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ATTRACTION TIME FOR STRONGLY REINFORCED WALKS

BY CODINA COTAR AND VLADA LIMIC1

TU Berlin and CNRS

We consider a class of strongly edge-reinforced random walks, where the
corresponding reinforcement weight function is nondecreasing. It is known,
from Limic and Tarrès [Ann. Probab. (2007), to appear], that the attracting
edge emerges with probability 1 whenever the underlying graph is locally
bounded. We study the asymptotic behavior of the tail distribution of the
(random) time of attraction. In particular, we obtain exact (up to a multiplica-
tive constant) asymptotics if the underlying graph has two edges. Next, we
show some extensions in the setting of finite graphs, and infinite graphs with
bounded degree. As a corollary, we obtain the fact that if the reinforcement
weight has the form w(k) = kρ , ρ > 1, then (universally over finite graphs)

the expected time to attraction is infinite if and only if ρ ≤ 1 + 1+√
5

2 .

1. Introduction. Let G be a locally finite graph with the edge set E(G) and
the vertex set V (G). We will assume without further mention that G is connected.
We call any two vertices u, v connected by an edge adjacent (or neighboring); in
this case, we write u ∼ v and denote by {u, v} = {v,u} the edge connecting them.
We will denote by

|G| = |E(G)|
the number of edges of G and by

#G = |V (G)|
the number of vertices of G . Finally, we denote by D(G) = supv∈V (G) degree(v)

the degree of G , where, for any v ∈ V (G), degree(v) equals the number of edges
incident to v.

Let (�e
0, e ∈ E(G)) be given integers and assume that �e

0 ≥ 0, e ∈ E(G). Given a
reinforcement weight function w : {0,1,2, . . .} �→ (0,∞), the edge-reinforced ran-
dom walk (ERRW) on G records nearest neighbor step transitions of a particle in
V (G). That is:

(i) if currently at vertex v ∈ V (G), in the next step, the particle jumps to a vertex
u ∈ V (G) adjacent to v;
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(ii) the probability of a jump to u is w-proportional to the number of previous
traversals of the edge {v,u}.

The more formal definition is as follows. If G is a finite graph, it seems natural,
from the point of notation, to construct and study the edge-reinforced random walk
started at the initial time

t0 := ∑
e∈E(G)

�e
0 ≥ 0;

a process starting at time 0 is obtained by a time shift. If G is an infinite graph,
we simply set t0 := 0. Denote by In the (random) position of the edge-reinforced
random walk at time n. Then, It0 ∈ V (G) is the initial position and {In, In+1} ∈
E(G) for all n ≥ t0, almost surely. Let Fn be the filtration

Fn = σ
{
Ik, k = 0, . . . , n,

(
�e

0, e ∈ E(G)
)}

.(1)

Moreover, the dynamics of the edge-reinforced random walk is prescribed accord-
ing to the rule

P(In+1 = v|Fn)1{In=u} = w(X
{u,v}
n )∑

y∼u w(X
{u,y}
n )

1{In=u,u∼v},

where, for any e ∈ E(G),

Xe
n = �e

0 +
n−1∑
i=t0

1{e was traversed at ith step} = �e
0 +

n−1∑
i=t0

1{{Ii ,Ii+1}=e}(2)

equals the initial weight �e
0 incremented by the total number of (undirected) traver-

sals of edge e prior to time n. Note that t0 is chosen so that whenever V (G) < ∞,∑
e∈E(G) X

e
k = k for all k ≥ t0, almost surely. The starting weights Xt0 := �e

0 are
specified as deterministic above, but one could use random variables instead in
applications and definition (1) accounts for this possibility. Our results would then
hold conditionally on the starting weights.

We denote by G1 the range of the edge-reinforced random walk on G . More
precisely, we let

G1 = (V (G1),E(G1))

be the random subgraph of G where, for any v ∈ V (G), we have

v ∈ V (G1) ⇔ ∃n ≥ t0 such that In = v,

and, for any e ∈ E(G),

e ∈ E(G1) ⇔ ∃n ≥ t0 such that {In, In+1} = e.

Apart from the behavior analogous to recurrence or transience of Markov chains
(see, e.g., [7, 9] or [10], Theorems 5.2 and 5.6), ERRW may exhibit a very different
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asymptotic behavior as time increases. For example, it is easy to see, [5, 11], that
the assumption ∑

k

1

w(k)
< ∞(A0)

is sufficient for the event

{G1 is a finite graph}
to have probability 1, whenever D(G) < ∞. It is easy to find examples of locally
bounded trees with D(G) = ∞ such that (A0) holds but G1 is infinite with positive
probability. Sellke [11] provides (slightly peculiar) examples of edge-reinforced
random walks on Z where

∑
k 1/w(k) is finite over even k and infinite over odd k,

but where G1 is still a finite graph, almost surely.
Next, we briefly discuss links between our work and the recent literature. For

a detailed review of a number of interesting results on edge-reinforced random
walks, we refer the reader to a recent survey of Pemantle [10] on stochastic rein-
forcement processes.

A result of Sellke [11] (the argument is also described in detail in [5], Section 2)
implies that (A0) is sufficient and necessary for

P(the walk ultimately traverses a single edge) = 1,(3)

whenever the underlying graph is bipartite and of bounded degree. Limic [5]
proves that (A0) implies (3) on any graph of bounded degree, where the reinforce-
ment weight is a reciprocally summable power function. In a recent work, Limic
and Tarrès [6] show that for a fairly general class of reinforcement weights [in par-
ticular, whenever w is a nondecreasing function satisfying (A0)] (3) holds on any
graph of bounded degree. We will refer to any weight w satisfying condition (A0)
as strong and to the corresponding ERRW as a strongly reinforced walk.

The current paper assumes the setting of [6] and is devoted to the study of the
tail behavior of the time of attraction

T = inf
{
k ≥ 0 :∃e ∈ E(G) such that ∀f 
= eX

f
k = max

m≥k
Xf

m

}
(4)

= inf
{
k ≥ 0 : {In, In+1} = {In+1, In+2},∀n ≥ k

}
,

that is, the first time after which only the attracting edge is traversed. This random
variable is an important statistic, useful for applications (e.g., [3] or [4]). In this
paper, we make a few connections to the literature on the behavioral science of
social insects and refer the reader to [10] for a diverse list of potential applications.

It is clear that the sequence of tail probabilities (P (T > k), k ≥ 1) depends on
the structure of the underlying graph G , the weight function w, the initial weights
�·

0 and the initial position It0 . However, the results of Sections 3.1–3.2 verify an
interesting universality-type behavior. Namely, fix w satisfying (A0), let G be an
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arbitrary finite graph with some prescribed initial edge weights and initial position,
and let G′ be the simple two-edge graph from Section 2 with initial weights equal
to 1 on both edges. Then, if P G (resp., P 1,1) denotes the law of the correspond-
ing ERRW on G (resp., G′), the asymptotic order of magnitude of P G (T > k) is
induced by that of P 1,1(T > k). To some extent, this also holds on infinite trees of
bounded degree; see Corollary 18.

DEFINITION 1. For sequences ak, bk of real numbers, we write ak � bk if and
only if

ak

bk

∈ [c,C], k ≥ 1 for some c,C ∈ (0,∞).

The rest of the paper is organized as follows. Section 2 is devoted to the careful
study of the two-edge setting. In particular, in Section 2.1, we prove Corollary 5,
stated less precisely as follows. If we assume that E(G) consists of two elements
and let

Z∞ := #{times the nonattracting edge is traversed},
then, under assumption (A0),

P(Z∞ = �) � 1

w(�)
, � → ∞.

A stronger statement, due to R. Pemantle (personal communication),

lim
�→∞w(�)P (Z∞ = �) ∈ (0,∞),(5)

holds in this simple setting. The limit will become apparent in the course of the
proof sketched at the end of Section 2.2.

Lemma 6 of Section 2.3 provides the initial order-of-magnitude estimates on
the tail probability P(T > k) as k → ∞. More precisely, we prove that

P(T > n) �
∞∑

k=n+1

∑
�≤k/2

[
1

w(k − �)

∞∏
j=0

w(k + j − �)

w(k + j − �) + w(� + 1)

+ 1

w(�)

∞∏
j=0

w(j + � − 1)

w(j + � − 1) + w(k + 1 − �)

]
.

Such an expression seems awkward for applications and we work further to find
simplifications. In particular, Theorem 9 shows simpler looking asymptotics of the
tail distribution of T , under the additional assumption (A1) that w is a nonde-
creasing function. The main idea is simple: the event which with overwhelming
probability contributes to the event {T = k + 1} of interest is the one where at
time k, the weaker edge (i.e., the edge with the lower current number of traversals)
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is traversed and at all future times, the stronger edge is traversed. Therefore (Zk

denoting the number of traversals of the less traversed edge at time k),

P(T = k + 1) � ∑
�≤k/2

P(Zk = �)
w(�)

w(k − �) + w(�)
P (Z∞ = � + 1|Zk+1 = � + 1).

For � close to k/2, it is plausible that P(Zk = �) is sufficiently small so that the
contribution in the above sum vanishes asymptotically. For � small, the middle
term w(�)/(w(k − �) + w(�)) is again small. In order to estimate the above sum
well, one then needs to find the interval of indices � which make up the bulk of
the contribution. As shown in Proposition 2, P(Zk = �) � w(k−�)+w(�)

w(k−�)w(�)
, so it is

plausible that the overwhelming contribution to the sum comes, approximately,
from the range of indices where P(Z∞ = � + 1|Zk+1 = � + 1) � 1. For formal
estimates, see Section 2.3.

In Section 2.4, we include specific calculations for cases of w that have already
been used (or might be used) in applications (see [2, 4]) that satisfy the assump-
tions (A0)–(A1). In particular, we paraphrase as follows.

THEOREM 10(a). If w(k) = kρ for some fixed ρ > 1 and if ρ′ = (ρ − 1)/ρ,
then

P(T > k) � 1

kρ−ρ′−1
.

In particular, E(T ) is infinite if ρ ≤ 1 + 1+√
5

2 and finite if ρ > 1 + 1+√
5

2 .

