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We propose a statistical modeling technique, called the Hierarchical
Association Rule Model (HARM), that predicts a patient’s possible future
medical conditions given the patient’s current and past history of reported
conditions. The core of our technique is a Bayesian hierarchical model for
selecting predictive association rules (such as “condition 1 and condition 2
→ condition 3”) from a large set of candidate rules. Because this method
“borrows strength” using the conditions of many similar patients, it is able to
provide predictions specialized to any given patient, even when little infor-
mation about the patient’s history of conditions is available.

1. Introduction. The emergence of large-scale medical record databases
presents exciting opportunities for data-based personalized medicine. Prediction
lies at the heart of personalized medicine and in this paper we propose a statistical
model for predicting patient-level sequences of medical conditions. We draw on
new approaches for predicting the next event within a “current sequence,” given
a “sequence database” of past event sequences [Rudin et al. (2011a, 2011b)].
Specifically, we propose the Hierarchical Association Rule Model (HARM) that
generates a set of association rules such as dyspepsia and epigastric pain →
heartburn, indicating that dyspepsia and epigastric pain are commonly followed
by heartburn. HARM produces a ranked list of these association rules. Patients
and caregivers can use the rules to guide medical decisions [see Hood and Friend
(2011), e.g.], while systems can use predictions to allocate resources [Vogenberg
(2009)]. Built-in explanations represent a particular advantage of the association
rule framework—the rule predicts heartburn because the patient has had dyspepsia
and epigastric pain.

In our setup, we assume that each patient visits a healthcare provider period-
ically. At each encounter, the provider records time-stamped medical conditions
experienced since the previous encounter. In this context, we address several pre-
diction problems such as the following:
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• Given data from a sequence of past encounters, predict the next condition that a
patient will report.

• Given basic demographic information, predict the first condition that a patient
will report.

• Given partial data from an encounter (and possibly prior encounters), predict the
next condition.

Though medical databases often contain records from thousands or even mil-
lions of patients, most patients experience only a handful of the massive set of
potential conditions. This patient-level sparsity presents a challenge for predictive
modeling. Our hierarchical modeling approach attempts to address this challenge
by borrowing strength across patients.

The sequential event prediction problem is new, a supervised learning prob-
lem that has been formalized here and by Rudin et al. (2011a, 2011b). Rules are
particularly useful in our context: rules yield very interpretable models, and their
conditional probabilities involve few variables and are thus more reliable to esti-
mate.

The experiments this paper presents indicate that HARM outperforms several
baseline approaches, including a standard “maximum confidence, minimum sup-
port threshold” technique used in association rule mining, and also a nonhierarchi-
cal version of our Bayesian method [from Rudin et al. (2011a, 2011b)] that ranks
rules using “adjusted confidence.”

More generally, HARM yields a prediction algorithm for sequential data that
can potentially be used for a wide variety of applications beyond condition pre-
diction. For instance, the algorithm can be directly used as a recommender system
(e.g., for vendors such as Netflix, amazon.com or online grocery stores such as
Fresh Direct and Peapod). It can be used to predict the next move in a video game
in order to design a more interesting game, or it can be used to predict the winners
at each round of a tournament (e.g., the winners of games in a football season). All
of these applications possess the same basic structure as the condition prediction
problem: a database consisting of sequences of events, where each event is asso-
ciated to an individual entity (medical patient, customer, football team). As future
events unfold in a new sequence, our goal is to predict the next event.

In Section 2 we provide basic definitions and present our model. In Section 3
we evaluate the predictive performance of HARM, along with several baselines
through experiments on clinical trial data. Section 4 provides related work, and
Section 5 provides a discussion and offers potential extensions.

