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SCALING LIMITS OF (1 + 1)-DIMENSIONAL PINNING MODELS
WITH LAPLACIAN INTERACTION

BY FRANCESCO CARAVENNA1 AND JEAN-DOMINIQUE DEUSCHEL

Università degli Studi di Padova and TU Berlin

We consider a random field ϕ : {1, . . . ,N} → R with Laplacian interac-
tion of the form

∑
i V (�ϕi), where � is the discrete Laplacian and the po-

tential V (·) is symmetric and uniformly strictly convex. The pinning model
is defined by giving the field a reward ε ≥ 0 each time it touches the x-axis,
that plays the role of a defect line. It is known that this model exhibits a phase
transition between a delocalized regime (ε < εc) and a localized one (ε > εc),
where 0 < εc < ∞. In this paper we give a precise pathwise description of
the transition, extracting the full scaling limits of the model. We show, in par-
ticular, that in the delocalized regime the field wanders away from the defect
line at a typical distance N3/2, while in the localized regime the distance is
just O((logN)2). A subtle scenario shows up in the critical regime (ε = εc),
where the field, suitably rescaled, converges in distribution toward the deriv-
ative of a symmetric stable Lévy process of index 2/5. Our approach is based
on Markov renewal theory.

1. Introduction.

1.1. The model. The main ingredient of our model is a function V (·) : R →
R ∪ {+∞}, that we call the potential. Our assumptions on V (·) are the following:

• Symmetry: V (x) = V (−x), ∀x ∈ R.
• Uniform strict convexity: there exists γ > 0 such that x �→ V (x) − γ x2/2 is

convex.
• Regularity: since V (·) is symmetric and convex, it is continuous and finite on

some maximal interval (−a, a) (possibly a = +∞). We assume that a > 0 and
we further require that V (x) → +∞ as x → ±a, so that the function x �→
exp(−V (x)) is continuous on the whole real line.

Notice that, if V (·) is of class C2 on (−a, a), the uniform strict convexity assump-
tion amounts to requiring that

γ := inf
x∈(−a,a)

V ′′(x) > 0.(1.1)
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It follows from the above assumptions that
∫
R exp(−V (x))dx < ∞. Since adding

a global constant to V (·) is immaterial for our purposes, we impose the normaliza-
tion

∫
R exp(−V (x))dx = 1. In this way we can interpret exp(−V (x)) as a proba-

bility density, that has zero mean (by symmetry) and finite variance:

σ 2 :=
∫

R
x2e−V (x) dx < ∞.(1.2)

The most important example is, of course, the Gaussian case: V (x) = x2/2σ 2 +
log(σ

√
2π).

Next we define the Hamiltonian, by setting

H[a,b](ϕ) :=
b−1∑

n=a+1

V (�ϕn)(1.3)

for a, b ∈ Z with b − a ≥ 2 and for ϕ : {a, . . . , b} → R, where � is the discrete
Laplacian:

�ϕn := (ϕn+1 − ϕn) − (ϕn − ϕn−1) = ϕn+1 + ϕn−1 − 2ϕn.(1.4)

We can now define our model: given N ∈ N := {1,2, . . .} and ε ≥ 0, we intro-
duce the probability measure Pε,N on RN−1 defined by

Pε,N (dϕ1 · · ·dϕN−1) = exp(−H[−1,N+1](ϕ))

Zε,N

N−1∏
i=1

(
εδ0(dϕi) + dϕi

)
,(1.5)

where dϕi is the Lebesgue measure on R, δ0(·) is the Dirac mass at zero and
Zε,N is the normalization constant (partition function). To complete the definition,
in order to make sense of H[−1,N+1](ϕ) = H[−1,N+1](ϕ−1, ϕ0, ϕ1, . . . , ϕN−1, ϕN,

ϕN+1), we have to specify

the boundary conditions ϕ−1 = ϕ0 = ϕN = ϕN+1 = 0.(1.6)

The choice of zero boundary conditions is made only for simplicity, but our ap-
proach and results go through for general choices (provided they are, say, bounded
in N ).

1.2. The phase transition. The law Pε,N is what is called a pinning model and
can be viewed as a (1 + 1)-dimensional model for a linear chain of length N at-
tracted to a defect line, namely, the x-axis. The parameter ε ≥ 0 tunes the strength
of the attraction and one wishes to understand its effect on the field, in the large N

limit.
The basic properties of this model (and of the closely related wetting model,

in which the field is also constrained to stay nonnegative) were investigated in a
first paper [6], to which we refer for a detailed discussion and for a survey of the
literature. In particular, it was shown that there is a critical threshold 0 < εc < ∞
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that determines a phase transition between a delocalized regime (ε < εc), in which
the reward is essentially ineffective, and a localized regime (ε > εc), in which on
the other hand the reward has a macroscopic effect on the field. More precisely,
defining the contact number 	N by

	N := #
{
i ∈ {1, . . . ,N} :ϕi = 0

}
,(1.7)

we have the following dichotomy:

• if ε ≤ εc, then for every δ > 0 and N ∈ N

Pε,N

(
	N

N
> δ

)
≤ e−c1N,(1.8)

where c1 is a positive constant;
• if ε > εc, then there exists D(ε) > 0 such that for every δ > 0 and N ∈ N

Pε,N

(∣∣∣∣	N

N
− D(ε)

∣∣∣∣> δ

)
≤ e−c2N,(1.9)

where c2 is a positive constant.

Roughly speaking, for ε ≤ εc we have 	N = o(N), while for ε > εc we have 	N ∼
D(ε) · N . For an explicit characterization of εc and D(ε) we refer to [6], where it is
also proven that the phase transition is exactly of second order.

The aim of this paper is to go far beyond (1.8) and (1.9) in the study of the
path properties of Pε,N . Our results, that include the scaling limits of the model on
C([0,1]), provide strong path characterizations of (de)localization. We also show
that the delocalized regime (ε < εc) and the critical one (ε = εc) exhibit great
differences, that are somewhat hidden in relation (1.8). In fact, a closer look at the
critical regime exposes a rich structure that we analyze in detail.

REMARK 1.1. We point out that the hypothesis on V (·) in the present paper
are stronger than those of [6] [where essentially only the second moment con-
dition (1.2) was required]. This is a price to pay in order to obtain precise path
results, like, for instance, Theorem 1.4 below, that would not hold in the general
setting of [6]. Although for some other results our assumptions could have been
weakened, we have decided not to do it, both to keep us in a unified setting, and
because, with the uniform strict convexity assumption on V (·), one can apply gen-
eral powerful tools, notably the Brascamp–Lieb inequality [4, 5], that allow to give
streamlined versions of otherwise rather technical proofs.

Also notice that the analysis of this paper does not cover the wetting model,
that was also considered in [6]. The reason for this exclusion is twofold: on the
one hand, the basic estimates derived in [6] in the wetting case are not sufficiently
precise as those obtained in the pinning case; on the other hand, for the scaling
limits of the wetting model one should rely on suitable invariance principles for
the integrated random walk process conditioned to stay nonnegative, but this issue
seems not to have been investigated in the literature.
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1.3. Path results and the scaling limits. Let us look first at the free case ε = 0,
where the pinning reward is absent. It was shown in [6] that the law P0,N en-
joys the following random walk interpretation (for more details see Section 2). Let
({Yn}n∈Z+:=N∪{0},P) denote a real random walk starting at zero and with step law
P(Y1 ∈ dx) = exp(−V (x))dx, and let {Zn}n∈Z+ be the corresponding integrated
random walk process:

Z0 := 0, Zn := Y1 + · · · + Yn, n ∈ N.

The basic fact is that P0,N coincides with the law of the vector (Z1, . . . ,ZN−1)

conditionally on (ZN,ZN+1) = (0,0), that is, the free law P0,N is nothing but
the bridge of an integrated random walk. By our assumptions on V (·) (see Sec-
tion 1.1), the walk {Yn}n has zero mean and finite variance σ 2, hence, for large k

the variable Zk scales like k3/2. It is therefore natural to consider the following
rescaled and linearly-interpolated version of the field {ϕn}n:

ϕ̂N (t) := ϕ
Nt�
σN3/2 + (Nt − 
Nt�)ϕ
Nt�+1 − ϕ
Nt�

σN3/2 ,

(1.10)
N ∈ N, t ∈ [0,1],

and to study the convergence in distribution of {ϕ̂N (t)}t∈[0,1] as N → ∞ on
C([0,1]), the space of real valued, continuous functions on [0,1] (equipped as
usual with the topology of uniform convergence). To this purpose, we let {Bt }t∈[0,1]
denote a standard Brownian motion on the interval [0,1], we define the integrated
Brownian motion process {It }t∈[0,1] by It := ∫ t

0 Bs ds and we introduce the condi-
tioned process

{(B̂t , Ît )}t∈[0,1] := {(Bt , It )}t∈[0,1] conditionally on (B1, I1) = (0,0).(1.11)

Exploiting the random walk description of P0,N , it is not difficult to show that
the process {ϕ̂N (t)}t∈[0,1] under P0,N converges in distribution as N → ∞ toward
{Ît }t∈[0,1]. The emergence of a nontrivial scaling limit for {ϕ̂N (t)}t∈[0,1] is a precise
formulation of the statement that the typical height of the field under P0,N is of
order N3/2. It is natural to wonder what happens of this picture when ε > 0: the
answer is given by our first result.

THEOREM 1.2 (Scaling limits). The rescaled field {ϕ̂N (t)}t∈[0,1] under Pε,N

converges in distribution on C([0,1]) as N → ∞, for every ε ≥ 0. The limit is as
follows:

• If ε < εc, the law of the process {Ît }t∈[0,1];
• If ε = εc or ε > εc, the law concentrated on the constant function f (t) ≡ 0,

t ∈ [0,1].
Thus, the pinning reward ε is ineffective for ε < εc, at least for the large scale

properties of the field that are identical to the free case ε = 0. On the other hand, if
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ε ≥ εc, the reward is able to change the macroscopic behavior of the field, whose
height under Pε,N scales less than N3/2. We are now going to strengthen these
considerations by looking at path properties on a finer scale. However, before pro-
ceeding, we stress that, from the point of view of the scaling limits, the critical
regime ε = εc is close to the localized one ε > εc rather than to the delocalized
one ε < εc, in contrast with (1.8) and (1.9).

We start looking at the delocalized regime (ε < εc). It is convenient to introduce
the contact set τ of the field {ϕi}i∈Z+ , that is, the random subset of Z+ defined by

τ := {i ∈ Z+ :ϕi = 0} ⊆ Z+,(1.12)

where we set by definition ϕ0 := 0 so that 0 ∈ τ . We already know from (1.8) that
for ε < εc we have #{τ ∩ [0,N]} = 	N + 1 = o(N) under Pε,N . The next theorem
shows that in fact τ ∩ [0,N] consists of a finite number of points (i.e., the variable
	N under Pε,N is tight) and all these points are at finite distance from the boundary.

THEOREM 1.3. For every ε < εc the following relation holds:

lim
L→∞ lim inf

N→∞ Pε,N (τ ∩ [L,N − L] = ∅) = 1.(1.13)

We will see that the scaling limit of {ϕ̂N (t)}t∈[0,1] under Pε,N , for ε ∈ (0, εc),
is a direct consequence of relation (1.13) and of the scaling limit for ε = 0. The
reason for this lies in the following crucial fact: conditionally on the contact set,
the excursion of the field under Pε,N between two consecutive contact points, say,
τk and τk+1, is distributed according to the free law P0,τk+1−τk

with suitable bound-
ary conditions (see Section 2.3 for more details).

Next we focus on the localized and critical regimes (ε > εc) and (ε = εc). The
first question left open by Theorem 1.2 is, of course, if one can obtain a more
precise estimate on the height of the field than just o(N3/2). We have the following
result.

THEOREM 1.4. For every ε > εc the following relation holds:

lim
K→∞ lim inf

N→∞ Pε,N

(
max

0≤k≤N
|ϕk| ≤ K(logN)2

)
= 1(1.14)

while for ε = εc the following relation holds:

lim
K→∞ lim inf

N→∞ Pεc,N

(
1

K

N3/2

(logN)3/2 ≤ max
0≤k≤N

|ϕk| ≤ K
N3/2

logN

)
= 1.(1.15)

The fact that {ϕ̂N (t)}t∈[0,1] under Pε,N has, for ε ≥ εc, a trivial scaling limit,
is of course an immediate consequence of the upper bounds on max0≤k≤N |ϕk| in
(1.14) and (1.15).

We believe that the optimal scaling of max0≤k≤N |ϕk| for ε = εc is given by the
lower bound in (1.15) (to lighten the exposition, we do not investigate this problem
deeper).
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TABLE 1
A schematic representation of the order of growth as N → ∞ of the three quantities

max0≤k≤N |ϕk |, �N and 	N under Pε,N

(ε < εc) (ε = εc) (ε > εc)

max
0≤k≤N

|ϕk | N3/2 N3/2

(logN)3/2 ÷ N3/2

logN
O((logN)2)

�N N N
logN

O(logN)

	N O(1) N
logN

N

REMARK 1.5. Another interesting quantity is the maximal gap �N , defined
as

�N := max{τk − τk−1 : 0 ≤ k ≤ 	N }.(1.16)

We already know from (1.13) that �N ∼ N in the delocalized regime (ε < εc). It
turns out that in the localized regime (ε > εc) we have �N = O(logN), while in
the critical regime (ε = εc) �N ≈ N/ logN , meaning by this that

lim
K→∞ lim inf

N→∞ Pεc,N

(
1

K

N

logN
≤ �N ≤ K

N

logN

)
= 1.