This type of result should be particularly interesting for applications. In fact, in
[4], for a similar model, the reinforcement weight is set to w(k) = kρ and real-life
data is compared to different values of ρ and initial configurations. More precisely,
the authors study a colony of ants which randomly explores a chemically unmarked
territory, starting from its nest. The exploration is carried out on two branches A

and B . Initially, both branches are equally likely to be chosen. However, each ant
that passes along one of the two branches leaves an additional pheromone mark
and in this way influences the following ant’s decision in choosing A or B . In the
real-life experiment, it is observed that, after initial fluctuations, one of the two
branches becomes more or less completely preferred to the other. In their (rein-
forcement) model, k represents the number of ants that have chosen a particular
branch and ρ determines the degree of nonlinearity. The model is used for further
study of the explorer movement pattern in two-dimensional space.

Section 3 is devoted to analysis on general graphs of bounded degree. In par-
ticular, we are interested in a universality-type behavior of the tail distribution
P G (T > ·) over graphs once the reinforcement weight function w is fixed. In
the course of our analysis, we also obtain exponential bounds (see Lemma 25)
on the tail distribution of |G1| and, in particular, some information on the dis-
tance of the attracting edge from the starting point. Providing a universal lower
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bound on P G (T > ·) in terms of the corresponding quantity in the two-edge graph
setting turns out to be simple (see Lemma 12); however, finding an analogous
upper bound is not as simple. Section 3.1 is devoted to analysis on trees. Here,
initial universality-type behavior is demonstrated using comparison (coupling) ar-
guments. Section 3.2 is devoted to the finite graph setting. By generalizing the
technique of Section 2, a fairly general universality-type behavior is shown, under
the additional assumption (A2). Finally, Section 3.3 discusses extensions to the
infinite graph setting.

In the remainder of the paper, we assume that all edges have “trivial” initial
weight �·

0 ≡ 1, unless otherwise specified. Also, we will denote by a ∧b (resp., a ∨
b) the minimum (resp., maximum) of two numbers a and b, and by �a�, the integer
part of a number a.

2. Two-edge case. The ERRW on graph G that contains only two edges is
the prototype model of interest. Several interesting qualitative features, specific
to edge-reinforcement with particular reinforcement weight function w, are al-
ready observed and are usually relatively easy to verify. This process also corre-
sponds to a generalized urn model; see, for example, [1] or [11]. A recent study
by Oliveira and Spencer [8] concerns finer properties of this urn model in the case
where w(k) = kρ for some ρ > 1.

We will initially assume that G contains two vertices, 0 and 1, and two edges,
green and red, connecting them. We abbreviate

Gn := Xgreen
n , Rn := Xred

n .

In the remainder of this section, we also assume that the initial configuration on the
two edges is G2 = R2 = 1, unless otherwise specified. We use the notation P a,b

for the law of the system with the initial configuration Ga+b = a,Ra+b = b. When
there is no risk of confusion, we simply use P for the law P 1,1.

The other natural choice of a graph with two edges is the one spanned by three
vertices, −1,0 and 1, with a green edge that connects 0 and −1 and a red one that
connects 0 and 1. In the study of this model, we mainly concentrate on the case
where the initial weights a and b are of opposite parity. We denote by P̄ a,b the law
of the ERRW on the two-edge graph spanned by −1,0 and 1, started (without loss
of generality) at the initial position 0. Note that the study of P̄ a,b is necessary as
it will be needed later for the subsequent analyses of the time of attraction of the
ERRW on trees and on finite graphs. The main results in Section 3 are expressed
in terms of both P a,b and P̄ a,b.

Observe that under P̄ a,b, we have Ga+b = a,Ra+b = b and Ga+b+2j −
Ga+b+2j−2 ∈ {0,2}, Ra+b+2j − Ra+b+2j−2 + Ga+b+2j − Ga+b+2j−2 = 2 for all
j ≥ 1.
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2.1. Some preliminary estimates. Due to monotonicity, R∞ := limk→∞ Rk

and G∞ := limk→∞ Gk exist almost surely as (0,∞]-valued random variables.
Define

Zk = min{Gk,Rk}.
Note that Zk ≤ Zk+1 and that the limit

Z∞ := lim
k→∞Zk = R∞ ∧ G∞(6)

is an almost surely finite random variable since the reinforcement is strong.

PROPOSITION 2. Define c := maxk≥2(
w(k−1)+w(1)

w(k−1)
).

(a) For any 1 ≤ � < k
2 , we have

w(1)

c
P (Z∞ = 1)

w(k − �) + w(�)

w(k − �)w(�)
≤ P(Zk = �) ≤ w(1)

w(k − �) + w(�)

w(k − �)w(�)
.

(b) For any � ≥ 1, we have

w(1)

c
· P(Z∞ = 1)

w(�)
≤ P(Z2� = �) ≤ w(1)

w(�)
.

Note that the lower bounds are interesting only for strongly reinforced walks,
where P(Z∞ < ∞) = 1 and P(Z∞ = 1) > 0. A careful reader of the proof will
note that all of the above inequalities are strict; however, we do not anticipate any
use of this fact.

PROOF OF PROPOSITION 2. We will prove the upper bounds by induction and
the lower bounds will follow in a similar way, as indicated at the end of the proof.
First, note that for � ≤ k

2 − 1,

P(Zk = �) = P(Zk−1 = �)
w(k − � − 1)

w(k − � − 1) + w(�)
(7)

+ P(Zk−1 = � − 1)
w(� − 1)

w(� − 1) + w(k − �)
.

Similarly, we also have, in the special case k = 2�,

P(Z2� = �) = P(Z2�−1 = � − 1)
w(� − 1)

w(� − 1) + w(�)
(8)

and in the special case k = 2� + 1,

P(Z2�+1 = �) = P(Z2� = �) + P(Z2� = � − 1)
w(� − 1)

w(� − 1) + w(� + 1)
.(9)
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Since any probability is bounded by 1, we have, trivially,

P(Zk = 1) < w(1)
w(k − 1) + w(1)

w(k − 1)w(1)
,

an observation that will be used in the base and in each step of the induction.
The base of induction is the case � = 1, k = 2� + 1 = 3 and the statement here

is trivial, as noted above.
Let us now assume that the upper bound inequalities in the statements (a) and (b)

of the theorem hold for all i ≤ k − 1 and � ≤ i
2 . For the induction step, we need to

show that the bounds hold for i = k and � ≤ k
2 .

Suppose, first, that � ≤ � k
2� − 1. Then, by (7) and the induction hypothesis, we

have

P(Zk = �) ≤ w(1)

w(�)
+ w(1)

w(k − �)
= w(1)

w(k − �) + w(�)

w(k − �)w(�)
.

For the two atypical cases k = 2� and k = 2� + 1, we have, similarly, by (8),

P(Z2� = �) = P(Z2�−1 = � − 1)
w(� − 1)

w(� − 1) + w(�)
<

w(1)

w(�)

and by (9),

P(Z2�+1 = �) <
w(1)

w(�)
+ w(1)

w(� + 1)
= w(1)

w(�) + w(� + 1)

w(�)w(� + 1)
.

The proof of the lower bounds is symmetric. Note that P(Zk = 1) ≥ P(Z∞ =
1) and the choice of c was precisely made so that the lower bound holds both in
(a) for any k ≥ 3 and � = 1, and in (b) for � = 1. Given these initial bounds, the
above argument by induction on k will carry over to yield the lower bound of (a)
and (b). �

The result above under the law P 1,1 generalizes to the setting of the law P̄ 1,2

on a two-edge graph with three vertices, in the following way.

PROPOSITION 3. Define

c̄ := max
k≥2 even

(
w(k) + w(1)

w(k)

)
∨ max

k≥1 odd

(
w(k) + w(2)

w(k)

)
.

For any k ≥ 1, 1 ≤ o, e ≤ 2k such that o is odd, e is even and o + e = 2k + 1, we
have

P̄ 1,2(G2k+1 = o,R2k+1 = e) ≤ (
w(1) ∨ w(2)

)w(o) + w(e)

w(o)w(e)

and

w(1) ∧ w(2)

c̄
· w(o) + w(e)

w(o)w(e)

2∏
j=1

P̄ 1,2(Z∞ = j) ≤ P̄ 1,2(G2k+1 = o,R2k+1 = e).
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PROOF. We abbreviate P̄ 1,2 as P . First, we concentrate on the upper bound. If
either o = 1 or e = 2 (or both), the upper bound is trivial, so the base of induction
is verified. Now, as in the previous proposition, if both o > 1 and e > 2, we apply
the induction step using

P(G2k = o,R2k = e) = P(G2k−2 = o − 2,R2k−2 = e)
w(o − 2)

w(o − 2) + w(e)

+ P(G2k−2 = o,R2k−2 = e − 2)
w(e − 2)

w(o − 2) + w(e − 2)
.

Similarly, note that P̄ 1,2(G2k+1 = 1,R2k+1 = 2k) ≥ P̄ 1,2(G∞ = j) =
P̄ 1,2(Z∞ = j) and P̄ 1,2(G2k+1 = 2k − 1,R2k+1 = 2) ≥ P̄ 1,2(R∞ = 2) =
P̄ 1,2(Z∞ = 2), so the lower bound holds for any k ≥ 1 whenever o = 1 or e = 2,
with the above choice of c̄. Given these initial bounds, one applies the induction
step once again to prove the general lower bound. �

Moreover, using the same technique as above, one arrives at the following gen-
eral result.

THEOREM 4. Let a, b ≥ 1 and define

c(a, b) ≡ c(a, b,w) := max
k≥a+b

(
w(k − a) + w(a)

w(k − a)

)
and

c̄(a, b) ≡ c(a, b,w) := max
k≥b,k even

(
w(k) + w(a)

w(k)

)
∨ max

k≥a,k odd

(
w(k) + w(b)

w(k)

)
.

Then, for any k ≥ a + b and � ≥ a ∧ b, we have
w(a)

c(a, b)
P a,b(Z∞ = 1)

w(k − �) + w(�)

w(k − �)w(�)
≤ P a,b(Zk = �) ≤ w(a)

w(k − �) + w(�)

w(k − �)w(�)

and, assuming that a is odd while b is even,
w(a) ∧ w(b)

c̄(a, b)

∏
j∈{a,b}

P̄ a,b(Z∞ = j)
w(k − �) + w(�)

w(k − �)w(�)

≤ P̄ a,b(Zk = �) ≤ (
w(a) ∨ w(b)

)w(k − �) + w(�)

w(k − �)w(�)
.

