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A Quantitative Study of Quantile Based Direct

Prior Elicitation from Expert Opinion

Dipak K. Dey∗ and Junfeng Liu†

Abstract. Eliciting priors from expert opinion enjoys more efficiency and re-
liability by avoiding the statistician’s potential subjectivity. Since elicitation on
the predictive prior probability space requires too-simple priors and may be bur-
dened with additional uncertainties arising from the response model, quantitative
elicitation of flexible priors on the direct prior probability space deserves much
attention. Motivated by precisely acquiring the shape information for the gen-
eral location-scale-shape family beyond the limited and simple location-scale fam-
ily, we investigate multiple numerical procedures for a broad class of priors, as
well as interactive graphical protocols for more complicated priors. We highlight
the quantile based approaches from several aspects, where Taylor’s expansion is
demonstrated to be an efficient approximate alternative to work on the regions
in which the shape parameter is highly sensitive. By observing inherent associa-
tions between the scale and shape parameters, we put more weight on practical
solutions under a proper sensitivity index (SI) rather than presumability. Our
proposed methodology is demonstrated through skew-normal and Gamma hyper-
parameter elicitation where the shape parameter is numerically solved in a stable
way. The performance comparisons among different elicitation approaches are also
provided.

Keywords: location parameter, prior elicitation, quantile, scale parameter, shape
parameter, skewness, Taylor’s expansion

1 Introduction

Bayesian analysis is markedly recognized by the subjective probability belief, or quan-

titative a priori description of unknown parameter θ. Without external support statis-

ticians can only implement the whole computational process at his/her own will, say

conjugate priors, Jeffreys’ priors and others. On the other hand, expert opinion may

be helpful when we investigate new, rare, complex or poorly understood phenomena.

Multivariate-normal related prior elicitation on the predictive prior space by requesting

response summaries from experts was developed by Kadane, et al (1980), Garthwaite

and Dickey (1988), Al-Awadhi and Garthwaite (1998) among others. However, those

algorithms were limited to simple normal linear or AR(1) time series models. On the

other hand, direct non-informative prior elicitation was discussed through piecewise

conjugate priors (Meeden, 1992), entropy based priors (Jaynes, 1968, 1983), mixture

of natural conjugate priors (Dalal and Hall, 1983) and others. Quantile based univari-
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ate prior elicitation for simple cases, say symmetric ones, was studied by Peterson and

Miller (1964), Garthwaite and Dickey (1985), O’Hagan (1998) among others. A recent

comprehensive review on probability elicitation was written by Garthwaite, Kadane and

O’Hagan (2005). Berger (1985, Chapter 3) also discussed subjective prior determination

on the direct prior space by showing that a lack of sufficient tail information in con-

tinuous parameter space causes much difficulty for most of the approaches in practice,

including the “histogram” approach, the “relative likelihood” approach, the entropy

based method, and even the most used “matching a given functional form” method

which often needs prior moments and others. Berger (1985, Chapter 3) envisioned that

a quantile based approach poses as a better method since estimation of probabilities of

regions are more attractive than working on moments. However, two situations deserve

caution in application of quantile approaches: disagreement among multiple quantiles

and incidental matching by multiple functional forms (Berger, 1985, Chapter 3). The

key point to ease these concerns is to efficiently and precisely recover flexible parametric

priors in a quantitative way other than those weak symmetric ones in order to imple-

ment the “sketching” principle (Berger, 1985, Chapter 3) for the downstream graphical

verification. In this paper, we propose efficient quantile based approaches for direct

prior elicitation with quantitative examples, and study a broad class of parametric pri-

ors with a focus on asymmetric cases, which have yet received little attention.

The paper is organized as follows: Section 2 develops approximate and exact quantile

based numerical elicitation algorithms for general symmetric and skewed priors; Section

3 introduces Taylor’s expansion as an efficient tool for joint scale-shape parameter elic-

itation in sensitive regions and makes comparison among multiple expansion options

with skew-normal and Gamma distributions as examples; Section 4 provides interactive

graphical display procedures, especially for more complicated Student’s t related prior

elicitation; and Section 5 concludes the paper with future directions.

2 Symmetric and Asymmetric Prior Elicitation

2.1 Normal Prior

Garthwaite and Dickey (1985) evaluated double- and single-bisection methods for sub-

jective probability assessment in a location-scale family, where single-bisection means

median plus one quantile, double-bisection means 0.25, 0.50 and 0.75 quantiles: q0.25,

q0.50 and q0.75. They showed that, the double-bisection method is more favorable for

most densities. Throughout this paper, we will use the notation IQR to represent the

inter-quartile range q0.75 − q0.25 and additional subscripts to specify certain parametric

families. More specifically, Zq represents the IQR of standard normal distribution. Sup-

pose further q0.75 −q0.50 ≈ q0.50−q0.25, then the prior mean and the standard deviation

are estimated by

µ̂N = q0.50 and σ̂N =
IQR

Zq
respectively. (1)
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Note that, normal distribution is symmetric and shape parameter free. If both the ex-

perimenter and the expert agree on the symmetry, then only two quantiles are necessary.