For ε = εc we also have 	N ≈ N/ logN . For conciseness, we omit a detailed proof
of these relations (though some partial results will be given in the proof of Theo-
rem 1.4, see also Appendix A). Table 1 summarizes the results described so far.

1.4. A refined critical scaling limit. Relation (1.15) shows that the field in the
critical regime has very large fluctuations, almost of the order N3/2. This may
suggest the possibility of lowering the scaling constants N3/2 in the definition
(1.10) of the rescaled field ϕ̂N (t), in order to make a nontrivial scaling limit emerge
under Pεc,N . However, some care is needed: in fact, �N/N → 0 as N → ∞ under
Pεc,N and this means that, independently of the choice of the scaling constants, the
zero level set of the rescaled field becomes dense in [0,1]. This fact rules out the
possibility of getting a nontrivial scaling limit in C([0,1]), or even in the space of
càdlàg functions D([0,1]).

We are going to show that a nontrivial scaling limit can indeed be extracted
in a distributional sense, that is, integrating the field against test functions, and
to this purpose, the right scaling constants turn out to be N3/2/(logN)5/2 (see
below for an heuristic explanation). Therefore, we introduce the new rescaled field
{ϕ̃N (t)}t∈[0,1] (this time with no need of linear interpolation) defined by

ϕ̃N (t) := (logN)5/2

N3/2 ϕ
Nt�.(1.17)



LAPLACIAN PINNING MODELS IN DIMENSION (1 + 1) 909

Viewing ϕ̃N (t) as a density, we introduce the signed measure μN on [0,1] defined
by

μN(dt) := ϕ̃N (t)dt.(1.18)

We look at μN under the critical law Pεc,N as a random element of M([0,1]),
the space of all finite signed Borel measures on the interval [0,1], that we equip
with the topology of vague convergence and with the corresponding Borel σ -field
(νn → ν vaguely if and only if

∫
f dνn → ∫

f dν for all bounded and continuous
functions f : [0,1] → R). Our goal is to show that the sequence {μN }N has a
nontrivial limit in distribution on M([0,1]).

To describe the limit, let {Lt }t≥0 denote the stable symmetric Lévy process of
index 2/5 (a standard version with càdlàg paths). More explicitly, {Lt }t≥0 is a Lévy
process with zero drift, zero Brownian component and with Lévy measure given
by �(dx) = cL|x|−7/5 dx, where the positive constant cL is defined explicitly in
equation (6.25). Since the index is less than 1, the paths of L are a.s. of bounded
variation (cf. [2]), hence, we can define path by path the (random) finite signed
measure dL in the Steltjes sense:

dL((a, b]) := Lb − La.

We stress that dL is a.s. a purely atomic measure, that is, a sum of Dirac masses
(for more details and for an explicit construction of dL, see Remark 1.7 below).

We are now ready to state our main result (see Figure 1 for a graphical descrip-
tion).

THEOREM 1.6. The random signed measure μN under Pεc,N converges in
distribution on M([0,1]) as N → ∞ toward the the random signed measure dL.

This result describes in a quantitative way the rich structure of the field for
ε = εc. Let us try to give a heuristic description. Roughly speaking, for large N

the profile of the unrescaled field {ϕi}0≤i≤N under Pεc,N is dominated by the large
excursions over the contact set, that is, by those excursions whose width is of the
same order ≈ N/ logN as the maximal gap �N (see Table 1). As already observed,
each excursion is distributed according to the free law (with suitable boundary
conditions), hence, by Theorem 1.2, the height of these excursions is of order
≈ (N/ logN)3/2. When the field is rescaled according to (1.17), the width of these
excursions becomes of order ≈ 1/ logN and their height of order ≈ logN , hence,
for large N they contribute to the measure μN approximately like Dirac masses
(see Figure 1). Therefore, the properties of these large excursions, for large N , can
be read from the structure of the Dirac masses that build the limit measure dL;
see (1.19) below.

REMARK 1.7. The measure dL can be constructed in the following ex-
plicit way; compare [2]. Let S denote a Poisson point process on the space
X := [0,1] × R with intensity measure γ := dx ⊗ cL|y|−7/5 dy (where dx and dy
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FIG. 1. A graphical representation of Theorem 1.6. For large N , the excursions of the rescaled field
under the critical law Pεc,N contribute to the measure μN(dt) [see (1.18)], approximately like Dirac
masses, with intensity given by their (signed) area. The width and height of the relevant excursions
are of order (1/ logN) and logN respectively. We warn the reader that the x- and y-axis in the
picture have different units of length, and that the field can actually cross the x-axis without touching
it (though this feature has not been evidenced in the picture for simplicity).

denote the Lebesgue measure on [0,1] and R). We recall that S is a random count-
able subset of X with the following properties:

— for every Borel set A ⊆ X, the random variable #(S ∩ A) has a Poisson distri-
bution with parameter γ (A) [the symbol # denotes the cardinality of a set and
in case γ (A) = +∞ we mean that #(S ∩ A) = +∞, a.s.];

— for any k ∈ N and for every family of pairwise disjoint Borel sets A1, . . . ,

Ak ⊆ X, the random variables #(S ∩ A1), . . . ,#(S ∩ Ak) are independent.

Since γ is a σ -finite measure, the random set S is a.s. countable: enumerating its
points in some (arbitrary) way, say, S = {(xi, yi)}i∈N, we can write

dL(·) d=∑
i∈N

yi · δxi
(·),(1.19)

where δx(·) denotes the Dirac mass at x ∈ R. Notice that since
∫

X(|y|∧1)dγ < ∞,
the r.h.s. of (1.19) is indeed a finite measure, that is,

∑
i∈N |yi | < ∞ a.s.; com-

pare [11].

1.5. Outline of the paper. The exposition is organized as follows:

• In Section 2 we recall some basic properties of Pε,N that have been proven in [6].
In particular, we develop a renewal theory description of the model, which is the
cornerstone of our approach.
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• In Section 3 we prove a part of Theorem 1.4, more precisely, equation (1.14)
and the upper bound on max0≤k≤N |ϕk| in (1.15), exploiting the Brascamp–Lieb
inequality. These results also prove Theorem 1.2 for ε ≥ εc.

• Section 4 is devoted to the proof of Theorem 1.3 and of Theorem 1.2 for ε < εc.
• In Section 5 we complete the proof of Theorem 1.4, obtaining the lower bound

on max0≤k≤N |ϕk| in equation (1.15).
• Section 6 is devoted to the proof of Theorem 1.6.
• Finally, some technical points are treated in the Appendixes A and B.

2. Some basic facts. This section is devoted to a detailed description of Pε,N ,
taking inspiration from [6]. We show in Section 2.1 that, conditionally on the con-
tact set τ [cf. (1.12)], the pinning model Pε,N is linked to the integral of a random
walk. Then in Section 2.2 we focus on the law of the contact set itself, which
admits a crucial description in terms of Markov renewal theory. We conclude by
putting together these results in Section 2.3, where we show that the full measure
Pε,N is the conditioning of an explicit infinite-volume law Pε .

2.1. Integrated random walk. One of the key features of the model Pε,N is its
link with the integral of a random walk, described in Section 2 of [6], that we now
recall.

Given a, b ∈ R, we define on some probability space (
,F ,P = P(a,b)) a se-
quence {Xi}i∈N of independent and identically distributed random variables, with
marginal laws X1 ∼ exp(−V (x))dx. By our assumptions on V (·), it follows that

E(X1) = 0, E(X2
1) = σ 2 ∈ (0,∞).

We denote by {Yi}i∈Z+ the associated random walk starting at a, that is,

Y0 = a, Yn = a + X1 + · · · + Xn, n ∈ N,(2.1)

while {Zi}i∈Z+ denotes the integrated random walk starting at b, that is, Z0 = b

and for n ∈ N

Zn = b + Y1 + · · · + Yn

(2.2)
= b + na + nX1 + (n − 1)X2 + · · · + 2Xn−1 + Xn.

Notice that

{(Yn,Zn)}n under P(a,b) d= {(Yn+a,Zn+b+na)}n under P(0,0).(2.3)

The marginal distributions of the process {Zn}n are easily computed [6], Lem-
ma 4.2:

P(a,b)((Z1, . . . ,Zn) ∈ (dz1, . . . ,dzn)
)

(2.4)
= e−H[−1,n](b−a,b,z1,...,zn) dz1 · · ·dzn,
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where H[−1,n](·) is exactly the Hamiltonian of our model, defined in (1.3).
We are ready to make the link with our model Pε,N . In the free case ε = 0, it is

rather clear from (2.4) and (1.5) that P0,N is nothing but the law of (Z1, . . . ,ZN−1)

under P(0,0)(·|ZN = 0,ZN+1 = 0), that is, the polymer measure P0,N is just the
bridge of the integral of a random walk; compare [6], Proposition 4.1.

To deal with the case ε > 0, we recall the definition of the contact set τ , given
in (1.12):

τ := {i ∈ Z+ :ϕ = 0} ⊆ Z+.

We also set for conciseness τ[a,b] := τ ∩ [a, b]. Then, again comparing (2.4)
with (1.5), we have the following basic relation: for ε > 0, N ∈ N and for every
subset A ⊆ {1, . . . ,N − 1},

Pε,N

(·|τ[1,N−1] = A
)

(2.5)
= P(0,0)((Z1, . . . ,ZN−1) ∈ ·|Zi = 0, ∀i ∈ A ∪ {N,N + 1}).

In words, once we fix the contact set τ[1,N−1] = A, the field (ϕ1, . . . , ϕN−1) under
Pε,N is distributed like the integrated random walk (Z1, . . . ,ZN−1) under P(0,0)

conditioned on being zero at the epochs in A and also at N and N + 1 [because
of the boundary conditions, cf. (1.6)]. A crucial aspect of (2.5) is that the r.h.s. is
independent of ε. Therefore, all the dependence of ε of Pε,N is contained in the
law of the contact set.

Notice that in the l.h.s. of (2.5) we are really conditioning on an event of positive
probability, while the conditioning in the r.h.s. of (2.5) is to be understood in the
sense of conditional distributions [which can be defined unambiguously, because
we have assumed that the density x �→ e−V (x) is continuous].

We conclude this paragraph observing that the joint process {(Yn,Zn)}n under
P(a,b) is a Markov process on R2. On the other hand, the process {Zn}n alone is
not Markov, but it rather has finite memory m = 2, that is, for every n ∈ N

P(a,b)({Zn+k}k≥1 ∈ ·|Zi, i ≤ n) = P(a,b)({Zn+k}k≥1 ∈ ·|Zn−1,Zn)
(2.6)

= P(Zn−Zn−1,Zn)({Zk}k≥1 ∈ ·).
In fact, from (2.4) it is clear that

P(a,b) = P(·|Z−1 = b − a,Z0 = b).(2.7)

2.2. Markov renewal theory. It is convenient to identify the random set τ with
the increasing sequence of variables {τk}k∈Z+ defined by

τ0 := 0, τk+1 := inf{i > τk :ϕi = 0}.(2.8)

Observe that the contact number 	N , introduced in (1.7), can be also expressed as

	N = max{k ∈ Z+ : τk ≤ N} =
N∑

k=1

1{k∈τ }.(2.9)
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We also introduce the process {Jk}k∈Z+ that gives the height of the field just before
the contact points:

J0 := 0, Jk := ϕτk−1, k ∈ N.(2.10)

Of course, under the law Pε,N , we look at the variables τk , Jk only for k ≤ 	N . The
crucial fact, proven in Section 3 of [6], is that the vector {	N, (τk)k≤	N

, (Jk)k≤	N
}

under the law Pε,N admits an explicit description in terms of Markov renewal
theory, that we now recall.

Following [6], Section 3.2, for ε > 0 we denote by Pε the law under which the
joint process {(τk, Jk)}k∈Z+ is a Markov process on Z+ ∪ {∞} × R ∪ {∞}, with
starting point (τ0, J0) = (0,0) and with transition kernel given by

Pε

(
(τk+1, Jk+1) ∈ ({n},dy)|(τk, Jk) = (m,x)

) := Kε
x,dy(n − m),(2.11)

where Kε
x,dy(n) is defined for x, y ∈ R and n ∈ N by

Kε
x,dy(n) := εe−F(ε)n vε(y)

vε(x)
· P(−x,0)(Zn−1 ∈ dy,Zn ∈ dz)

dz

∣∣∣∣
z=0

.(2.12)

The function F(ε) is the free energy of the model Pε,N , while vε(·) is a suitable
positive function connected to an infinite dimensional Perron–Frobenius eigen-
value problem (we refer to Sections 3 and 4 of [6] for a detailed discussion). We
stress that F(ε) = 0 if ε ≤ εc, while F(ε) > 0 if ε > εc.

The dependence of the r.h.s. of (2.11) on n − m implies that, under Pε , the
process {Jk}k alone is itself a Markov chain on R ∪ {∞}, with transition kernel

Pε(Jk+1 ∈ dy|Jk = x) = Dε
x,dy := ∑

n∈N

Kε
x,dy(n).(2.13)

On the other hand, the process {τk}k is not a Markov chain, but rather a Markov
renewal process (cf. [1]) in fact, its increments {τk+1 − τk}k are independent con-
ditionally on the modulating chain {Jk}k∈Z+ , as it is clear from (2.11).

From (2.12) it follows that, as a measure in dy, the kernel Kε
x,dy(n) is absolutely

continuous for n ≥ 2, while Kε
x,dy(1) is a multiple of the Dirac mass at zero δ0(dy).