2. Method. This work presents a new approach to association rule mining
by determining the “interestingness” of rules using a particular (hierarchical)
Bayesian estimate of the probability of exhibiting condition b, given a set of cur-
rent conditions, a. We will first discuss association rule mining and its connection
to Bayesian shrinkage estimators. Then we will present our hierarchical method
for providing personalized condition predictions.
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2.1. Definitions. An association rule in our context is an implication a → b

where the left side is a subset of conditions that the patient has experienced, and b

is a single condition that the patient has not yet experienced since the last en-
counter. Ultimately, we would like to rank rules in terms of “interestingness” or
relevance for a particular patient at a given time. Using this ranking, we make pre-
dictions of subsequent conditions. Two common determining factors of the “in-
terestingness” of a rule are the “confidence” and “support” of the rule [Agrawal,
Imieliński and Swami (1993); Piatetsky-Shapiro (1991)].

The confidence of a rule a → b for a patient is the empirical probability:

Conf(a → b) := Number of times conditions a and b were experienced

Number of times conditions a were experienced

:= P̂ (b|a).

The support of set a is as follows:

Support(a) := Number of times conditions a were experienced

∝ P̂ (a),

where P̂ (a) is the empirical proportion of times that conditions a were experi-
enced. When a patient has experienced a particular set of conditions only a few
times, a new single observation can dramatically alter the confidence P̂ (b|a) for
many rules. This problem occurs commonly in our clinical trial data, where most
patients have reported fewer than 10 total conditions. The vast majority of rule
mining algorithms address this issue with a minimum support threshold to exclude
rare rules, and the remaining rules are evaluated for interestingness [reviews of in-
terestingness measures include those of Tan, Kumar and Srivastava (2002); Geng
and Hamilton (2007)]. The definition of interestingness is often heuristic, and is
not necessarily a meaningful estimate of P(b|a).

It is well known that problems arise from using a minimum support thresh-
old. For instance, consider the collection of rules meeting the minimum support
threshold condition. Within this collection, the confidence alone should not be
used to rank rules: among rules with similar confidence, the rules with larger sup-
port should be preferred. More importantly, “nuggets,” which are rules with low
support but very high confidence, are often excluded by the threshold. This is prob-
lematic, for instance, when a condition that occurs rarely is strongly linked with
another rare condition; it is essential not to exclude the rules characterizing these
conditions. In our data, the distribution of conditions has a long tail, where the vast
majority of events happen rarely: out of 1800 possible conditions, 1400 occur less
than 10 times. These 1400 conditions are precisely the ones in danger of being
excluded by a minimum support threshold.

Our work avoids problems with the minimum support threshold by ranking rules
with a shrinkage estimator of P(b|a). These estimators directly incorporate the
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support of the rule. One example of such an estimator is the “adjusted confidence”
[Rudin et al. (2011a, 2011b)]:

AdjConf(a → b,K) := Number of times conditions a and b were experienced

Number of times conditions a were experienced + K
.

The effect of the penalty term K is to pull low-support rules toward the bottom
of the list; any rule achieving a high adjusted confidence must overcome this pull
through either a high enough support or a high confidence. Using the adjusted con-
fidence avoids the problems discussed earlier: “interestingness” is closely related
to the conditional probability P(b|a), and, among rules with equal confidence, the
higher support rules are preferred, and there is no strict minimum support thresh-
old.

In this work we extend the adjusted confidence model in an important respect,
in that our method shares information across similar patients to better estimate
the conditional probabilities. The adjusted confidence is a particular Bayesian esti-
mate of the confidence. Assuming a Beta prior distribution for the confidence, the
posterior mean is

P̃ (b|a) := α + #(a&b)

α + β + #a
,

where #x is the support of condition x, and α and β denote the parameters of
the (conjugate) Beta prior distribution. Our model allows the parameters of the
Binomial to be chosen differently for each patient and also for each rule. This
means that our model can determine, for instance, whether a particular patient is
more likely to repeat a condition that has occurred only once, and also whether a
particular condition is more likely to repeat than another.

We note that our approach makes no explicit attempt to infer causal relationships
between conditions. The observed associations may in fact arise from common
prior causes such as other conditions or drugs. Thus, a rule such as dyspepsia →
heartburn does not necessarily imply that successful treatment of dyspepsia will
change the probability of heartburn. Rather, the goal is to accurately predict heart-
burn in order to facilitate effective medical management. The article of Shmueli
(2010) contains a more complete discussion of this distinction.