These pre-asymptotic estimates will be useful in further analysis.
Before continuing, we note that a direct consequence is the following result,

already mentioned in the Introduction.

COROLLARY 5. Assuming (A0), under any of the laws from Theorem 4, there
exist c,C ∈ (0,∞), depending on the choice of the law, such that

P(Z∞ = �) ∈
(

c

w(�)
,

C

w(�)

)
.
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2.2. The “time-line” construction. Here, we briefly recall the construction of
the edge-reinforced walk using independent families of exponentials; see [1, 11]
or [5]. In the current work, we will use it mainly in the context of trees. To simplify
the notation, we focus on two cases, where G is either a two-edge graph or a “star”
with m fingers. The reader can easily handle the general case.

First, assume that G contains two vertices, 0 and 1, and two edges, eG and eR ,
connecting them. Fix initial weights �

eG

0 = a and �
eR

0 = b, and let It0 = 0, where
t0 = a + b. Note that the corresponding edge-reinforced random walk has the law
P a,b.

For each k ≥ 1, let EG
k , ER

k be exponential [rate w(k)] random variables and
let {EG

k , k ≥ 1}, {ER
k , k ≥ 1} be two independent families of independent random

variables. Let

T G∞ := ∑
k≥0

EG
a+k, T R∞ := ∑

k≥0

ER
b+k.(10)

Note that T G∞ and T R∞ are independent and finite [due to (A0)] almost surely. In
Figure 1, intervals between subsequent dots have length EG

a+k or ER
b+k , corre-

sponding to the edge and to the index of the chronological order k, and the limits
T G∞ , T R∞ are also indicated.

One can construct a realization of the edge-reinforced random walk on G from
the above data, or (informally) from the figure, as follows.

Find the minimum of EG
a and ER

b by “simultaneously erasing at rate 1 in the
chronological direction” the time-lines corresponding to both edges until the first
dot is encountered. In the figure, this happens to be the first dot on the time-line
corresponding to edge eG, that is, EG

a < ER
b . Thus, the particle moves from 0 to 1,

traversing the edge eG in the first step. Note that, due to the properties of expo-
nentials, the probability of this move is exactly w(a)/(w(a) + w(b)). Continue
by simultaneous erasing (the previously unerased parts of) time-lines correspond-
ing both edges until the next dot is encountered. In the figure, it appears on the
time-line of eR . Hence, the particle traverses the edge eR in the second step to go
back from 1 to 0. Due to the memoryless properties of exponentials, the (residual)
length of the interval until the first dot on the time-line of eR is again distributed as
an exponential [rate w(b)] random variable, independent of all other data. There-
fore, the probability of this transition [namely, w(b)/(w(b) + w(a + 1))] again
matches that of the edge-reinforced random walk. Continue the above procedure

FIG. 1. The time-lines of a two-vertex graph.
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of simultaneous erasure of the time-lines. In this way, the steps of the correspond-
ing edge-reinforced random walk are generated inductively.

As its byproduct, a “continuized” version of the edge-reinforced random walk
arises: here, the particle makes the jumps at exactly the times when the dots are
encountered. If we denote the position of the particle (in the new process) at time
s by Ĩ (s), and if τ0 = 0 and 0 < τ1 < τ2 < · · · are the subsequent jump times of
the particle, then the discrete-time edge-reinforced random walk constructed above
and its continuized version are coupled as follows:

Ik ≡ Ĩ (τk), k ≥ 0.

One typically says that I is the skeleton process of Ĩ .
Now, let G be a labeled tree with the central vertex 0 which is connected via

edge ei to each leaf vertex i, i = 1, . . . ,m. We call such G a star with m fingers.
Fix initial weights �

ei

0 = �i
0 and let It0 = 0, where t0 = ∑m

i=1 �i
0. In particular, note

that if m = 2 and �1
0 = a, �2

0 = b, then the corresponding edge-reinforced random
walk has the law P̄ a,b.

Similarly to the previous construction, for each i = 0, . . . ,m and k ≥ 1, let Ei
k

be an exponential [rate w(k)] random variable and let {Ei
k, i = 0, . . . ,m, k ≥ 1} be

a family of independent random variables. Define

T i∞ := ∑
k≥0

Ei

�i
0+2k

, i = 0, . . . ,m.

The multiple “2” in the subscript comes from the fact that the particle traverses
each edge twice before coming back to the central vertex. Again, note that the
above m random variables are continuous, independent and finite almost surely.
In Figure 2, intervals between subsequent dots have length Ei

�i
0+2k

for the corre-
sponding i and k.

One constructs a realization of the corresponding edge-reinforced random walk
from the above data analogously to the two-edge setting, the only difference being
that now, in every second step, when not at the central vertex 0, the particle jumps
almost surely back to 0. From the above figure, one can read off the first four
steps of the walk as It0+1 = 1, It0+1 = 0, It0+1 = 2 and It0+1 = 0. The reader

FIG. 2. The time-lines of a star with m fingers.
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will quickly verify that, due to the properties of exponentials, the probability of
transitions match those of the edge-reinforced random walk.

Again, a continuized version of the edge-reinforced random walk emerges,
where there are various possibilities to account for the “singular” behavior of the
walk at the leaves of G . For example, one could use the random variables Ei

�i
0+2k+1

(that did not play any role in the construction of the walk) as subsequent waiting
times at the leaf i for each i = 1, . . . ,m.

PROOF OF (5). We concentrate on the case P = P 1,1 and show that the
limit in (5) equals 2

∫ ∞
0 f (x)2 dx, where f is the (continuous) density of T G∞ =∑∞

k=1 EG
k . Let SR

� := ∑�−1
k=1 ER

k and f� be the density of SR
� . Then, since P(Z∞ =

�) = P(G∞ = �) + P(R∞ = �) = 2P(R∞ = �), by symmetry, we have

w(�)P (Z∞ = �) = 2w(�)P (SR
� < T G∞ < SR

�+1)

= 2w(�)E
(
1{SR

� <T G∞}P(SR
�+1 > T G∞|SR

� , T G∞)
)

(11)
= 2w(�)E

(
1{SR

� <T G∞}e
−w(�)(T G∞−SR

� ))
= 2

∫ ∞
0

dt f (t)

∫ t

0
ds f�(s)w(�)e−w(�)(t−s),

where the first identity is clear from the graphical construction above, the second
is a simple conditioning relation, the third uses the fact that SR

�+1 − SR
� = ER

� is
exponential [rate w(�)], independent of the σ -field generated by SR

� , T G∞ , and the
last is the same expression written in terms of densities of SR

� and T G∞ .
In order to prove that the integral in (11) converges to

∫ ∞
0 f (x)2 dx, it suffices

to show that, as � → ∞,∫ t

0
ds f�(s)w(�)e−w(�)(t−s) → f (t)(12)

and that the left-hand side above is uniformly bounded in � and in t . In fact, f�(s)

is bounded by a fixed constant in both � and s, as a convolution of an exponential
and another density. Moreover,

|f�(s1) − f�(s2)| ≤
∫

|f1(s1 − u) − f1(s2 − u)|g�(u) du,

where f1 is the (exponential) density of SR
1 and g� is the density of SR

� − SR
1 . We

conclude that (f�, � ≥ 1) is a uniformly continuous family of functions.
The convergence in (12) is now not difficult to show, by writing f�(s) =

(f�(s) − f�(t)) + (f�(t) − f (t)) + f (t) and using the fact that SR
� ↗ T R∞

d= T G∞ ,
as well as w(�) → ∞, so that the integral concentrates around t as � → ∞.

Note that one can modify the above proof to show an analogous statement under
any law P a,b, a, b ≥ 1, by instead using SG

� := ∑�−1
k=a EG

k , SR
� := ∑�−1

k=b ER
k , T G∞ :=
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k≥0 EG

a+k and T R∞ := ∑
k≥0 ER

b+k . Namely, one can easily verify, using the above
method, that

lim
�→∞w(�)P (Z∞ = �) = 2

∫
fT G∞(t)fT R∞(t) dt,

where fT G∞ and fT R∞ are densities of T G∞ and T R∞, respectively. �

2.3. Time of attraction. Next, consider the time of attraction

T := min{k ≥ 1 :Zl = Zl+1, for all l ≥ k}.
Note that {T = k + 1} is a disjoint union of As

k and Aw
k , where

As
k = {the less (or equally) traversed edge is chosen

at time k and the remaining edge is chosen at all later times},
Aw

k = {the more traversed edge is chosen at time k

and the remaining edge is chosen at all later times}.
Given {Zk = �} for some � < k/2, the event As

k happens with probability

w(�)

w(�) + w(k − �)

∞∏
j=k

w(j − �)

w(j − �) + w(� + 1)
,(13)

while Aw
k happens with probability

w(k − �)

w(k − �) + w(�)

∞∏
j=�

w(j)

w(j) + w(k − � + 1)
e−w(k)c.(14)

Finally, if 2� = k, then P(As
k|Zk = �) is an expression analogous to (13),

∞∏
j=k

w(j − k/2)

w(j − k/2) + w(k/2 + 1)
.

It will be useful to abbreviate

Wk(�) :=
∞∏

j=0

w(k + j − �)

w(k + j − �) + w(�)
,

(15)

Wk(�) :=
∞∏

j=0

w(k + 2j − �)

w(k + 2j − �) + w(�)
.

Note that if � < k/2, then

Wk(�) = P(Z∞ = �|Zk = �).(16)



ATTRACTION TIME UNDER STRONG REINFORCEMENT 1985

The identities (13)–(15) then yield

P(As
k|Zk = �) = w(�)

w(�) + w(k − �)
Wk+1(� + 1), � < k/2,(17)

P(As
k|Zk = �) = Wk+1(k/2 + 1), k = 2�,(18)

P(Aw
k |Zk = �) = w(k − �)

w(k − �) + w(�)
Wk+1(k + 1 − �)(19)

and similar identities hold under the laws P a,b and P̄ a,b (with W used in place of
W ) for a, b ≥ 1.

We have, as discussed above,

P(T = k + 1) =
�k/2�−1∑

j=1

P(Zk = j)
(
P(As

k|Zk = j) + P(Aw
k |Zk = j)

)
+ P(Zk = k/2)P (As

k|Zk = k/2).

Now, (17)–(19), together with Theorem 4, imply the following asymptotic formula.