The properties of the kernel Kε
x,dy(n) depend strongly on the value of ε. First, the

kernel is defective if ε < εc, while it is proper if ε ≥ εc, since∑
n∈N

∫
y∈R

Kε
x,dy(n) =

∫
y∈R

Dε
x,dy = min

{
ε

εc

,1
}
,

so that the probability that τk = ∞ for some k is one if ε < εc, while it is zero if
ε ≥ εc. Moreover, as n → ∞ for fixed x, y ∈ R, we have

Kε
x,dy(n)

dy
= Lε(x, y)

n2 e−F(ε)·n(1 + o(1)
)

(2.14)

for a suitable function Lε(x, y), compare [6], Sections 3.2 and 4.1.
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To summarize, the kernel Kε
x,dy(n) is defective with heavy tails in the delocal-

ized regime (ε < εc) and it is proper with heavy tails in the critical regime (ε = εc),
while it is proper with exponential tails in the localized regime (ε > εc). We also
note that when ε ≥ εc the modulating chain {Jk}k∈Z+ on R is positive recurrent,
that is, it admits an invariant probability law νε:

∫
x∈R νε(dx)Dε

x,dy = νε(dy), with
νε({0}) > 0 and no other atoms.

We are now ready to link the law Pε to our model Pε,N . Introducing the event

AN := {{N,N + 1} ⊆ τ
}= {τk = N,τk+1 = N + 1 for some k ∈ N},

Proposition 3.1 of [6] states that the vector {	N, (τk)k≤	N
, (Jk)k≤	N

} has the same
distribution under the law Pε,N and under Pε(·|AN). More precisely, for all k ∈ N,
{ti}1≤i≤k ∈ Nk and {yi}1≤i≤k ∈ Rk we have

Pε,N (	N = k, τi = ti , Ji ∈ dyi, i ≤ k)
(2.15)

= Pε(	N = k, τi = ti , Ji ∈ dyi, i ≤ k|AN).

In words, the contact set τ ∩[0,N] under the law Pε,N is distributed like a Markov
renewal process, of law Pε and modulating chain {Jk}k , conditioned to visit N and
N + 1.

2.3. The infinite-volume measure. The purpose of this paragraph is to ex-
tend Pε , introduced in Section 2.2, to a law for the whole field {ϕi}i∈Z+ .

Consider first the regime ε ≥ εc, in which case τk < ∞ for every k ∈ N, Pε-a.s.
We introduce the excursions {ek}k∈N of the field over the contact set by

ek = {ek(i)}0≤i≤τk−τk−1 := {ϕτk−1+i}0≤i≤τk−τk−1 .(2.16)

The variables ek take values in the space
⋃∞

m=2 Rm. It is clear that the whole field
{ϕi}i∈Z+ is in one-to-one correspondence with the process {(τk, Jk, ek)}k∈Z+ . Pε

has already been defined as a law for {(τk, Jk)}k∈Z+ [see (2.11)] and we now extend
it to a law for {ϕi}i∈Z+ in the following way: conditionally on {(τk, Jk)}k∈Z+ , we
declare that the excursions {ek}k∈N under Pε are independent, with marginal laws
given by

ek under Pε(·|{(τi, Ji)}i∈Z+)

d= (Z0, . . . ,Zl) under P(−a,0)(·|Zl−1 = b,Zl = 0),(2.17)

where l = τk − τk−1, a = Jk−1, b = Jk.

In words, ek under Pε is distributed like a bridge of the integrated random walk
{Zn}n of length l = τk − τk−1, with boundary conditions Z−1 = Jk−1, Z0 = 0,
Zl−1 = Jk and Zl = 0. Recall in fact that, by (2.7), we have P(−a,0) = P(·|Z−1 =
a,Z0 = 0), and this is the reason for the minus sign.

Next we consider the regime ε < εc, in which the process {τk}k is Pε-a.s.
terminating, that is, there is some random index k∗ ∈ N such that τk < ∞ for
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k ≤ k∗, while τk∗+1 = ∞. Conditionally on {(τk, Jk)}k∈Z+ , the law of the vari-
ables {ek}1≤k≤k∗ under Pε is still given by (2.17), and to reconstruct the full field
{ϕi}i∈Z+ , it remains to define the law of the last excursion ek∗+1 := {ϕτk∗+i}0≤i<∞,
which we do in the following way:

ek∗+1 under Pε(·|{(τi, Ji)}i∈Z+)
d= {Zi}0≤i<∞ under P(−Jk∗ ,0)(·).

This completes the definition of Pε as a law for {ϕi}i∈Z+ .
Now notice that, conditionally on {	N, (τk, Jk)k≤	N

}, the excursions {ek}k≤	N

under the pinning model Pε,N are independent and their marginal laws are given
exactly by (2.17). To see this, it suffices to condition equation (2.5) on {Jk}k≤	N

,
obtaining

Pε,N (·|	N, (τk, Jk)k≤	N
)

= P(0,0)((Z1, . . . ,ZN−1) ∈ ·|Zτi
= 0,Zτi−1 = Jk, ∀i ≤ 	N

)
.

Then, using the fact that the process {Zn}n∈Z+ has memory m = 2 [see (2.6)],
this equation yields easily that the excursions {ek}k≤	N

are indeed conditionally
independent and distributed according to (2.17).

These observations have the following important consequence: the basic rela-
tion (2.15) can be now extended to hold for the whole field, that is,

Pε,N (dϕ1, . . . ,dϕN−1) = Pε(dϕ1, . . . ,dϕN−1|AN).(2.18)

(Of course, the extension of Pε has been given exactly with this purpose.) Thus,
the polymer measure Pε,N is nothing but the conditioning of an explicit law Pε

with respect to the event AN . We stress that Pε does not have any dependence
on N : in this sense, the law Pε,N depends on N only through the conditioning on
the event AN . This fact plays a fundamental role in the rest of the paper.

REMARK 2.1. Although the law Pε has been introduced in a somewhat artifi-
cial way, it actually has a natural interpretation: it is the infinite volume limit of the
pinning model, that is, as N → ∞, the law Pε,N converges weakly on RZ+

to Pε .
This fact provides another path characterization of the phase transition, because
the process {ϕn}n∈N under Pε is positive recurrent, null recurrent or transient re-
spectively when ε > εc, ε = εc or ε < εc. We also note that the field {ϕi}i≥0 under
the law Pε is not a Markov process, but it rather is a time-homogeneous process
with finite memory m = 2, like {Zn}n≥0 under P, compare (2.6). Although we do
not prove these results, it may be helpful to keep them in mind.

3. Proof of Theorem 1.4: first part. In this section we prove a first half
of Theorem 1.4, more precisely, (1.14) and the upper bound on max0≤k≤N |ϕk|
in (1.15). Note that these results yield as an immediate corollary the proof of The-
orem 1.2 for ε ≥ εc (the case ε < εc is deferred to Section 4).

The basic tools we use are the description of the pinning law Pε,N given in Sec-
tion 2, that we further develop in Section 3.1 to extract a genuine renewal structure,
and a bound based on the Brascamp–Lieb inequality, that we recall in Section 3.2.
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3.1. From Markov renewals to true renewals. It is useful to observe that, in
the framework of Markov renewal theory described in Section 2.2, one can isolate
a genuine renewal process. To this purpose, we introduce the (random) set χ of the
adjacent contact points, defined by

χ := {i ∈ Z+ :ϕi−1 = ϕi = 0},(3.1)

and we set by definition ϕ−1 = ϕ0 = 0, so that χ � 0. We identify χ with the
sequence of random variables {χk}k∈Z+ defined by

χ0 := 0, χk+1 := inf{i > χk :ϕi−1 = ϕi = 0}, k ∈ Z+,(3.2)

and we denote by ιN the number of adjacent contact points occurring before N :

ιN := #{χ ∩ [1,N]} = sup{k ∈ Z+ :χk ≤ N}.(3.3)

The first observation is that, for every ε > 0, the process {χk}k∈Z+ under the law
Pε is a genuine renewal process, that is, the increments {χk+1 − χk}k∈Z+ are in-
dependent and identically distributed random variables, taking values in N ∪ {∞},
as it is proven in Proposition 5.1 in [6]. Denoting by qε(n) the law of χ1,

qε(n) := Pε(χ1 = n),(3.4)

it turns out that the properties of qε(n) resemble closely those of Kε
x,dy(n), given

in Section 2.2. In fact, qε(·) is defective for ε < εc [
∑

n∈N qε(n) < 1], while it is
proper for ε ≥ εc [

∑
n∈N qε(n) = 1]. About the asymptotic behavior of qε(·), there

exists α > 0 such that for every ε ∈ (0, εc + α] as n → ∞
qε(n) = Cε

n2 exp
(−F(ε) · n)(1 + o(1)

)
,(3.5)

where Cε > 0; cf. Proposition 7.1 in [6] [which is stated for ε ∈ [εc, εc +α], but its
proof goes true without changes also for ε ∈ (0, εc)]. We stress that F(ε) = 0 for
ε ≤ εc, while F(ε) > 0 for ε > εc. When ε > εc +α, we content ourselves with the
rougher bound

qε(n) ≤ C exp
(−G(ε) · n) ∀n ∈ N,(3.6)

for a suitable G(ε) > 0, which can also be extracted from the proof of Proposi-
tion 7.1 in [6] [we have G(ε) > F(ε) for large ε].

To summarize, the renewal process {χk}k under Pε is defective with heavy tails
in the delocalized regime (ε < εc) and it is proper with heavy tails in the critical
regime (ε = εc), while it is proper with exponential tails in the localized regime
(ε > εc).

Coming back to the pinning model Pε,N , by projecting the basic relation (2.15)
on the set χ , we obtain that the vector {ιN , (χk)k≤ιN } has the same distribution
under Pε,N and under Pε(·|AN), where we can express the event AN in terms of χ ,
since AN = {N + 1 ∈ χ}. In words, the adjacent contact points {χn}n under the
polymer measure Pε,N are distributed like a genuine renewal process conditioned
to hit N + 1.
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3.2. The Brascamp–Lieb inequality. Let H : Rn → R ∪ {+∞} be a function
that can be written as

H(x) = 1
2A(x) + R(x),(3.7)

where A(x) is a positive definite quadratic form and R(x) is a convex function.
Consider the probability laws μH and μA on Rn defined by

μH(dx) := e−H(x)

cH

dx, μA(dx) := (detA)1/2

(2π)n/2 e−1/2A(x) dx,

where dx denotes the Lebesgue measure on Rn and cH is the normalizing constant.
Of course, μA is a Gaussian law with zero mean and with A−1 as covariance
matrix.

We denote by EH and EA respectively the expectation with respect to μH

and μA. The Brascamp–Lieb inequality reads as follows (cf. [5], Corollary 6): for
any convex function � : R → R and for all a ∈ Rn, such that EA[�(a · x)] < ∞,
we have

EH

[
�
(
a · x − EH(a · x)

)]≤ EA[�(a · x)],(3.8)

where a · x denotes the standard scalar product on Rn.
A useful observation is that (3.8) still holds true if we condition μH through

linear constraints. More precisely, given m ≤ n and bi ∈ Rn, ci ∈ R for 1 ≤ i ≤ m,
we set

μ∗
H(dx) := μH(dx|bi · x = ci, ∀i ≤ m).

We assume that the set of solutions of the linear system {bi · x = ci, ∀i ≤ m}
has nonempty intersection with the support of μH and that x �→ e−H(x) is con-
tinuous on the whole Rn, so that there is no problem in defining the conditional
measure μ∗

H . Let us proceed through an approximation argument: for k ∈ N we set

H ∗
k (x) := H(x) + k

m∑
i=1

(bi · x − ci)
2, μ∗

Hk
(dx) := e−Hk(x)

c∗
Hk

dx,

where c∗
Hk

is the normalizing constant that makes μ∗
Hk

a probability. Since we have
added convex terms, H ∗

k (x) is still of the form (3.7), with the same A(x), hence,
equation (3.8) holds true with EH replaced by E∗

Hk
. However, it is easy to realize

that μ∗
Hk

converges weakly to μ∗
H as k → ∞, hence, (3.8) holds true also for E∗

H ,
that is,

E∗
H

[
�
(
a · x − E∗

H (a · x)
)]≤ EA[�(a · x)].(3.9)
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3.3. A preliminary bound. Before passing to the proof of Theorem 1.4, we
derive a useful bound based on the Brascamp–Lieb inequality. We recall that, by
the uniform strict convexity assumption on the potential, we can write V (t) =
γ
2 t2 + r(t), where γ > 0 [cf. (1.1)] and r(·) : R → R ∪ {+∞} is a convex function;
see Section 1.1.

By (2.4), the law of the vector (Z1, . . . ,Zn) under P(0,0) has the form μH(dx) =
e−H(x) dx, x ∈ Rn, where H(x) = 1

2A(x) + R(x) with

A(x1, . . . , xn) = γ ·
(
(x1)

2 + (x2 − 2x1)
2 +

n−1∑
i=2

(xi+1 + xi−1 − 2xi)
2

)
,

(3.10)

R(x1, . . . , xn) = r(x1) + r(x2 − 2x1) +
n−1∑
i=2

r(xi+1 + xi−1 − 2xi).

