
The Annals of Applied Probability
2012, Vol. 22, No. 4, 1576–1610
DOI: 10.1214/11-AAP802
© Institute of Mathematical Statistics, 2012

ROBUST MAXIMIZATION OF ASYMPTOTIC GROWTH

BY CONSTANTINOS KARDARAS1 AND SCOTT ROBERTSON

Boston University and Carnegie Mellon University

This paper addresses the question of how to invest in a robust growth-
optimal way in a market where the instantaneous expected return of the under-
lying process is unknown. The optimal investment strategy is identified using
a generalized version of the principal eigenfunction for an elliptic second-
order differential operator, which depends on the covariance structure of the
underlying process used for investing. The robust growth-optimal strategy
can also be seen as a limit, as the terminal date goes to infinity, of optimal
arbitrages in the terminology of Fernholz and Karatzas [Ann. Appl. Probab.
20 (2010) 1179–1204].

Discussion. This paper addresses the question of how to invest optimally in a
market when the financial planning horizon is long, and the dynamics of the un-
derlying assets are uncertain. For long time-horizons, it is reasonable to question
whether fixed parameter estimation, especially for drift rates, remain valid. There-
fore, determining a robust way to invest across potential model misidentifications
is desirable, if not indispensable.

On the canonical space of continuous functions from [0,∞) to Rd , let X denote
the coordinate mapping, which should be thought as representing the (relative)
price of certain underlying assets, discounted by some baseline wealth process. It
is assumed that there exists a probability Q under which X has dynamics of the
form dXt = σ(Xt) dW

Q
t , where c := σσ ′ represents the instantaneous covariance

matrix, and WQ is a standard Brownian motion under Q. The significance of the
local martingale probability Q lies in that it acts as a “dominating” measure used
to form a class of probabilities �, out of which an unknown representative is sup-
posed to capture the true dynamics of the process. The class � is built by exactly
all probabilities satisfying the following two conditions:

• First, under P ∈ � the coordinate mapping X stays in an open and connected
subset E ⊆ Rd . Qualitatively, if X represents either asset prices or relative cap-
italizations, this condition asserts that assets should not cease to exist over the
time horizon.
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• Second, for t ≥ 0, each P ∈ � is absolutely continuous with respect to Q on
σ(Xs,0 ≤ s ≤ t). This last fact implies that the volatility process of X under
each P ∈ � is the same; even though model misidentification is possible, the
allowable models are not permitted to be wildly inconsistent with one another.

Note that the family � as described above does not necessarily induce any ergodic
or stability property of the assets, although it certainly contains all such models;
in particular, models where the assets display transient behavior are allowable.
Furthermore, it is not assumed that Q ∈ �. Indeed, it is often the case that X “ex-
plodes” under Q; more precisely, with ζ denoting the first exit time of X from E,
Q[ζ < ∞] > 0 is allowed.

There are good reasons to let the class of models be defined in the above way.
While the covariance structure given by the function c is easy to assess, the returns
process of X under the “true” probability is statistically impossible to estimate in
practice.2

Given that the underlying dynamics are only specified within a range of models
P ∈ �, a natural question is to find a reasonable criterion for “optimal investment
in X.” Here, optimal investment is defined as a wealth process which ensures the
largest possible worst-case (with respect to the whole class of models) asymptotic
growth rate. Given the set V of all possible positive stochastic integrals against
X starting from unit initial capital, the asymptotic growth rate of V ∈ V under
P ∈ � is defined as the largest γ ∈ R+ such that limt↑∞ P[(1/t) logVt ≥ γ ] = 1
holds. (An alternative definition of asymptotic growth rate via almost-sure limits
is also considered in the paper.) With this definition, the investor seeks to find a
wealth process in V that achieves maximal growth rate uniformly over all possible
models in �, or at least in a large enough suitable subclass of � that covers all
“nonpathological” cases.

The solution to the above problem is given in terms of a generalized version of
the principal eigenvalue-eigenvector pair (λ∗, η∗) of the eigenvalue equation

1

2

d∑
i,j=1

ci,j (x)
∂2η

∂xi ∂xj

(x) = −λη(x), x ∈ E.(0.1)

More precisely, the main result of Section 2 states that, when restricted to a large
sub-class �∗ of �, λ∗ is the maximal growth rate, and the process V ∈ V de-
fined via Vt = eλ∗t η∗(Xt) achieves this maximal growth rate. There are, of course,

2Actually, under continuous-time observations, perfect estimation of c is possible. More realisti-
cally, high-frequency data give good estimators for c. In contrast, consider a one-dimensional model
for an asset-price of the form dXt/Xt = b dt + 0.2dWt , where b ∈ R—note that σ = 0.2 is con-
sidered a “typical” value for annualized volatility. Given observations (Xt )t∈[0,T ], where T > 0, the

best linear unbiased estimator for b is b̂T := (1/T ) log(XT /X0). Easy calculations show that in or-
der for |b̂T − b| ≤ 0.01 to happen with probability at least 95%, one needs T ≈ 1600 (in years). This
simple exercise demonstrates the futility of attempting to estimate drifts.
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technicalities on an analytical level arising from the use of the eigenvalue equa-
tion (0.1), since it is unreasonable in the present setting to assume either that c

is uniformly positive definite on E or that E is bounded with smooth boundary.
[Consider, e.g., the case where X represents the prices of d assets. In this instance
E = (0,∞)d , which is unbounded with corners. Furthermore, once the stock price
goes to zero, it remains stuck there. Thus, the covariance matrix c degenerates
along the boundary of E and hence cannot be both continuous and uniformly
elliptic.] In order to allow for degenerate c and unbounded E with nonsmooth
boundary, but still retain some tractability in the problem, it is assumed that E can
be “filled up” by bounded subregions with smooth boundary and that c is continu-
ous and pointwise strictly positive definite. Under this assumption, [25], Chapter 4,
gives a detailed account of eigenvalue equations of the form (0.1).

Growth-optimal trading in the face of model uncertainty has been investigated
by other authors. One strand of research considers the case where asset returns
are assumed stationary and ergodic. In [2], asymptotically growth-optimal trading
strategies based upon historical data are constructed. There have been a number
of follow-up papers on this topic; see [1], [14] and the references cited within.
In contrast to the aforementioned approach, knowledge of the entire past is not
required in this paper. In fact, the optimal strategy is only based on the current
level of X and is, therefore, closely-related to the idea of functionally-generated
portfolios studied in [9]. Furthermore, it is also not assumed here that X represents
asset returns; in fact, the primary example is when X are relative capitalizations,
and not asset returns. In this setting, stationarity of the relative capitalizations does
not automatically transfer to stationarity of returns.

The concept of robust growth optimality is also related to that of robust util-
ity optimization, the idea of which dates back to [11] and is considered in detail
in [10, 13, 26, 28] and [29], amongst others. (There is also recent literature on
optimal stopping under model ambiguity—see, e.g., [3].) Though this paper dif-
fers from those mentioned in not considering penalty functions and by focusing
on growth rather than general utility functions, the growth-optimal strategy pro-
vides a “good” long-term robust optimal strategy for general utility functions due
to the exponential increase in terminal wealth as time progresses. Two recent pa-
pers which are close in spirit to the present paper are [18] and [17]. Reference
[18] considers long-run robust utility maximization in the case of model uncer-
tainty for power and logarithmic utility, and [17] addresses the problem of finding
wealth processes that minimize long-term downside risk. The precise manner in
which the class of models is defined in these papers can only be identified up to a
(stochastic) affine perturbation away from a fixed model. This paper differs from
the above two in that, to the extent that underlying economic factors affect the asset
dynamics, it is only through the drift of X. Furthermore, there is no a priori fixed
model from which all other models are recovered via perturbations. This enables
the class of models to be determined by qualitative properties, without additional
technical restrictions. However, here, as well as in [17], there is a fundamental
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PDE, playing the role of an ergodic Bellman equation, which governs the robust
trading strategies.

The problem of constructing robust growth-optimal strategies can be extended
to the case where even the covariance matrix c is not known precisely, but rather
assumed to belong to a class of admissible matrices C . Such a situation has been
studied in [7], in the setting of optimal arbitrage mentioned below. In such a setting,
one does not even assume the existence of a dominating probability Q, and the
probabilities in P can be mutually singular. It is left for future research to establish
a natural definition of an “extremely” robust growth-optimal trading strategy in
terms of sub-solutions of (0.1) which are uniform over C .

A second goal of the present paper is to relate robust growth-optimal trading
strategies to optimal arbitrages, as considered in [6]. Optimal arbitrages are trad-
ing strategies designed to outperform the benchmark process used for discounting
almost surely over a given time horizon. In [6], it was shown that, under certain
assumptions, the existence of an optimal arbitrage on a finite time horizon [0, T ],
T ∈ R+, is equivalent to Q[ζ ≤ T ] > 0 (positive probability of explosion of the co-
ordinate process under Q before T ), when E is the simplex in Rd . In fact, optimal
arbitrages are naturally expressed in terms of (conditional) tails of the distribution
of ζ under Q.

For a fixed T > 0, denote by (V T
t )t∈[0,T ] the optimal arbitrage in the inter-

val [0, T ]. The robust growth-optimal wealth processes (Vt )t∈R+ considered here
can be regarded as a long-term limit of the optimal arbitrages; this is a topic
taken up in Section 4. A better understanding of this connection requires explor-
ing a particular probability P∗, under which X has dynamics of the form dXt =
(c(Xt)∇ logη∗(Xt)) dt +σ(Xt) dWP∗

t for t ∈ R+, where WP∗
is a standard Brow-

nian motion under P∗. Loosely speaking, ergodicity of X under P∗ implies that
on any compact time interval [0, τ ] the collection of processes ((V T

t )t∈[0,τ ])T ∈R+
converges to the robust growth-optimal wealth process (Vt )t∈[0,τ ] as the horizon T

becomes large. This is part of the reason why Section 3 is devoted to investigat-
ing the properties of X under P∗. An application of ergodic results for unbounded
functions from [22], coupled with powerful probabilistic arguments, allows us to
show the aforementioned convergence of optimal arbitrages to the robust growth-
optimal one. Furthermore, convergence of the probabilities Q[· | ζ > T ] to P∗
on Fτ as T ↑ ∞ in the total-variation norm is established. This extends results
on diffusions conditioned to remain in a bounded region, first obtained in [24],
to regions with nonsmooth boundaries where the matrix c need not be uniformly
positive definite, and where the process X under Q need not be m-reversing for
any measure m.

In the special one-dimensional case, considered in Section 5, simple tests for
transience and recurrence of diffusions are readily available. This allows us to pro-
vide tight conditions upon c in the case of a bounded interval, in which λ∗ = 0
or λ∗ > 0, and characterize both the nature of η∗ and of P∗. The main message
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is essentially the following: if X can explode to both endpoints under Q, then ev-
erything works out nicely, in the sense that λ∗ > 0 and X is positive recurrent un-
der P∗. The technical proof of this result relies heavily on singular Sturm–Liouville
theory and is given in Section 7.