LEMMA 6. Under the law P a,b, we have

P(T = k + 1) �
k/2∑

�=a∧b

[
1

w(k − �)
Wk+1(� + 1) + 1

w(�)
Wk+1(k + 1 − �)

]
.

Similarly, under P̄ a,b, where a is odd and b is even, and when k is odd (since the
initial time is a + b and the initial position is 0),

P(T = k + 2) �
k−b∑

�=a,odd

1

w(k − �)
Wk+2(� + 2) +

k−a∑
�=b,even

1

w(k − �)
Wk+2(� + 2).

From now on, we will also assume that

w(k) is nondecreasing in k.(A1)

This will be useful for future estimates since we then have the following.

LEMMA 7. (a) For each k ≥ 1, Wk(·) is a nonincreasing function on the inter-
val [1, k/2].

(b) For each �, W·(�) is a nondecreasing function on the interval [2�,∞).
(c) For any k, � ≥ 1 such that � ≤ k/2, we have Wk(�) ≥ Wk+1(� + 1).
(d) For each fixed �, we have limk→∞ Wk(�) → 1.
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PROOF. Note that

Wk(�) =
∞∏

j=0

(
1 + w(�)

w(k + j − �)

)−1

,

(20)

Wk+1(� + 1) =
∞∏

j=0

(
1 + w(� + 1)

w(k + j − �)

)−1

.

(a) We need to show that Wk(�) ≥ Wk(� + 1) for all � ∈ [1, k/2]. By assump-
tion (A1), we have

w(k + j − �)w(� + 1) ≥ w(k + j − � − 1)w(�) for all j ≥ 0,

from which we get that, for all j ≥ 0,(
1 + w(�)

w(k + j − �)

)−1

≥
(

1 + w(� + 1)

w(k + j − � − 1)

)−1

.

(b) Here, we need to show that Wk(�) ≤ Wk+1(�) for all k ≥ 1. By assump-
tion (A1), we have w(k + j − �) ≤ w(k + 1 + j − �) for all j ≥ 0, which, together
with (20), directly implies the above inequality.

(c) Again by assumption (A1), we have w(�) ≤ w(� + 1) for all � ≥ 1 so that
representation (20) implies the claim.

(d) This is an easy consequence of (6) using probabilistic interpretation (16)
[equivalently, one can use the algebraic definition and (A0)]. �

COROLLARY 8. Assume (A1). Then, for � < k/2, we have

P(Aw
k |Zk = �) ≤ 2P(As

k|Zk = �).

PROOF. Use (17) and (19). Note that

w(k − �) + w(� + 1) ≤ 2
(
w(k + 1 − �) + w(�)

)
for all k, due to assumption (A1), and that for each i ≥ 1, the ith term

w(� + i)

w(� + i) + w(k − � + 1)

in the infinite product of (14) is bounded above by the ith term

w(k + i − �)

w(� + 1) + w(k + i − �)

in the infinite product of (13), again since (A1) holds. �
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Therefore, to obtain asymptotic (in the sense of relation �) upper and lower
bounds on P(T = k + 1), it suffices to study only

P(T = k + 1,As
k) =

k/2∑
�=1

P(Zk = �)P (As
k|Zk = �)

�
k/2∑
�=1

1

w(k − �)
Wk+1(� + 1),

implying the following result.

THEOREM 9. If (A0) and (A1) hold, and if P is P a,b for some fixed a, b ≥ 1,
then

P(T = k + 1) �
k/2∑
�=1

1

w(k − �)
Wk+1(� + 1)(21)

and

P(T > n) �
∞∑

k=n+1

k/2∑
�=1

1

w(k − �)
Wk+1(� + 1).(22)

Analogous statements are valid if P is P̄ a,b, where W needs to be replaced
by W . Namely, assume that a and b are of opposite parity. Then, one shows in
a similar fashion to Corollary 8 that for k ≥ a + b odd, we have P̄ a,b(Āw

k |Zk =
�) ≤ 2P̄ a,b(Ās

k|Zk = �), where Ās
k is the event on which the walk traverses the less

(or equally) traversed edge at time k and the remaining (stronger) edge from time
k + 2 onwards, and where Āw

k = {T = k + 2} \ Ās
k . Combining this with Lemma 6,

we obtain

P̄ (T = k + 2) �
k/2∑
�=1

1

w(k − �)
Wk+2(� + 2)

and

P̄ (T > n) �
∞∑

k=n+1,

k odd

k/2∑
�=1

1

w(k − �)
Wk+2(� + 2).

2.4. Examples. Let a, b ≥ 1 be fixed integers and denote by P either of the
laws P a,b or P̄ a,b.

THEOREM 10. Suppose ρ > 1, let ρ′ := (ρ − 1)/ρ, α ∈ (0,∞) and let ε > 0
be arbitrarily fixed.
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(a) If w(k) = kρ , k ≥ 1, then there exist finite positive c1(ρ), c2(ρ) such that
for all k ≥ 1,

c1(ρ)

kρ−ρ′ ≤ P(T = k + 1) ≤ c2(ρ)

kρ−ρ′ .

(b) If w(k) = kρ logα k, k ≥ 1, α > 1, then there exist finite positive c1(α,ρ),

c2(α,ρ) such that for all k ≥ 1,

c1(α,ρ)

kρ−ρ′ logα k
≤ P(T = k + 1) ≤ c2(α,ρ)

kρ−ρ′ logα k
.

(c) If w(k) = kelogα k , k ≥ 1, 0 < α < 1, then there exist finite positive
c1(α), c2(α) such that for all k ≥ 1 and all ε > 0,

c1(α)

k(log k)1−αelogα2
k−β log2α2−α k

≤ P(T = k + 1)

≤ c2(α)

k(log k)1−αelogα2
k−(α+ε) log2α2−α k

,

where β = α if 0 < α ≤ 2/3 and β = α − ε otherwise.
In particular, if 0 < α ≤ 1/2, then exp{− log2α2−α k} � 1, so

P(T = k + 1) � c2(α)

k(log k)1−αelogα2
k
.

(d) If w(k) = ekε
for some 0 < ε ≤ 1, then there exist finite positive c1(ε), c2(ε)

such that for all k ≥ 1,

c1(ε)k
1−ε

e(k−k∗)ε ≤ P(T = k + 1) ≤ c2(ε)k
1−ε

e(k−k∗)ε ,

where k∗ = k
2 − (1−ε)

ε22−ε k1−ε log k.

(e) If w(k) = eαk , then there exist finite positive c1(α), c2(α) such that

c1(α)e−αk/2 ≤ P(T = k + 1) ≤ c2(α)e−αk/2.

REMARK. All of the constants of the form c1(·), c2(·) featuring in the state-
ments above additionally depend on the initial weights a and b, due to Theorems 4
and 9; for an example, see (26) below.

PROOF OF THEOREM 10. We concentrate on the case where P = P a,b; the
other case, P = P̄ a,b, can be treated similarly. Without loss of generality, we as-
sume that � ≤ k/2. We are going to use the inequality

e
−w(�+1)

∑∞
j=k 1/w(j−�) ≤ Wk+1(� + 1) ≤ e

−w(�+1)
∑∞

j=k 1/2w(j−�)
,(23)

which is a direct consequence of the fact that

e−x ≤ (1 + x)−1 ≤ e−x/2, 0 ≤ x ≤ 1.
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(a) For w(k) = kρ , (23) becomes

e
−(�+1)ρ

∑∞
j=k 1/(j−�)ρ ≤ Wk+1(� + 1) ≤ e

−(�+1)ρ
∑∞

j=k 1/(2(j−�)ρ)
.

Using ∫ ∞
k+1

dx

(x − �)ρ
≤

∞∑
j=k

1

(j − �)ρ
≤

∫ ∞
k

dx

(x − �)ρ
,

we get a lower and an upper bound

1

ρ − 1

1

(k + 1 − �)ρ−1 ≤
∞∑

j=k

1

(j − �)ρ
≤ 1

ρ − 1

1

(k − �)ρ−1 .(24)

Therefore, we have, for 1 ≤ � ≤ k/2,

e−(2ρ−1/(ρ−1))((�+1)ρ/kρ−1) ≤ e−(1/(ρ−1))((�+1)ρ/(k−�)ρ−1) ≤ Wk+1(� + 1)

≤ e−(1/(2ρ−2))((�+1)ρ/(k+1−�)ρ−1)(25)

≤ e−(1/(2ρ−2))(�ρ/kρ−1).

Now, Theorem 9 implies that

P(T = k + 1) ≥ c(a, b)

kρ′∑
�=1

1

(k − �)ρ
e−(2ρ−1/(ρ−1))((�+1)ρ/kρ−1)(26)

≥ c(a, b)e−(22ρ−1/(ρ−1))
kρ′∑
�=1

1

(k − �)ρ

≥ c(a, b)e−(22ρ−1/(ρ−1))kρ′−ρ,(27)

where c(a, b) is a finite positive constant. For the upper bound, again use Theo-
rem 9 and (25). Now, note that, since k ≥ 2�,

k/2∑
�=kρ′

1

(k − �)ρ
e−(1/(2ρ−2))(�ρ/kρ−1) ≤

(
2

k

)ρ k/2∑
�=kρ′

e−(1/(2ρ−2))(�ρ/kρ−1).(28)

To bound the last term above, we split the interval [kρ′
, k/2] into subintervals of

equal width kρ′
, with the last subinterval possibly having smaller width k/2 −

�k1−ρ′
/2�kρ′

. To abbreviate, we define ak := �k1−ρ′
/2�. We then have

k/2∑
�=kρ′

e−(1/(2ρ−2))(�ρ/kρ−1)

≤ kρ′
e−1/(2ρ−2) + kρ′

e−2ρ/(2ρ−2) + · · · + kρ′
e−ak

ρ/(2ρ−2)
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≤ kρ′ [e−1/(2ρ−2) + e−2/(2ρ−2) + · · · + e−ak/(2ρ−2)]

≤ kρ′

1 − e−1/(2ρ−2)
,

which, together with (28), completes the proof of part (a).
(b) Using (23) and the fact that

∞∑
j=k

1

(j − �)ρ logα(j − �)

is up to a constant multiple of order 1/((k − �)ρ−1 logα(k − �)), one obtains

e−c1(α,ρ)((�+1)ρ/(k−�)ρ−1)(logα(�+1)/ logα(k−�))

≤ Wk+1(� + 1)(29)

≤ e−c2(α,ρ)((�+1)ρ/kρ−1)(logα(�+1)/ logα k),

where c1(α,ρ), c2(α,ρ) are finite positive constants. As in the case (a), one gets
the lower bound by evaluating the order of

ζ∑
�=ξ

1

w(k − �)
Wk+1(� + 1)(30)

for ξ = 1, ζ = kρ′
and the upper bound by evaluating the order of the sum for

ξ = 1, ζ = kρ′
and for ξ = kρ′

, ζ = k/2, separately.
(c) We have∫ ∞

k+1

dx

(x − �)elogα(x−�)
≤

∞∑
j=k

1

(j − �)elogα(j−�)
≤

∫ ∞
k

dx

(x − �)elogα(x−�)
.