Since r(·) is convex on R, R(·) is convex on Rn and, therefore, we are in the
Brascamp–Lieb framework described in Section 3.2. Fix arbitrarily m ≤ n and
t1, . . . , tm ∈ {1, . . . , n} and consider μ∗

H(dx) = μH(dx|xt1 = 0, . . . , xtm = 0). Ap-
plying (3.9) with �(x) = eλxk , for λ ∈ R and k ∈ {1, . . . , n}, and noting that
E∗

H(xk) = 0 by symmetry, we obtain

E(0,0)(eλZk |Zt1 = 0, . . . ,Ztm = 0)

= E∗
H (eλxk ) ≤ EA(eλxk ) = exp

(
λ2

2γ
· k(k + 1)(2k + 1)

6

)
,

where the last equality is the result of a straightforward Gaussian computation,
because in this context μA is just the law of the integral of a random walk with
Gaussian steps ∼ N (0, γ −1) [cf. (2.2) and (2.4)]. Applying Markov’s inequality
and optimizing over λ yields for s ∈ R+

P(0,0)(|Zk| > s|Zt1 = 0, . . . ,Ztm = 0) ≤ 2 exp
(
− γ

k3

s2

6

)
.(3.11)

The crucial aspect is that this bound is uniform over the choices of the points ti
(that do not appear in the r.h.s.). In a sense, this is no surprise, because conditioning
on Zti = 0 should decrease the probability of the event {|Zk| > t}.

3.4. Proof of Theorem 1.4: upper bounds. Recalling the basic relation (2.5),
for m ≤ N − 1 and t1, . . . , tm ∈ {1, . . . ,N − 1} we have

Pε,N (|ϕk| > s | 	N = m,τi = ti , ∀1 ≤ i ≤ m)
(3.12)

= P(0,0)(|Zk| > s | Zj = 0, ∀j ∈ {t1, t2, . . . , tm} ∪ {N,N + 1}).
We now observe that the process {Zn}n under P(0,0) is a process with finite memory
m = 2 [see (2.6)], hence, its excursions between adjacent zeros are independent.
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For this reason, we identify the adjacent zeros that are close to k, in the following
way: we first set, for convenience,

t−1 := −1, t0 := 0, tm+1 := N, tm+2 := N + 1

and we define

l := max{i ≥ 0 : ti ≤ k and ti − ti−1 = 1},
r := min{i ≥ 0 : ti > k and ti − ti−1 = 1}.

In words, tl (resp. tr) is the closest adjacent zero at the left (resp. at the right) of k.
Note that 0 ≤ l < r ≤ m + 1. Then the above mentioned finite memory property
yields

P(0,0)(|Zk| > s | Zj = 0, ∀j ∈ {t1, . . . , tm} ∪ {N,N + 1})
= P(0,0)(|Zk| > s | Zj = 0, ∀j ∈ {tl−1, tl, . . . , tr})(3.13)

= P(0,0)(|Zk−tl | > s | Zj = 0, ∀j ∈ {tl+1 − tl, tl+2 − tl, . . . , tr − tl}),
where the second inequality follows by time homogeneity. Putting together (3.12),
(3.13) and (3.11), we get

Pε,N (|ϕk| > s | 	N = m,τi = ti , ∀1 ≤ i ≤ m) ≤ 2 exp
(
− γ

(k − tl)3

s2

6

)
.(3.14)

We denote by δN the maximal gap in the adjacent contact set χ until N , that is,

δN := max{χk − χk−1 : 0 < k ≤ ιN },(3.15)

where the variable ιN was introduced in (3.3). Then the bound (3.14) yields finally

Pε,N

(|ϕk| > s | τ ∩ (0,N)
)≤ 2 exp

(
− γ

6(δN)3 s2
)
.(3.16)

This is the key estimate to prove the upper bounds in (1.14) and (1.15). In fact, the
inclusion bound yields

Pε,N

(
max

k=1,...,N
|ϕk| > s | τ ∩ (0,N)

)
≤ 2N exp

(
− γ

6(δN)3 s2
)
.(3.17)

It is now clear the importance of studying the asymptotic behavior of the vari-
able δN .

We start considering the critical regime (ε = εc). As we prove in Appendix A.1,
there exists a positive constant c1 and a sequence (an)n such that, for all N ≥ 3
and t ∈ [1,∞),

Pεc,N

(
δN ≥ t

N

logN

)
≤ c1

t
+ aN with aN → 0 as N → ∞.(3.18)



920 F. CARAVENNA AND J.-D. DEUSCHEL

Combining this relation with (3.17), we get

Pεc,N

(
max

k=1,...,N
|ϕk| > s

)

≤ Pεc,N

(
max

k=1,...,N
|ϕk| > s, δN < t

N

logN

)
+ c1

t
+ aN

≤ 2NEεc,N

[
exp

(
− γ

6(δN)3 s2
)

1{δN<tN/logN}
]

+ c1

t
+ aN

≤ 2N exp
(
− γ

6t3

(logN)3

N3 s2
)

+ c1

t
+ aN

and, setting s = KN3/2/ logN and t = (
γ
12)1/3K2/3, we finally obtain

Pεc,N

(
max

k=1,...,N
|ϕk| > K

N3/2

logN

)
≤ 2

N
+ c1(12/γ )1/3

K2/3 + aN.

Since aN → 0 as N → ∞ [see (3.18)], the upper bound in equation (1.15) is
proven.

Then we consider the localized regime (ε > εc). As we prove in Appendix A.3,
there exists a positive constant c2 such that

Pε,N (δN ≥ c2 logN) −→ 0 as N → ∞.(3.19)

Then, in analogy with the preceding lines, we combine this relation with (3.17),
getting

Pε,N

(
max

k=1,...,N
|ϕk| > s

)
≤ Pε,N

(
max

k=1,...,N
|ϕk| > s, δN < c2 logN

)
+ o(1)

≤ 2NEε,N

[
exp

(
− γ

6(δN)3 s2
)

1{δN<c2 logN}
]

+ o(1)

≤ 2N exp
(
− γ

6(c2)3

s2

(logN)3

)
+ o(1).

Setting s = K(logN)2, for K sufficiently large we obtain

Pεc,N

(
max

k=1,...,N
|ϕk| > K(logN)2

)
≤ 2N−γK2/(6(c2)

3)+1 + o(1) −→ 0

as N → ∞,

hence, also (1.14) is proven.

4. Proof of Theorems 1.3 and 1.2. In this section we focus on the delocalized
regime ε < εc, proving Theorem 1.3 and the corresponding part of Theorem 1.2.
We recall that the proof of Theorem 1.2 for ε ≥ εc follows immediately from the
upper bound on max0≤k≤N |ϕk| given by relations (1.14) and (1.15), that have
already been proven in Section 3.



LAPLACIAN PINNING MODELS IN DIMENSION (1 + 1) 921

4.1. The free case ε = 0. We start proving Theorem 1.2 in the case ε = 0,
when there is no interaction between the field and the defect line. The main
ingredient is the random walk interpretation outlined in Section 2.1. We recall
from Section 1.3 that {Bt }t∈[0,1] denotes a standard Brownian motion on R and
It = ∫ t

0 Bs ds denotes its integral, while (B̂t , Ît ) denotes (Bt , It ) conditionally on
(B1, I1) = (0,0); see (1.11).

We first state a local limit theorem for the process {Zn}n∈N, proven in Propo-
sition 2.3 of [6]. We note that the vector (Yn,Zn) = (Zn − Zn−1,Zn) has an ab-
solutely continuous law under P(a,b) for n ≥ 2, and we introduce its density

ϕ(a,b)
n (y, z) := P(a,b)((Yn,Zn) ∈ (dy,dz))

dy dz
.

Notice that ϕ
(a,b)
n (y, z) = ϕ

(0,0)
n (y − a, z − b − na) by (2.3), hence, we can focus

on ϕ
(0,0)
n . The local limit theorem reads as follows:

sup
(y,z)∈R2

∣∣σ 2n2ϕ(0,0)
n

(
σ
√

ny,σn3/2z
)− g(y, z)

∣∣−→ 0 (n → ∞),(4.1)

where g(y, z) :=
√

3
π

exp(−2y2 − 6z2 + 6yz) is the law of the Gaussian vector
(B1, I1).

We are ready to prove a somewhat general invariance principle, from which
Theorem 1.2 for ε = 0 follows as a corollary, because P0,N coincides with the
law of the integrated random walk (Z1, . . . ,ZN−1) under P(0,0)(·|YN+1 = 0,

ZN+1 = 0); compare Section 2.1. For notational convenience, we simply denote
by Z〈Nt〉 and Y〈Nt〉 the linear interpolation of the processes.

PROPOSITION 4.1. Uniformly for a, c in compact sets of R, we have, as
N → ∞, {(

Y〈Nt〉
σ
√

N
,

Z〈Nt〉
σN3/2

)}
t∈[0,1]

(4.2)
under P(−a,0)

(·|(YN,ZN) = (−c,0)
) d−→ {(B̂t , Ît )}t∈[0,1],

where
d−→ denotes convergence in distribution on C([0,1]) × C([0,1]).

PROOF. We start noting that the process {( Y〈Nt〉
σ
√

N
,

Z〈Nt〉
σN3/2 )}t∈[0,1] under the un-

conditioned law P(−a,0)(·) converges in distribution as N → ∞ toward
{(Bt , It )}t∈[0,1], uniformly for a in compact sets of R. This is an easy consequence
of Donsker’s Invariance Principle and the Continuous Mapping Theorem, because
{Yn}n∈Z+ under P(−a,0) is a zero-mean, finite-variance real random walk starting
at −a and, moreover,

Z〈Nt〉
σN3/2 =

∫ t

0

(Y�Ns� + a)

σ
√

N
ds
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(we recall that (ξt )t �→ ∫ t
0 ξs ds is a continuous functional on D([0,1])).

Next it is convenient to restrict the parameter t to [0,1 − η], where η > 0
is fixed. Since {(Yn,Zn)}n∈Z+ is a Markov process, the law of the process
{( Y〈Nt〉

σ
√

N
,

Z〈Nt〉
σN3/2 )}t∈[0,1−η] under P(−a,0)(·|(YN,ZN) = (−c,0)) is absolutely con-

tinuous w.r.t. the law of the same process under P(−a,0)(·), with Radon–Nikodym
derivative f

(η)
N given by

f
(η)
N

(
(yt , zt )t∈[0,1−η]

)= f
(η)
N (y1−η, z1−η) = ϕ

(σ
√

Ny1−η,σN3/2z1−η)


ηN� (−c,0)

ϕ
(−a,0)
N (−c,0)

.

The local limit theorem (4.1) yields the uniform convergence on compact sets
of the function f

(η)
N as N → ∞ toward an explicit limit function f (η), uni-

formly for a, c in compact sets, and one checks directly that f (η) is indeed
the Radon–Nikodym derivative of the law of {(B̂t , Ît )}t∈[0,1−η] w.r.t. the law of
{(Bt , It )}t∈[0,1−η]. This shows that equation (4.2) holds when t is restricted to
[0,1 −η]. Since this is true for every η > 0, the proof is completed with a standard
tightness argument. �

4.2. Proof of Theorem 1.3. In this paragraph we focus on the regime
0 < ε < εc. We start proving a slightly stronger version of equation (1.13). We
denote by lN (resp. rN ) the index of the last point in the contact set before N/2
(resp. after N/2), that is,

lN := max{i ≥ 0 : τi ≤ N/2}, rN := min{i ≥ 0 : τi > N/2} = lN + 1.(4.3)

Equation (1.13) says that both τlN and N − τrN are O(1). It turns out that also |JlN |
and |JrN | are O(1). More precisely, we are going to prove that

lim
L→+∞ lim inf

N→+∞ Pε,N (τlN ≤ L,τrN ≥ N − L, |JlN | ≤ L, |JrN | ≤ L) = 1.(4.4)

As a matter of fact, it is not difficult to further strengthen this relation, by showing
that also max0≤i≤τlN

|ϕi | and maxτrN
≤i≤N |ϕi | are O(1), but we omit the details

for conciseness.
The proof of (4.4) is based on relation (2.18) [or, more directly, on (2.15)].

Recalling the definition (2.11) of the transition kernel Kε
x,dy(n), we introduce the

associated renewal kernel Uε
x,dy(n) by

Uε
x,dy(n) :=

∞∑
k=0

(Kε)∗k
x,dy(n) = Pε(n ∈ τ,ϕn−1 ∈ dy|J0 = x),(4.5)

where (Kε)∗k denotes the k-fold convolution of the kernel Kε with itself: by def-
inition, (Kε)∗0

x,dy(n) := δx(dy)1{n=0} and, given the kernels Ax,dy(n),Bx,dy(n), we
set

(A ∗ B)x,dy(n) :=
n∑

m=0

∫
z∈R

Ax,dz(m) · Bz,dy(n − m).
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In particular, Pε(AN) = U0,{0}(N + 1). With this notation, by (2.18), we can write

Pε,N (τlN ≤ L,τrN ≥ N − L, |JlN | ≤ L, |JrN | ≤ L)

= 1

Uε
0,{0}(N + 1)

(4.6)

×
L∑

a,b=0

∫
x,y∈[−L,L]

Uε
0,dx(a) · Kε

x,dy(N + 1 − a − b) · Uε
y,{0}(b).