Finally, Section 6 provides examples that illustrate the results obtained in pre-
vious sections. In contrast to the case where c is uniformly positive definite on E,
multi-dimensional examples where the function η∗ does not vanish on the bound-
ary of E, even if E is bounded, are given.

1. The set-up. Consider an open and connected set E ⊆ Rd and a function
c mapping E to the space of d × d matrices. For α ∈ (0,1], recall that a func-
tion f :E �→ R is called locally C2,α on E if for all bounded, open, connected
D ⊂ E such that D̄ ⊂ E it follows that f ∈ C2,α(D̄). For a definition of the
Hölder space C2,α , see [5], Chapter 5.1. The following assumptions will be in
force throughout.

ASSUMPTION 1.1. For each x ∈ E, c(x) is a symmetric and strictly positive
definite d × d matrix. For 1 ≤ i, j ≤ d , cij (x) is locally C2,α on E for some α ∈
(0,1]. Furthermore, there exists a sequence (En)n∈N of bounded open connected
subsets of E such that each boundary ∂En is C2,α , Ēn ⊂ En+1 for n ∈ N and
E = ⋃∞

n=1 En.

1.1. The generalized martingale problem on E. It will now be discussed how
Assumption 1.1 implies the existence of a unique solution to the generalized mar-
tingale problem on E for the operator L which acts on f ∈ C2(E) via

(Lf )(x) = 1

2

d∑
i,j=1

cij (x)
∂2f

∂xi ∂xj

(x), x ∈ E.(1.1)

Let Ê = E ∪� be the one-point compactification of E; the point � is identified
with ∂E if E is bounded and with ∂E plus the point at ∞ if E is unbounded.
Let C(R+, Ê) be the space of continuous functions from [0,∞) to Ê. For ω ∈
C(R+, Ê), define the exit times

ζn(ω) := inf{t ∈ R+ | ωt /∈ En},
ζ(ω) := lim

n↑∞ ζn(ω).

Then define

� = {ω ∈ C(R+, Ê) | ωζ+t = � for all t ∈ R+ if ζ(ω) < ∞}.
Let X = (Xt)t∈R+ be the coordinate mapping process for ω ∈ �. Set B =

(Bt )t∈R+ to be the natural filtration of X. It follows that the smallest σ -algebra that
is generated by

⋃
t∈R+ Bt , denoted by B∞, is actually the Borel σ -algebra on �.
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Furthermore, B∞ is also the smallest σ -algebra that is generated by
⋃

n∈N Bζn ,
since paths in � stay in � upon arrival.

A solution to the generalized martingale problem on E is a family of probability
measures (Qx)x∈Ê

such that Qx[X0 = x] = 1 and

f (Xt∧ζn) −
∫ t∧ζn

0
(Lf )(Xs) ds

is a (�, (Bt )t∈R+,Qx)-martingale for all n ∈ N and all f ∈ C2(E) with Lf given
as in (1.1).

Assumption 1.1 ensures a solution to the generalized martingale problem, as the
following proposition, taken from [25], Theorem 1.13.1, shows.

PROPOSITION 1.2. Under Assumption 1.1, there is a unique solution (Qx)x∈Ê
to the generalized martingale problem on E. The family (Qx)x∈Ê

possesses the
strong Markov property.

Set (Ft )t∈R+ to be the right-continuous enlargement of (Bt )t∈R+ . Furthermore,
with F denoting the smallest σ -algebra that contains

⋃
t∈R+ Ft , we have F = B∞.

Assumption 1.1 implies that

f (Xt∧ζn) −
∫ t∧ζn

0
(Lf )(Xs) ds

is a (�, (Ft )t∈R+,Qx)-martingale for all n = 1,2,3, . . . and f ∈ C2(E) since
f and Lf are bounded on each En. By setting f (x) = xi, i = 1, . . . , d , and
f (x) = xixj , i, j = 1, . . . , d , it follows that, for each n and each x ∈ Ê,
Xt∧ζn is a (�, (Ft )t∈R+,Qx)-martingale with quadratic covariation process∫ ·

0 I{t≤ζn}c(Xt) dt .

1.2. Asymptotic growth rate. For a fixed x0 ∈ E, set Q = Qx0 . In the sequel,
whenever there is no subscript associated to the probabilities, it will be tacitly
assumed that they only charge the event {X0 = x0}.

Denote by � the class of probabilities on (�, F ) which are locally absolutely
continuous with respect to Q (written P �loc Q) and for which the coordinate
process X does not explode, that is,

� = [
P ∈ M1(�, F ) : P|Ft � Q|Ft for all t ≥ 0 and P[ζ < ∞] = 0

]
.(1.2)

For each P ∈ �, X is a (�, (Ft )t∈R+,P)-semimartingale such that P[X ∈
C(R+,E)] = 1. Therefore, X admits the representation

X = x0 +
∫ ·

0
bP
t dt +

∫ ·
0

σ(Xt) dWP
t ,

where WP is a standard d-dimensional Brownian motion on (�, (Ft )t∈R+,P), σ is
the unique symmetric strictly positive definite square root of c and bP is a d-
dimensional (Ft )t∈R+-progressively measurable process.
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Let (ξt )t∈R+ be an adapted process. For P ∈ �, define

P- lim inf
t→∞ ξt := ess sup

P

{
χ is F -measurable

∣∣ lim
t→∞P[ξt ≥ χ ] = 1

}
.

If, in addition, P[ξt > 0] = 1 for each t ∈ R+, let

g(ξ ;P) := sup
{
γ ∈ R

∣∣ P- lim inf
t→∞ (t−1 log ξt ) ≥ γ,P-a.s.

}
be the asymptotic growth rate of ξ under P. Since P ∈ � and Q are not neces-
sarily equivalent on F , g(ξ ;P) indeed depends on P ∈ �. The following result,
the proof of which is straightforward and hence omitted, provides an alternative
representation for g(ξ ;P).

LEMMA 1.3. For a given P ∈ � and an adapted real-valued process (ξt )t∈R+
such that P[ξt > 0] = 1 for all t ∈ R+,

g(ξ ;P) = sup
{
γ ∈ R

∣∣ lim
t→∞P[t−1 log ξt ≥ γ ] = 1

}
.

1.3. The problem. The basic object in our study will be the class of all pos-
sible nonnegative wealth processes that one can achieve by investing in the d as-
sets whose price processes are modeled via X. Whenever ϑ is a d-dimensional
predictable process, that is, X-integrable under Q (and, as a consequence, X-
integrable under any P ∈ �, as P �loc Q), define the process V ϑ = 1 + ∫ ·

0 ϑ ′
t dXt ,

where the prime symbol (′) denotes transposition throughout the text. Then let V
denote the class of all processes V ϑ of the previous form, where we additionally
have V ϑ ≥ 0 up to Q-evanescent sets. (Of course, V ϑ ≥ 0 also holds up to P-
evanescent sets for all P ∈ �.) Naturally, ϑ represents the position that an investor
takes on the assets whose discounted price-processes are given by X, and V ϑ rep-
resents the resulting wealth from trading starting from unit capital, constrained not
to go negative at any time.

The problem considered is to calculate

sup
V ∈V

inf
P∈�

g(V ;P)(1.3)

and to find V ∗ ∈ V that attains this value, at least for all P in a large sub-class of �

that will be soon defined. To this end, for a given λ ∈ R and L as in (1.1), define
the cone of positive harmonic functions with respect to L + λ as

Hλ := {η ∈ C2(E) | Lη = −λη and η > 0}.(1.4)

Set

λ∗ := sup{λ ∈ R | Hλ �= ∅}.(1.5)

Since H0 �= ∅ (take η ≡ 1), it follows that λ∗ ≥ 0. If Hλ∗ �= ∅, then, by construc-
tion, there is an η∗ ∈ C2(E) satisfying

Lη∗ = −λ∗η∗,(1.6)
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and λ∗ is the largest real for which such an η∗ exists. Thus λ∗ is a generalized ver-
sion of the principal eigenvalue for L on E. The following result, taken from [25],
Theorem 4.3.2, states that, indeed, Hλ∗ �= ∅.

PROPOSITION 1.4. Let Assumption 1.1 hold. Then 0 ≤ λ∗ < ∞ and Hλ∗ �= ∅.

REMARK 1.5. To connect Proposition 1.4 with [25], Theorem 4.3.2, note that
λc(D) therein is equal to −λ∗. Note also that, by its construction, � = ∅ if there
exists a t > 0 such that Q[ζ > t] = 0. However, by [25], Theorem 4.4.4, it follows
that if such a t > 0 exists, then λ∗ = ∞. Proposition 1.4 thus implies that Q[ζ >

t] > 0 for all t > 0. It is also directly shown in the proof of Theorem 2.1 below
that under Assumption 1.1, � �= ∅.

REMARK 1.6. Proposition 1.4 makes no claim regarding the uniqueness of
η∗ corresponding to λ∗. For example, when E = (0,∞) and c ≡ 1, it holds that
λ∗ = 0; hence η∗ could be either x or 1. For this E and c, Example 4.7 in Sec-
tion 4 shows that even when uniqueness fails, a particular choice of η∗ may be
advantageous.

The following result, taken from [25], Theorems 4.3.3 and 4.3.4, provides a way
of checking if a particular pair (η, λ) such that η ∈ Hλ corresponds to an optimal
pair (η∗, λ∗) and if the optimal pair is unique.

PROPOSITION 1.7. Let Assumption 1.1 hold. Let (η, λ) be such that η ∈ Hλ.
Then there exists a unique solution (P

η
x)x∈Ê

to the generalized martingale problem

on Ê for the operator

Lη = L + c∇ logη · ∇,(1.7)

and (P
η
x)x∈Ê

possesses the strong Markov property. Furthermore, if the coordinate
mapping process X is recurrent under (P

η
x)x∈E , then η is unique up to multiplica-

tion by a positive constant, η∗ = η and λ∗ = λ.

REMARK 1.8. Proposition 1.7 only covers the case where the coordinate map-
ping process X is recurrent under (P

η
x)x∈E . It should be noted, however, that even

when the coordinate mapping process X under (P
η
x)x∈E is transient, η = η∗ and

λ = λ∗ is still possible. Indeed, in Example 4.7 from Section 4, λ∗ = 0 even though
Qx[ζ < ∞] > 0 for all x ∈ E, and thus η∗ = 1 does not yield a recurrent process.

2. The min–max result.

2.1. The result. For future reference, let η∗ be a solution of (1.6) correspond-
ing to λ∗ with η∗(x0) = 1, and define the function �∗ :E �→ R via

�∗(x) = logη∗(x) for x ∈ E.(2.1)
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The following result identifies λ∗ with the value in (1.3).

THEOREM 2.1. Let Assumption 1.1 hold. Let η∗ be a solution of (1.6) corre-
sponding to λ∗ with η∗(x0) = 1, and define V ∗ via V ∗

t = eλ∗t η∗(Xt) for all t ∈ R+.
Define also

�∗ :=
{
P ∈ �

∣∣ P- lim inf
t→∞ (t−1 logη∗(Xt)) ≥ 0,P-a.s.

}
.

