depending on the mean. In particular if there is
a choice of ordering whereby the posterior is closer to Gaussian, then this is likely to
lead to better mixing of the MCMC kernels. This phenomenon motivates the idea that
it is also possible to choose between orderings on the parameter vector, which will be
investigated in the sequel.

5.3 Details of Implementation of ASMC

In analysing the simulated data, a number of SMC and ASMC algorithms were com-
pared. These correspond to using the MCMC kernels shown in Table 1. In each case
the reference to ordering relates to how the component labels were defined, and thus
affect the estimate of the posterior mean and covariance used.

The above methods were also compared with the adaptive MCMC algorithm of
Haario et al. (1998), denoted AMCMC. The specific implementation is as follows.
The prior densities were identical to those for ASMC, the parameter vector was ordered
by means and the random walk tuning was computed using the approximately optimal
Gaussian scaling given by h = 2.4/

√
3r − 1. AMCMC was run for 12000 iterations for

the 5 dimensional datasets (datasets 1–4 in Section 5.4) and for 30000 iterations for the
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8 dimensional datasets (datasets 5 and 6 in Section 5.4): these values were chosen so as
to approximately match the number of likelihood computations involved between the
ASMC and AMCMC methods. The burn–in period was set to half of the number of
iterations and the method was initialised by a draw from the prior. There was an initial
non–adaptive phase, lasting 1000 iterations, where the proposal kernel was scaled by the
prior covariance and after which scaling was via estimates of the posterior covariance
computed from the chain to–date, this was updated every 100 iterations.

For the ASMC algorithms, the initial distribution of hs was chosen to be uniform
on (0, 2] for the random walk and on (0, 1] for the Liu/West proposal. In the case of
the random walk, this range of hs can be justified by considering the optimal scaling for
a random walk Metropolis on a multivariate Gaussian target in 5 dimensions namely
2.38/

√
5 = 1.06 (and decays with increasing dimension as O(d−1/2)). For the Liu/West,

h must be in (0, 1].

In each case we chose R (see Equation 5) to be a Gaussian kernel with variance
0.0152. A sensitivity analysis showed that changing the variance of the noise slightly
did not affect the conclusions of this research. The parameter for the linear h-weighting
scheme was a = 0. If any h was perturbed below zero, a small value, 1 × 10−6, was
imputed and similarly for the Liu/West approach, any h perturbed above 1 was replaced
by 1.

The number of particles was set to M = 2000 for the 2–mixture datasets and M =
5000 for the 3–mixture datasets. Each algorithm was run 100 times on each dataset
with the order of observations randomised each time. For the MCMC based methods
an ESS tolerance ofM/2 was used, as in Jasra et al. (2007). Resampling of the particles
was via residual sampling (Whitley 1994; Liu et al. 1998), but multinomial sampling
was used in selecting hs. For ease of computing posterior quantities of interest, each of
the above algorithms was forced to resample and move on the last iteration.

To compare the performance of different methods, a measure of the accuracy of the
estimated predictive density was used. This is advantageous because it is invariant to
re–labelling of the mixture components – the alternative of comparing the accuracy
of posterior marginals is compromised by the so-called label switching problem. The
chosen accuracy measure was the variability of the predictive density (VPD) and was
calculated as follows. Each run of the algorithm produces a weighted particle set, from
which an estimate of E[π(y(i)|y1:n)] can be obtained at 100 points, {y(i) : i = 1, . . . , 100},
equi-spaced between -2.5 and 2.5. For each i, the 100 simulation runs produce 100
realisations of E[π(y(i)|y1:n)]; let ŷ(i,j) be the estimate of y(i) obtained from run j. The
VPD measure used in this paper is

meani[varj(ŷ
(i,j))],

where meani is the mean over the is and varj is the variance of the estimates of y(i)