Since ∫ ∞
k

dx

(x − �)elogα(x−�)

= log1−α(k − �)

αelogα(k−�)
+ 1 − α

α

∫ ∞
k

dx

(x − �) logα(x − �)elogα(x−�)

= log1−α(k − �)

αelogα(k−�)

(
1 + ok−�(1)

)
,

where ok(1) → 0 as k → ∞, using the fact that 1 ≤ � ≤ k
2 above, we get the

inequality

c1(α)
(log k)1−α

elogα k
≤

∞∑
j=k

1

(j − �)elogα(j−�)
≤ c2(α)

(log k)1−α

elogα k
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for some c1(α), c2(α) ∈ (0,∞). By now applying (23), we obtain

e−c1(α)(�+1)elogα(�+1) log1−α k/(elogα k)

≤ Wk+1(� + 1) ≤ e−c2(α)(�+1)elogα(�+1) log1−α k/(elogα k).

As in parts (a) and (b), we find a convenient breaking point and approximate the
sums (30) separately. We take

ζ = elogα k−logα2
k+β log2α2−α k/ log1−α k,

where β = α for 0 < α ≤ 2/3 and β = α − ε otherwise.
To verify the lower bound, we need to show that we can bound

exp
{
−c1(α)(ζ + 1)elogα(ζ+1) log1−α k

elogα k

}
from below by a positive constant. Hence, we estimate (the constant c below is
finite and positive, and possibly changes from line to line)

(ζ + 1) log1−α k

exp(logα k)
exp(logα(ζ + 1))

≤ c exp[β log2α2−α k − logα2
k](31)

× exp
[(

logα k − logα2
k + β log2α2−α k − (1 − α) log log k

)α]
≤ c exp[β log2α2−α k − logα2

k

+ logα2
k(1 − logα2−α k + β log2α2−2α k)α]

≤ c exp[β log2α2−α k − logα2
k

+ logα2
k(1 − α logα2−α k + βα log2α2−2α k)]

= c exp(β log2α2−α k − α log2α2−α k + βα log3α2−2α k),(32)

where β is chosen as above and where, for the third inequality, we use the fact that
(1 − x)ε ≤ 1 − εx for 0 ≤ x < 1 and 0 ≤ ε ≤ 1. Note, now, that if α ≤ 2/3, then
log3α2−2α k is bounded from above by a constant, so β = α is sufficient to bound
the expression (32) from above by a constant. If α > 2/3, then log3α2−2α k → ∞
and 3α2 − 2α < 2α2 − α, so taking β = α − ε for any ε > 0 will suffice to bound
(32) by a constant. By Lemma 7(a), Wk+1(�+1) ≥ Wk+1(ζ +1) ≥ e−c′

, for � ≤ ζ ,
so

ζ∑
�=1

1

w(k − �)
Wk+1(� + 1) ≥ e−c′ ζ

w(k)
≥ c1(α)

k log1−α kelogα2
k−β log2α2−α

,(33)

which proves the lower bound.
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For the upper bound, break the summation at the point

ζ := elogα k−logα2
k+(α+ε) log2α2−α k/ log1−α k.

We have, since Wk+1(� + 1) ≤ 1,

ζ∑
�=1

1

w(k − �)
Wk+1(� + 1) ≤

ζ∑
�=1

1

w(k − �)
≤ ζ

w(k − ζ )

and since w(k − ζ ) � w(k), we can bound this term from above by a term
of the order stated in the formulation of part (c). Hence, it suffices to bound∑k/2

�=ζ Wk+1(� + 1)/w(k − �) as follows:

k/2∑
�=ζ

1

w(k − �)
Wk+1(� + 1) ≤ 1

w(k/2)

k/2∑
�=ζ

Wk+1(� + 1)

≤ c2

kelogα k

∫ ∞
ζ

dx

ec2(α)xelogα x log1−α k/elogα k

(34)

= c2

kelogα k
· elogα k

log1−α k(1 + α logα−1(ζ ))elogα(ζ )

· 1

ec2(α)·ζ ·elogα(ζ ) log1−α k/elogα k

(
1 + oζ (1)

)
,

where the last term is obtained by integration by parts.
First, estimate

ζ · log1−α k

exp(logα k)
exp(logα(ζ ))

= exp[(α + ε) log2α2−α k − logα2
k]

× exp
[(

logα k − logα2
k + (α + ε) log2α2−α k − (1 − α) log log k

)α]
≥ c exp[(α + ε) log2α2−α k − logα2

k + logα2
k(1 − logα2−α k)α]

≥ c exp
[
(α + ε) log2α2−α k − logα2

k

+ logα2
k
(
1 − (α + ε) logα2−α k

)] ≥ c′,

where, in the last inequality above, we used

(1 − x)α ≥ 1 − (α + ε)x, ε > 0, x → 0.(35)
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Therefore, we can bound the multiple (34) from above by a constant c. Further-
more,

c2

kelogα k
· elogα k

log1−α k(1 + α logα−1(ζ ))elogα(ζ )

≤ c2 exp{−(logα k − logα2
k + (α + ε) log2α2−α k − (1 − α) log log k)α}

k(log k)1−α

≤ c2 exp{−(logα k − logα2
k)α}

k(log k)1−α

≤ c2 exp{− logα2
k(1 − (α + ε) logα2−α k)}
k(log k)1−α

,

where, in the last inequality above, we again used (35).
(d) We have ∫ ∞

k−�+1

dx

exε ≤
∞∑

j=k−�

1

ejε ≤
∫ ∞
k−�

dx

exε .

Note that∫ ∞
k−�

dx

exε = (k − �)1−ε

εe(k−�)ε
+ 1 − ε

ε

∫ ∞
k−�

dx

xεexε = (k − �)1−ε

εe(k−�)ε

(
1 + ok−�(1)

)
,

where, again, ok(1) → 0 as k → ∞. From the above formulae, we obtain the in-
equality

c2(ε)
(k − �)1−ε

e(k−�)ε
≤

∞∑
j=k−�

1

ejε ≤ c1(ε)
(k − �)1−ε

e(k−�)ε
(36)

for some c1(ε), c2(ε) ∈ (0,∞). By now applying (23), we obtain

e−c1(ε)e
�ε (k−�)1−ε/e(k−�)ε ≤ Wk+1(� + 1) ≤ e−c2(ε)e

�ε (k−�)1−ε/e(k−�)ε

.(37)

If we now take k∗ = k
2 − (1−ε)

2ε21−ε k
1−ε log k, then

Wk+1(k
∗ + 1) ≥ e−c1(ε)e

k∗ε
(k−k∗)1−ε/e(k−k∗)ε

.

Note that

k∗ε − (k − k∗)ε = (k − k∗)ε
[(

1 − (1 − ε)k1−ε logk

ε21−ε(k − k∗)

)ε

− 1
]

≤ −(1 − ε) log k + O(k−ε/2),
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where the last inequality is obtained using (1 − x)ε ≤ 1 − εx for 0 ≤ x <

1 and 0 ≤ ε ≤ 1, together with k − k∗ ≥ k/2(1 + O(logk/kε)). Therefore,
lim infk Wk+1(k

∗ + 1) > 0 and, by Lemma 7(a),

Wk+1(� + 1) ≥ Wk+1(k
∗ + 1) ≥ c(ε), � ≤ k∗ for some c(ε) > 0.

Therefore, recalling c1(ε), c2(ε) from (36),

k∗∑
�=1

1

w(k − �)
Wk+1(� + 1) ≥ c(ε)

k∗∑
�=1

1

e(k−�)ε
≥ c(ε)

∫ k+1

k−k∗+1

dx

exε

≥ c(ε)

(
c1(ε)(k − k∗)1−ε

e(k−k∗)ε − c2(ε)k
1−ε

ekε

)

≥ c(ε)c1(ε)(k − k∗)1−ε

e(k−k∗)ε ,

where the constant c(ε) may change from line to line by a positive finite multiple.
This proves the lower bound.

To get the corresponding upper bound, first observe that Wk+1(� + 1) ≤ 1, so,
using (36), we can simply bound

k∗∑
�=1

1

w(k − �)
Wk+1(� + 1) ≤

∞∑
j=k−k∗

1

w(j)
≤ c2(ε)

(k − k∗)1−ε

e(k−k∗)1−ε

and we proceed to bound
∑k/2

�=k∗ 1
w(k−�)

Wk+1(� + 1).
Due to (36) and (37), we can write, for � ∈ [k∗, k/2],

exp
{
−c′

1(ε)w(�)

∫ ∞
k−�

dx

exε

}
≤ Wk+1(�+ 1) ≤ exp

{
−c′

2(ε)w(�)

∫ ∞
k−�

dx

exε

}
(38)

for some c′
1(ε), c

′
2(ε) ∈ (0,∞). Since Wk+1(k

∗ + 1) � 1, as we showed in the
proof of the lower bound, we have

1

w(k∗)
�

∫ ∞
k−k∗

dx

exε

and since ∫ ∞
k−�

dx

exε ≥
∫ ∞
k−k∗

dx

exε , � ≥ k∗,

we conclude from (38) that

Wk+1(� + 1) ≤ exp{−cw(�)/w(k∗)}, � ∈ [k∗, k/2].
Therefore,

k/2∑
�=k∗

1

w(k − �)
Wk+1(� + 1) ≤

k/2∑
�=k∗

e−cw(�)/w(k∗)

w(k − �)
≤

k/2∑
�=k∗

c̄w2(k∗)
w2(�)w(k − �)

,
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where c̄ ∈ (0,∞) is such that e−cx ≤ c̄x−2 for all x ≥ 1 and where we use the fact
that w(�) ≥ w(k∗) for � ≥ k∗. Finally, it is easy to check that � �→ w(k − �)w(�),
� ≥ k∗, is a nondecreasing function, so

w(k∗)
w(�)w(k − �)

≤ 1

w(k − k∗)
and therefore

k/2∑
�=k∗

w2(k∗)
w2(�)w(k − �)

≤ w(k∗)
w(k − k∗)

k/2∑
�=k∗

1

w(�)
≤ w(k∗)

w(k − k∗)

∫ k/2

k∗−1

dx

w(x)

≤ c2(ε)
(k∗)1−ε

w(k − k∗)
,

which gives the upper bound, due to the fact that k∗ < k/2 < k − k∗.
(e) This is a direct consequence of part (d), but its direct proof (left to an

interested reader) is much easier. This fact is related to the following property:
among all of the weights in (d), it is only the case of w(k) = ek where the edge-
reinforced random walk gets attracted at any particular time with probability uni-
formly bounded away from zero. �

As a consequence of Theorem 10, we now have the following.