Then V ∗ ∈ V and g(V ∗;P) ≥ λ∗ for all P ∈ �∗. Furthermore,

λ∗ = sup
V ∈V

inf
P∈�∗ g(V ;P) = inf

P∈�∗ sup
V ∈V

g(V ;P).(2.2)

REMARK 2.2. The normalized eigenfunction η∗ in the statement of Theo-
rem 2.1 may not be unique. Since the class of measures �∗ depends upon η∗, the
variational problems in (2.2) also change with η∗. However, the value λ∗ is the
same no matter which η∗ is chosen.

For a given η∗, it may seem artificial to restrict attention to �∗. However, no
matter which η∗ ∈ Hλ∗ is chosen, �∗ contains all the probabilities P such that X

is tight in E, and hence naturally corresponds to those P for which X is stable. To
see this, assume that X is tight, and let ε > 0 and Kε ⊆ E be compact such that
supt≥0 P[Xt /∈ Kε] ≤ ε. Set βε = maxx∈Kε |logη∗(x)|, and note that for any δ > 0
and t > βε/δ,

P[t−1 logη∗(Xt) < −δ] ≤ P[|t−1 logη∗(Xt)| > δ;Xt /∈ Kε] ≤ ε.

Thus, limt→∞ P[t−1 logη∗(Xt) ≥ −δ] = 1 for all δ > 0; hence, P ∈ �∗.

PROOF OF THEOREM 2.1. To see why V ∗ ∈ V , note that Itô’s formula gives,
for each n ∈ N, each t ∈ R+ and each P ∈ �,

V ∗
t∧ζn

= 1 +
∫ t∧ζn

0
eλ∗s∇η∗(Xs)

′ dXs

(2.3)

= 1 +
∫ t∧ζn

0
V ∗

s ∇�∗(Xs)
′ dXs.

Since P[ζ < ∞] = 0 for all P ∈ �, it follows that the equalities in (2.3) hold
under P when we replace t ∧ ζn with t for all t ∈ R+. By the construction
of �∗, P[limt→∞ t−1 log(V ∗

t ) ≥ γ ] = 1 holds for all γ < λ∗ and all P ∈ �∗.
Therefore, Lemma 1.3 implies g(V ∗;P) ≥ λ∗ for all P ∈ �∗. In particular, λ∗ ≤
supV ∈V infP∈�∗ g(V ;P).

Now, let λ∗
n, η∗

n and �∗
n be the equivalents of λ∗, η∗ and �∗ when E is replaced by

En in (1.4), (1.5), (1.6) and (2.1). Assumption 1.1 gives that c is uniformly elliptic
on En and hence η∗

n ∈ C2,α(Ēn) and vanishes on ∂En [25], Theorem 3.5.5. Fur-
thermore, there exists a solution to the generalized martingale problem (P∗

x,n)x∈En
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for the operator Lη∗
n in (1.7) and the coordinate process X under (P∗

x,n)x∈En is re-
current in En ([25], proof of Theorem 4.2.4). This latter fact gives the uniqueness
(up to multiplication by a positive constant) of η∗

n.
Set P∗

n = P∗
x0,n

. It follows that P∗
n[ζ < ∞] = 0 and limt→∞ P∗

n[t−1 logη∗(Xt) =
0] = 1 since there exists a Kn > 0 such that 1/Kn < η∗ < Kn on En. Thus,
P∗

n ∈ �∗ if P∗
n �loc Q. To show the latter, let (Qx,n)x∈Ên

be the solution to the

generalized martingale problem for L on Ên. Let Qn = Qx0,n. It follows from [25],
Corollary 4.1.2, and the recurrence of X under P∗

n that for t > 0,

dP∗
n

dQn

∣∣∣∣
Bt

= eλ∗
nt η

∗
n(Xt)

η∗
n(x0)

I{ζn>t},(2.4)

and thus P∗
n|Bt � Qn|Bt . This immediately gives P∗

n|Bt∧ζn
� Qn|Bt∧ζn

for each n.
But, Qn|Bt∧ζn

= Q|Bt∧ζn
. If B ∈ Bt is such that Q[B] = 0, then Q[B∩{ζn > t}] = 0.

Since B ∩{ζn > t} ∈ Bt∧ζn , it follows that P∗
n[B ∩{ζn > t}] = 0. But, P∗

n[ζn > t] =
1 for each t so P∗

n[B ∩ {ζn > t}] = 0 implies P∗
n[B] = 0. Therefore, P∗

n|Bt � Q|Bt

and hence P∗
n|Ft � Q|Ft as well, proving P∗

n ∈ �∗.
Let V ∗

n be defined via V ∗
n (t) = eλ∗

n(t∧ζn)η∗
n(Xt∧ζn) for t ∈ R+ [in order to avoid

the cumbersome notation V ∗
n,t for t ∈ R+, we simply use V ∗

n (t) here]. The same
computations as in (2.3) show that, for all P ∈ �,

V ∗
n = 1 +

∫ ·
0

I{t≤ζn}eλnt∇η∗
n(Xt)

′ dXt

and hence V ∗
n ∈ V . Note that V ∗

n stays strictly positive under P∗
n since P∗

n[ζn <

∞] = 0. Now, g(V ∗
n ;P∗

n) ≤ λ∗
n is immediate since En is bounded, and hence η∗

n is
bounded above on En. Furthermore, V ∗

n is the numéraire portfolio in V under P∗
n,

which means that V/V ∗
n is a (nonnegative) P∗

n-supermartingale for all V ∈ V . To
wit, consider any other V ∈ V , and write V = 1 + ∫ ·

0 ϑ ′
t dXt . A straightforward use

of Itô’s formula using the fact that Lη∗
n(x) = −λ∗

n(x)η∗
n(x) holds for all x ∈ En

gives that, under P∗
n,

V

V ∗
n

=
∫ ·

0

(
ϑt − Vt∇�∗

n(Xt)

V ∗
n (t)

)′
d
(
Xt − c(Xt)∇�∗

n(Xt) dt
);

since the process X − ∫ ·
0 c(Xt)∇�∗

n(Xt) dt is a local P∗
n-martingale, the numéraire

property of V ∗
n in V under P∗

n follows. In view of the nonnegative super-
martingale convergence theorem, the nonnegative supermartingale property of
V/V ∗

n under P∗
n gives that lim supt→∞ log(Vt/V ∗

n (t)) ≤ 0 in the P∗
n-a.s. sense.

Therefore, g(V ;P∗
n) ≤ g(V ∗

n ;P∗
n) holds for all V ∈ V . Since g(V ∗

n ;P∗
n) ≤ λ∗

n,
supV ∈V g(V ;P∗

n) ≤ λ∗
n holds, and infP∈�∗ supV ∈V g(V ;P) ≤ infn∈N λ∗

n. However,
↓ limn→∞ λ∗

n = λ∗ holds in view of Assumption 1.1 ([25], Theorem 4.4.1). This
gives infP∈�∗ supV ∈V g(V ;P) ≤ λ∗ and completes the argument. �
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2.2. An “almost sure” class of measures. For a fixed η∗ ∈ Hλ∗ , define the
following class of probability measures:

�∗
a.s. :=

{
P ∈ �

∣∣ lim inf
t→∞ (t−1 logη∗(Xt)) ≥ 0,P-a.s.

}
.

It is straightforward to check that �∗
a.s. ⊆ �∗. Furthermore, as will be seen in

Section 3, it can be easier to verify inclusion in �∗
a.s. than �∗. For P ∈ � and

V ∈ V define

ga.s.(V ;P) := sup
{
γ ∈ R

∣∣ lim inf
t→∞ (t−1 logVt) ≥ γ,P-a.s.

}
as the “almost sure” growth of the wealth V . The following result is the analog of
Theorem 2.1 for the class of measures �∗

a.s. and for the growth rate ga.s.(V ;P).

PROPOSITION 2.3. Let Assumption 1.1 hold. Let η∗ ∈ Hλ∗ be such that
η∗(x0) = 1, and define �∗

a.s. as above. Define V ∗ ∈ V by V ∗
t = eλ∗t η∗(Xt), t ≥ 0,

as in Theorem 2.1. Then ga.s.(V
∗;P) ≥ λ∗ for all P ∈ �∗

a.s. and

λ∗ = sup
V ∈V

inf
P∈�∗

a.s.

ga.s.(V ;P) = inf
P∈�∗

a.s.

sup
V ∈V

ga.s.(V ;P).

REMARK 2.4. Concerning the class �∗, in Remark 2.2 it was discussed that
when the coordinate process X is P-tight, then P ∈ �∗. In contrast, a useful char-
acterization of even a subset of �∗

a.s. independent of η∗ is difficult. On the positive
side, if P is such that X never exits En for some n, then P ∈ �∗

a.s.. However, even
if X is positive recurrent under P, it cannot immediately be said that P ∈ �∗

a.s.

PROOF OF PROPOSITION 2.3. By construction of the class �∗
a.s. it follows

that ga.s.(V
∗;P) ≥ λ∗ for all P ∈ �∗

a.s.. Thus λ∗ ≤ supV ∈V infP∈�∗
a.s.

ga.s.(V ;P).
The inequality λ∗ ≥ infP∈�∗

a.s.
supV ∈V ga.s.(V ;P) follows by essentially the same

argument as in Theorem 2.1. Specifically, let λ∗
n, η

∗
n, �

∗
n,V

∗
n and P∗

n be as in the
proof of Theorem 2.1. It was shown therein that P∗

n ∈ � for each n and that the
coordinate process is recurrent in En under (P∗

x,n)x∈En . In fact, P∗
n ∈ �∗

a.s. be-
cause there is a Kn > 0 such that 1/Kn < η∗ < Kn on En and hence, P∗

n-a.s.,
limt→∞ t−1 logη∗(Xt) = 0. Furthermore, since η∗

n is bounded from above on En it
holds that ga.s.(V

∗
n ;P∗

n) ≤ λ∗
n. Using the numéraire property of V ∗

n under P∗
n and the

supermartingale convergence theorem, it follows that ga.s.(V ;P∗
n) ≤ ga.s.(V

∗;P∗
n)

holds for all V ∈ V . Therefore, supV ∈V ga.s.(V ;P∗
n) ≤ λ∗

n and

inf
P∈�∗

a.s.

sup
V ∈V

ga.s.(V ;P∗
n) ≤ inf

n∈N
λ∗

n = λ∗

since ↓ limn→∞ λ∗
n = λ∗ as seen in the proof of Theorem 2.1. This completes the

argument. �
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3. An interesting probability measure. Let η∗ ∈ Hλ∗ , and let (P∗
x)x∈Ê

be the

solution to the generalized martingale problem on Ê for the operator Lη∗
given

in (1.7). Set P∗ ≡ P∗
x0

.
It is of great interest to know whether P∗ ∈ �∗. To begin with, if this is in-

deed true and g(V ∗,P∗) = λ∗, the pair (V ∗,P∗) constitutes a saddle point for the
minimax problem described in (2.2). Indeed, using the numéraire property of V ∗
under P∗ and the definition of �∗, it follows that, in this case (see the proof of
Theorem 2.1)

g(V ;P∗) ≤ g(V ∗;P∗) ≤ g(V ∗;P) for all V ∈ V and P ∈ �∗.