2.2. Hierarchical association rule model (HARM). For a patient i and a given
rule, r , say, we observe yir co-occurrences (number of times lhs and rhs were
experienced), where there were a total of nir encounters that include the lhs (nir is
the support for lhs). We model the number of co-occurrences as Binomial(nir ,pir)

and then model pir hierarchically to share information across groups of similar
individuals. Define M as a I × D matrix of static observable characteristics for a
total of I individuals and D observable characteristics, where we assume D > 1
(otherwise we revert back to a model with a rule-wise adjustment). Each row of M
corresponds to a patient and each column to a particular characteristic. We define
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the columns of M to be indicators of particular patient categories (gender, or age
between 30 and 40, e.g.), though they could be continuous in other applications.
Let Mi denote the ith row of the matrix M. We model the probability for the ith
individual and the r th rule pir as coming from a Beta distribution with parameters
πir and τi . We then define πir through the regression model πir = exp(M′

iβr +
γi), where βr defines a vector of regression coefficients for rule r and γi is an
individual-specific random effect. More formally, we propose the following model:

yir ∼ Binomial(nir ,pir),

pir ∼ Beta(πir , τi),

πir = exp(M′
iβr + γi).

Under this model,

E(pir |yir , nir ) = yir + πir

nir + πir + τi

,

which is a more flexible form of adjusted confidence. This expectation also pro-
duces nonzero probabilities for a rule even if nir is zero (patient i has never re-
ported the conditions on the left-hand side of r before). This could allow rules to
be ranked more highly even if nir is zero. The fixed effect regression component,
M′

iβr , adjusts πir based on the patient characteristics in the M matrix. For exam-
ple, if the entries of M represented only gender, then the regression model with
intercept βr,0 would be βr,0 + βr,11male, where 1male is one for male respondents
and zero for females. Being male, therefore, has a multiplicative effect of eβr,1

on πir . In this example, the M′
iβr value is the same for all males, encouraging

similar individuals to have similar values of πir . For each rule r , we will use a
common prior on all coefficients in βr ; this imposes a hierarchical structure, and
has the effect of regularizing coefficients associated with rare characteristics.

The πir ’s allow rare but important “nuggets” to be recommended. Even across
multiple patient encounters, many conditions occur very infrequently. In some
cases these conditions may still be highly associated with certain other conditions.
For instance, compared to some conditions, migraines are relatively rare. Patients
who have migraines, however, typically also experience nausea. A minimum sup-
port threshold algorithm might easily exclude the rule “migraines → nausea” if
a patient hasn’t experienced many migraines in the past. This is especially likely
for patients who have few encounters. In our model, the πir term balances the
regularization imposed by τi to, for certain individuals, increase the ranking of
rules with high confidence but low support. The τi term reduces the probability
associated with rules that have appeared few times in the data (low support), with
the same effect as the penalty term (K) in the adjusted confidence. Unlike the
cross-validation or heuristic strategies suggested in Rudin et al. (2011a, 2011b),
we estimate τi as part of an underlying statistical model. Within a given rule, we
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assume τi for every individual comes from the same distribution. This imposes ad-
ditional structure across individuals, increasing stability for individuals with few
observations.

It remains now to describe the precise prior structure on the regression parame-
ters and hyperparameters. We assign Gaussian priors with mean 0 and variance σ 2

τ

to the τ on the log scale. Since any given patient is unlikely to experience a specific
medical condition, the majority of probabilities are close to zero. Giving τi a prior
with mean zero improves stability by discouraging excessive penalties. We assign
all elements βr,d of vectors βr a common Gaussian prior on the log scale with
mean μβ and variance σ 2

β . We also assume each γi comes from a Gaussian distri-

bution on the log scale with common mean μγ and variance σ 2
γ . Each individual

has their own γi term, which permits flexibility among individuals; however, all
of the γi terms come from the same distribution, which induces dependence be-
tween individuals. We assume diffuse uniform priors on the hyperparameters σ 2

τ ,
μβ and σ 2

β . Denote Y as the matrix of yir values, N as the matrix of nir values,
and β as the collection of β1, . . . ,βR . The prior assumptions yield the following
posterior:

p,π, τ,β|Y,N,M ∝
I∏

i=1

R∏
r=1

p
yir+πir

ir (1 − pir)
nir−yir+τi

×
R∏

r=1

D∏
d=1

Normal(log(βr,d)|μβ, σ 2
β)

×
I∏

i=1

Normal(log(γi)|μγ ,σ 2
γ )Normal(log(τi)|0, σ 2

τ ).