obtained from the 100 simulations. The VPD gives an indication of the global variability
of the predictive density across the simulations. In the tables, the relative VPD is used,
which gives a scale–free comparison between methods. The SMC/ASMC algorithm
with a relative VPD of 1 is the reference algorithm and has the smallest VPD of the
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Dataset 1: 0.5N (y;−0.25, 0.52) + 0.5N (y; 0.25, 0.52)
Dataset 2: 0.5N (y; 0, 12) + 0.5N (y; 0, 0.12)
Dataset 3: 0.3N (y;−1, 0.52) + 0.7N (y; 1, 0.52)
Dataset 4: 0.5N (y;−0.75, 0.12) + 0.5N (y; 0.75, 0.12)
Dataset 5: 0.35N (y;−0.1, 0.12) + 0.3N (y; 0, 0.52) + 0.35N (y; 0.1, 12)
Dataset 6: 0.25N (y;−0.5, 0.12) + 0.5N (y; 0, 0.22) + 0.25N (y; 0.5, 0.12)

Table 2: Details of likelihoods, π(y|θ), in the simulation study.

SMC/ASMC methods; larger values indicate higher VPDs. For the AMCMC methods,
the predictive densities were computed using all available samples, i.e., with 6000 for the
2–mixture datasets and 15000 for the 3–mixture datasets. For the SMC/ASMC methods
a Rao–Blackwellised version of the predictive density was computed using all current and
proposed particles available from the last iteration (that is, using 4000/10000 sample
points respectively for the 2/3–mixture datasets).

5.4 Results

100 realisations were simulated from the following likelihoods in Table 2. This choice
of datasets in combination with the selection of MCMC kernels allows several hypothe-
ses to be tested empirically. Firstly, by comparing the performance of RWfixed with
RWadaptive in these cases, it is possible to see whether anything is lost or gained by
adapting the proposal kernel. Secondly, the impact of the different kernel orderings
on MCMC mixing will become apparent by considering the performance of LWmean
and LWvariance in these settings. Datasets 3, 4 and 6 have well ‘separated’ means and
similar variances, so one might expect algorithms ordering by means to perform better;
whereas datasets 2 and 5 have well separated variances and similar means, so perhaps
the algorithms ordering by variances might do well here. Thirdly, the Kmix algorithm
should be able to choose the best ordering and it is of interest to compare the results
from this algorithm with an adaptive version of the individual kernels.

The simulation results from these datasets are presented in Table 3. These give both
the relative VPD for each method, but also an estimated mean ESJD for each method.

The mean number of likelihood evaluations for the SMC algorithms in datasets 1–
6 were respectively: 5.65 ×105, 9.17×105, 9.18×105, 9.12×105, 2.65×106, 2.40 ×106;
there was little variability between the individual algorithms. In comparison, AMCMC
used 1.2×105 likelihood evaluations for datasets 1–4 and 3×106 likelihood evaluations
for the others.

As would be hoped, a very strong correlation between lower VPD and higher ESJD
is evident for the SMC/ASMC algorithms. This empirically supports the use of ESJD
as the chosen criterion for adapting the MCMC kernels.

There is relatively little difference across scenarios between the fixed and adaptive
random walk methods. Furthermore, the adaptive random walk settles on a similar
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Table 3: Rel. VPD is relative VPD, JD is the mean square jumping distance, Acc is
the mean final acceptance probability, h is the mean final scaling by kernel and Propn is
the mean final kernel proportions. The kernels ‘LWm’ and ‘LWv’ indicate respectively
a Liu/West proposal ordering on means or variances.

Dataset 1

Method Rel.
VPD

JD Acc. h Propn

LWvariance 1 1.869 0.3 0.941
LWmean 1.189 1.818 0.32 0.956
Kmix 1.258 1.845 0.317 LWm 0.963

LWv 0.958
LWm 0.785
LWv 0.215

RWadaptive 2.391 0.708 0.21 0.946
AMCMC 2.396 0.575 0.13 1.073
RWfixed 3.414 0.641 0.18 1.064