Furthermore, in Section 4 where connections between robust growth-optimal port-
folios and optimal arbitrages are studied, the behavior of the coordinate process X

under P∗ becomes important. To this end, presented in the sequel are some results
that explore the behavior of X under P∗. In particular, Propositions 3.4 and 3.6
give sufficient conditions to ensure that P∗ ∈ �∗.

REMARK 3.1. By construction, if P∗[ζ < ∞] > 0 then P∗ /∈ �∗. Example 4.7
provides a case when explosion of X under P∗ occurs for some η∗ ∈ Hλ∗ . Further-
more, [23] contains an example showing that for for all η∗ ∈ Hλ∗ , the probabil-
ity P∗ that is constructed from η∗ leads to explosive behavior of X under P∗;
hence, none of the candidate P∗ is in �∗. Now, consider the case when η∗ ∈ Hλ∗
is such that X is nonexplosive under P∗. In this instance, Corollary 3.7 shows that
if λ∗ = 0, then P∗ ∈ �∗. As for when λ∗ > 0, although only sufficient conditions
ensuring that P∗ ∈ �∗ are presented in this section, examples where P∗ /∈ �∗ have
not been found. It is an open question whether, under Assumption 1.1, P∗ ∈ �∗
holds whenever λ∗ > 0 and η∗ ∈ Hλ∗ is such that X is nonexplosive under P∗. See
Example 6.5 in Section 6 for a potential counterexample.

The first result gives conditions under which P∗ ∈ � and relates the tail proba-
bilities of ζ under Q and robust growth-optimal strategies.

PROPOSITION 3.2. Let Assumption 1.1 hold, and let η∗ ∈ Hλ∗ be such that
P∗

x[ζ < ∞] = 0 holds for all x ∈ E. Then P∗ ∈ � and

Qx[ζ > T ] = η∗(x)EP∗
x

[
1

V ∗
T

]
holds for all T ∈ R+ and x ∈ E.(3.1)

PROOF. In a similar manner to (2.4), if P∗[ζ < ∞] = 0, then it follows
from [25], Corollary 4.1.2, that

dP∗

dQ

∣∣∣∣
Bt

= eλ∗t η
∗(Xt)

η∗(x0)
I{ζ>t}
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from which it immediately holds that P∗ �loc Q, and hence P∗ ∈ �. Given
V ∗

T = exp(λ∗T )η∗(XT ), the equality in (3.1) follows immediately from [25], The-
orem 4.1.1. �

Recall from Remark 2.2 that P∗-tightness of (Xt)t∈R+ implies that P∗ ∈ �∗.
The following result is useful because it shows that, under Assumption 1.1, positive
recurrence and tightness of (Xt)t∈R+ under P∗ are equivalent notions. Note that, in
general, even in the one-dimensional bounded case, the behavior of (Xt)t∈R+ un-
der P∗ can vary from positive recurrence to transience as is shown in the examples
in Section 6.1.

PROPOSITION 3.3. Let Assumption 1.1 hold. Then the following are equiva-
lent:

(1) The coordinate mapping process X is positive recurrent under (P∗
x)x∈E .

(2) For some x ∈ E the family of random variables (Xt)t≥0 is P∗
x -tight in E.

PROOF. Under Assumption 1.1, X is recurrent under (P∗
x)x∈E if for any

x, y ∈ E and ε > 0, if τB(y,ε) is the first time the coordinate process enters into
the closed ball of radius ε around y, then P∗

x[τB(y,ε) < ∞] = 1. Note that if X is
recurrent under (P∗

x)x∈E , then for all x ∈ E, P∗
x[ζ < ∞] = 0 ([25], Theorem 2.8.1).

Furthermore, given that X is recurrent under (P∗
x)x∈E , then X is further positive

recurrent under (P∗
x)x∈E if there exists a function η̃∗ > 0 such that L̃∗η̃∗ = 0 and

η̃∗ ∈ L1(E,Leb) where L̃∗ is the formal adjoint to L∗ ([25], Section 4.9). Under
Assumption 1.1, and recalling the definition of �∗ from (2.1), L̃∗ is the differential
operator acting on f ∈ C2(E) by

L̃∗f (x) = 1

2

d∑
i,j=1

∂2

∂xi ∂xj

(cij (x)f (x)) −
d∑

i=1

∂

∂xi

((c(x)∇�∗(x))if (x)).

Assume that X is positive recurrent under (P∗
x)x∈E and normalize η̃∗ so that∫

E η̃∗(y) dy = 1. By the ergodic theorem ([25], Theorem 4.9.9) it follows that for
any bounded measurable function f :E �→ R,

lim
t↑∞EP∗

x [f (Xt)] =
∫
E

f (y)η̃∗(y) dy.(3.2)

Since η̃∗ is a probability density, for any ε > 0 there is a compact set Kε ⊂ E such
that ∫

Kc
ε

η̃∗(y) dy ≤ ε.

Thus, taking fε(x) = IKc
ε
(x) in (3.2), the continuity of X and P∗[ζ < ∞] = 0

imply that (Xt)t≥0 is P∗
x -tight for any x ∈ E.
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As for the reverse implication, assume for some x ∈ E that (Xt)t≥0 is P∗
x-tight

in E, and for each ε let Kε ⊂ E be a compact set such that

inf
t≥0

P∗
x[Xt ∈ Kε] ≥ 1 − ε.(3.3)

Under Assumption 1.1 there are only three possibilities for the coordinate pro-
cess X under (P∗

x)x∈Ê
([25], Section 2.2.8):

(1) X is transient: for all x ∈ E and n ∈ N, P∗
x[X is eventually in Ec

n] = 1;
(2) X is null recurrent: X is recurrent and for any φ ∈ C2(E),φ > 0 such that

L̃∗φ = 0,
∫
E φ(y) dy = ∞;

(3) X is positive recurrent: X is recurrent but not null recurrent.

Clearly, if (Xt)t≥t0 is P∗
x-tight in E for some x ∈ E, then X cannot be transient.

Furthermore, if X were null recurrent, then for each x ∈ E and any compact set
K ⊂ E it would follow that ([25], Theorem 4.9.5)

lim
t↑∞

1

t

∫ t

0
P∗

x[Xs ∈ K]ds = 0.

But, by the assumption of tightness, for the compact set Kε ⊂ E appearing in (3.3),

lim inf
t↑∞

1

t

∫ t

0
P∗

x[Xs ∈ Kε]ds ≥ (1 − ε).

Therefore, X cannot be null-recurrent. Thus X is positive recurrent under (P∗
x)x∈E .

�

The following result is useful when point-wise estimates for η∗ are available.

PROPOSITION 3.4. Let Assumption 1.1 hold, and let �∗ be as in (2.1). If
λ∗ > 0, P∗[ζ < ∞] = 0 and

lim
n↑∞ inf

x∈Ec
n

1

2
∇�∗(x)′c(x)∇�∗(x) ≥ λ∗,(3.4)

then P∗ ∈ �∗.

REMARK 3.5. If c is uniformly elliptic on E, and E is bounded with a smooth
boundary, λ∗ corresponds to the principal eigenvalue for L acting on functions
η which vanish on ∂E. Since (eλ∗t η∗(Xt))

−1 is a P∗-supermartingale, it follows
that P∗[ζ < ∞] = 0. Furthermore, Hopf’s lemma asserts that ∇η∗ does not van-
ish on ∂E, so (3.4) holds as well; indeed, the quantity on the left-hand side is
unbounded from above.
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PROOF OF PROPOSITION 3.4. That P∗ ∈ � follows by Proposition 3.2. Recall
that η∗(x0) = 1. Now,

1

t
�∗(Xt) = 1

t

∫ t

0

(
1

2
∇�∗(Xs)

′c(Xs)∇�∗(Xs) − λ∗
)

ds

(3.5)

+ 1

t

∫ t

0
∇�∗(Xs)

′σ(Xs) dWP∗
s ,

where WP∗
is a Brownian motion under P∗. By (3.4), there is a λ̃ > 0 such that,

for n large enough,∫ t

0
∇�∗(Xs)

′c(Xs)∇�∗(Xs) ds

(3.6)

≥ λ̃

∫ t

0
I{Xs∈Ec

n} ds +
∫ t

0
∇�∗(Xs)

′c(Xs)∇�∗(Xs)I{Xs∈En} ds.

Under Assumption 1.1, X is either positive recurrent, null recurrent or transient
under (P∗

x)x∈E . If X is positive recurrent, then, since λ∗ > 0 implies that η∗ is not
identically constant, it follows that ([25], Theorem 4.9.5) for n large enough

lim
t↑∞

∫ t

0
∇�∗(Xs)

′c(Xs)∇�∗(Xs)I{Xs∈En} ds = ∞, P∗-a.s.

Similarly, if X is either null recurrent or transient it follows that (again, by [25],
Theorem 4.9.5)

lim
t↑∞ λ̃

∫ t

0
I{Xs∈Ec

n} ds = ∞, P∗-a.s.

Using (3.6) it thus holds in each case

lim
t↑∞

∫ t

0
∇�∗(Xs)

′c(Xs)∇�∗(Xs) ds = ∞, P∗-a.s.

Let M = ∫ ·
0 ∇�∗(Xs)

′σ(Xs) dWP∗
s , so that

[M,M] =
∫ ·

0
∇�∗(Xs)

′c(Xs)∇�∗(Xs) ds.

By the Dambins, Dubins and Schwarz theorem ([15], Theorem 3.4.6), there exists
a standard Brownian motion (under P∗) B such that M = B[M,M]· . Therefore, one
can write (3.5) as

1

t
�∗(Xt) = −λ∗ + [M,M]t

2t

(
1 + 2

B[M,M]t
[M,M]t

)
.

By the strong law of large numbers,

lim
t↑∞

B[M,M]t
[M,M]t = 0, P∗-a.s.,
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which means that

lim inf
t↑∞

1

t
�∗(Xt) ≥ −λ∗ + lim inf

t↑∞
[M,M]t

2t
, P∗-a.s.(3.7)

If X is positive recurrent under P∗, then P∗ ∈ �∗ as shown in Proposition 3.3
and Remark 2.2. Otherwise, note that because of (3.4), for any δ > 0 and n ∈ N

large enough,

−λ∗ + [M,M]t
2t

≥ −δ
1

t

∫ t

0
I{Xs∈Ec

n} ds − λ∗ 1

t

∫ t

0
I{Xs∈En} ds

≥ −δ − λ∗ 1

t

∫ t

0
I{Xs∈En} ds.

Now, if X is null-recurrent under P∗, then from [25], Theorem 4.9.5, it follows that

lim
t↑∞

1

t

∫ t

0
I{Xs∈En} ds = 0, P∗-a.s.

proving, in view of (3.7), that P∗ ∈ �∗
a.s., and hence P∗ ∈ �∗. Clearly,

{X eventually in Ec
n} ⊆

{
lim
t↑∞

1

t

∫ t

0
I{Xs∈En} ds = 0

}
.

Therefore, if X is transient it follows that P∗ ∈ �∗. �

Another result giving a condition on whether P∗ ∈ �∗ based on the tail-decay
of the distribution of ζ under Q will be established.