2.2 Student’s t Prior

If symmetry is agreed on for Student’s t prior, then three non-redundant quantiles are

necessary to take into account the degrees of freedom ν. The elicitation by Kadane,

et al (1980) requested 0.50, 0.75 and 0.9375 quantiles: q0.50, q0.75 and q0.9375. The

median q0.50 can be taken as the location parameter µ and a(x) is defined as (q0.9375-

q0.50)/(q0.75-q0.50). Since both the numerator and the denominator are independent of

the center and the ratio is independent of the spread, thus a(x) depends on degrees

of freedom ν only (a monotonic function of ν) and ν is determined by checking the

look-up table of ν vs. a(x). For the spread of Student’s t-distribution, after eliciting

the degrees of freedom ν and obtaining the corresponding standard upper quartile tν,.75,

S(q)=(q.75−q.50)2/t2ν,.75 is used to elicit the scale parameter σ. This idea can be applied

to general location-scale-shape family (Sections 2.4, 2.5 and 2.6).

2.3 Log-normal Prior

Among the scarcity of literature on asymmetric prior elicitation, Garthwaite (1989)

modeled asymmetry by a “split-normal” distribution, and O’Hagan (1998) used 1
6 , 3

6
and 5

6 quantiles to elicit a log-normal prior for positive skew distribution. For simplicity,

we denote q0.25, q0.50 and q0.75 to be the lower quartile, median and upper quartile of

log-normal distribution, the following proposition provides parameter solution for log-

normal case.

Proposition 1 If X has a log-normal distribution, i.e., lnX ∼ N(µ, σ2), then the

variance D(X) = q20.50r
2(r2 − 1) and the mean E(X) = rq0.50, where q0.50 = eµ is the

median of X , r = exp(
ln2

(q0.75/q0.25)
2Z2

q
), Zq is the IQR for standard normal distribution.

The proof is done by observing E(etlnX ) = E(Xt), followed by simplifications. The

parameter elicitation is straightforward based on 0.25, 0.50 and 0.75 quantiles when

q0.75 − q0.50 > q0.50 − q0.25. A limitation of log-normal distribution is the strictly

positive domain and the inherent constraint logq0.75-logq0.50=logq0.50-logq0.25, which is

obviously too restrictive a rule for the expert to follow. Thus the log-normal discussion

is trivial. We now study general asymmetric prior elicitation in the following sections,

where special attention is paid to the shape parameter elicitation.

2.4 Skew-normal Prior

Definition 1: Skew-normal distribution We construct a skew-normal random vari-

able X by cZ+ + ε (which spans the whole real domain), where c is a constant, Z+ is
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a folded normal random variable, e.g., the positive part of N(0, σ2
Z) random variable, ε

is a normal random variable with mean µ and variance σ2
ε , and Z+ is independent of ε.

The pdf of X is

f(x|c, µ, σZ , σε) = 2√
c2σ2

Z
+σ2

ε

φ( x−µ√
c2σ2

Z
+σ2

ε

)Φ( cσZ

σε

(x−µ)√
c2σ2

Z
+σ2

ε

),

where σ (=
√
c2σ2

Z + σ2
ε ) is the scale parameter, λ=( cσZ

σε
) is the skewness (shape) pa-

rameter, and µ is the location parameter. The derivation is given in Sahu, Dey and

Branco (2003). When c = 0, we have an ordinary normal distribution. Under reparam-

eterization Y = X−µ
σ , we get the simplified density function of f(y|λ) = 2φ(y)Φ(λy)

which is the skew-normal density function given by Azzalini (1985), with E(Y ) =

√
2
π δ

and D(Y ) = 1 − 2
π δ

2, where δ = λ√
1+λ2

. In the general case, E(X) = µ + σ
√

2
π δ and

D(X) = σ2(1 − 2
π δ

2).

Theorem 1 Assume
∫ Qq(λ)

−∞ 2φ(x)Φ(λx)dx = q; where, qth quantile Qq(λ) is de-

termined by λ, the skewness parameter. Then (i) Qq(−λ) = −Q1−q(λ); (ii) ∀λ ∈
(−∞, 0], q ∈ [0, 1], Q′

q(λ) =
φ(λQq(λ))

(1+λ2)Φ(λQq(λ)) .