Dataset 2

LWvariance 1 9.139 0.873 0.978
Kmix 2.843 9.023 0.854 LWm 0.984

LWv 0.978
LWm 0.005
LWv 0.995

AMCMC 28.333 0.197 0.019 1.073
LWmean 112.23 1.869 0.129 0.969
RWadaptive 188.094 0.77 0.134 0.584
RWfixed 219.907 0.596 0.041 1.064

Dataset 3

LWmean 1 6.38 0.792 0.98
Kmix 1.54 6.378 0.806 LWm 0.979 LWm 1
AMCMC 7.465 0.847 0.146 1.073
RWfixed 40.538 1.124 0.277 1.064
RWadaptive 45.739 1.057 0.369 1.045
LWvariance 148.827 0.737 0.064 0.966

Dataset 4

LWmean 1 7.132 0.875 0.98
Kmix 1.099 7.127 0.877 LWm 0.979 LWm 1
AMCMC 24.024 0.462 0.057 1.073
RWadaptive 48.606 1.143 0.274 1.086
RWfixed 51.919 1.167 0.298 1.064
LWvariance 1096.167 0.632 0.027 0.961

Dataset 5

AMCMC 0.883 0.356 0.04 0.849
Kmix 1 2.258 0.234 LWm 0.964

LWv 0.971
LWm 0.044
LWv 0.956

LWvariance 1.151 2.284 0.183 0.971
LWmean 2.792 1.007 0.092 0.961
RWadaptive 4.923 0.847 0.205 0.435
RWfixed 5.187 0.56 0.055 0.84

Dataset 6

LWmean 1 4.099 0.277 0.972
Kmix 1.018 3.994 0.363 LWm 0.973 LWm 1
AMCMC 1.556 0.211 0.04 0.849
RWfixed 3.244 0.996 0.429 0.84
RWadaptive 3.259 0.93 0.192 0.693
LWvariance 3.951 1.951 0.13 0.944
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scaling as the fixed scaled version in datasets 3 and 4, whereas in datasets 1, 2, 5 and
6, RWadaptive settles to values below RWfixed. In datasets 1, 2, 4 and 5, the adaptive
RW outperformed the fixed equivalent (though the difference was negligible in datasets
4 and 5); this is likely due to the fact that the covariance was not a good estimate and
the adaptive version of the algorithm was able to rescale to compensate for this. In
datasets 3 and 6, the fixed random walk marginally outperformed the adaptive.

The ‘correctly ordered’ sequential Liu/West algorithms considerably outperform
those using RW kernels in all six datasets and the incorrectly ordered versions per-
form worse or as poorly as the RW. For the Liu/West proposals, the h selected in each
dataset was very close to 1: this special value corresponds to an independence kernel
in the form of a moment–matched Gaussian approximation of the target. This is of in-
terest as, in combination with the high acceptance rates of between 80–87% in datasets
2–4, it suggests that the ‘correct’ ordering makes the target, ostensibly a very complex
density function, approximately Gaussian in these cases.

The Kmix algorithm is able to choose between orderings; the advantages of this are
clearly evidenced in the results, as it selects the best ordering in each case, with the
exception of dataset 1 (where the means and variances are both similar). The Kmix
sampler settles almost unanimously on one ordering above the others. These results
show empirically that there is not much difference in using a single (correctly chosen)
kernel compared with using a selection of kernels.

The performance of AMCMC was surpassed in all cases by the Kmix algorithm ex-
cepting dataset 5, where AMCMC was the best performing algorithm. In this latter
case and in dataset 6, neither AMCMC nor the SMC/ASMC algorithms performed well.
AMCMC outperformed RWadaptive in each case apart from dataset 1, where the dif-
ference was small. However, the results show the average jumping distance of the kernel
used in the ASMC algorithm was greater than that of AMCMC in all cases, suggesting
ASMC is able to adapt better to well-mixing kernels. To make this comparison more
clear, two MCMC algorithms were run on each data-set, one using the final kernel found
by AMCMC and one using a kernel based on the ASMC run, with the final estimated
covariance matrix and the final mean value of the tuning parameter. The resulting
MCMC algorithms performed very similarly in 3 cases (VPD of the two MCMC algo-
rithms within 10% of each other) and the kernel found by ASMC performed better in
the other 3 (VPD reduced by 30%, 40% and 80%).