HARM produces draws from the (approximate) posterior distribution for
each pir . Since these terms will be used for ranking the rules, we refer to them
as rescaled risk. We also note that, even though the pir ’s represent probabilities
in our model, they are not interpretable as the probability that a patient will have
a given condition at the next visit to a provider (since our model is not calibrated
to time between visits). Figure 1 shows estimates of the posterior rescaled risk for
high cholesterol → myocardial infarction and hypertension → myocardial infarc-
tion. Comparing the distributions of related rules can often provide insights into
associations in the data, as we demonstrate in Section 3.2.In the context of medical
condition prediction, these rescaled risks are of interest and we analyze our esti-
mates of their full posterior distributions in Section 3.2. To rank association rules
for the purpose of prediction, however, we need a single estimate for each prob-
ability (rather than a full distribution), which we chose as the posterior mean. In
practice, we suggest evaluating the mean as well other estimators for each rescaled
risk (the mode or median, e.g.) and selecting the one with the best performance in
each particular application. We carry out our computations using a Gibbs sampling
algorithm, provided in Figure 2.
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FIG. 1. Approximate posterior of rescaled risk for two rules. These are histograms of the posterior
means for the set of patients.

2.3. Approximate updating. Given a batch of data, HARM makes predictions
based on the posterior distributions of the pir ’s. Since the posteriors are not avail-
able in closed form, we need to iterate the algorithm in Figure 2 to convergence
in order to make predictions. Each time the patient visits the physician, each pir

could be updated by again iterating the algorithm in Figure 2 to convergence. In
some applications, new data continue to arrive frequently, making it impractical
to compute approximate posterior distributions using the algorithm in Figure 2 for
each new encounter. In this section we provide an approximate updating scheme to
incorporate new patient data after an initial batch of encounters has already been
processed. The approximate scheme can be used for real-time online updating.

Beginning with an initial batch of data, we run the algorithm in Figure 2 to
convergence in order to obtain τ̂i and π̂ir , which are defined to be the posterior
means of the estimated distributions for τi and πir . The approximate updating
scheme keeps τi and πir fixed to be τ̂i and π̂ir . Given that up to encounter e − 1
we have observed y

(e−1)
ir and n

(e−1)
ir , we are presented with new observations that

have counts y
(newobs.)
ir and n

(newobs.)
ir so that y

(e)
ir = y

(e−1)
ir + y

(newobs.)
ir and n

(e)
ir =

n
(e−1)
ir + n

(newobs.)
ir . In order to update the probability estimates to reflect our total

current data, y
(e)
ir , n

(e)
ir , we will use the following relationship:

P
(
pir |y(e)

ir , n
(e)
ir , τ̂i , π̂ir

) ∝ P
(
y

(newobs.)
ir |n(newobs.)

ir , pir

)

× P
(
pir |y(e−1)

ir , n
(e−1)
ir , τ̂i , π̂ir

)
.

The expression P(pir |y(e−1)
ir , n

(e−1)
ir , τ̂i , π̂ir ) is the posterior up to encounter

e − 1 and has a Beta distribution. The likelihood of the new observations,
P(y

(newobs.)
ir |n(newobs.)

ir , pir), is Binomial. Conjugacy implies that the updated pos-
terior also has a Beta distribution. In order to update the probability estimates for
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For a suitably initialized chain, at step v:

1. Update pir from the conjugate Beta distribution given πir , τi,Y,N,M.

2. Update τi using a Metropolis step with proposal τ ∗
i where

log(τ ∗
i ) ∼ N

(
τ

(v−1)
i , (scale of jumping dist)

)
.