COROLLARY 11. Suppose that w(k) is as in (a) or (b) in Theorem 10. Then,

E(T ) is infinite if ρ ≤ 1 + 1+√
5

2 and finite if ρ > 1 + 1+√
5

2 .

3. Analysis on general graphs. Assume that G is a connected graph with
D(G) < ∞. Recall that P G is the law of the reinforced random walk on G .

We start with an easy lower bound in terms of the tail distribution of T under
the two-edge law P̄ . In fact, in the following comparison arguments, it will be
convenient to instead consider the law of

(T )+ ≡ T + := T − t0.

Unless otherwise stated, in this section, we will assume that �e
0, e ∈ E(G), forms

the (general) initial configuration of weights on edges such that �e
0 < ∞, e ∈ E(G).

LEMMA 12. There exist c = c(w, D(G)) ∈ (0,∞) and a, b ∈ N such that

P G (T + > k) ≥ cP̄ a,b(T + > k).

PROOF. Let It0 = v ∈ G be the initial position. Without loss of generality,
assume that at least two edges e and f meet at v. Otherwise, at least two edges
must meet at the unique neighbor of v and the argument is similar. Recall that G1
denotes the range of the walk. Define the event

Ae,f := {G1 ⊂ graph spanned by e, f }
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and note that, due to (A0), event Ae,f has positive probability for any given
bounded degree graph and any fixed configuration �e

0, e ∈ E(G). At the same time,

{T + > k} ∩ Ae,f ⊂ {T + > k}.
Denote by ve and vf the two vertices such that e = {v, ve} and f = {v, vf }. We
will verify below the existence of a positive constant β that depends on G,w and
the initial weights, such that for each (possibly infinite) path v = i0 ∼ i1 ∼ · · · of
vertices where in ∈ {v, ve, vf }, n ≥ 0, we have

P G (It0 = i0, It0+1 = i1, . . .) ≥ βP̄ �e
0,�

f
0 (It0 = i0, It0+1 = i1, . . .).(39)

Note that t0 equals �e
0, �

f
0 under the law P̄ �e

0,�
f
0 , but as mentioned earlier, the edge-

reinforced random walk can be redefined by a time-shift to start from any fixed
initial time and this does not change the probability of it taking any particular

path. Clearly, (39) implies that P G (B ∩ Ae,f ) ≥ βP̄ �e
0,�

f
0 (B) for any event B in

the σ -field generated by the walk. In particular,

P G (T + > k) ≥ P G ({T + > k} ∩ Ae,f ) ≥ βP̄ a,b(T + > k),

as claimed.
It suffices to verify (39) for each infinite path i0 ∼ i1 ∼ · · · specified above.

For n ≥ t0, define xe
n := �e

0 + #{j ≤ n : {ij−1, ij } = e} and x
f
n := �

f
0 + #{j ≤

n : {ij−1, ij } = f }. The probability on the right-hand side of (39) equals

∞∏
n=0

w(x
{i2n,i2n+1}
t0+2n )

w(xe
t0+2n) + w(x

f
t0+2n)

.(40)

Define

c(v) := ∑
u:u∼v,u
=ve,vf

w
(
�
{u,v}
0

)
,

c(ve) := ∑
u:u∼ve,u
=v

w
(
�
{u,ve}
0

)
, c(vf ) := ∑

u:u∼vf ,u
=v

w
(
�
{u,vf }
0

)
.

The probability on the left-hand side of (39) equals

∞∏
n=0

w(x
{i2n,i2n+1}
t0+2n )

w(xe
t0+2n) + w(x

f
t0+2n) + c(v)

∞∏
n=0

w(x
{i2n+1,i2n+2}
t0+2n+1 )

w(x
{i2n+1,i2n+2}
t0+2n+1 ) + c(v{i2n+1,i2n+2})

,(41)

where the first infinite product accounts for all the steps originating from the mid-
dle vertex v, while the second infinite product accounts for all the steps originating
from the “boundary vertices” ve and vf . Since

∞∑
n=0

c(v{i2n+1,i2n+2})
w(x

{i2n+1,i2n+2}
t0+2n+1 ) + c(v{i2n+1,i2n+2})

≤ 2
∞∑

n=0

c(ve) ∨ c(vf )

w(n) + (c(ve) ∧ c(vf ))
< ∞
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by (A0), a well-known calculus fact implies that the second product is uniformly
(over infinite paths) bounded away from 0. The ratio of the first product in (40)
and the probability in (42) is again uniformly bounded away from 0 since

∞∑
n=0

c(v)

w(xe
t0+2n) + w(x

f
t0+2n) + c(v)

≤ 2
∞∑

n=0

c(v)

w(n) + c(v)
< ∞.(42)

�

Getting a corresponding upper bound on the tails of the distribution of T seems
more difficult. As a warm-up, we study the tree setting next, and the general finite
graph and infinite graph settings, respectively, in the following subsections.

The following fact, complementary in spirit to conditioning on event Ae,f in
the proof of Lemma 12, will soon prove useful.

LEMMA 13. Suppose that G∗ is a finite connected subgraph of G . Then, for
each (possibly infinite) path i0 ∼ i1 ∼ · · · of vertices all contained in G∗, we have,
assuming P G (It0 = i0) = P G∗

(It0 = i0) = 1,

P G (It0 = i0, It0+1 = i1, . . .) ≤ P G∗
(It0 = i0, It0+1 = i1, . . .).

PROOF. At each step k where all the neighbors of the current position ik are
contained in G∗, the probability of the transition from ik to ik+1 is the same under
both laws P G and P G∗

.
At each step k where at least one neighbor of the current position ik is an ele-

ment of V (G) \ V (G∗), note that the probability of the transition from ik to ik+1

under P G is strictly smaller than that under P G∗
. �

3.1. Analysis on trees. In this subsection, we assume that G is a tree such that
D(G) < ∞ and we derive some upper bound estimates on the tail distribution of
T under P G .

First, let G be the star with m fingers, as defined in Section 2.2. For the sake of
concreteness, we assume that all of the initial weights �

ei

0 are equal to 1 and that
It0 = Im = 0. A similar statement applies for more general initial configurations.

LEMMA 14. P G (T + > k) ≤ (m
2

)
P̄ 1,1(T + > k/

(m
2

)
).

PROOF. We will show that

T + ≤ ∑
1≤i<j≤m

T ei,ej ,restr,+, almost surely,(43)

where T ei,ej ,restr = T ej ,ei ,restr is a random variable to be defined, corresponding to
the pair of edges ei, ej such that its law under P G is the law of T under P̄ 1,1 and
where T ei,ej ,restr,+ = (T ei,ej ,restr)+. The reason for (43) is as follows. Suppose
that f ∈ {e1, . . . , em} is the attracting edge for the walk. The steps away from the
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central vertex 0 up to time T are naturally split into Ke steps traversing edge e 
= f

(so, in total, there are 2Ke steps along any e 
= f ). Up to time T , there are therefore
T − 2

∑
e 
=f Ke steps across f . For e 
= f , define

Y e,f := time of the last traversal of e

and

T e,f
n := �e

0 + �
f
0 + #traversals of e or f up to time n,

T e,f,+
n := T e,f

n − (�e
0 + �

f
0 ).

Recall the time-line construction of Section 2.2 using m independent “time-lines”
(one corresponding to each edge).

Now, fix arbitrary edges e and g. By ignoring all of the time-lines except the
ones corresponding to edges e and g, one obtains the construction of the reinforced
random walk under the law P̄ 1,1. Call this process the restriction to edges e and g.
Define

T e,g,restr := time of attraction for the restriction to e and g

and

T e,g,restr,+ := T e,g,restr − (�e
0 + �

g
0).

In particular, T e,g,restr,+ under P G has the law of T + under P̄ 1,1. Next, observe
that in the case where g = f is the attracting edge, we have

T e,f,restr ≡ T
e,f

Y e,f + 1 and T e,f,restr,+ ≡ T
e,f,+
Y e,f + 1,(44)

where the extra 1 on the right-hand side accounts for the traversal of edge f at
the attraction time T e,f,restr. In addition, note that for each e 
= f , the number 2Ke

of steps traversing e before time T equals the number of steps traversing e before
time T

e,f

Y e,f . By similar reasoning, the number of steps traversing f strictly before

time T equals the number of steps traversing f before time T
g,f

Y g,f , for at least one
g 
= f (to be precise, g is the edge traversed at time T − 1). The last two claims
imply that

T + ≤ ∑
e:e 
=f

T
e,f,+
Y e,f + 1,(45)

where, again, the extra 1 accounts for the traversal of f at time T . By (44),∑
e:e 
=f

T
e,f,+
Y e,f + 1 = ∑

e:e 
=f

(T e,f,restr,+ − 1) + 1 ≤ 1

2

∑
e,g:e 
=g

T e,g,restr,+,

so (45) implies that

T + ≤ 1

2

∑
e,g:e 
=g

T e,g,restr,+,(46)
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in particular, yielding (43). As noted already, the
(m

2

)
different random variables

T e,g,restr,+ are (identically) distributed under the law P G as T + is under the law
P̄ 1,1. The statement of the lemma is now a standard consequence of (43). �

Now, consider a finite tree G . Let m(G) be the total number of pairs of edges in
G that meet at a vertex. For example, the star with m fingers has m(G) = (m

2

)
. Using

the same reasoning (for each v, consider separately the star created by restricting
the tree to v and all u, u ∼ v) as in Lemma 14, one quickly obtains the following.