The R and C functions for the mixture example are available from the corresponding
author.

6 Discussion

This paper introduces a new method for automatically tuning and choosing between
different MCMC kernels. Where MCMC based SMC code already exists, adapting the
hs would be a relatively straightforward means of enhancing performance, the main
effort being in calculating the ratio of the proposed particles in the accept/reject step.
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Probably the most important conclusion from the simulation studies presented is that
there is not much lost in terms of performance in the adaption process – the Kmix al-
gorithm performed comparably to the respective best performing individual component
and the adaptive random walk Metropolis performed similarly to the fixed, approxi-
mately optimally scaled version.

Although the method as presented has assumed that i.i.d. observations are available
from the likelihood, the ASMC algorithm readily extends to the case of a dependent
sequence. In this case the tth target density is given by,

πt ∝ π(θ)π(y1|θ)
t∏

i=2

π(yi|y1:i−1, θ), (13)

the extension to general sequences of target densities, {πi}ni=1, including (13), being
immediate and implied by the choice of notation in Algorithm 3.

The main assumption of ASMC is that a good h at time t is likely also to perform well
at time t+1. One piece of evidence that supports this assumption is that the resampling
frequency decreases with an increasing number of observations (Chopin 2002). This
implies that, although π1 and π2 may be quite different, π1001 and π1002 are likely to
be less so, provided that the data provides sufficient information on the parameters.
As mentioned earlier in the text, the assumption of similar successive target densities
is also required for the efficiency of the non–adaptive version (Chopin 2002; Del Moral
et al. 2006).

ASMC can be easily extended by considering other proposal densities. For example
it is possible to formulate a t–distributed version of the Liu/West proposal, allowing
for heavier tailed proposals, the heaviness of which can be selected automatically by
adaptively choosing the number of degrees of freedom; this t–based proposal includes
the Liu/West as a special case. Other interesting algorithms can be formulated using
DE proposals (Ter Braak 2006) (which generalises the snooker algorithm of Gilks et al.
(1994)) or regional MCMC proposals (Roberts and Rosenthal 2009; Craiu et al. 2009)
– both of which appeal strongly to the particle structure of the new method.
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Atchadé, Y. and Rosenthal, J. (2005). “On adaptive Markov chain Monte Carlo algo-
rithms.” Bernoulli, 11(5): 815–828. 414
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Appendix 1: Proof of Proposition 1

Recall that we use π to denote a probability density. Let Λ(j) = Λ(θ(j), θ′(j)), i.e.,
the observed Λ for the jth particle and I denote the indicator function. The collection
{(h(j), i(j)), 1/M}Mj=1 is an iid sample from π(H, I). Let

Wj =
f(Λ(j))∑M
i=1 f(Λ

(i))

be a set of weights and define a discrete random variable (H⋆, I⋆), which takes value
(h(j), i(j)) with probability Wj . For any B = HB × IB ⊆ H× I,

IPr[(H⋆, I⋆) ∈ B] =
M∑
j=1

WjI[(h(j), i(j)) ∈ B],

=
1
M

∑M
j=1 f(Λ

(j))I[(h(j), i(j)) ∈ B]
1
M

∑M
i=1 f(Λ

(i))
.

Now we wish to use the strong law of large numbers for the numerator and denominator.
For this we need to know the expectations of these, which can be calculated using the
properties of conditional expectation in terms of w[M ](h(j), i(j)), with for example,

Eπ[M](θ)K(θ,θ′){f(Λ)I[(H⋆, I⋆) ∈ B]} = EH⋆,I⋆{w[M ](H, I)I[(H, I) ∈ B]}.