By (2.12) and (4.1), it follows that, for bounded x, y and as n → ∞,

Kε
x,dy(n) ∼ Lε

x,dy

n2 , where Lε
x,dy := 6ε

π

vε(y)

vε(x)
dy.(4.7)

To determine the asymptotic behavior of U0,{0}(N + 1) as N → ∞, we apply the
Markov Renewal Theorem given by equation (7.9) in [6], Section 7.2 (it is easily
checked that all the assumptions are verified). We set

Bε
x,dy := ∑

n∈N

Kε
x,dy(n), (1 − Bε)−1

x,dy :=
∞∑

k=0

(Bε)◦kx,dy,(4.8)

where (Bε)◦k denotes the k-fold composition of the kernel Bε with itself: by de-
finition, (Bε)◦0

x,dy := δx(dy) and (A ◦ B)x,dy := ∫
z∈R Ax,dzBz,dy . Then by equa-

tion (7.9) in [6], we can write, as n → ∞,

Uε
0,{0}(n) ∼ ((1 − Bε)−1 ◦ L ◦ (1 − Bε)−1)0,{0}

n2

and, therefore,

lim
N→∞ Pε,N (τlN ≤ L,τrN ≥ N − L, |JlN | ≤ L, |JrN | ≤ L)

=
∫
x,y∈[−L,L](

∑L
a=0 Uε

0,dx(a))Lε
x,dy(

∑L
b=0 Uε

y,{0}(b))

((1 − Bε)−1 ◦ Lε ◦ (1 − Bε)−1)0,{0}
.

Since by definition
∑

n∈N Uε
x,dy(n) = Bε

x,dy , letting L → ∞, the r.h.s. of the last
relation converges to 1 and equation (4.4) is proven.

4.3. Proof of Theorem 1.2. The proof of Theorem 1.2 for 0 < ε < εc follows
by putting together the results proven so far. For conciseness, we just sketch the
main arguments and leave the details to the reader.

It is convenient to split the field {ϕi}0≤i≤N in three parts: the beginning
{ϕi}0≤i≤τlN

, the bulk {ϕi}τlN
≤i≤τrN

and the end {ϕi}τrN
≤i≤N , where we recall that

the indexes lN , rN have been introduced in (4.3). By (4.6), both τlN and N − τrN

are O(1) as N → ∞. Furthermore, as we already mention, one can show that also
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max0≤i≤τlN
|ϕi | and maxτrN

≤i≤N |ϕi | are O(1) as N → ∞. Therefore, both the be-
ginning and the end of the field are irrelevant for the scaling limit [remember the
definition (1.10) of the rescaled field ϕ̂N (t)] and it suffices to focus on the bulk.

We recall that the polymer measure Pε,N coincides with the law Pε condi-
tioned on AN ; compare (2.18). In particular, by the construction of Pε given in
Sections 2.2 and 2.3, it follows that if we fix τlN = m, ϕm−1 = a, τrN = N − n,
ϕN−n−1 = c (of course, ϕm = ϕN−n = 0), the bulk {ϕi}m≤i≤N−n under Pε,N is dis-
tributed like the process {Zj }0≤j≤N−n−m under P(−a,0)(·|(YN−n−m,ZN−n−m) =
(−c,0)). Since all the parameters m,n,a, c are O(1) by (4.4), we can apply Propo-
sition 4.1 and Theorem 1.2 is proven.

5. Proof of Theorem 1.4: second part. In this section we complete the proof
of Theorem 1.4, by showing that also the lower bound on max0≤k≤N |ϕk| in (1.15)
holds true.

The first basic ingredient, that we prove in Appendix A.2, is a lower bound
counterpart of equation (3.18):

lim
t→0+ lim inf

N→∞ Pεc,N

(
δN ≥ t

N

logN

)
= 1.(5.1)

The second ingredient is given by the following lemma, proven in Section 5.1, that
will be used also in the proof of Theorem 1.6. Recall the definition (1.10) of the
rescaled field {ϕ̂N (t)}t∈[0,1].

LEMMA 5.1. Under the conditional law Pεc (·|χ1 = N + 1), the process
{ϕ̂N (t)}t∈[0,1] converges in distribution on C([0,1]) as N → ∞ toward the process
{Ît }t∈[0,1].

The idea to complete the proof of Theorem 1.4 is now quite simple. We first
notice that, given a gap (χk,χk+1) in the set χ of width m = χk+1 −χk , the law of
the field inside this gap is nothing but Pεc(·|χ1 = m). In particular, by Lemma 5.1,
the scaling behavior of the field in this gap is of order m3/2. By (5.1), the width
of the largest gap in the set χ before N is of order ≈ N/ logN , hence, inside
this gap the field scales like (N/ logN)3/2, from which the lower bound in (1.15)
follows. Let us now make these considerations precise (it may be helpful to look
at Figure 2).

For m ∈ N and s ∈ R+ we introduce the event Am,s := {max0≤k≤m |ϕk| ≥
sm3/2}, and we note that, by Lemma 5.1, we have

lim
s→0+ lim inf

m→∞ Pεc(Am,s |χ1 = m) = 1.(5.2)

By (5.1), for every η > 0 we can fix t > 0 and N0 ∈ N such that, for all N ≥ N0,

Pεc,N

(
δN ≥ t

N

logN

)
≥ 1 − η.(5.3)
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FIG. 2. A typical trajectory of the field {ϕn}0≤n≤N under the critical law Pεc,N . The variables
χβ−1 and χβ are the extremities of the first large gap in the set χ of adjacent contact points; com-
pare (5.4). For simplicity, the distinction between simple and adjacent contact points (i.e., between
the sets τ and χ ) is not evidenced in the picture.

We denote by β the index of the first long gap in the set χ (cf. Figure 2):

β := inf
{
i ≥ 1 :χi − χi−1 ≥ t

N

logN

}
.(5.4)

The law of the field inside the gap admits the following explicit description, that
follows from relation (2.18): for all a, b ∈ N with 0 ≤ a ≤ b ≤ N and b − a ≥
tN/ logN ,

Pεc,N ({ϕi}a≤i≤b ∈ ·|χβ−1 = a,χβ = b)
(5.5)

= Pεc ({ϕi}0≤i≤b−a ∈ ·|χ1 = b − a).

Observing that {δN ≥ tN/ logN} = {χβ ≤ N} and applying the inclusion bound,
we get

Pεc,N

(
max

0≤k≤N
|ϕk| ≥ 1

K

N3/2

(logN)3/2

)

≥ Pεc,N

(
max

0≤k≤N
|ϕk| ≥ 1

K

N3/2

(logN)3/2 , χβ ≤ N

)

≥ Pεc,N

(
max

χβ−1≤k≤χβ

|ϕk| ≥ 1

K

N3/2

(logN)3/2 , χβ ≤ N

)

= ∑
0≤a≤b≤N

b−a≥tN/ logN

Pεc,N

(
max

a≤k≤b
|ϕk| ≥ 1

K

N3/2

(logN)3/2 , χβ−1 = a,χβ = b

)
.

Combining this relation with (5.5) and recalling the definition of Am,s yields

Pεc,N

(
max

0≤k≤N
|ϕk| ≥ 1

K

N3/2

(logN)3/2

)
≥ ∑

0≤a≤b≤N

b−a≥tN/ logN

Pεc

(
Ab−a,1/KN3/2/(logN)3/2·1/(b−a)3/2 |χ1 = b − a

)

× Pεc,N (χβ−1 = a,χβ = b).
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Now observe that in the range of summation 1
K

N3/2

(logN)3/2 · 1
(b−a)3/2 ≤ 1

Kt3/2 and that
the event Am,s is decreasing in s. Since t > 0 is fixed, it follows from (5.2) that for
K and N sufficiently large, when b − a ≥ tN/ logN , we have

Pεc

(
Ab−a,1/KN3/2/(logN)3/2·1/(b−a)3/2 |χ1 = b − a

)
≥ Pεc

(
Ab−a,1/(Kt3/2)|χ1 = b − a

)≥ 1 − η.

Therefore, for the same K and N we get

Pεc,N

(
max

0≤k≤N
|ϕk| ≥ 1

K

N3/2

(logN)3/2

)
≥ (1 − η)

∑
0≤a≤b≤N

b−a≥tN/ logN

Pεc,N (χβ−1 = a,χβ = b)

= (1 − η)Pεc,N (χβ ≤ N) ≥ (1 − η)2,

where the last inequality is just (5.3). Since η > 0 was arbitrary, the proof of the
lower bound in (1.15) is completed.

5.1. Proof of Lemma 5.1. Arguing as in Section 4.3, it suffices to show that
under the law Pεc (·|χ1 = N + 1) the contact set is concentrated near the boundary
points, and the invariance principle will follow from Proposition 4.1. Recalling the
definition (4.3) of the indexes lN and rN , we prove that

lim
L→+∞ lim inf

N→+∞Pεc(τlN ≤ L,τrN ≥ N − L,

(5.6)
|JlN | ≤ L, |JrN | ≤ L|χ1 = N + 1) = 1.

Some notation first. We set K̂ε
x,dy(n) := Kε

x,dy(n)1{y �=0} = Kε
x,dy(n)1{n≥2}

[cf. (2.12)], that gives the law of the jumps occurring before χ1, and we intro-
duce the corresponding renewal kernel

Ûε
x,dy(n) :=

∞∑
k=0

(K̂ε)∗k
x,dy(n) = Pε(n ∈ τ,χ1 > n,ϕn−1 ∈ dy|J0 = x).

Then, recalling that qεc(N + 1) := Pεc(χ1 = N + 1), we can write, in analogy
with (4.6),

Pεc(τlN ≤ L,τrN ≥ N − L, |JlN | ≤ L, |JrN | ≤ L|χ1 = N + 1)

= 1

qεc(N + 1)
·

L∑
a,b=0

∫
x,y∈[−L,L],z∈R

Ûεc

0,dx(a) · K̂εc

x,dy(N + 1 − a − b)

× Ûεc

y,dz(b) · Kεc

z,{0}(1).
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Applying relations (4.7) and (3.5), we obtain

lim
N→∞Pεc(τlN ≤ L,τrN ≥ N − L, |JlN | ≤ L, |JrN | ≤ L|χ1 = N)

(5.7)

=
∫
x,y∈[−L,L],z∈R(

∑L
a Ûεc

0,dx(a))L
εc

x,dy(
∑L

b=0 Ûεc

y,dz(b))Kεc

z,{0}(1)

Cεc

.

However, the precise value of Cεc is shown in [6], Section 7.3, to be

Cεc = (
(1 − B̂εc )−1 ◦ Lεc ◦ (1 − B̂εc )−1 ◦ Kεc

)
0,{0},

where, of course, B̂ε
x,dy :=∑

n∈N K̂ε
x,dy(n). Since

∑
n∈N Ûε

x,dy(n) = (1 − B̂ε)−1
x,dy ,

by letting L → ∞, the r.h.s. of (5.7) converges to 1 and equation (5.6) is proven.

6. Proof of Theorem 1.6. In this section we prove Theorem 1.6. We start
discussing the topological and measurable structure of the space M([0,1]) (for
more details we refer to [12]).

6.1. Finite signed measures. We denote by M([0,1]) the space of finite signed
Borel measures on the interval [0,1], that is of those set functions ν that can be
written as ν = ν1 − ν2, where ν1 and ν2 are finite nonnegative Borel measures on
[0,1] (since all the measures we deal with are Borel and finite, these adjectives will
be dropped henceforth). According to the Hahn–Jordan decomposition [7], every
ν ∈ M([0,1]) can be written in a unique way as ν = ν+ −ν−, where ν+ and ν− are
nonnegative measures supported by disjoint Borel sets. Given ν ∈ M([0,1]), the
nonnegative measure |ν| := ν+ + ν− is called the total variation of ν. For K ∈ R+
we set

MK([0,1]) := {ν ∈ M([0,1]) : |ν|([0,1]) ≤ K}.
Notice that MK([0,1]) ⊂ MK+1([0,1]) and that

M([0,1]) = ⋃
K∈N

MK([0,1]).(6.1)

We recall that C([0,1]) denotes the space of continuous real functions defined
on [0,1]. We equip the space M([0,1]) with the topology of vague convergence,
that, is the smallest topology on M([0,1]) under which the map ν �→ ∫

f dν is con-
tinuous for every f ∈ C([0,1]), and with the corresponding Borel σ -field. We re-
call that νn → ν in M([0,1]) if and only if

∫
f dνn → ∫

f dν for all f ∈ C([0,1])
(see [9, 10] for a more explicit characterization).

The space M([0,1]) is Hausdorff and separable [a dense countable subset is
given by the measures

∑n
i=1 aiδbi

(·), for n ∈ N and ai, bi ∈ Q]. The delicate point
is that M([0,1]) is not metrizable. However, we have the following result, proven
in [12], Theorems 9.8.7 and 9.8.10.
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LEMMA 6.1. For every K ∈ R+, the space MK([0,1]) with the vague topol-
ogy is compact and metrizable (and separable, hence Polish). Viceversa, if A ⊂
M([0,1]) is compact, then A ⊂ MK([0,1]) for some K ∈ N.

By a random signed measure on [0,1], we mean a random element ν, defined on
some probability space (
,F ,P ), and taking values in M([0,1]). For instance,
{μN }N∈N defined in (1.18) (under the law Pεc,N ) is a sequence of random signed
measures. For notational clarity, random signed measures will always be denoted
by boldface symbols. The law of a random signed measure ν is the probability
measure ν ◦P −1 on M([0,1]). Given the random signed measures {νN }N∈N and ν,
we say that {νN }N∈N converges in distribution on M([0,1]) toward ν if the law
of νN converges weakly to the law of ν, that is, for every bounded and continuous
functional F :M([0,1]) → R we have E[F(νN)] → E[F(ν)].