LEMMA 15. Assume that �e
0 = 1, e ∈ E(G). Then,

P G (T + > k) ≤ m(G)
(
P̄ 1,1(

T > k/m(G)
) + P̄ 1,2(

T > k/m(G)
))

.

Here, P̄ 1,2(T > k/m(G)) appears due to parity considerations. Namely, for any
two edges e, f that meet at a vertex v, say, at the first time the walk visits v, the
configuration of weights is either 1, 1 or 1, 2 or 2, 1.

We will soon show analogous results for the walk on a general finite graph.
Before this, we quickly turn to the case where G is an infinite tree of bounded
degree. Recall that #G1 denotes the total number of vertices ever visited by the
edge-reinforced random walk on G . Here, again, we assume that �e

0 = 1, e ∈ E(G).
The next lemma can be proven in an analogous (but simpler) way to Lemma 25;
we leave its verification to an interested reader.

LEMMA 16. There exists p > 0, depending only on the weight w and the
degree D(G) of G , such that #G1/2 is stochastically bounded by Z, where Z is a
geometric random variable with success probability p.

COROLLARY 17. Let G be an infinite tree such that D(G) < ∞. Then, for any
c > 1, we have

P G (T + > k) ≤ O

(
1

kc log(1/(1−p))/2

)
+ max

Gk,c

P Gk,c (T + > k),

where the above maximum is taken over all trees Gk,c having fewer than
cD(G) log k vertices and degree bounded by D(G).

PROOF. Due to the last lemma, with probability (1 − p)(c log k)/2, the range
G1 of the walk is a subtree of G containing initial position It0 and c logk or more
vertices. On the opposite event, denoted by Bc log k , we have G1 ⊂ G∗

c logk , where
G∗

c logk is a (nonrandom) subtree of G generated by all vertices v of G such that the
graph distance of v and It0 is less than or equal to c log k. Therefore, by Lemma 13,
we can bound

P G ({T + > k} ∩ Bc log k) ≤ P G ({T + > k} ∩ {G1 ⊂ G∗
c log k}) ≤ P

G∗
c logk (T + > k). �
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COROLLARY 18. Let G be an infinite tree of bounded degree and let w(·) be
as in the examples of Theorem 10(a)–(b). Then,

P G (T > k) = P 1,1(T > k)O(logq k)

for any q > ρ − ρ′.

PROOF. For any tree Gk,c of bounded degree with fewer than O(logk)

vertices, one also has m(Gk,c) = O(log k). Use the previous corollary with
c log(1/(1−p))/2 > ρ −ρ′ −1. Finally, note that under the assumptions of Theo-
rem 10(a) [resp., (b)], m(Gk,c)P

1,1(T + > k/m(Gk,c)) is of order log k ·P 1,1(T + >

k)(log k)ρ−ρ′−1 [resp., log k · P 1,1(T + > k)(log k)ρ−ρ′−1(log logk)α]. �

3.2. Analysis on finite graphs. Assume that (A0) holds. Let G be a finite graph
and let n̄ = |E(G)|. Moreover, denote the edges of G by E(G) = {e1, e2, . . . , en̄}.
If v is an arbitrary vertex of the graph, let nv = degree(v), and let Nv :=
{ev

1, ev
2, . . . , ev

nv
} be the set of edges incident to v. Recall that Xe

k equals the ini-
tial weight �e

0 incremented by the number of times that edge e has been visited by
time k.

As before, we will start the walk at time
∑

e∈E(G) �
e
0. Fix the initial position It0

at some arbitrary vertex v0. The following proposition then holds.

PROPOSITION 19. Let k ≥ ∑
e∈E(G) �

e
0 and v ∈ V (G), and denote by Av,k

the event {Ik = v}. Then, for any �e, e ∈ E(G) such that �e ≥ �e
0, e ∈ E(G) and∑

e∈E(G) �
e = k, we have

P G (
Xe

k = �e, e ∈ E(G),Av,k

) ≤
∏

e∈E(G) w(�e
0)

mine∈Nv0
w(�e

0)
·

∑
e∈Nv

w(�e)∏
e∈E(G) w(�e)

.(47)

REMARK. Inequality (47) holds trivially when the conditions of the proposi-
tions do not hold, since the left-hand side then equals 0.

PROOF OF PROPOSITION 19. As in the two-edge case, we will use induction
on

∑
e �e = k to prove the above inequality. The base of induction at the initial

time
∑

e �e
0 clearly holds since, when the left-hand side is 0, the right-hand side is

positive and when the left-hand side is 1, the right-hand side is greater than 1.
Now, take k >

∑
e �e

0 and consider the event on the left-hand side. For each
i = 1,2, . . . , nv , let vi ∈ V (G) be the neighbor of v such that ev

i = {v, vi}. In order
for the event {Xe

k = �e, e ∈ E(G),Av,k} to occur, we must have Ik−1 = vi for some
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vi ∼ v such that �{v,vi} = �ev
i > �

ev
i

0 and, furthermore, we must have {Ik−1, Ik} =
ev
i . Therefore,

P G (
Xe

k = �e, e ∈ E(G),Av,k

)
=

nv∑
i=1,�

ev
i >�

ev
i

0

P G (Xe
k−1 = �e,∀e 
= ev

i ,X
ev
i

k−1 = �ev
i − 1,Avi,k−1)

× w(�ev
i − 1)

w(�ev
i − 1) + ∑

e 
=ev
i ∈Nvi

w(�e)
.

Similarly to Propositions 2 and 3, the proof follows immediately by induction. �

From now on, denote by

w̄0(n̄) :=
∏

e∈E(G) w(�e
0)

mine∈Nv0
w(�e

0)

the constant (ensuring appropriate scale-invariant behavior with respect to w) from
the above proposition.

Define S1(k) := 1/w(k), k ≥ 1, and for each n ≥ 2 and k ≥ n, define

Sn(k) := ∑
�1+�2+···+�n=k

1

w(�1)w(�2) · · ·w(�n)
,(48)

where the indices �i , i = 1, . . . , n, in the above summation are all greater than or
equal to 1. If k < n, simply set Sn(k) := 0. Then, note that for k ≥ n ≥ 2,

Sn(k) = 1

w(1)
Sn−1(k − 1) + 1

w(2)
Sn−1(k − 2) + · · ·

(49)

+ 1

w(k − n + 1)
Sn−1(n − 1).

Subsequently, we will make use of the following assumption on w(k):

k−1∑
i=1

1

w(i)w(k − i)
≤ Cw

w(1)
· 1

w(k)
, k ≥ 1,(A2)

where Cw < ∞ depends on w(·) up to scaling.

REMARK. The examples of Theorem 10(a)–(c) all satisfy (A2).

The next lemma will be useful in deriving Corollary 22 below.
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LEMMA 20. If (A2) holds, then, for all k ≥ n ≥ 2,

Sn(k) ≤ (Cw)n

(w(1))nw(k)
.

PROOF. We prove the statement inductively. The case n = 2 is a direct con-
sequence of assumption (A2). Suppose that for some n > 2 and for all k ≥ n, we
have Sn(k) ≤ (Cw)n

(w(1))nw(k)
. Then, assumption (A2) and identity (49) imply, together

with the inductive hypothesis, that for each k ≥ n + 1,

Sn+1(k) ≤ (Cw)n

(w(1))n

k−n∑
j=1

1

w(j)w(k − j)
≤ (Cw)n+1

(w(1))n+1w(k)
.

�

The next result is in the spirit of Lemma 6. It applies in the following setting:
fix three different vertices ω,v and u such that ω ∼ v and v ∼ u. Recall the nota-
tion from the beginning of this section. Furthermore, we assume, without loss of
generality, that

ev
1 = eu

1 = {u, v}, eω
1 = ev

2 = {ω,v}.(50)

Assume that nω = q , nv = p and nu = m (recall that these are the degrees of the
corresponding vertices). We introduce the following notation, to be used in the
next theorem:

P G (ω,u, v;k) := P G (Ik = ω, Ik+2i+1 = v, Ik+2i+2 = u, i ≥ 0).

THEOREM 21. In the setting of Proposition 19, we have

P G (ω,u, v;k)

≤ w̄0(n̄) · ∑
�e:∑e �e=k

w(�ev
2 )∏

e w(�e)

×
∞∏
i=0

w(�ev
1 + 2i)/

(
w(�ev

1 + 2i) + w(�ev
2 + 1)(51)

+ w(�ev
3 ) + · · · + w(�ev

p )
)

×
∞∏
i=0

w(�ev
1 + 2i + 1)

w(�ev
1 + 2i + 1) + w(�eu

2 ) + · · · + w(�eu
m)

.

PROOF. This is a direct consequence of Proposition 19 and repeated condi-
tioning. Namely, given a particular configuration of weights �e, e ∈ E(G), (47)
estimates the probability for the walk to realize this configuration at time k and to
end up at vertex ω at time k, the probability of the next step is

w(�eω
1 )/

(
w(�eω

1 ) + · · · + w(�eω
q )

) = w(�ev
2 )/

(
w(�eω

1 ) + · · · + w(�eω
q )

)
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and that of the infinitely many steps, each traversing {v,u}, is given by the two
infinite products in the statement. Note that we have made use of the notation (50).

�

There are various ways to simplify (and lose precision in doing so) the above
bound. We chose a particularly simple one for the purposes of illustration since we
could not find a good enough simplification that would “eliminate” the exponential
term in the size n̄ of the graph in Corollary 23 below. From now on, assume that
both (A1) and (A2) hold.