Thus in the limit as M →∞, using also that w[M ](h, i)→ w(h, i) we get∣∣∣∣∣
1
M

∑M
j=1 f(Λ

(j))I[(h(j), i(j)) ∈ B]
1
M

∑M
i=1 f(Λ

(i))
−
∑

k∈IB

∫
s∈HB

w(s, k)π(s, k)ds∑
i∈I

∫
h∈H w(h, i)π(h, i)dh

∣∣∣∣∣
≤

∣∣∣∣∣
1
M

∑M
j=1 f(Λ

(j))I[(h(j), i(j)) ∈ B]
1
M

∑M
i=1 f(Λ

(i))
−
∑

k∈IB

∫
s∈HB

w[M ](s, k)π(s, k)ds∑
i∈I

∫
h∈H w[M ](h, i)π(h, i)dh

∣∣∣∣∣
+

∣∣∣∣∣
∑

k∈IB

∫
s∈HB

w[M ](s, k)π(s, k)ds∑
i∈I

∫
h∈H w[M ](h, i)π(h, i)dh

−
∑

k∈IB

∫
s∈HB

w(s, k)π(s, k)ds∑
i∈I

∫
h∈H w(h, i)π(h, i)dh

∣∣∣∣∣
→ 0,

as required. 2
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Appendix 2: Proof of Theorem 1

The of this theorem proceeds in two parts. We start by observing that π(n)(h, i) =
π(h, i) exp{nfn} where,

fn(h, i) =
1

n

n∑
t=1

log(a+ g(t)(h, i)).

In the first part, the following results will be proved:

� There exists a function, f : A → R≥0, such that sup(h,i)∈A |fn − f | ≤ kfn−α.

� (hopt, iopt) is the unique global maximum of f .

� There exists an open set of h around hopt in which f(hopt, iopt) is continuous.

In the second part of the proof, these results will be used to show that as n → ∞,
π(n)(h, i) approaches a Dirac mass centred on (hopt, iopt).

Part 1

Claim that f(h, i) = log(a+ g(h, i)). It is easy to show that as g(h, i) ≥ 0,

sup
(h,i)∈A

|(a+ g(t))/(a+ g)− 1| ≤ klt−α,

where kl = kg/a.

Using log(x) ≤ x− 1 we have, that for any (h, i) ∈ A

log

{
a+ g(t)

a+ g

}
≤ a+ g(t)

a+ g
− 1 ≤ klt−α.

Put km = 2kl and c = −(1/2) log(1/2), noting that c ∈ (0, 1). Since the function
γ(x) = 1 − x − exp{−2x} is increasing on [0, c], we have γ(x) ≥ 0 on this interval, as
γ(0) = 0. Hence by re-arranging and taking logs in the inequality γ(x) ≥ 0, we have
log(1−x) ≥ −2x for any x ∈ [0, c] and so provided that t > (kl/c)

1/α, for all (h, i) ∈ A,

log

{
a+ g(t)

a+ g

}
≥ log(1− klt−α) ≥ −2klt−α = −kmt−α.

The preceding arguments show that for all t > (kl/c)
1/α,

sup
(h,i)∈A

∣∣∣∣log{a+ g(t)

a+ g

}∣∣∣∣ = sup
(h,i)∈A

| log(a+ g(t))− log(a+ g)| ≤ kmt−α.
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Put t⋆ = ⌈(kl/c)1/α⌉ and ct⋆ =
∑t⋆−1

t=1

∣∣log(a+ g(t))− log(a+ g)
∣∣ < ∞ then for all

(h, i) ∈ A,

|fn − log(a+ g)| ≤ 1

n

n∑
t=1

∣∣∣log(a+ g(t))− log(a+ g)
∣∣∣ ,

≤ ct⋆

n
+
km
n

n∑
t=t⋆

t−α,

≤ ct⋆

n
+
km
n

∫ n

0

t−αdt,

=
ct⋆

n
+

km
1− α

n−α,

= ct⋆n
−α +

km
1− α

n−α, since 0 < α < 1,

< kfn
−α,

where kf = ct⋆ + km/(1− α) as required.