PROPOSITION 3.6. Let Assumption 1.1 hold. If P∗[ζ < ∞] = 0 and

lim inf
t↑∞

(
−1

t
log Q[ζ > t]

)
≥ λ∗,(3.8)

then P∗ ∈ �∗.

When λ∗ = 0 the fact that Q[ζ > t] ≤ 1 immediately yields that P∗ ∈ �∗.

COROLLARY 3.7. Let Assumption 1.1 hold. If λ∗ = 0 and P∗[ζ < ∞] = 0
then P∗ ∈ �∗.

PROOF OF PROPOSITION 3.6. That P∗ ∈ � follows by Proposition 3.2. Also,
by Proposition 3.2, using the fact that V ∗

t = exp(λ∗t)η∗(Xt) for t ∈ R+,

log
(

EP∗
[

1

η∗(Xt)

])
= λ∗t + log(Q[ζ > t]) − logη∗(x0).

Thus, (3.8) implies

lim sup
t↑∞

(
1

t
log

(
EP∗

[
1

η∗(Xt)

]))
≤ 0.(3.9)
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Now, by Chebyshev’s inequality, for each ε > 0,

1

t
log

(
P∗

[
1

t
logη∗(Xt) ≤ −ε

])
= 1

t
log

(
P∗

[
1

η∗(Xt)
≥ exp(εt)

])

≤ 1

t
log

(
exp(−εt)EP∗

[
1

η∗(Xt)

])

= −ε + 1

t
log

(
EP∗

[
1

η∗(Xt)

])
.

In conjunction with (3.9), this gives

lim sup
t↑∞

(
1

t
log

(
P∗

[
1

t
logη∗(Xt) ≤ −ε

]))
≤ −ε,

which implies, in particular, that

lim
t↑∞P∗

[
1

t
logη∗(Xt) ≤ −ε

]
= 0.

Since this is true for all ε > 0, it follows that P∗ ∈ �∗. �

REMARK 3.8. From [25], Theorem 4.4.4 (note that there, λc is used in place
of −λ∗),

−λ∗ = lim
n↑∞ lim

t↑∞
1

t
log Q[ζn > t].

Since Q[ζn > t] ≤ Q[ζ > t] it holds that

λ∗ + lim inf
t↑∞

1

t
log Q[ζ > t] ≥ 0.

In particular, (3.8) is really equivalent to

lim
t↑∞

(
1

t
log Q[ζ > t]

)
= −λ∗.

4. Connections with optimal arbitrages. In [6], and quite close to the setting
considered here, the authors treat the problem of optimal arbitrage on a given finite
time horizon. We briefly mention the main points below, sending the interested
reader to [6] for a more in-depth treatment.

Consider a class of probabilities (Px)x∈E on (�, F∞) under which the coor-
dinate process X has Markovian structure, and with the property that Px �loc Qx

holds for all x ∈ E. Define a function U : R+×E �→ [0,1] via the following recipe:
for (T , x) ∈ R+ × E, set

1/U(T , x) = sup{v ∈ R+ | ∃V ∈ V such that Px[VT ≥ v] = 1}.
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In words, 1/U(T , x) is the maximal capital that one can realize at time T starting
from unit initial capital when the market configuration at the initial time is x ∈ E.
Equivalently, U(T , x) is the minimal capital required in order to ensure at least one
unit of wealth at time T when the market configuration at the initial time is x ∈ E.
Arbitrage on the finite time interval [0, T ] exists if and only if U(T , x) < 1. Using
the notation of the present paper and recalling that for x0 ∈ E the subscripts in
the probability measures are dropped, it is shown in [6] that arbitrage over a time
horizon [0, T ] exists if and only if Q[ζ > T ] < 1. Furthermore, it is established
that U(T , x) = Qx[ζ > T ] for all (T , x) ∈ R+ × E, and that the optimal arbitrage
exists and is given by V T = (V T

t )t∈[0,T ], where

V T
t = Q[ζ > T | Ft ]

Q[ζ > T ] = U(T − t,Xt )

U(T , x0)
for t ∈ [0, T ].(4.1)

Observe that the optimal arbitrage V T in (4.1) is normalized so that V T
0 = 1. In [6],

the normalization is such that the terminal value of the optimal relative arbitrage
is unit; as already mentioned, in that case U(T , x0) is the minimal capital required
at time zero to ensure a unit of capital at time T .

REMARK 4.1. In [6], Sections 10–12, the problem of optimal arbitrage is
specified to when E is the interior of the simplex on Rd−1, that is,

E =
{
x ∈ Rd−1 ∣∣ min

i=1,...,d−1
xi > 0, and

d−1∑
i=1

xi < 1

}
.

(In fact, in [6] the simplex �d+ := {x ∈ Rd |mini=1,...,d xi > 0, and
∑d

i=1 xi = 1}
is used. Since x = (xi)i=1,...,d−1 ∈ E ⇐⇒ (x,1 − ∑d−1

i=1 xi) ∈ �d+, E is in trivial
one-to-one correspondence with �d+. For the purposes of this paper, the state space
has to be an open set; for this reason, E as defined above will be used throughout.)
The interpretation is that the coordinate process X represents the relative capi-
talizations of stocks, and the corresponding optimal arbitrages are in fact relative
arbitrages with respect to the market portfolio. In principle, the treatment of [6]
does not really utilize the special structure of the simplex; therefore, the general
case is considered.

It is natural to study the asymptotic behavior of these optimal arbitrages as the
time-horizon becomes arbitrarily large. It is shown below that, under suitable as-
sumptions, the sequence of wealth processes (V T )T ∈R+ (parameterized via their
maturity) converges to the robust asymptotically growth-optimal wealth process.

A tool in proving this convergence will be Proposition 3.2. In view of that result,
it follows that if λ∗ > 0 and P∗

x[ζ < ∞] = 0 for each x ∈ E, arbitrage occurs if
and only if the local P∗

x-martingale 1/V ∗ is a strict local P∗
x-martingale in the

terminology of [4]. If 1/V ∗ is a P∗
x-martingale, then, even though arbitrage does

not exist, it is still possible to construct robust growth-optimal trading strategies,
as seen in Example 6.7.
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REMARK 4.2. Equation (3.1) holds when ζ, η∗,V ∗ and P∗
x are replaced by

ζn, η
∗
n,V

∗
n and P∗

x,n, where these quantities appear in the proof of Theorem 2.1. In
this case, and when E = (0,∞)d , conditioning upon ζn > T can be interpreted as
forcing a diversity condition in the market since X ∈ En implies there exists some
δ > 0 such that no one asset’s relative capitalization is above 1 − δ. Conditioned
upon never exiting En for n ∈ N, the robust growth optimal wealth process V ∗

n is
thus identified with the long-run version of the arbitrage constructed in [21].

Equation (3.1) may be re-written as

eλ∗T Qx[ζ > T ] = η∗(x)EP∗
x

[
1

η∗(XT )

]
.(4.2)

Thus, to study the asymptotic behavior of V T
t as T ↑ ∞ in (4.1), it is necessary to

study the long-time (as T ↑ ∞) behavior of EP∗
x [(η∗(XT ))−1]. Assume that X is

positive recurrent (or, equivalently, tight) under (P∗
x)x∈E with invariant probability

measure μ. Under Assumption 1.1, [22], Theorem 1.2 (iii), equations (3.29), (3.30)
extends the ergodic result in (3.2) to functions f which are integrable with respect
to μ. Thus, for all positive measurable functions f :E �→ R,

lim
T ↑∞ EP∗

x [f (XT )] =
∫
E

f dμ,(4.3)

and this limit is the same for all x ∈ E. This yields the following proposition:

PROPOSITION 4.3. Let Assumption 1.1 hold. Suppose that η∗ ∈ Hλ∗ is such
that

lim
n↑∞ sup

x∈Ec
n

η∗(x) = 0.(4.4)

Then P∗
x[ζ < ∞] = 0 for all x ∈ E, and the following are equivalent:

(1) limT ↑∞ eλ∗T Qx[ζ > T ] = κη∗(x) for all x ∈ E where κ > 0 does not de-
pend upon x;

(2) lim supT ↑∞ eλ∗T Qx[ζ > T ] < ∞ for some x ∈ E;
(3) X is positive recurrent under (P∗

x)x∈E and
∫
E(η∗)−1 dμ < ∞ where μ is

the invariant measure for X.

REMARK 4.4. Note that (3) implies (1) even if (4.4) does not hold. Note also
that, by Example 4.7 below, some condition like (4.4) is necessary for (1), (2) and
(3) to be equivalent.

PROOF OF PROPOSITION 4.3. Let x ∈ E. Note that (eλ∗t η∗(Xt))
−1 is a P∗

x

super-martingale. By (4.4), if P∗
x[ζ < ∞] > 0, then the super-martingale property

would be violated. Thus an explosion cannot occur.
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Regarding the equivalences, (1) ⇒ (2) is trivial. As for (2) ⇒ (3), if (2) holds,
then by (4.2) it follows that there is some T0 ≥ 0 such that

sup
T ≥T0

EP∗
x

[
1

η∗(XT )

]
< ∞.

Therefore, (4.4) yields that (XT )T ≥T0 form a P∗
x tight family of random variables

for each x ∈ E. By Proposition 3.3 it follows that X is positive recurrent under
(P∗

x)x∈E ; hence, (4.3) gives∫
E

1

η∗ dμ = lim
T ↑∞ EP∗

x

[
1

η∗(XT )

]
≤ lim sup

T ↑∞
EP∗

x

[
1

η∗(XT )

]
< ∞

proving (3). Implication (3) ⇒ (1) follows by applying (4.3) to 1/η∗ and using
(4.2). �

The following is the main result of the section.