Note that we can bound the sum (51) by∑
�e:∑e �e=k

w(�ev
2 )∏

e w(�e)
·

∞∏
i=0

w(�ev
1 + 2i)

w(�ev
1 + 2i) + w(�ev

2 + 1)
.(52)

Next, rearranging (52) according to the value s = �ev
1 +�ev

2 yields [recall definitions
(48) and (15)]

P G (ω, v,u;k)

≤ w̄0(n̄)

k−∑
e 
=ev1 ,ev2

�e
0∑

s=�
ev1
0 +�

ev2
0

Sn̄−2(k − s)

s−1∑
j=1

1

w(s − j)
Ws+1(j + 1)

(53)

≤ w̄0(n̄)

k−1∑
s=2

Sn̄−2(k − s)

s−1∑
j=1

1

w(s − j)
Ws+1(j + 1)

≤ w̄0(n̄)

k−1∑
s=2

Sn̄−2(k − s)

s−1∑
j=1

1

w(s − j)
Wk+1(j + 1),

where, for the very last inequality, we used (A1), which implies Ws+1(j + 1) ≤
Wk+1(j + 1), as in Lemma 7(b). Interchanging the order of summation, applying
Lemma 20 and (A2) now gives

P G (ω, v,u;k) ≤ w̄0(n̄)(Cw)n̄−2

(w(1))n̄−2

k−1∑
j=1

k−1∑
s=j+1

1

w(k − s)

1

w(s − j)
Wk+1(j + 1)

and, in turn,

P G (ω, v,u;k) ≤ w̄0(n̄)(Cw)n̄−1

(w(1))n̄−1

k−1∑
j=1

1

w(k − 1 − (j − 1))
Wk+1(j + 1),

which, comparing with the expression for P̄ a,b in Lemma 6 and accounting for
various possibilities of parity, finally implies that

P G (ω, v,u;k) ≤ w̄1
w̄0(n̄)(Cw)n̄−1

(w(1))n̄−1

∑
a,b∈{1,2}

P̄ a,b(T = k + 1),
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where w̄1 ∈ (0,∞) accounts for the “�” equivalence of Lemma 6.

REMARK. It will be convenient for the comparison arguments in the next
corollary to refer to P̄ a,b, even when a and b are of the same parity. In this case,
the reader has an option of either noting that the parity does not influence the ar-
guments for Theorem 4, Lemma 6 and Theorem 10, or noting that if a − b is an
even number, then the law P̄ a,b with reinforcement weight w corresponds to the
law P a,b with reinforcement weight w̄, where w̄(a + j) = w(a + 2j), j ≥ 0.

COROLLARY 22. Assuming (A0)–(A2), we have

P G (T = k + 1) ≤ w̄1
2n̄D(G)w̄0(n̄)(Cw)n̄−1

(w(1))n̄−1

∑
a,b∈{1,2}

P̄ a,b(T = k + 1).

PROOF. Sum over all possible choices of vertex v, edge {u, v} and neighbor
ω of v, and note that there are at most 2n̄D(G) terms of type P G (ω, v,u;k) con-
tributing. �

COROLLARY 23. Assuming (A0)–(A2) and �e = 1, for all e ∈ E(G), we have

P G (T = k + 1) ≤ 2w̄1n̄D(G)(Cw)n̄−1
∑

a,b∈{1,2}
P̄ a,b(T = k + 1).

As noted earlier, the examples (a)–(c) from Theorem 10 satisfy (A0)–(A2). In
particular, Corollaries 11 and 22 now imply the following.

COROLLARY 24. Let G be a finite graph. Suppose that w(k) is as in (a) or (b)

in Theorem 10. Then, EG (T ) is infinite if ρ ≤ 1+ 1+√
5

2 and finite if ρ > 1+ 1+√
5

2 .

The examples (d)–(e) of Theorem 10 do not satisfy (A2). Here, one could use
(53) with separately derived bounds on Sn(k) to obtain bounds on P G (T = k + 1),
as in Corollary 22. In particular, if w(k) = ekε

, ε ∈ (0,1], then Sn(k) ≤ (k−1
n−1

)
/w(k)

and the above reasoning, together with Theorem 10(d), gives

P G (T = k + 1) = O(kn̄)
k1−ε

e(k/2)ε
,(54)

which is P̄ 1,1(T = k + 1) up to a polynomial correction.

3.3. Extensions to bounded degree graphs. Let G be an infinite graph of
bounded degree and, as usual, let assumption (A0) hold. We wish to estimate

P(#G1 > k),

where we recall that #G1 denotes the number of vertices in the range of the walk.
Since D(G) < ∞, note that the above estimate will imply an estimate on P(|G1| >
k).
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LEMMA 25. The random variable #G1 is stochastically bounded by 2 · Z,
where Z has geometric distribution with success probability p ∈ (0,1), where p

depends only on w(·), D(G) and the initial configuration of weights �e
0, e ∈ E(G).

As a consequence, we obtain that whenever G has bounded degree, both #G1
and |G1| have exponential tails.

PROOF OF LEMMA 25. We will construct a coupling of G1 and G∗
1 such that

G1 ⊂ G∗
1 , almost surely, and such that the claim of the lemma holds for G∗

1 . Denote
by Tv the time of the first visit to the vertex v of G , where Tv is infinite if the walk
never visits v. If {Tv = n}, then either:

(i) at least one neighbor v′ of v has not been visited by the walk before time n;
or

(ii) all the neighbors of v were visited by the walk up to time n.

First, suppose that case (i) happens. Then, “add” to G∗
1 both vertices v and v′,

as well as the just-traversed edge leading to v and the edge {v, v′}. Due to the
assumptions, with probability p, uniformly bounded away from 0 and depending
only on D(G), w(·) and �e

0, e ∈ E(G) (in fact only �
f
0 on edges f incident to v′),

the walk keeps traversing solely the edge {v, v′} after time n. In symbols, on the
event of case (i),

P({Ik, Ik+1} = {v, v′}, k ≥ n|Fn) > p.

If the above event {Ik, Ik+1} = {v, v′}, k ≥ n, does not occur, then the walk will
keep exploring the graph elsewhere. Either it will get attracted to an edge before
encountering another new vertex or it will encounter another new vertex prior to
getting attracted.

If the case (ii) happens, note that G∗
1 already contains vertex v. Namely, let u be

the neighbor of v such that

Tu = max
v′∼v

Tv′ < Tv.

Then, v must have been added to G∗
1 as part of the case (i) procedure, before or at

time Tu.
Therefore, G1 ⊂ G∗

1 , almost surely, by induction. Moreover, from the construc-
tion, it is clear that #G1 is stochastically bounded by 2Z. �

As a conclusion, we offer the following weak universality-type result.

COROLLARY 26. Assume that �e = 1 for all e ∈ E(G). If w(k) = kρ , ρ > 1,
then there exists p > 0 such that P G (T > k) ≤ 1

kp .
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PROOF. We use the idea of Corollary 17, together with the previous lemma
and the bound of Corollary 23. Namely, we split the event {T > k} according to
whether or not the walk reaches distance dk from I0. Choose dk = c log k, where c

is such that (Cw)c log k � kρ−ρ′−1. �

REMARK. If w(k) = ek , then the walk gets attracted at any particular step
with probability bounded away from 0, so there exists c > 0 such that P G (T >

k) = O( 1
eck ). Somewhat disappointingly, the bound of type (54) is too weak to

provide an alternative derivation (analogous to the proof of the last corollary) of
the above bound. Indeed, the question of finding the exact (up to a multiplicative
constant) behavior of the tail distribution of T on general bounded degree graphs,
even in the case of the examples in Theorem 10, remains open.

Acknowledgments. Research conducted while holding a postdoctoral fellow
position at the University of British Columbia, Vancouver. The first author is very
grateful to David Brydges for his advice and support during her time as a postdoc-
toral fellow at the University of British Columbia. We wish to thank the anonymous
referee for many helpful comments and suggestions.

REFERENCES

[1] DAVIS, B. (1990). Reinforced random walk. Probab. Theory Related Fields 84 203–229.
MR1030727

[2] BECKERS, R., DENEUBOURG, J.-L. and GOSS, S. (1992). Trails and U-turns in the selection
of a path by the ant Lasius niger. J. Theor. Biol. 159 397–415.

[3] BONABEAU, E., DORIGO, M. and THERAULAZ, G. (1999). Swarm Intelligence, From Natural
to Artificial Systems. Oxford University Press, Oxford.

[4] DENEUBOURG, J.-L., ARON, S., GOSS, S. and PASTEELS, J. M. (1990). The self-organising
exploratory pattern of the Argentine ant. Journal of Insect Behavior 3 159–168.

[5] LIMIC, V. (2003). Attracting edge property for a class of reinforced random walks. Ann.
Probab. 31 1615–1654. MR1989445

[6] LIMIC, V. and TARRÈS, P. (2007). Attracting edge and strongly reinforced random walks. Ann.
Probab. 35 1783–1806.

[7] MERKL, F. and ROLLES, S. W. W. (2005). Edge-reinforced random walk on a ladder. Ann.
Probab. 33 2051–2093. MR2184091

[8] OLIVEIRA, R. and SPENCER, J. (2005). Avoiding defeat in a balls-in-bins process with feed-
back. Preprint.

[9] PEMANTLE, R. (1988). Phase transition in reinforced random walk and RWRE on trees. Ann.
Probab. 16 1229–1241. MR942765

[10] PEMANTLE, R. (2007). A survey of random processes with reinforcement. Probab. Surv. 4
1–79 (electronic). MR2282181

http://www.ams.org/mathscinet-getitem?mr=1030727
http://www.ams.org/mathscinet-getitem?mr=1989445
http://www.ams.org/mathscinet-getitem?mr=2184091
http://www.ams.org/mathscinet-getitem?mr=942765
http://www.ams.org/mathscinet-getitem?mr=2282181


ATTRACTION TIME UNDER STRONG REINFORCEMENT 2007

[11] SELLKE, T. (2008). Reinforced random walks on the d-dimensional integer lattice. Markov
Process. Related Fields 14 291–308. MR2437533

TU BERLIN

FAKULTÄT II
INSTITUT FÜR MATHEMATIK

STRASSE DES 17 JUNI 136
D-10623 BERLIN

GERMANY

E-MAIL: cotar@math.tu-berlin.de

UNIVERSITÉ DE PROVENCE

LATP UMR 6632
CENTRE DE MATHÉMATIQUES ET INFORMATIQUE

39 RUE DE F. JOLIOT-CURIE

13453 MARSEILLE, CEDEX 13
FRANCE

E-MAIL: vlada@cmi.univ-mrs.fr

http://www.ams.org/mathscinet-getitem?mr=2437533
mailto:cotar@math.tu-berlin.de
mailto:vlada@cmi.univ-mrs.fr

	Introduction
	Two-edge case
	Some preliminary estimates
	The "time-line" construction
	Time of attraction
	Examples

	Analysis on general graphs
	Analysis on trees
	Analysis on finite graphs
	Extensions to bounded degree graphs

	Acknowledgments
	References
	Author's Addresses