We are going to give sufficient conditions for convergence in distribution of
random signed measures that will be applied in the next paragraphs. The path we
follow is close to the standard one of proving tightness and checking the “conver-
gence of the finite-dimensional distributions,” but some additional care is required,
due to the nonmetrizability of M([0,1]). We recall that a sequence {νN }N∈N of
random signed measures on [0,1] is said to be tight if for every δ > 0 there exist a
compact set C ∈ M([0,1]) such that P(νN ∈ C) ≥ 1−δ for large N . Equivalently,
{νN }N∈N is tight if and only if for every δ > 0 there exist K,N0 ∈ N such that

P
(|νN |([0,1]) ≤ K

)≥ 1 − δ ∀N ≥ N0.(6.2)

Although M([0,1]) is not Polish, the first half of Prohorov’s Theorem still holds:

LEMMA 6.2. If the sequence of random signed measures {νN }N∈N is tight,
then there is a subsequence {νNk

}k∈N which converges in distribution on M([0,1]).
The proof of this lemma is given in Appendix B.2. Next, for t ∈ [0,1] we define

the measurable map Ft :M([0,1]) → R by

Ft(ν) := ν([0, t]).
For k ∈ N and 0 ≤ a1 ≤ · · · ≤ ak ≤ 1, a random signed measure ν determines the
law on Rk defined by

(Fa1(ν), . . . ,Fak
(ν)) ◦ P −1 = (ν([0, a1]), ν([0, a2]), . . . , ν([0, ak])) ◦ P −1,

where P is the underlying probability measure. These laws are called the finite
dimensional distributions of the random signed measure ν. Notice that if ν1 and
ν2 have the same finite dimensional distributions then they have the same law on
M([0,1]), because the σ -field generated by the maps {Ft }t∈[0,1] coincides with
the Borel σ -field of M([0,1]). In other terms, the finite dimensional distributions
determine laws on M([0,1]).

We are ready to put together tightness and convergence of the finite-dimensional
distributions to yield convergence in distribution on M([0,1]). The next proposi-
tion, proven in Appendix B.1, is sufficient for our purposes.
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PROPOSITION 6.3. Let {νN }N∈N be a tight sequence of random signed mea-
sures on [0,1]. Assume that the finite-dimensional distributions of νN converge,
that is, ∀k ∈ N and for all 0 < a1 < · · · < ak < 1 there is a probability measure
λ

(k)
a1,...,ak (·) on Rk such that

(νN([0, a1]), νN([0, a2]), . . . , νN([0, ak])) d−→ λ(k)
a1,...,ak

(N → ∞).(6.3)

Assume, moreover, that for every x ∈ [0,1] and η > 0

lim
δ→0

lim sup
N→∞

P
(|νN |([x − δ, x + δ]) > η

)= 0.(6.4)

Then {νN }N∈N converges in distribution on M([0,1]) toward a random signed
measure whose finite-dimensional distributions are λ

(k)
a1,...,ak .

The reason for requiring the extra condition (6.4) is that the map Ft is not con-
tinuous on M([0,1]) and, therefore, the convergence in distribution on M([0,1])
does not imply automatically the convergence of the finite-dimensional distribu-
tions.

6.2. Preparation. Remember the definition (1.18) of the random signed mea-
sure μN under Pεc,N that we look at as a random element of the space M([0,1]).
Our goal is to show that μN under Pεc,N converges in distribution as N → ∞
toward the random measure dL, defined in Section 1.4, using Proposition 6.3.

We start restating for μN the convergence of the finite-dimensional distributions
and the extra-condition (6.4), which are interesting by themselves.

THEOREM 6.4. For every k ∈ N and for all a1, . . . , ak ∈ (0,1) with ai ≤ ai+1,
i = 1, . . . , k, we have as N → ∞(

μN((0, a1]),μN((a1, a2]), . . . ,μN((ak−1, ak]))
(6.5)

under Pεc,N
d−→ (La1,La2 − La1, . . . ,Lak

− Lak−1),

where
d−→ denotes convergence in distribution on Rk . Moreover, ∀x ∈ [0,1],

∀η > 0,

lim
δ→0

lim sup
N→∞

Pεc,N

(|μN |([x − δ, x + δ]) > η
)= 0.(6.6)

Notice that the vectors in (6.5) differ from those in (6.3) just by a linear transfor-
mation, because it is simpler to work with μN((ai−1, ai]) than with μN((0, ai]) =
μN([0, ai]).

The proof of Theorem 6.4 is given in Section 6.3, while the tightness of the
sequence {μN }N under Pεc,N is proven in Section 6.4. Thanks to Proposition 6.3,
this completes the proof of Theorem 1.6. The rest of this paragraph is devoted to a
basic lemma.
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LEMMA 6.5. Fix any δ ∈ (0,1). Given any sequence of events {BN }N∈N such
that BN ∈ σ({ϕi}0≤i≤δN), that is, BN depends on the field of length δN , the fol-
lowing relation holds:

Pεc,N (BN) = Pεc (BN) + o(1) (N → ∞).

PROOF. Thanks to relation (2.18), it suffices to prove that

Pεc(BN |N + 1 ∈ χ) = Pεc (BN) + o(1) (N → ∞).(6.7)

Introducing the variable ξδ := min{χ ∩ [δN,∞)} − max{χ ∩ [0, δN ]}, we claim
that

Pεc

(
ξδ ≥ N

logN

∣∣∣N + 1 ∈ χ

)
= o(1), Pεc

(
ξδ ≥ N

logN

)
= o(1).(6.8)

In fact, these relations are proven in Appendix A with explicit bounds [cf.
(A.7)–(A.9) and (A.12)] in the special case δ = 1

2 , but the proof carries over to the
general case with no change. We introduce the variable dδ := min{χ ∩[δN,∞)}−

δN�, and we note that dδ ≤ ξδ . Thanks to (6.8), we can rephrase (6.7) as

Pεc

(
BN,dδ ≤ N

logN

∣∣∣N + 1 ∈ χ

)
= Pεc

(
BN,dδ ≤ N

logN

)
+ o(1)

(6.9)
(N → ∞).

We recall from Section 3.1 that the process {χn}n under Pεc is a renewal process
with step law qεc(n) = Pεc (χ1 = n). Denoting by uεc(n) :=∑

k≥0 q∗k
εc

(n) the cor-
responding renewal mass function, we can write the l.h.s. of (6.9) as

Pεc

(
BN,dδ ≤ N

logN

∣∣∣N + 1 ∈ χ

)

=

N/ logN�∑

k=0

Pεc(BN, dδ = k) · uεc(N + 1 − 
δN� − k)

uεc(N + 1)
.

Since qεc(n) ∼ Cεc/n2 as n → ∞ [see (3.5)], by Theorem 8.7.5 of [3], we have
uεc(n) ∼ 1/(Cεc logn). Therefore, uεc(N + 1 −
δN�− k)/uεc(N + 1) = 1 + o(1)

as N → ∞, uniformly for k in the range of summation, and (6.9) is proven. �

COROLLARY 6.6. To prove equations (6.5) and (6.6), one can replace the law
Pεc,N by Pεc .

6.3. Proof of Theorem 6.4. We introduce the sequences {Ak}k∈N and {Ãk}k∈N

that give the area respectively under the processes {ϕi}i and {|ϕi |}i between two
consecutive adjacent contact points:

Ak :=
χk∑

i=χk−1+1

ϕi, Ãk :=
χk∑

i=χk−1+1

|ϕi |.(6.10)
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We also introduce the corresponding partial sum processes:

Sn := A1 + · · · + An, S̃n := Ã1 + · · · + Ãn.(6.11)

Note that the variables {Ak}k∈N are i.i.d. under Pεc and, hence, {Sn}n≥0 is a real
random walk, and analogous statements hold for {Ãk}k∈N and {S̃n}n≥0. In fact, the
epochs {χk}k≥0 cut the field into independent segments, because {χk}k≥0 under
Pεc is a genuine renewal process [cf. Section 3.1] and, furthermore, the excursions
{ek}k∈N are independent conditionally on {(τk, Jk)}k∈Z+ ; compare Section 2.3.

The crucial fact is that the random walk {Sn}n under Pεc is in the domain of
attraction of the symmetric stable Lévy process of index 2/5 and, analogously,
{S̃n}n is in the domain of attraction of the stable subordinator of index 2/5. In fact,
we have the following:

PROPOSITION 6.7. There exist positive constants C, C̃ such that

Pεc (A1 > x) ∼ C

x2/5 , Pεc (Ã1 > x) ∼ C̃

x2/5 (x → +∞).(6.12)

PROOF. By Lemma 5.1 and the Continuous Mapping Theorem, as n → ∞,
we have that∫ 1

0
ϕ̂n(t)dt = 1

σ

1

n5/2

n∑
i=1

ϕi under Pεc(·|χ1 = n)
d−→
∫ 1

0
Ît dt,(6.13)

where
d−→ denotes convergence in distribution on R and the process {Ît }t∈[0,1]

was introduced in (1.11). Note that
∫ 1

0 Ît dt is a Gaussian random variable, whose
variance equals 1

720 (see Appendix B.3), hence,

�(z) := P

(∫ 1

0
Ît dt > z

)
= 6

√
10√
π

∫ ∞
z

e−360t2
dt.(6.14)

For z ∈ R and n ∈ N, we set

�n(z) := Pεc

(
A1

σn5/2 > z
∣∣∣χ1 = n

)
,(6.15)

and note that equation (6.13) yields �n(z) → �(z) as n → ∞, for every z ∈ R.
Recalling the notation qεc(n) = Pεc(χ1 = n), we can write

Pεc(A1 > x) = ∑
n∈N

qεc(n)Pεc (A1 > x|χ1 = n)

= ∑
n∈N

qεc(n)�n

(
x

σn5/2

)
.
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Let us rewrite the r.h.s. above by putting in evidence the factor s := nσ 2/5

x2/5 :

Pεc(A1 > x) = 1

x2/5

{
σ 2/5 · σ 2/5

x2/5

∑
s∈σ 2/5/n2/5N

[
x4/5

σ 4/5 q

(
x2/5

σ 2/5 s

)]
(6.16)

× �x2/5/σ 2/5s

(
1

s5/2

)}
.

Since �n(z) → �(z) and qεc(n) ∼ Cεc/n2 as n → ∞ [cf. (3.5)], for every s > 0
we have

�x2/5/σ 2/5s

(
1

s5/2

)
−→ �

(
1

s5/2

)
,

x4/5

σ 4/5 q

(
x2/5

σ 2/5 s

)
−→ Cεc

s2 (x → +∞).

Moreover, we claim that the following bound holds true (see below):

Pεc(A1 > x|χ1 = n) ≤ (const.)
n5

x2 .(6.17)

Then a Riemann-sum argument shows that the term in brackets in (6.16) does
converge toward the corresponding integral, that is, as x → ∞,

σ 2/5 · σ 2/5

x2/5

∑
s∈σ 2/5/n2/5N

[
x4/5

σ 4/5 q

(
x2/5

σ 2/5 s

)]
· �x2/5/σ 2/5s

(
1

s5/2

)

−→ σ 2/5
∫ ∞

0

Cεc

s2 �

(
1

s5/2

)
ds(6.18)

= Cεcσ
2/5 6

√
10√
π

∫ ∞
0

t2/5e−360t2
dt =: C,

having used (6.14). This proves the first relation in (6.12), with an explicit formula
for C.

The variable Ã1 is treated in a similar way. In fact, in analogy with (6.13),
Lemma 5.1 and the Continuous Mapping Theorem yield, as n → ∞,

Ã1

σn5/2 under Pεc(·|χ1 = n)
d−→
∫ 1

0
|Ît |dt,(6.19)

and, moreover, the following bound holds (see below):

Pεc(Ã1 > x|χ1 = n) ≤ (const.)
n5

x2 .(6.20)
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Then, arguing exactly as above, a Riemann-sum approximation shows that the
second relation in (6.12) holds true, with

C̃ := σ 2/5
∫ ∞

0

Cεc

s2 �̃

(
1

s5/2

)
ds = σ 2/5

∫ ∞
0

2

5

Cεc

t3/5 �̃(t)dt < ∞,(6.21)

where, of course, �̃(t) := P(
∫ 1

0 |Îs |ds > t).
To complete the proof, it remains to prove (6.20), which implies (6.17), be-

cause A1 ≤ Ã1. To this purpose, we exploit the Brascamp–Lieb inequality. We
recall from Section 3.3 that the law of the vector (Z1, . . . ,Zn) under P(0,0)

has the form μH(dx) = e−H(x) dx, x ∈ Rn, where H(x) = 1
2A(x) + R(x) and

A(·),R(·) are defined in (3.10). Fixing m ≤ n and t1, . . . , tm ∈ {1, . . . , n}, the
law μ∗

H(dx) := μH(dx|xt1 = 0, . . . , xtm = 0) satisfies the Brascamp–Lieb inequal-
ity (3.9): choosing �(x) = x2

k , with 1 ≤ k ≤ n, we obtain

E(0,0)(Z2
k |Zt1 = 0, . . . ,Ztm = 0) = E∗

H (x2
k ) ≤ EA(x2

k ) = k(k + 1)(2k + 1)

6γ
,

where we observe that E∗
H(xk) = 0 by symmetry and the last equality is just a

straightforward Gaussian computation, because μA is nothing but the law of the
integral of a random walk with Gaussian steps ∼ N (0, γ −1) [cf. (2.2) and (2.4)].
Setting P(0,0)∗ (·) := P(0,0)(·|Zt1 = 0, . . . ,Ztm = 0) for conciseness and using the
Chebyshev and Cauchy–Schwarz inequalities, we obtain

P(0,0)

(
n∑

k=1

|Zk| > x
∣∣∣Zt1 = 0, . . . ,Ztm = 0

)

≤ 1

x2

n∑
k,l=1

E(0,0)∗ (|Zk| · |Zl|) ≤ 1

x2

(
n∑

k=1

(
E(0,0)∗ (Z2

k )
)1/2

)2

(6.22)

≤ 1

γ x2

(
n∑

k=1

k3/2

)2

≤ (const.)
n5

x2 .