3. For each rule, update the vector βr using a Metropolis step with

log(β∗
r ) ∼ N

(
β(v−1)

r , (scale of jumping dist)
)
.

4. Update γi using a Metropolis step with

log(γ ∗
i ) ∼ N

(
γ

(v−1)
i , (scale of jumping dist)

)
.

5. Update πir = exp(M′
iβr + γi).

6. Update μβ ∼ N(μ̂β, σ 2
β ) where

μ̂β =
(

1

D + R

) R∑
r=1

D∑
d=1

βr,d .

7. Update σ 2
β ∼ Inv−χ2(d − 1, σ̂ 2

β) where

σ̂ 2
β =

(
1

D + R − 1

) R∑
r=1

D∑
d=1

(βr,d − μβ)2.

8. Update σ 2
τ ∼ Inv−χ2(I − 1, σ̂ 2

τ ) where σ̂ 2
τ = 1

I−1
∑I

i=1(τi − μτ )
2.

9. Update μγ ∼ N(μ̂γ , σ 2
γ ) where μ̂γ = 1

I

∑I
i=1 γi .

10. Update σ 2
γ ∼ Inv−χ2(I − 1, σ̂ 2

γ ) where σ̂ 2
γ = 1

I−1
∑I

i=1(γi − μγ )2.

FIG. 2. Gibbs sampling algorithm for the hierarchical Bayesian association rule modeling for
sequential event prediction (HARM).

our hierarchical model, we use the expectation of this distribution, that is,

E
(
pir |y(e)

ir , n
(e)
ir , τ̂i , π̂ir

) = y
(e−1)
ir + ynewobs.

ir + π̂ir

n
(e−1)
ir + nnewobs.

ir + π̂ir + τ̂i

.

3. Application to repeated patient encounters. We present results of
HARM, with the approximate updating scheme in Section 2.3, on co-prescribing
data from a large clinical trial. In the trial, each patient visits a healthcare provider
periodically. At each encounter, the provider records time-stamped medical condi-
tions (represented by MedDRA terms) experienced since the previous encounter.
Thus, each encounter is associated with a sequence of medical conditions. These
data are from around 42,000 patient encounters from about 2,300 patients, all
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at least 40 years old. The matrix of observable characteristics encodes the basic
demographic information: gender, age, and ethnicity. For each patient we have a
record of each medication prescribed and the condition/chief complaint (back pain,
asthma, etc.) that warranted the prescription. We chose to predict patient com-
plaints rather than prescriptions since there are often multiple prescribing options
(medications) for the same complaint. Some patients had preexisting conditions
that continued throughout the trial. For these patients, we include these preexist-
ing conditions in the patient’s list of conditions at each encounter. Other patients
have recurrent conditions for which we would like to predict the occurrences. If
a patient reports the same condition more than once during the same thirty day
period, we only consider the first occurrence of the condition at the first report. If
the patient reports the condition once and then again more than thirty days later,
we consider this two separate incidents.

As covariates, we used age, gender, race and drug/placebo (an indicator of
whether the patient was in the treatment or control group for the clinical trial). We
fit age using a series of indicator variables corresponding to four groups (40–49,
50–59, 60–69, 70+). We included all available covariates in our simulation stud-
ies. In practice, model selection will likely be essential to select the best subset
of covariates for predictive performance. We discuss covariate selection in further
detail in the supplemental article [McCormick, Rudin and Madigan (2011)].

Our experiments consider only the marginal probabilities (support) and prob-
abilities conditional on one previous condition. Thus, the left-hand side of each
rule contains either 0 items or 1 item. In our simulations, we used chains of 5000
iterations, keeping every 10th iteration to compute the mean we used for ranking
and discarding the first thousand iterations.

In Section 3.1 we present experimental results to compare the predictive per-
formance of our model to other rule mining algorithms for this type of problem.
In Section 3.2 we use the probability estimates from the model to demonstrate its
ability to find new associations; in particular, we find associations that are present
in the medical literature but that may not be obvious by considering only the raw
data.