THEOREM 4.5. Suppose that η∗ ∈ Hλ∗ is such that P∗[ζ < ∞] = 0 and that
condition (1) in Proposition 4.3 holds. Fix P ∈ �. Then, for any fixed t ∈ R+,

P- lim
T →∞ sup

τ∈[0,t]
|V T

τ − V ∗
τ | = 0.(4.5)

Additionally, for each T ∈ R+, let (ϑT
t )t∈[0,T ] be a predictable process such that

V T = 1 +
∫ ·

0
V T

t (ϑT
t )′ dXt .(4.6)

With �∗ as in (2.1) and ϑ∗ = ∇�∗(X), it follows that, for any fixed t ∈ R+,

P- lim
T →∞

∫ t

0
(ϑT

τ − ϑ∗
τ )′c(Xτ )(ϑ

T
τ − ϑ∗

τ ) dτ = 0.(4.7)

PROOF. Fix t ∈ R+. Equation (4.1), coupled with condition (1) in Proposi-
tion 4.3, implies that P- limT →∞ V T

t = V ∗
t . Let ZT = (ZT

τ )τ∈[0,t] be defined via
ZT

τ := V T /V ∗. The arguments used in the proof of Theorem 2.1 show that V ∗
is the numéraire portfolio in V under P∗, that is, that ZT is a nonnegative P∗-
supermartingale on [0, t] for all T ∈ (t,∞). Then [16], Theorem 2.5, implies that
P∗-limT →∞ supτ∈[0,t] |ZT

τ − 1| = 0. Using the fact that P∗[infτ∈[0,t] V ∗
τ > 0] = 1,

it follows that P∗-limT →∞ supτ∈[0,t] |V T
τ − V ∗

τ | = 0. Now, with RT = (RT
τ )τ∈[0,t]

defined via

RT =
∫ ·

0
(ϑT

s − ϑ∗
s )′

(
dXs − c(Xs)∇�∗(Xs) ds

)
,

it holds that ZT = 1 + ∫ ·
0 ZT

s dRs . Invoking [16], Theorem 2.5, again yields P∗-
limT →∞[RT ,RT ]t = 0 for all t ∈ R+. As

[RT ,RT ]t =
∫ t

0
(ϑT

τ − ϑ∗
τ )′c(Xτ )(ϑ

T
τ − ϑ∗

τ ) dτ,
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(4.7) follows, with P∗ replacing P there.
Up to now, the validity of both (4.5) and (4.7), for the special case P = P∗ ∈ �

has been shown. For a general P ∈ �, the result follows by noting that P∗ and P

are equivalent on each Fζn , n ∈ N, and that limn→∞ P[ζn > t] = 1. Indeed, for any
ε > 0 pick nε ∈ N large enough so that P[ζnε ≤ t] ≤ ε/2. Then pick δε > 0 so that
P[A] ≤ ε/2 holds whenever A ∈ Fζnε

and P∗[A] ≤ δε . Finally, pick Tε ∈ R+ large
enough so that

P∗[
sup

τ∈[0,t]
|V T

τ − V ∗
τ | ≥ ε

]
≤ δε

as well as

P∗
[∫ t

0
(ϑT

τ − ϑ∗
τ )′c(Xτ )(ϑ

T
τ − ϑ∗

τ ) dτ ≥ ε

]
≤ δε

holds whenever T ≥ Tε . Therefore, for all T ≥ Tε ,

P
[

sup
τ∈[0,t]

|V T
τ − V ∗

τ | ≥ ε
]
≤ P

[
sup

τ∈[0,ζn∧t]
|V T

τ − V ∗
τ | ≥ ε

]
+ P[ζnε ≤ t]

≤ ε/2 + ε/2 = ε.

This establishes (4.5). Similarly, we establish (4.7). �

REMARK 4.6. The result of Theorem 4.5 is expected to hold in greater gen-
erality than its assumptions suggest. It is conjectured that the results hold under
Assumption 1.1, but it is an open question. See Example 6.4 in Section 6 for a
potential counterexample. The next example shows that it can even hold when
λ∗ = 0.

EXAMPLE 4.7. Let E = (0,∞) and c(x) = 1 for x ∈ E. It is straightforward
to check that

U(T , x) = Qx[ζ > T ] = 2�
(
x/

√
T

) − 1 for (T , x) ∈ R+ × E,

where � is the cumulative distribution function of the standard normal law. With
x0 = 1, it follows that

V T
t = 2�(Xt/

√
T − t) − 1

2�(1/
√

T ) − 1
for t ∈ [0, T ].

From this explicit formula it is straightforward that P- limT →∞ supτ∈[0,t] |V T
τ −

Xτ | = 0 holds whenever t ∈ R+. Observe that V ∗ = X exactly for the choice
η∗(x) = x corresponding to λ∗ = 0, and P∗ being the probability that makes X

behave as a three-dimensional Bessel process. Remember that in this example the
dimensionality of the set of principal eigenfunctions is two—the other one is η ≡ 1.
It is interesting to note that the sequence (V T ) “chooses” to converge to the opti-
mal strategy of the optimal probability P∗ that satisfies P∗ ∈ �.
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As in [8], Section 5.1, for T ∈ R+ and x ∈ E, define the measure P�,T
x on FT

via

P�,T
x [A] = Qx[A | ζ > T ] for A ∈ FT .

It is shown therein that, for each t ∈ [0, T ] and x ∈ E,

dP�,T
x

dQx

∣∣∣∣
Ft

= U(T − t,Xt)

U(T , x)
I{ζ>t}.

Furthermore, under the assumption U ∈ C1,2((0, T ) × E), the coordinate process
X under (P�,T

x )x∈E has dynamics on [0, T ] of

dXτ = c(Xτ )
∇xU(T − τ,Xτ )

U(T − τ,Xτ )
dτ + σ(Xτ ) dWP�,T

τ

= c(Xτ )ϑ
T
τ dτ + σ(Xτ ) dWP�,T

τ

using the notation of (4.6) in Theorem 4.5. Assuming P∗
x[ζ < ∞] = 0, it follows

that P�,T
x and P∗

x are equivalent on Ft for t ∈ [0, T ] with

dP�,T
x

dP∗
x

∣∣∣∣
Ft

= exp
(
−1

2

∫ t

0
(ϑT

τ − ϑ∗
τ )′c(Xτ )(ϑ

T
τ − ϑ∗

τ ) dτ

(4.8)

+
∫ t

0
(ϑT

τ − ϑ∗
τ )′σ(Xτ ) dWP∗

τ

)
.

Thus the results of Theorem 4.5 immediately imply the following:

PROPOSITION 4.8. Suppose the hypotheses of Theorem 4.5 hold. Then, for
any t ∈ R+, P�,T

x converges in variation norm to P∗
x on Ft as T ↑ ∞.

PROOF. The process on the right-hand side of (4.8) is the process ZT =
V T /V ∗ in the proof of Theorem 4.5. Since, for each A ∈ Ft ,

|P�,T
x (A) − P∗

x(A)| ≤ EP∗
x [|ZT

t − 1|],
the result follows from [16], Theorem 2.5(i). �

REMARK 4.9. In [24], a similar result to Proposition 4.8 is obtained, though
not in the setting of convergence of relative arbitrages. Namely, it is assumed that

lim
T ↑∞

∇xU(T , x)

U(T , x)
= ∇�∗(x) for x ∈ E,(4.9)

where the convergence takes place exponentially fast with rate λ∗ and is uniform
on compact subsets of E. Under this assumption, the measures P�,T

x are shown to
weakly converge as T ↑ ∞ to P∗

x on Ft for each t ∈ R+.
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In the case where E is bounded with smooth boundary, and c is uniformly el-
liptic over E, (4.9) holds if there exists a function H :E �→ R such that, for each
i = 1, . . . , d ,

d∑
j=1

cij (x)
∂

∂xj

H(x) = fi(x); fi(x) := −1

2

d∑
j=1

∂

∂xj

cij (x), i = 1, . . . , d.

In vector notation, this gradient condition takes the form ∇H = c−1f , and f is
the Fichera drift associated to Q. Under this hypothesis, the measure m(dx) =
exp(2H(x)) dx is reversing for the transition probability function Q(t, x, ·), and
the convergence result in (4.9) follows by representing U(T , x) = Qx[ζ > T ] as
an eigenfunction expansion where the underlying space is L2(E,m); see [24].

5. A thorough treatment of the one-dimensional case. This section consid-
ers the case d = 1, where E = (α,β) is a bounded interval. If E = R, then λ∗ = 0
holds by Proposition 1.7, because the coordinate process under Q is recurrent. If
E is a half-bounded interval, it is possible for:

• λ∗ = 0, even though there is explosion under Q; see Example 4.7.
• λ∗ > 0, even though there is no explosion under Q; see Example 6.6 with d = 1.

Hence making a general statement connecting λ∗ > 0 with explosion or nonexplo-
sion under Q is difficult. Thus to enlighten the connections with relative arbitrages,
the following will assumed throughout the section:

ASSUMPTION 5.1. Assumption 1.1 holds for E = (α,β) with −∞ < α <

β < ∞.

Under the validity of Assumption 5.1, results are provided that almost com-
pletely cover all the cases that can occur.

The first proposition establishes point-wise tests for c which yield λ∗ > 0 or
λ∗ = 0. The second proposition gives integral tests which yield λ∗ > 0 or λ∗ = 0.
Condition (5.11) is equivalent to the coordinate process X under (Qx)x∈[α,β], ex-
ploding to both α,β with positive probability. Additionally, condition (5.11) not
only yields λ∗ > 0 but also that P∗ ∈ �∗

a.s. (and hence P∗ ∈ �∗).
Recall the following facts regarding explosion, transience, recurrence and posi-

tive recurrence in the one-dimensional case under Assumption 5.1; see [25], Chap-
ter 5.1:

• Since E is bounded the coordinate process X under (Qx)x∈[α,β] is transient.
Furthermore it explodes to α and/or β with positive probability if, for some
x0 ∈ (α,β), ∫ x0

α

x − α

c(x)
dx < ∞ and/or

∫ β

x0

β − x

c(x)
dx < ∞.
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• The coordinate process X under (P∗
x)x∈(α,β) is recurrent if∫ x0

α

1

(η∗(x))2 dx = ∞ and
∫ β

x0

1

(η∗(x))2 dx = ∞.(5.1)

If either of the integrals in (5.1) are finite, then the coordinate process X is
transient towards the endpoint with finite integral.

• The coordinate process X under (P∗
x)x∈(α,β) is positive recurrent if (5.1) holds

and if ∫ β

α

(η∗(x))2

c(x)
dx < ∞.(5.2)

PROPOSITION 5.2 (Pointwise result). Let Assumption 5.1 hold. If

sup
x∈(α,β)

(x − α)2(β − x)2

c(x)
< ∞,(5.3)

then λ∗ > 0. If

lim
x↓α

(x − α)2

c(x)
= ∞ or lim

x↑β

(β − x)2

c(x)
= ∞,(5.4)

then λ∗ = 0.

REMARK 5.3. We thank an anonymous referee for suggesting the short, self-
contained proof to Proposition 5.2 below.

PROOF OF PROPOSITION 5.2. By [25], Theorem 4.4.5 (note that λc from [25],
Theorem 4.4.5, is equal to −λ∗ here), λ∗ admits the following variational repre-
sentation:

λ∗ = sup
η∈C2(α,β)

η>0

inf
x∈(α,β)

−c(x)η′′(x)

2η(x)
,(5.5)

where the ′ symbol is used to signify a derivative with respect to x (and not to
denote matrix transposition as it was used in previous sections).