Now observe that Pεc,n−1(·) = Pεc(·|n ∈ χ) [cf. (2.18)], hence, Pεc,n−1(·|χ1 =
n) = Pεc (·|χ1 = n). We set

An−2 := {
A ⊂ {1, n − 2} : 1 /∈ A,n − 2 /∈ A, {l, l + 1} �⊂ A, ∀1 ≤ l ≤ n − 3

}
,

and we use the notation τ[1,n−2] := τ ∩ [1, n − 2]. Noting that An−2 represents all
the possible values of the variable τ[1,n−2] under Pεc(·|χ1 = n), we can write

Pεc

(
n∑

k=1

|ϕk| > x
∣∣∣χ1 = n

)
= Pεc,n−1

(
n∑

k=1

|ϕk| > x
∣∣∣χ1 = n

)

= ∑
A∈An−2

Pεc,n−1

(
n∑

k=1

|ϕk| > x
∣∣∣τ[1,n−2] = A

)

× Pεc,n−1
(
τ[1,n−2] = A|χ1 = n

)
.
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However, combining (2.5) with (6.22), we have

Pεc,n−1

(
n∑

k=1

|ϕk| > x
∣∣∣τ[1,n−2] = A

)

= P(0,0)

(
n∑

k=1

|Zk| > x
∣∣∣Zi = 0, ∀i ∈ A ∪ {n − 1, n}

)
≤ (const.)

n5

x2 ,

and the proof of (6.20) is completed. �

We now denote by {L̃t }t∈[0,1] the stable subordinator of index 2
5 , normalized so

that its Lévy measure equals 2
5 C̃x−2/5−11{x>0} dx, so that P(L̃1 > x) ∼ C̃x−2/5

as x → ∞. By Proposition 6.7, we have Pεc(Ã1 > x) ∼ P(L̃1 > x) as x → ∞,
hence, by the standard theory of stability ([8], Chapter XVII.5), Ã1 is in the domain
of attraction of L̃1 and we have

1

n5/2 S̃n = 1

n5/2

n∑
i=1

Ãi under Pεc

d−→ L̃1 (n → ∞).(6.23)

Next let {Lt }t∈[0,1] be the symmetric stable Lévy process of index 2
5 , with Lévy

measure given by cL|x|−2/5−1dx, where cL := C/Cεc [we recall that Cεc is the
constant appearing in (3.5)]. In particular, we have P(L1 > x) = P(L1 < −x) ∼
cLx−2/5 as x → ∞. Then Proposition 6.7 yields Pεc(A1 > x) ∼ P((Cεc)

5/2 ×
L1 > x) as x → ∞, and since Pεc (A1 > x) = Pεc (A1 < −x) by symmetry, it
follows by the theory of stability that

1

n5/2 Sn = 1

n5/2

n∑
i=1

Ai under Pεc

d−→ (Cεc)
5/2L1 (n → ∞).(6.24)

Notice that by (6.18) the constant cL := C/Cεc equals

cL = 6
√

10√
π

σ 2/5
∫ ∞

0
s2/5e−360s2

ds = 3
√

10√
π(360)7/10 �

(
7

10

)
σ 2/5,(6.25)

where �(x) := ∫∞
0 tx−1e−t dt is the usual Gamma function and the second equal-

ity follows by a simple change of variables. We also recall that Lt
d= t5/2L1 and

L̃t
d= t5/2L̃1.

We are ready to prove (6.6), with the law Pεc,N replaced by Pεc , thanks to
Corollary 6.6. It is convenient to extend the definition of ιN to a noninteger ar-
gument, by setting ι[t] := sup{k ∈ Z+ :χk ≤ t} for t ∈ R; compare (3.3). By the
definitions (1.17) and (1.18) of ϕ̃N and μN , we immediately obtain the following
upper bound:

|μN |([x − δ, x + δ]) ≤
(

logN

N

)5/2(
S̃ι[(x+δ)N]+1 − S̃ι[(x−δ)N]

)
.(6.26)
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Since {χk}k≥0 is a genuine renewal process with Pεc(χ1 = n) ∼ Cεc/n2, The-
orem 8.8.1 of [3] yields χk/(k log k) → Cεc as k → ∞, Pεc -a.s., and since
χι[t] ≤ t ≤ χι[t]+1, it follows that

ι[t]
t/ log t

−→ 1

Cεc

as t → ∞,Pεc -a.s.(6.27)

Therefore, for every κ > 0 we can choose N sufficiently large such that

Pεc

({
ι[(x + δ)N] + 1 >

1

Cεc

(x + 2δ)N

logN

}
∪
{
ι[(x − δ)N] <

1

Cεc

(x − 2δ)N

logN

})
≤ κ.

Then by (6.26) for any η > 0 and for large N , we can write

Pεc

(|μN |([x − δ, x + δ]) > η
)

≤ κ + Pεc

((
logN

N

)5/2(
S̃
(x+2δ)N/(Cεc logN)� − S̃
(x−2δ)N/(Cεc logN)�

)
> η

)
.

However, for a, b ∈ N with a ≤ b we have S̃b − S̃a
d= S̃b−a . Then letting N → ∞

and recalling (6.23), we have

lim sup
N→∞

Pεc

(|μN |([x − δ, x + δ]) > η
)≤ κ + P

((
4δ

Cεc

)5/2

L̃1 > η

)
.

Letting δ → 0, the last term vanishes and since κ was arbitrary, equation (6.6) is
proven.

Next we prove (6.5), again with the law Pεc,N replaced by Pεc , thanks to Corol-
lary 6.6. We claim that (6.5) is equivalent to the following relation:(

logN

N

)5/2(
S
a1N/(Cεc logN)�,

(
S
a2N/(Cεc logN)� − S
a1N/(Cεc logN)�

)
,

. . . ,
(
S
akN/(Cεc logN)� − S
ak−1N/(Cεc logN)�

))
(6.28)

under Pεc

d−→ (La1,La2 − La1, . . . ,Lak
− Lak−1).

To prove the claim, it suffices to show that the difference between the vectors in
the first lines of (6.5) and (6.28) converges in Pεc -probability to zero as N → ∞.
It is sufficient to focus on each component: so we need to prove that

lim
N→∞Pεc

(∣∣∣∣μN((a, b])

−
(

logN

N

)5/2(
S
bN/(Cεc logN)� − S
aN/(Cεc logN)�

)∣∣∣∣≥ η

)
(6.29)

= 0,
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for every η > 0 and for all a, b ∈ [0,1) with a < b. Fix δ > 0 and observe that,
by (6.27),

lim
N→∞Pεc

(
ι[aN ] ∈

⌊
aN

Cεc logN

⌋
· (1 − δ,1 + δ),

ι[bN ] ∈
⌊

bN

Cεc logN

⌋
· (1 − δ,1 + δ)

)
= 1.

Therefore, we can restrict ourselves on this event, where, using the definitions
(1.17) and (1.18) of ϕ̃N and μN , we can write∣∣∣∣μN((a, b]) −

(
logN

N

)5/2(
S
bN/(Cεc logN)� − S
aN/(Cεc logN)�

)∣∣∣∣
≤
(

logN

N

)5/2{(
S̃
a(1+δ)N/(Cεc logN)� − S̃
a(1−δ)N/(Cεc logN)�

)
+ (S̃
b(1+δ)N/(Cεc logN)� − S̃
b(1−δ)N/(Cεc logN)�

)}
.

However, (S̃b − S̃a)+ (S̃d − S̃c)
d= S̃(b−a)+(d−c) for a ≤ b ≤ c ≤ d , and as N → ∞

by (6.23), we have

Pεc

((
logN

N

)5/2

S̃
(a+b)·2δN/(Cεc logN)� ≥ η

)
−→ P

(
(a + b) · 2δ

Cεc

L1 ≥ η

)
.

The last term vanishes as δ → 0, hence, (6.29) is proven.
It finally remains to prove equation (6.28). Both the vector in the l.h.s. and the

one in the r.h.s. of that equation have independent components, therefore, it suffices
to prove the convergence of each component, that is, that for every a ∈ (0,1) as
N → ∞, (

logN

N

)5/2

S
aN/(Cεc logN)� =
(

logN

N

)5/2 
aN/(Cεc logN)�∑
i=1

Ai

under Pεc

d−→ La.

However, recalling that La
d= a5/2L1, this relation follows immediately

from (6.24), so that the proof of Theorem 6.4 is completed.

6.4. Tightness of {μN }N . We finally prove the tightness of the sequence
{μN }N∈N, that is, for every δ > 0 there exist K,N0 ∈ N such that

Pεc,N

(|μN |([0,1]) ≤ K
)≥ 1 − δ ∀N ≥ N0.(6.30)

Since μN({1
2 }) = 0, we can write μN([0,1]) = μN([0, 1

2 ])+μN([1
2 ,1]). However,

by symmetry, μN([0, 1
2 ]) d= μN([1

2 ,1]) under Pεc,N , hence, it suffices to show that

Pεc,N

(|μN |([0, 1
2

])≤ K/2
)≥ 1 − δ/2 ∀N ≥ N0.
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Now notice that the event {|μN |([0, 1
2 ]) ≤ K

2 } belongs to the σ -field
σ({ϕi}0≤i≤N/2), hence, we can apply Lemma 6.5 and we are left with showing
that for every δ > 0 there exist K,N0 ∈ N such that

Pεc

(|μN |([0, 1
2

])≤ K/2
)≥ 1 − δ/4 ∀N ≥ N0.(6.31)

We recall that ι[t] := sup{k ∈ Z+ :χk ≤ t}, for t ∈ R. From the definitions (1.17),
(1.18) and (6.11) of ϕ̃N , μN and S̃n respectively, the inclusion bound yields

Pεc

(
|μN |

([
0,

1

2

])
> K/2

)
≤ Pεc

((
logN

N

)5/2

S̃ι[N/2]+1 >
K

2

)
≤ Pεc

(
ι[N/2] + 1 >

1

Cεc

N

logN

)

+ Pεc

((
logN

N

)5/2

S̃
1/CεcN/logN� >
K

2

)
.

Letting N → ∞, the first term in the second line of this equation vanishes because
of (6.27), while for the second term, by (6.23), we have

Pεc

((
logN

N

)5/2

S̃
1/CεcN/logN� >
K

2

)
−→ P

(
L̃1 >

K(Cεc)
5/2

2

)
.

Since P(L̃1 > t) → 0 as t → +∞, equation (6.31) is proven.

APPENDIX A: SOME RENEWAL THEORY ESTIMATES

A.1. Proof of equation (3.18). We are going to prove equation (3.18), that
can be rewritten in terms of the law Pε , thanks to (2.18), as

Pεc

(
δN ≥ t

N

logN

∣∣∣N + 1 ∈ χ

)
≤ c1

t
+ aN with aN → 0 as N → ∞,(A.1)

where we recall that δN has been defined in (3.15). We first need to recall some
preliminary relations. We are in the critical case, hence, qεc(n) = Pεc(χ1 = n) ∼
Cεc/n2 by (3.5), because F(εc) = 0. Since {χk}k≥0 is a genuine renewal process,
Theorem 8.8.1 of [3] yields

χk

k log k
−→ Cεc as k → ∞,Pεc-a.s.

By the definition (3.3) of the variable ιN , we have χιN ≤ N ≤ χιN+1, hence,

ιN

N/ logN
−→ 1

Cεc

as N → ∞,Pεc-a.s.(A.2)

Introducing the renewal function uεc(n) := Pεc (n ∈ χ) =∑∞
k=0(qεc)

∗k(n), Theo-
rem 8.7.4 of [3] gives

uεc(n) ∼ 1

Cεc logn
as n → ∞,(A.3)
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which implies

Uεc(n) :=
n∑

k=0

uεc(k) ∼ n

Cεc logn
as n → ∞.(A.4)

We are ready to prove (A.1). We denote by ξ the length of the excursion of χ

embracing the point N/2:

ξ := min{χ ∩ [N/2,∞)} − max{χ ∩ [0,N/2]}.(A.5)

Then the inclusion bound and the symmetry n �→ N − n yield

Pεc

(
δN ≥ t

N

logN

∣∣∣N + 1 ∈ χ

)

≤ Pεc

(
ξ ≥ N

logN

∣∣∣N + 1 ∈ χ

)
(A.6)

+ 2Pεc

(
δ
N/2� ≥ t

N

logN
,ξ <

N

logN

∣∣∣N + 1 ∈ χ

)
.

Let us focus on the first term in the r.h.s. of (A.6). We can write

Pεc

(
ξ ≥ N

logN

∣∣∣N + 1 ∈ χ

)
(A.7)

= ∑
0≤i≤N/2≤j≤N+1

j−i≥N/ logN

u(i)q(j − i)u(N + 1 − j)

u(N + 1)
,

where we have omitted for simplicity the dependence of q(·) and u(·) on εc. If
we consider the terms in the sum with i ≤ N/4, then j − i ≥ N/4 and, therefore,
q(j − i) ≤ (const.)/N2, hence, recalling (A.3) and (A.4), the contribution of these
terms is bounded above by

(const.)

N2

U(
N/2�)2

u(N + 1)
≤ (const.′)

logN
.(A.8)

By symmetry, the same bound holds for the contribution of the terms with j ≥
3N/4. It remains to consider the terms where both i > N/4 and j < 3N/4: ap-
plying (A.3) to u(N), u(i) and u(N + 1 − j), the contribution of these terms is
bounded above by

(const.)

(logN)

∑
N/4≤i≤N/2≤j≤3N/4

j−i≥N/ logN

1

(j − i)2 ≤ (const.)