3.1. Predictive performance. We selected a sample of patients by assigning
each patient a random draw from a Bernoulli distribution with success probability
selected to give a sample of patients on average around 200. For each patient we
drew uniformly an integer ti between 0 and the number of encounters for that pa-
tient. We ordered the encounters chronologically and used encounters 1 through ti
as our training set and the remaining encounters as the test set. Through this ap-
proach, the training set encompasses the complete set of encounters for some pa-
tients (“fully observed”), includes no encounters for others (“new patients”), and
a partial encounter history of the majority of the test patients (“partially-observed
patients”). We believe this to be a reasonable approximation of the context where
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this type of method would be applied, with some patients having already been ob-
served several times and other new patients entering the system for the first time.
We evaluated HARM’s predictive performance using a combination of common
and rare conditions. For each run of the simulation, we use the 25 most popular
conditions, then randomly select an additional 25 conditions for a total of 50.

The algorithm was used to iteratively predict the conditions revealed at each
encounter. For each selected patient, starting with the first test encounter, and prior
to that encounter’s first condition being revealed, the algorithm made a prediction
of c possible conditions, where c = 3. Note that to predict the very first condition
for a given patient when there are no previous encounters, the recommendations
come from posterior means of the coefficients estimated from the training set. The
algorithm earned one point if it recommended the current condition before it was
revealed, and no points otherwise. Then, yir and nir were updated to include the
revealed condition. This process was repeated for the patient’s remaining condi-
tions in the first encounter, and repeated for each condition within each subsequent
encounter. We then moved to the next patient and repeated the procedure.

The total score of the algorithm for a given patient was computed as the total
number of points earned for that patient divided by the total number of conditions
experienced by the patient. The total score of the algorithm is the average of the
scores for the individual patients. Thus, the total score is the average proportion
of correct predictions per patient. We repeated this entire process (beginning with
selecting patients) 500 times and recorded the distribution over the 500 scores.
We compared the performance of HARM (using the same scoring system) against
an algorithm that ranks rules by adjusted confidence, for several values of K . We
also compared with the “max confidence minimum support threshold” algorithm
for different values of the support threshold θ , where rules with support below θ

are excluded and the remaining rules are ranked by confidence. For both of these
algorithms, no information across patients is able to be used.

Figure 3 shows the results, as boxplots of the distribution of scores for the entire
collection of partially-observed, fully observed and new patients. Paired t-tests
comparing the mean proportion of correct predictions from HARM to each of the
alternatives had p-values for a significant difference in our favor less than 10−15.
In other words, HARM has statistically superior performance over all K and θ , that
is, better performance than either of the two algorithms even if their parameters K

and θ had been tuned to the best possible value. For all four values of K for the
adjusted confidence, performance was slightly better than for the plain confidence
(K = 0). The “max confidence minimum support threshold” algorithm (which is
a standard approach to association rule mining problems) performed poorly for
minimum support thresholds of 2 and 3. This poor performance is likely due to the
sparse information we have for each patient. Setting a minimum support threshold
as low as even two eliminates many potential candidate rules from consideration.

The main advantage of our model is that it shares information across patients in
the training set. This means that in early stages where the observed yir and nir are
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FIG. 3. Predictive performance for (a) all patients, (b) partially-observed patients, (c) new pa-
tients. Each boxplot represents the distribution of scores over 500 runs. For (a), each run’s score (an
individual point on a boxplot) is based on a sample of approximately 200 patients. For (b) and (c),
each point is based on a subset of these ∼200 patients.

small, it may still be possible to obtain reasonably accurate probability estimates,
since when patients are new, our recommendations depend heavily on the behavior
of previously observed similar patients. This advantage is shown explicitly through
Figures 3(b) and 3(c), which pertain to partially-observed and new patients, respec-
tively. The advantage of HARM over the other methods is more pronounced for
new patients: in cases where there are no data for each patient, there is a large
advantage to sharing information. We performed additional simulations which fur-
ther illustrate this point and are presented in the supplement [McCormick, Rudin
and Madigan (2011)].

3.2. Association mining. The conditional probability estimates from our
model are also a way of mining a large and highly dependent set of associations.