The continuity and strict monotonicity of the logarithm and the assumptions on g
imply that (hopt, iopt) is the unique global maximum of f and also that for iopt there
exists an open set around hopt in which f is continuous.

Part 2

In this part, the properties of f will be used to show that for any set containing
(hopt, iopt) as n→∞, the probability that (H, I) belongs to that set tends to 1.

By the uniqueness of (hopt, iopt) and local continuity of f about this point, there
exists an ϵ > 0 such that for all i ̸= iopt

f(hopt, iopt)−max
h

f(h, i) > ϵ.

Let X̄ denote the complement of X in A. LetH0 ⊂ H be any set containing hopt. By
virtue of the global uniqueness of (hopt, iopt) and continuity of f( · , iopt) around hopt,
there exists an open set H1 ⊂ H0 also containing hopt on which g( · , iopt) is concave and
with the property, infh∈H1 f(h, iopt) ≥ sup(h)∈H̄1

f(h, iopt). Such a set exists precisely
because g( · , iopt) is locally continuous about the global maximum.

For any H1 we can define an H2 ⊂ H1 such that there exists ϵ1 < ϵ2 with

sup
h∈H2

{f(hopt, iopt)− f(h, iopt)} = ϵ1,

inf
h∈H̄1

{f(hopt, iopt)− f(h, iopt)} = ϵ2.

Furthermore for any H0 we can choose H1 and H2 such that ϵ > ϵ2.
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Consider the probability of H ∈ H0 and I = iopt after n updates,

IPr[H ∈ H0 ∩ I = iopt] > IPr[H ∈ H1 ∩ I = iopt]

=

∫
H1
π(n)(h, iopt)dh∑

i∈I

∫
H π(n)(h, i)dh

,

=

∫
H1
π(h, iopt) exp{nfn(h, iopt)}dh∑

i∈I

∫
H π(h, i) exp{nfn(h, i)}dh

.

Now we can obtain a lower bound for the numerator∫
H1

π(h, iopt) exp{nfn(h, iopt)}dh ≥
∫
H2

π(h, iopt) exp{nfn(h, iopt)}dh

≥
∫
H2

π(h, iopt) exp{nf(h, iopt)− kfn1−α}dh

≥
∫
H2

π(h, iopt) exp{nf(hopt, iopt)

−nϵ1 − kfn1−α}dh.

A similar argument gives an upper bound for the difference between the denominator
and the numerator∑

i∈I

(∫
H
π(h, i) exp{nfn(h, i)}dh

)
−
∫
H1

π(h, iopt) exp{nfn(h, iopt)}dh

≤
∑
i∈I

∫
H
π(h, i) exp{nf(hopt, iopt)− nϵ2 + kfn

1−α}dh.

Thus we have ∫
H1
π(h, iopt) exp{nfn(h, iopt)}dh∑

i∈I

(∫
H π(h, i) exp{nfn(h, i)}dh

)
−
∫
H1
π(h, iopt) exp{nfn(h, iopt)}dh

≥ exp{n(ϵ2 − ϵ1) + 2kfn
1−α}

∫
H2

π(h, iopt)dh.

This tends to infinity as n → ∞ since ϵ2 − ϵ1 > 0. Therefore IPr[(H, I) ∈ H0 ×
{iopt}] → 1 as n → ∞. Since the choice of H0 ∋ hopt was arbitrary, it may be
made infinitesimally small and still, after enough iterations of the sampler IPr[(H, I) ∈
H0 × {iopt}] → 1. This implies that π(n)(h, i) tends in distribution to a Dirac mass
centred on (hopt, iopt) and establishes the claim. 2

Acknowledgments

The authors wish to thank the anonymous reviewers of this article, whose feedback has helped

to improve it.


	mueller_all_new.pdf
	contrib1.pdf
	Contributed Discussion on Article by Müller and Mitrato.44em.


	burgette.pdf.pdf
	Multiple-Shrinkage Multinomial Probit Models with Applications to Simulating Geographies in Public Use Datato.44em.L.F. Burgette and J.P. Reiter