(logN)


N/2�∑
l=�N/ logN�

(l + 1) · 1

l2

(A.9)

≤ (const.′) log logN

logN
.
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We have thus shown that the first term in the r.h.s. of (A.6) vanishes as N → ∞,
hence, it can be absorbed in the term aN , appearing in the r.h.s. of (A.1).

Next we consider the second term in the r.h.s. of (A.6). We sum over the loca-
tion m of χι
N/2� , that is, the last point of χ before 
N/2�, and over the location l

of χι
N/2�+1, that is, the first point of χ after 
N/2�. Recalling (3.15), for t > 1 the
renewal property yields

Pεc

(
δ
N/2� ≥ t

N

logN
,ξ <

N

logN

∣∣∣N + 1 ∈ χ

)

= ∑
m≤
N/2�,l>
N/2�

l−m<N/ logN

Pεc

(
δm ≥ t

N

logN
,m ∈ χ

)
(A.10)

× q(l − m) · u(N + 1 − l)

u(N + 1)
.

In the range of summation, by (A.3), the ratio u(N + 1 − l)/u(N + 1) is bounded
above by some positive constant A, hence, the r.h.s. is bounded above by

A
∑

m≤
N/2�,l>
N/2�
l−m<N/ logN

Pεc

(
δm ≥ t

N

logN
,m ∈ χ

)
q(l − m)

≤ APεc

(
δ
N/2� ≥ t

N

logN

)
.

We are finally reduced to estimating the last term. By (A.2), we can write as
N → ∞

Pεc

(
δ
N/2� ≥ t

N

logN

)
= Pεc

(
δ
N/2� ≥ t

N

logN
, ι
N/2� ≤ 2

Cεc

N/2

logN

)
+ o(1)

and, by (3.15), the first term in the r.h.s. is bounded above by

Pεc

(
max

{
χi − χi−1 : i ≤ N

Cεc logN

}
≥ t

N

logN

)
.

This probability is easily estimated. In fact, the variables {χi −χi−1}i∈N under Pεc

are independent and identically distributed, hence, for x > 0 and M ∈ N we have

Pεc(max{χi − χi−1 : i ≤ M} < x) = Pεc (χ1 < x)M ≥
(

1 − B

x

)M

,

where B is a suitable positive constant. Since (1 − t) ≥ e−2t for t ∈ [0, 1
2 ], it fol-

lows that for N sufficiently large we have

Pεc

(
max

{
χi − χi−1 : i ≤ N

Cεc logN

}
≥ t

N

logN

)
≤ 1 − exp

(
− 2B

Cεc t

)
≤ 2B

Cεc t

and the proof of (A.1) is completed.
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A.2. Proof of equation (5.1). In this section we prove (5.1), which we can
rewrite as

lim
t→0+ lim inf

N→∞ Pεc

(
δN ≥ t

N

logN

∣∣∣N + 1 ∈ χ

)
= 1.(A.11)

We start observing that the inclusion bound yields

Pεc

(
δN ≥ t

N

logN

∣∣∣N + 1 ∈ χ

)
≥ Pεc

(
δ
N/2� ≥ t

N

logN
,ξ <

N

logN

∣∣∣N + 1 ∈ χ

)
,

where we recall that the variable ξ has been defined in (A.5). We decompose
the r.h.s. according to (A.10) and we observe that the fraction u(N + 1 − l)/

u(N + 1) converges to 1 as N → ∞ uniformly in the range of summation,
by (A.3). Therefore, we can write

Pεc

(
δN ≥ t

N

logN
,ξ <

N

logN

∣∣∣N + 1 ∈ χ

)

≥ (1 + o(1)
) ∑
m≤
N/2�,l>
N/2�

l−m<N/ logN

Pεc

(
δm ≥ t

N

logN
,m ∈ χ

)
qεc(l − m)

= (
1 + o(1)

)
Pεc

(
δ
N/2� ≥ t

N

logN
,ξ <

N

logN

)
(N → ∞).

Recalling that qεc(n) ∼ Cεc/n2 and uεc(n) ∼ 1/(Cεc logn) as n → ∞, by (3.5)
and (A.3), we obtain

Pεc

(
ξ ≥ N

logN

)
= ∑

m≤
N/2�,l>
N/2�
l−m≥N/ logN

uεc(m)qεc(l − m) ≤ (const.)

logN
.(A.12)

Putting together the preceding relations, we have

Pεc

(
δN ≥ t

N

logN

∣∣∣N + 1 ∈ χ

)
≥ Pεc

(
δ
N/2� ≥ t

N

logN

)
+ o(1) (N → ∞)

and we are left with estimating the r.h.s. of this relation. The inclusion bound, the
definition (3.15) of δN and equation (A.2) yield

Pεc

(
δ
N/2� ≥ t

N

logN

)

≥ Pεc

(
δ
N/2� ≥ t

N

logN
, ι
N/2� ≥ 1

2Cεc

N/2

logN

)

≥ Pεc

(
max

{
χi − χi−1 : i ≤ 1

4Cεc

N

logN

}
≥ t

N

logN
, ι
N/2� ≥ 1

2Cεc

N/2

logN

)

= Pεc

(
max

{
χi − χi−1 : i ≤ 1

4Cεc

N

logN

}
≥ t

N

logN

)
− o(1) (N → ∞).
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The variables {χi − χi−1}i∈N under Pεc are independent and identically distrib-
uted, hence, for x > 0 and M ∈ N we have

Pεc(max{χi − χi−1 : i ≤ M} < x) = Pεc (χ1 < x)M

≤
(

1 − D

x

)M

≤ e−D/xM

for some positive constant D. Therefore,

Pεc

(
δ
N/2� ≥ t

N

logN

)
≥ 1 − exp

(
− D

4Cεc t

)
+ o(1) (N → ∞)

and the proof of relation (A.11) is complete.

A.3. Proof of equation (3.19). We are going to prove equation (3.19), which
can be rewritten using (2.18) as

Pε(δN ≥ c2 logN |N + 1 ∈ χ) −→ 0 as N → ∞.(A.13)

Since we assume that ε > εc, we are in the localized regime and the step law
qε(n) = Pε(χ1 = n) has exponential tails; see (3.6). The renewal theorem then
yields

Pε(N ∈ χ) −→ 1

Eε(χ1)
∈ (0,∞) as N → ∞(A.14)

and the weak law of large numbers gives

Pε

(
ιN ≥ 2

Eε(χ1)
N

)
−→ 0 as N → ∞.

These relations yield

Pε(δN ≥ c2 logN |N + 1 ∈ χ)

≤ (const.)Pε(δN ≥ c2 logN)

= (const.)Pε

(
δN ≥ c2 logN, ιN ≤ 2N

Eε(χ1)

)
+ o(1) as N → ∞.

The definition (3.15) of δN and the inclusion bound give

Pε

(
δN ≥ c2 logN, ιN ≤ 2N

Eε(χ1)

)

≤ Pε

(
max

{
χi − χi−1 : i ≤ 2N

Eε(χ1)

}
≥ c2 logN

)
.

Since the variables {χi − χi−1}i∈N under Pε are independent and identically dis-
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tributed, for x > 0 and M ∈ N we have

Pε(max{χi − χi−1 : i ≤ M} < x) = Pε(χ1 < x)M ≥ (1 − Be−G(ε)x)M
for a suitable positive constant B . Since (1 − t) ≥ e−2t for t ∈ [0, 1

2 ], it follows
that for N sufficiently large we have

Pε

(
δN ≥ c2 logN, ιN ≤ 2N

Eε(χ1)

)
≤ 1 − exp

(
−2B

2N

Eε(χ1)

1

NG(ε)·c2

)
.

If we choose c2 > 1/G(ε), the r.h.s. vanishes as N → ∞ and equation (A.13) is
proven.

APPENDIX B: SOME TECHNICAL PROOFS

B.1. Proof of Proposition 6.3. Take any subsequence {νNn}n∈N that con-
verges in distribution toward some random signed measure ν. We are going to
show that the finite dimensional distributions of ν are necessarily given by the
laws λ

(k)
a1,...,ak that appear in (6.3). Since the finite-dimensional distributions deter-

mine laws on M([0,1]), this means that every convergent subsequence of {νN }N∈N

must have the same limit. Then Lemma 6.2 and a standard sub-subsequence ar-
gument yield the convergence of the whole sequence {νN }N∈N, and the proof is
complete.

Therefore, we assume that {νNn}n∈N converges in distribution toward ν. We
introduce the function f

(ε)
t : [0,1] → R defined by

f
(ε)
t (x) :=

⎧⎪⎨⎪⎩
1, x ∈ [0, t],
−x

ε
+ 1 + t

ε
, x ∈ [t, t + ε],

0, x ∈ [t + ε,1],
which may be viewed as a continuous approximation of 1[0,t]. Then we define the
map F

(ε)
t :M([0,1]) → R by F

(ε)
t (ν) := ∫

f
(ε)
t dν. Notice that |F (ε)

t (ν)−Ft(ν)| ≤
|ν|([t, t + ε]). Now let W : Rk → R be a bounded and Lipschitz function such that

|W(x1, . . . , xk) − W(y1, . . . , yk)| ≤
k∑

i=1

g(xi − yi)

(B.1)
where g(x) := |x| ∧ 1.

Therefore, we can write∣∣E[W (
F (ε)

a1
(νNn), . . . ,F

(ε)
ak

(νNn)
)]− E[W(Fa1(νNn), . . . ,Fak

(νNn))]
∣∣

(B.2)

≤
k∑

i=1

E
[
g
(|νNn |([ai, ai + ε]))].
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Let us take the n → ∞ limit. Since W(·) and F
(ε)
t (·) are continuous,

E
[
W
(
F (ε)

a1
(νNn), . . . ,F

(ε)
ak

(νNn)
)]−→ E

[
W
(
F (ε)

a1
(ν), . . . ,F (ε)

ak
(ν)
)]

,

and also E[W(Fa1(νNn), . . . ,Fak
(νNn))] −→ ∫

W dλ
(k)
a1,...,ak by (6.3). Then we

take the limit ε → 0: the r.h.s. of (B.2) vanishes by (6.4) and by dominated con-
vergence, we have

E[W(Fa1(ν), . . . ,Fak
(ν))] =

∫
W dλ(k)

a1,...,ak
.

Since W(·) is an arbitrary function satisfying (B.1), this shows that the finite di-

mensional distributions of ν are indeed λ
(k)
a1,...,ak , and the proof is complete.

B.2. Proof of Lemma 6.2. Let us denote by νN := νN ◦ P −1 the law of the
random signed measure νN , so that νN is a probability measure on M([0,1]). For
every fixed K ∈ N, the restriction of νN on the subspace MK([0,1]) is a sub-
probability measure on a Polish space (cf. Lemma 6.1), hence, one can apply the
standard Prohorov theorem. So we can extract a subsequence {νN ′ } that converges
weakly toward a sub-probability law λ(1) on M1([0,1]); then from {νN ′ } we ex-
tract a sub-subsequence {νN ′′ } that converges weakly toward a sub-probability law
λ(2) on M2([0,1]), and so on. With a standard diagonal argument, we obtain a
subsequence {νNk

}k that converges weakly on MK([0,1]) toward λ(K), for every
K ∈ N. However, recalling (6.1), it is clear that the laws λ(K) are the restriction
on MK([0,1]) of a single law λ on M([0,1]) and, moreover, λ(M([0,1])) = 1
because the sequence {νN }N is tight; compare (6.2). Then it is easy to check that
the subsequence {νNk

}k converges weakly on M([0,1]) toward λ: in fact, given a
continuous and bounded functional G :M([0,1]) → R, we can write∣∣∣∣∫ GdνNk

−
∫

Gdλ

∣∣∣∣
≤
∣∣∣∣∫ G1MK([0,1]) dνNk

−
∫

G1MK([0,1]) dλ

∣∣∣∣
+ ‖G‖∞ · (νNk

(MK([0,1])�) + λ(MK([0,1])�)).
The first term in the r.h.s. vanishes as k → ∞, because, by construction, νNk

con-
verges weakly to λ = λ(K) on MK([0,1]), and the second term vanishes as
K → ∞ because of the tightness of {νN }N ; compare (6.2). This completes the
proof.

B.3. Computing �(t). We recall that {Bt }t∈[0,1] is a standard Brownian mo-
tion on R and It := ∫ t

0 Bs ds. We also set Gt := ∫ t
0 Is ds. The function �(t) was
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introduced in (6.14): recalling the definition (1.11) of the conditioned process Ît ,
we can re-express it as

�(t) = P(G1 > t |B1 = 0, I1 = 0).

Since the vector (G1, I1,B1) has a centered Gaussian distribution, the law of G1
under P(·|B1 = 0, I1 = 0) is centered Gaussian too and, hence, it suffices to iden-
tify its variance to determine �(t). The covariance matrix A of (G1, I1,B1) is
easily computed:

A :=
⎛⎝ E(G2

1) E(G1I1) E(G1B1)

E(G1I1) E(I 2
1 ) E(I1B1)

E(G1B1) E(I1B1) E(B2
1 )

⎞⎠=
⎛⎜⎝

1
20

1
8

1
6

1
8

1
3

1
2

1
6

1
2 1

⎞⎟⎠ .

The variance of G1 conditionally on {I1 = 0,B1 = 0} is then given by 1/

(A−1)1,1 = 1
720 . Therefore,

�(t) =
∫ ∞
t

e−360s2

√
2π/720

ds = 6
√

10√
π

∫ ∞
t

e−360s2
ds.
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