Ethnicity, high cholesterol or hypertension → myocardial infarction: Fig-
ure 4(a) shows the distribution of posterior mean propensity for myocardial in-
farction (heart attack) given two conditions previously reported as risk factors for
myocardial infarction: high cholesterol and hypertension [see Kukline, Yoon and
Keenan (2010) for a recent review]. Each bar in the figure corresponds to the set
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(a) (b)

FIG. 4. Propensity of myocardial infarction in patients who have reported high cholesterol or hy-
pertension using (a) HARM and (b) (unadjusted) confidence. For each demographic group, high
cholesterol (HC) is on the left and hypertension (Hy) is on the right. Thick lines represent the middle
half of the posterior mean propensities for respondents in the indicated demographic group. Outer
lines represent the middle 90% and dots represent the mean. The vast majority of patients did not
experience a myocardial infarction, which places the middle 90% of the distributions in plot (b)
approximately at zero.

of respondents in a specified ethnic group. For Caucasians, we typically estimate
a higher probability of myocardial infarction in patients who have previously had
high cholesterol. In African Americans/Hispanics and Asian patients, however, we
estimate a generally higher probability for patients who have reported hyperten-
sion. This distinction demonstrates the flexibility of our method in combining in-
formation across respondents who are observably similar. Race-ethnic differences
in risk factors for coronary heart disease have attracted considerable attention in
the medical literature [see, e.g., Rosamond et al. (2007) or Willey et al. (2011)].

As a comparison, we also included the same plot using (unadjusted) confidence,
in Figure 4(b). In both Figure 4(a) and Figure 4(b), the black dots are the mean
across all the patients, which are not uniformly at zero because there were some
cases of myocardial infarction and hypertension or high cholesterol. In Figure 4(b),
the colored, smaller dots represent the rest of the middle 90% of the distribution,
which appears to be at zero in plot (b) since the vast majority of patients did not
have a myocardial infarction at all, so even fewer had a myocardial infarction after
reporting hypertension or high cholesterol.

Age, high cholesterol or hypertension, treatment or placebo → myocardial in-
farction: Since our data come from a clinical trial, we also included an indicator
of treatment vs. placebo condition in the hierarchical regression component of
HARM. Figures 5 and 6 display the posterior means of propensity of myocardial
infarction for respondents separated by age and treatment condition. Figure 5 con-
siders patients who have reported hypertension, Figure 6 considers patients who
have reported high cholesterol. In both Figure 5 and Figure 6, it appears that the
propensity of myocardial infarction predicted by HARM is greatest for individuals
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(a) (b)

FIG. 5. Propensity of myocardial infarction in patients who have reported hypertension, estimated
by (a) HARM and (b) (unadjusted) confidence. For each demographic group, the placebo (P) is on
the left and the treatment medication (T) is on the right. Thick lines represent the middle half of the
posterior mean propensities for respondents in the indicated demographic group. Outer lines repre-
sent the middle 90% and dots represent the mean. Overall the propensity is higher for individuals
who take the study medication than those who do not.

between 50 and 70, with the association again being stronger for high cholesterol
than hypertension.

For both individuals with either high cholesterol or hypertension, use of the
treatment medication was associated with increased propensity of myocardial in-
farction. This effect is present across nearly every age category. The distinction is
perhaps most clear among patients in their fifties in both Figure 5 and Figure 6.
The treatment product in this trial has been linked to increased risk of myocar-
dial infarction in numerous other studies. The product was eventually withdrawn
from the market by the manufacturer because of its association with myocardial
infarctions.

(a) (b)

FIG. 6. Propensity of myocardial infarction in patients who have reported high cholesterol, esti-
mated by (a) HARM and (b) (unadjusted) confidence.
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The structure imposed by our hierarchical model gives positive probabilities
even when no data are present in a given category; in several of the categories,
we observed no instances of a myocardial infarction, so estimates using only the
data cannot differentiate between the categories in terms of risk for myocardial
infarction, as particularly illustrated through Figure 6(b).