Let η(x) = √
(x − α)(β − x). If (5.3) holds, then

inf
x∈(α,β)

−c(x)η′′(x)

2η(x)
= inf

x∈(α,β)

(β − α)2c(x)

8(x − α)2(β − x)2 > 0

and hence λ∗ > 0.
Now, assume (5.4) holds for x ↓ α. The proof for x ↑ β is the same. Let a > α,

and consider the case when c ≡ 1 and E = (α, a). Since Assumption 1.1 clearly
holds in this setting, let λ∗

a represent the generalized principle eigenvalue. Set λa =
π2

2(a−α)2 and consider the function φ(x) = sin(
√

2λa(x − α)). It can be directly
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verified that −1
2φ′′(x) = λaφ(x) and that both (5.1) and (5.2) hold [with c ≡ 1,

β replaced by a and x0 ∈ (α, a)]. Thus, Proposition 1.7 implies that λ∗
a = λa =

π2

2(a−α)2 . Plugging this into (5.5) (again, for c ≡ 1 and β replaced by a) gives for

all η ∈ C2(α, a), η > 0

inf
x∈(α,a)

−η′′(x)

2η(x)
≤ π2

2(a − α)2 .(5.6)

Now, for the general case, it is clearly true that λ∗ ≥ 0. Assume by way of
contradiction that λ∗ > 0. By (5.5) it follows that there exists a λ̃ > 0 and η ∈
C2(α,β), η > 0 such that

λ̃ ≤ inf
x∈(α,β)

−c(x)η′′(x)

2η(x)
.(5.7)

Let M > 0. Since (5.4) holds, there is an αM such that for x ∈ (α,αM),

M ≤ (x − α)2

c(x)
≤ (αM − α)2

c(x)
.(5.8)

Together, (5.7) and (5.8) give

λ̃M

(αM − α)2 ≤ inf
x∈(α,αM)

λ̃

c(x)
≤ inf

x∈(α,αM)

−η′′(x)

2η(x)
.(5.9)

By (5.6) with a = αM , it follows that

inf
x∈(α,αM)

−η′′(x)

2η(x)
≤ π2

2(αM − α)2 .(5.10)

Combining (5.9) and (5.10) gives

λ̃M

(αM − α)2 ≤ π2

2(αM − α)2

or that M ≤ π2/(2λ̃). This is a contradiction since M was arbitrary. Thus λ∗ = 0.
�

The proof of the following result is lengthy and technical; for this reason, it is
delayed until Section 7.

PROPOSITION 5.4 (Integral result). Let Assumption 5.1 hold. If∫ β

α

(x − α)(β − x)

c(x)
dx < ∞,(5.11)

then:

(1) λ∗ > 0.
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(2) For any η∗ ∈ Hλ∗ , limx↓α η∗(x) = 0 = limx↑β η∗(x).
(3) For any η∗ ∈ Hλ∗ , the coordinate process X under (P∗

x)x∈(α,β) is positive
recurrent and so by Proposition 1.7, η∗ is unique up to multiplication by a positive
constant.

(4) P∗ ∈ �∗
a.s. and hence P∗ ∈ �∗.

If, for some a ∈ (α,β),∫ a

α

(x − α)2

c(x)
dx = ∞ or

∫ β

a

(β − x)2

c(x)
dx = ∞,(5.12)

then λ∗ = 0.

6. Examples.

6.1. One-dimensional examples. The following examples display a variety of
outcomes regarding η∗ and P∗. Proofs of all the statements follow from Propo-
sitions 5.2, 5.4 and/or from the tests for recurrence, null recurrence or positive
recurrence under P∗ given in equations (5.1) and (5.2) in conjunction with Propo-
sition 1.7.

The first three Examples 6.1–6.3, all consider E = (0,1) and display the differ-
ent possible outcomes depending upon the rate of decay (to zero) of c at 0 and 1.
The fourth Example 6.4 shows that it is possible that λ∗ > 0, P∗ ∈ �∗

a.s., and the co-
ordinate process is positive recurrent under P∗, while (η∗)−1 fails to be integrable
with respect to the invariant measure under P∗; thus, the results of Section 4, and in
particular Theorem 4.5, are not applicable. Finally, Example 6.5 shows that even if
λ∗ > 0, there is no explosion of X under P∗ and η∗ is unique (up to multiplication),
no conclusion can be made as to if P∗ ∈ �∗

a.s. or P∗ ∈ �∗, based on results of this
article.

EXAMPLE 6.1. Let E = (0,1) and c(x) = x(1 − x). Then:

• Equation (5.11) holds and so the results of Proposition 5.4 follow.
• η∗(x) = x(1 − x), λ∗ = 1.
• Equation (4.4) holds as well as condition (3) in Proposition 4.3. Thus the results

of Theorem 4.5 and Proposition 4.8 follow.

EXAMPLE 6.2. Let E = (0,1) and c(x) = x2(1 − x)2. Then:

• Q[ζ < ∞] = 0.
• η∗(x) = √

x(1 − x), λ∗ = 1/8.
• The coordinate process X is null recurrent under (P∗

x)x∈E ; however, P∗ ∈ �∗
a.s..

Note that there is a multidimensional generalization of this in Example 6.7.

EXAMPLE 6.3. Let E = (0,1) and c(x) = x3(1 − x)3. Then:
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• Q[ζ < ∞] = 0.
• λ∗ = 0 by either Proposition 5.2 or 5.4.
• η∗ can be any affine function α + βx such that η∗ > 0 on (0,1). For any such

η∗, P∗ ∈ �∗
a.s..

EXAMPLE 6.4. Let E = (0, x̂), where

x̂ := min
{
x > 0

∣∣∣ ∫ x

0
log(−log(y)) dy = 0

}
≈ 0.75.

Furthermore, let c :E �→ R+ be defined via

c(x) = −2x log(x)

∫ x

0
log(−log(y)) dy for x ∈ E.

Then:

• Equation (5.11) holds and so the results of Proposition 5.4 follow.
• η∗(x) = ∫ x

0 log(− log(y)) dy, λ∗ = 1.
• (η∗)−1 is not integrable with respect to the invariant measure for P∗.

EXAMPLE 6.5. Let E = (0,∞) and

c(x) = 4(x3/2 ∫ x
0 cos(y−1/2) dy + 4x2 − x5/2)

2 − sin(x−1/2)
for x ∈ E.

Then:

• Q[ζ < ∞] = 0.
• η∗(x) = ∫ x

0 cos(y−1/2) dy + 4
√

x − x, λ∗ = 1.
• The coordinate process X under (P∗

x)x∈E is null-recurrent. No conclusions as to
whether or not P∗ ∈ �∗

a.s. or �∗ can be drawn based on the results of the paper
(see Propositions 3.4 and 3.2) since

lim sup
x↓0

(
1

2
∇�∗(x)′c(x)∇�∗(x) − λ∗

)
= 0,

lim inf
x↓0

(
1

2
∇�∗(x)′c(x)∇�∗(x) − λ∗

)
= −2

3
.

6.2. Multi-dimensional examples. The following examples show that the op-
timal η∗ need not vanish on the boundary of E even when E is bounded, and that
strictly positive asymptotic growth rate is possible even when Q[ζ < ∞] = 0.

EXAMPLE 6.6 (Correlated geometric Brownian motion). Let E = (0,∞)d ,
and define the matrix c via

cij (x) = xixjAij , 1 ≤ i, j ≤ d,
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where A is a symmetric, strictly positive definite d × d matrix. Define the vectors
Â, B̂ ∈ Rd by

Âi = Aii (1 ≤ i ≤ d), B̂ = 1
2A−1Â.

Then

η∗(x) =
d∏

i=1

x
B̂i

i , λ∗ = 1

8
Â′A−1Â,(6.1)

and P∗ ∈ �∗
a.s..

To see the validity of the above claims, set η, λ as the respective right-hand sides
of (6.1). A straightforward calculation shows that Lη = −λη and hence that λ∗ ≥
λ. Set (P

η
x)x∈Ê

as the solution to the generalized martingale problem for Lη, as in
(1.7) and Pη = P

η
x0 . The coordinate process X under Pη is given by X = exp(aW)

where a is the unique positive definite square root of A and W a Brownian motion
under Pη. Thus, under Pη,

1

t
logη(Xt) = 1

t
B̂ ′aWt .

The strong law of large numbers for Brownian motion gives that Pη ∈ �∗
a.s.. The-

orem 2.1 then yields λ∗ ≤ supV ∈V g(V ;Pη) ≤ λ, and hence λ∗ = λ, η∗ = η and
P∗ = Pη.

EXAMPLE 6.7 (Relative capitalizations of a correlated geometric Brownian mo-
tion). For d ≥ 2, let

E =
{
x ∈ Rd−1 ∣∣ min

i=1,...,d−1
xi > 0;

d−1∑
i=1

xi < 1

}
.

For the matrix A of Example 6.6, define the (d − 1)-dimensional square matrix A
by

Aij = Aij − Aid − Ajd + Add, 1 ≤ i, j ≤ d − 1,

and the matrix c via

cij (x) = xixj

(
Aij − (Ax)i − (Ax)j + x′Ax

)
, 1 ≤ i, j ≤ d − 1.

Set the (d − 1)-dimensional vectors

Âi = Aii (1 ≤ i ≤ d − 1), B̂ = 1
2 A−1Â.

Then

η∗(x) =
(

d−1∏
i=1

x
B̂i

i

)(
1 −

d−1∑
i=1

xi

)1−∑d−1
i=1 B̂i

, λ∗ = 1

8
Â′A−1Â,(6.2)



1604 C. KARDARAS AND S. ROBERTSON

and P∗ ∈ �∗
a.s.. Furthermore, the coordinate process under P∗ on the simplex has

the same dynamics as the coordinate process under P∗ in Example 6.6 moved to
the simplex.

To prove the validity of the claims, set η,λ as the right-hand sides of (6.2), that
is,

η(x) =
(

d−1∏
i=1

x
B̂i

i

)(
1 −

d−1∑
i=1

xi

)1−∑d−1
i=1 B̂i

for x ∈ E,λ = 1

8
Â′A−1Â.

A long calculation shows that Lη = −λη. Let (P
η
x)x∈Ê

be the solution to the gen-
eralized martingale problem for Lη as in (1.7), and set Pη = P

η
x0 .

Rewrite P̃∗ for the probability measure P∗ of Example 6.6, and let X̃ be the
coordinate process taking values in (0,∞)d . As shown in Example 6.6, X =
exp(aW P̃∗

), where a is the unique positive definite square root of A, and W P̃∗

is a standard Brownian motion under P̃∗. Let Ỹ = X̃/(1′
dX̃), where 1d is the vec-

tor of all 1’s in Rd , and define Y = (Ỹ1, . . . , Ỹd−1), which is an E-valued process.
Note that Ỹ be recovered from Y since Ỹd = 1 − ∑d−1

i=1 Yi . Using Itô’s formula it
can be shown that Y has dynamics

dYt = c(Yt )
∇η(Yt )

η(Yt )
dt + σ̃ (Yt ) dW P̃∗

t ,

where σ̃ is the (d − 1) × d matrix given by

σ̃ (x)ij = xi

(
aij −

d−1∑
l=1

xlalj −
(

1 −
d−1∑
l=1

xl

)
adj

)
for x ∈ E.

It can be verified that σ̃ σ̃ ′ = c—indeed, this is how c was constructed. Thus, using
the one-to-one correspondence between weak solutions of SDEs and solutions to
the Martingale problem ([27], Chapter 5.4) and the uniqueness of solutions to the
Martingale problem under Assumption 1.1 ([25], Theorem 1.12.1), it follows that
Pη[A] = P̃∗[Y ∈ A] holds for all A ∈ F . Since X̃ = exp(aW P̃∗

), it follows that

logη(Y ) = β̂(∗)′aW P̃∗ − log(1′
deaW P̃

∗
), where

β̂(∗)i = β̂i , 1 ≤ i ≤ d − 1, β̂(∗)d = 1 −
d−1∑
j=1

β̂j .