4. Related works. Four relevant works on Bayesian hierarchical modeling
and recommender systems are those of DuMouchel and Pregibon (2001), Breese,
Heckerman and Kadie (1998), Condliff et al. (1999) and Agarwal, Zhang and
Mazumder (2012). DuMouchel and Pregibon (2001) deal with the identifica-
tion of interesting itemsets (rather than identification of rules). Specifically, they
model the ratio of observed itemset frequencies to baseline frequencies com-
puted under a particular model for independence. Neither Condliff et al. (1999)
nor Breese, Heckerman and Kadie (1998) aim to model repeat purchases (re-
curring conditions). Breese, Heckerman and Kadie (1998) use Bayesian meth-
ods to cluster users, and also suggest a Bayesian network. Condliff et al. (1999)
present a hierarchical Bayesian approach to collaborative filtering that “borrows
strength” across users. Agarwal, Zhang and Mazumder (2012) also build a per-
sonalized recommender system that models item-item similarities. Their model
uses logistic regression for estimating pir rather than using πir and τi . This
has the advantage of being a simpler hierarchical model, but loses the inter-
pretability our model has through using association rules. It also loses the po-
tential advantage of estimating only conditional probabilities involving few vari-
ables.

As far as we know, the line of work by Davis et al. (2010) is the first to use
an approach from recommender systems to predict medical conditions, though in
a completely different way than ours; it is based on vector similarity, in the same
way as Breese, Heckerman and Kadie (1998). [Also see references in Davis et al.
(2010) for background on collaborative filtering.] Also in the context of learn-
ing in medical problems, Gopalakrishnan et al. (2010) used decision rules chosen
using a Bayesian network to predict disease state from biomarker profiling stud-
ies.

5. Conclusion and future work. We have presented a hierarchical model for
ranking association rules for sequential event prediction. The sequential nature of
the data is captured through rules that are sensitive to time order, that is, a → b

indicates conditions a are followed by conditions b. HARM uses information from
observably similar individuals to augment the (often sparse) data on a particular
individual; this is how HARM is able to estimate probabilities P(b|a) before con-
ditions a have ever been reported. In the absence of data, hierarchical modeling
provides structure. As more data become available, the influence of the model-
ing choices fade as greater weight is placed on the data. The sequential prediction



666 T. H. MCCORMICK, C. RUDIN AND D. MADIGAN

approach is especially well suited to medical condition prediction, where experi-
encing two conditions in succession may have different clinical implications than
experiencing either condition in isolation.

Model selection is important for using our method in practice. There are two
types of model selection required for HARM: the choice of covariates encoded
by the matrix M, and the collection of available rules. For the choice of covari-
ates in M, standard feature selection methods can be used, for instance, a forward
stagewise procedure where one covariate at a time is added as performance im-
proves, or a backward stagewise method where features are iteratively removed.
Another possibility is to combine covariates, potentially through a method similar
to model-based clustering [Fraley and Raftery (2002)]. To perform model selec-
tion on the choice of rules, it is possible to construct analogous “rule selection”
methods as one might use for a set of covariates. A forward stagewise procedure
could be constructed, where the set of rules is gradually expanded as prediction
performance increases. Further, it is possible to combine a set of rules into a single
rule as in model-based clustering; for example, rather than separate rules where
the left side is either “dorsal pain,” “back pain,” “low back pain,” or “neck pain,”
we could use simply “back or neck pain” for all of them.

Another direction for future work is to incorporate a model for higher-order de-
pendence, along the line of work by Berchtold and Raftery (2002). An algorithm
for sequential event prediction is presented in ongoing work [Letham, Rudin and
Madigan (2011)], which is loosely inspired by the ideas of Berchtold and Raftery
(2002), but does not depend on association rules. A third potential future direction
is to design a more sophisticated online updating procedure than the one in Sec-
tion 2.3. It may be possible to design a procedure that approximately updates all
of the hyperparameters as more data arrive.
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SUPPLEMENTARY MATERIAL

Additional simulation results (DOI: 10.1214/11-AOAS522SUPP; .pdf). In the
supplement we present additional simulation results which speak to the perfor-
mance of HARM.
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