Thus it follows that P̃∗-a.s., limt↑∞ 1
t

logη(Yt ) = 0. Hence, with X denoting the
coordinate process in E, limt↑∞ 1

t
logη(Xt) = 0 holds Pη-a.s., which implies that

Pη ∈ �∗
a.s.. The same argument as in Example 6.6 yields the optimality of η, λ

and Pη.
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An interesting numerical example. Using the same notation as in Examples
6.6 and 6.7, consider for d = 3 the matrix A and associated vectors B̂ , B̂ given by

A =
⎛
⎝ 5/3 3 0

3 7 0
0 0 1

⎞
⎠ , B̂ =

⎛
⎝−7/4

5/4
1/2

⎞
⎠ , B̂ =

(−1
1

)
.

The eigenvalues of A are 1 and 13/3(1 ± √
145/169), and hence A is positive

definite. The η∗ from (6.1) and (6.2), respectively, are

η∗(x, y, x) = 4

√
y5z2

x7 for (x, y, z) ∈ (0,∞)3,

η∗(x, y) = y(1 − x − y)

x
for x > 0, y > 0, x + y < 1.

Therefore, η∗ goes to ∞ along the boundary of E in each case, even when the
region is bounded.

7. Proof of Proposition 5.4. The proof of Proposition 5.4 relies upon the fol-
lowing two auxiliary results. As in the proof of Proposition 5.2, the symbol ′ is
used to identify derivatives.

LEMMA 7.1. Let Assumption 5.1 hold. Let η ∈ C2(α,β) be strictly positive
and strictly concave. If (5.12) holds, then

inf
x∈(α,β)

−c(x)η′′(x)

2η(x)
= 0.

PROOF. The proof will be given for the integral near α in (5.12); the proof
near β is the same. Let η ∈ C2(α,β) be strictly positive and strictly concave. Set

δ(η) = inf
x∈(α,β)

−c(x)η′′(x)

2η(x)
.

Let x0 ∈ (α,β) and normalize η so that η(x0) = 1. Note that this will not change
the value of δ(η). Using integration by parts, for α < x < x0,

η(x) = 1 − (x0 − x)η′(x0) −
∫ x0

x
(y − x)(−η′′(y)) dy

and hence ∫ x0

α
I{y≥x}(y − x)(−η′′(y)) dy ≤ 1 + (β − α)|η′(x0)|.

Fatou’s lemma and the concavity of η yield∫ x0

α
(y − α)(−η′′(y)) dy ≤ 1 + (β − α)|η′(x0)|.(7.1)
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The positivity and concavity of η yield for α < αm < y < x0 that

η(y) = η

(
y − αm

x0 − αm

x0 + x0 − y

x0 − αm

αm

)
≥ y − αm

x0 − αm

,

and so, letting αm ↓ α, it follows that η(y) ≥ (y − α)/(x0 − α). Thus, if δ(η) > 0
and (5.12) holds, then∫ x0

α
(y − α)(−η′′(y)) dy ≥ 2δ(η)

∫ x0

α

(y − α)η(y)

c(y)
dy

≥ 2δ(η)

x0 − α

∫ x0

α

(y − α)2

c(y)
dy = ∞,

which contradicts (7.1). Thus, δ(η) = 0 proving the result. �

LEMMA 7.2. Let Assumption 5.1 hold. Let λ > 0 and η ∈ Hλ be such that

lim
x↓α

η(x) = 0 = lim
x↑β

η(x)(7.2)

and ∫ β

α

η2(x)

c(x)
dx < ∞.(7.3)

Then, λ∗ = λ and η∗ = η. The coordinate process X under (P∗
x)x∈(α,β) is positive

recurrent, and hence, by Proposition 1.7, η∗ is unique up to multiplication by a
positive constant. Furthermore, P∗ ∈ �∗

a.s..

PROOF. If X is recurrent under (P∗
x)x∈E , then from Proposition 1.7, λ∗ = λ

and η∗ = η, and η∗ is unique up to multiplication by a positive constant. Further-
more, by (7.3), positive recurrence will follow with the invariant measure η̃ that
has density proportional to η2/c with respect to Lebesgue measure, appropriately
normalized so η̃ is a probability measure.

To check recurrence it will be shown that (5.1) holds near α; the proof near β is
the same. Note that, since η ∈ Hλ and (7.2) holds, there exists a unique x0 ∈ (α,β)

such that η′(x0) = 0. For α < x < x0,∫ x0

x

2λη(y)2

c(y)
dy = −

∫ x0

x
η(y)η′′(y) dy = η(x)η′(x) +

∫ x0

x
η′(y)2 dy.

Thus, as x ↓ α since η is positive and concave, it must hold that η(x)η′(x) > 0,
and hence, by (7.3), it follows that

∫ x0
α η′(y)2 dy < ∞. Therefore, by the concavity

of η and (7.2),

0 ≤ lim inf
x↓α

η(x)η′(x) ≤ lim
x↓α

∫ x

0
η′(y)2 dy = 0.(7.4)
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This implies that, for any ε > 0, there is an xε near α such that for x ∈ (α, xε),
η2(x) ≤ 2ε(x − α), or that∫ xε

α

1

η(y)2 dy ≥ 1

2ε

∫ xε

α

1

y − α
dy = ∞,

and recurrence follows. It remains to prove that P∗ ∈ �∗
a.s.. To this end, it follows

from equations (3.5) and (3.7) in the proof of Proposition 3.4 that P∗ ∈ �∗
a.s. if

lim inf
t↑∞

1

t

∫ t

0

(
1

2
c(Xs)

(
η′(Xs)

η(Xs)

)2

− λ

)
ds ≥ 0, P∗-a.s.

By the ergodic theorem ([25], Theorem 4.9.5) and the monotone convergence the-
orem it follows that

lim inf
t↑∞

1

t

∫ t

0

(
1

2
c(Xs)

(
η′(Xs)

η(Xs)

)2

− λ

)
ds

≥
∫ β

α

(
1

2
c(y)

(
η′(y)

η(y)

)2

− λ

)
η(y)2

c(y)
dy, P∗-a.s.

Continuing, η ∈ Hλ implies∫ β

α

(
1

2
c(y)

(
η′(y)

η(y)

)2

− λ

)
η(y)2

c(y)
dy = lim

x↓α
η(x)η′(x) − lim

x↑β
η(x)η′(x) = 0,

where the last equality follows from (7.4) since the same equality holds near β .
Thus, P∗ ∈ �∗

a.s.. �

In what follows, the proof of Proposition 5.4 will be given.
The proof of how (5.12) implies λ∗ = 0 is handled first. By (5.5), it suffices

to consider strictly concave functions η. However, since (5.12) holds, Lemma 7.1
applies and hence δ(η) = 0 for all such η. Thus λ∗ = 0.

Regarding the assertions when (5.11) holds, in light of Lemma 7.2 it suffices
to show that (5.11) yields the existence of a λ > 0, η ∈ Hλ such that condi-
tions (7.2) and (7.3) are satisfied. To this end, define the σ -finite measure m via
m(dx) = c(x)−1 dx. Note that condition (7.3) now reads η ∈ L2((α,β),m). The
desired pair (λ, η) are the principle eigenvalue and eigenfunction for the oper-
ator (L, D(L)) where (Lη)(x) = −(1/2)c(x)η′′(x) for x ∈ (α,β), and the do-
main D(L) consists of functions which vanish at α,β and is constructed so that
(L, D(L)) is self adjoint in L2((α,β),m). D(L) is highly dependent upon the be-
havior of m near α and β . The study of the spectral properties of such operators
falls under the name Sturm–Liouville theory. For a detailed exposition on the topics
covered/results given below, see [20] and [30].

The case when m((α,β)) < ∞ is called the regular case. Here D(L) is given
by

D(L) = {η ∈ L2((α,β),m) | η′ ∈ AC(α,β), η(α) = η(β) = 0,
(7.5)

cη′′ ∈ L2((α,β),m)},



1608 C. KARDARAS AND S. ROBERTSON

and the existence of a λ > 0, η ∈ Hλ ∩ D(L) is given by [20], Theorem 2.7.4,
and [30], Theorem 10.12.1.

Now, suppose that (5.11) holds, but for some a ∈ (α,β) either m((α, a)) = ∞
or m((a,β)) = ∞, or both. These cases are called the singular cases. In each
of these three cases there exists a domain D(L) ⊂ L2((α,β),m), similar to that
in (7.5), such that (L, D(L)) is self adjoint. For explicit formulas for the domains,
see [30], Chapters 7 and 10.

According to [30], Theorem 10.12.1(8), if the spectrum of (L, D(L)) is discrete
and bounded from below, then in fact there exists a λ > 0 and η ∈ Hλ ∩ D(L) such
that (7.2) holds [this last fact follows by construction of D(L) but also because
otherwise η /∈ L2((α,β),m)].

To prove the spectrum is discrete and bounded from below, it suffices to treat
the case of one regular and one singular endpoint. This follows using the spec-
tral decomposition method on which a detailed description may be found in [12].
Without loss of generality, consider the case when α is regular and β is singular.
Under the transformation z = f (x) = ∫ x

α (1/c(y)) dy, (α,β) is taken to be (0,∞).
Set ϕ(z) = η(x) and g(z) = f −1(z). Note that η ∈ L2((α,β),m) is equivalent to
ϕ ∈ L2((0,∞),Leb) ≡ L2(0,∞). Furthermore, the operator (M, D(M)) defined
by

(Mϕ)(z) = −1

2

(
1

g′(z)
ϕ′(z)

)′
, D(M) = {ϕ | ϕ(z) = η(x), η ∈ D(L)}

is self-adjoint in L2(0,∞). Let N > 0 and

QN = {v ∈ C0((N,∞),C) | v ∈ ACloc(0,∞), v′ ∈ L2(0,∞)},
where C0 means that v is continuous and compactly supported in (N,∞). For
v ∈ QN , set

I (v,N) = 1

2

∫ ∞
N

|v′(z)|2
g′(z)

dz.

According to [19], Lemma 4.2, (M, D(M)) has a discrete spectrum bounded
from below if and only if for each θ > 0 there exists an N > 0 such that

I (v,N) ≥ θ

∫ ∞
N

v(z)2 dz

for each real valued v ∈ QN . To show this, fix θ > 0. For any N > 0 and v ∈ QN ,

v(z) = −
∫ ∞
z

v′(τ ) dτ.

Since τ = f (g(τ)), it follows that g′(τ ) = c(g(τ )) > 0. By Hölder’s inequality,
for real valued v ∈ QN ,

v(z)2 ≤
(∫ ∞

z

v′(τ )2

g′(τ )
dτ

)(∫ ∞
z

g′(τ ) dτ

)
≤ 2I (v,N)

(
β − g(z)

)
.
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Therefore,

θ

∫ ∞
N

v(z)2 dz ≤ 2θI (v,N)

∫ ∞
N

(
β − g(z)

)
dz

= 2θI (v,N)

∫ β

g(N)

β − x

c(x)
dx,

where the last equality follows from the substitution x = g(z) or z = f (x). Since
limz↑∞ g(x) = β , by (5.11)

2θ

∫ β

g(N)

β − x

c(x)
dx ≤ 1

for N large enough, yielding the desired result. �
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