The proof is given in the appendix. We can see that, ∀λ ∈ (−∞, 0], Q0.50(−λ) =

−Q0.50(λ) and Q′
0.50(−λ) = Q′

0.50(λ); the median of cZ+ + ε is not equal to the median

of cZ+ plus the median of ε, since Qq(λ) is not a linear function of λ. The boundary

condition q determines the individual solution from the nonlinear ordinary differential

equationQ′
q(λ) =

φ(λQq(λ))
(1+λ2)Φ(λQq(λ)) . Conditional on the skewness (shape) parameter λ, we

use the notation IQRR(λ) to represent the inter-quartile range ratio of (q0.75,λ −q0.50,λ)

to (q0.50,λ − q0.25,λ), a monotonic function of λ (Section 2.2). Presumably, the skewness

(shape) parameter λ can be obtained by checking the look-up table of the ratio of

IQRR(λ) to λ. However, the top-right panel of Figure 1 shows that, a small change of

the IQRR(λ) leads to a large change of hyperparameter λ when λ is close to zero, say

|λ| < 1, which is not our expectation. Thus “IQRR(λ) vs. λ” is not a good elicitation

method for λ. To formalize this scenario, we define the sensitivity index (SI) as

∂ hyperparameter/∂ elicitation input,

for which we expect a moderate magnitude (∼1). For example, in the top-right panel

of Figure 1, the elicitation input is IQRR and the hyperparameter is λ. The guideline

is to work on “elicitation input vs. hyperparameter” curves with moderate derivative

or sensitivity index (SI), say around 1. We first consider the regions in which the

shape parameter is not sensitive (|λ| > 1) by the following one-way procedure, and the

sensitive regions will be discussed on in Section 3. The rationale for choosing 1 as the

λ critical value will be described later in Remark 1.
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1. The skewness parameter λ can be obtained by the monotonic relationship between

λ and IQRR(λ) (top-right, Figure 1).

2. The scale parameter σ can be obtained by (q0.75,λ − q0.50,λ) vs. λ plot (bottom-

left, Figure 1): find out (q0.75,λ − q0.50,λ) at elicited λ, and the elicited σ is thus

(q0.75 − q0.50)/(q0.75,λ − q0.50,λ). Or by (q0.75,λ − q0.25,λ) vs. λ plot (bottom-

right, Figure 1): find out (q0.75,λ − q0.25,λ) at elicited λ, and the elicited σ is thus

(q0.75 − q0.25)/(q0.75,λ − q0.25,λ).

3. The location parameter µ is simply q0.25−σq0.25,λ, q0.50−σq0.50,λ, or q0.75−σq0.75,λ.

2.5 Skew Student’s t Prior

Definition 2: Skew Student’s t distribution We construct a skew Student’s

t random variable X by cT+ + ε (which spans the whole real domain), where c is

a constant, T+ is a folded Student’s t random variable, that is, the positive part of

T (0, 1, ν) random variable, ε is a Student’s t random variable with mean µ and scale η,
both of them have degrees of freedom ν, and T+ is independent of ε. The pdf of X is

f(x|c, µ, η, ν) = 2√
c2+η2

Γ( ν+1
2 )

Γ( ν
2 )(νπ)

1
2
(1 +

(x−µ)2

ν(η2+c2) )
− ν+1

2 T1,ν+1[(
ν+ (x−µ)2

η2+c2

ν+1 )−
1
2

c
η

(x−µ)√
η2+c2

],

where σ (=
√
c2 + η2) is the scale parameter, λ (= c

η ) is the skewness (shape) parameter,

µ is the location parameter, and ν is the degrees of freedom. The derivation is given

in Sahu, Dey and Branco (2003). When c = 0, we have an ordinary Student’s t-
distribution. Under reparameterization of Y = X−µ

σ , we get the simplified density

function of

f(y|λ, µ, σ, ν) = 2
Γ( ν+1

2 )

Γ( ν
2 )(νπ)

1
2
(1 + y2

ν )−
ν+1
2 T1,ν+1[(

ν+y2

ν+1 )−
1
2 λy].

A different attribute for skew Student’s t-distribution is that, the nominal location-scale-

shape family is conditional on the degrees of freedom ν by observing that ν cannot be

combined with λ to form a composite shape parameter. From Figure 2, we note that, the

inter-quartile information of skew Student’s t-distribution highly depends on the degrees

of freedom ν; when ν reaches a value to approach the limiting normal distribution, the

sensitivity index (SI) in the top-right panel gets substantially larger than 1, as skew-

normal does (Figure 1). Conditioning on ν, the elicitation procedure is the same as that

in Section 2.4 when λ is not close to 0, say |λ| > 1, and the sensitive regions will be

discussed on in Section 3.

2.6 Normal-exponential Prior

The following normal-exponential distribution is dated back to Aigner et al (1977).
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Definition 3: Normal-exponential distribution A normal-exponential random

variable X is constructed by λE1 + ε (which spans the whole real domain), where λ is

a constant, E1 is an exponential random variable with mean 1, ε is a normal random

variable with mean µ and variance η2, and E1 is independent of ε. The pdf of X has

closed form

α
σ exp(−α2

2 ) exp(−αx−δ
σ )Φ(x−δ

σ ).

The mean is δ + σ( 1
α − α), where σ (=η) is the scale parameter, α (= η

λ ) is the shape

parameter and δ (=µ + η2

λ ) is the location parameter. The proof is a matter of in-

tegration. The superficial skewness is produced by the normal part, other than the

exponential part. As α approaches zero, the normal-exponential density becomes a flat

degenerate density; as α exceeds two, the density becomes an approximate normal den-

sity (Figure 3), where leftward displacement induced by the combination of shape and

scale parameters is observed. Although the curves are quite steep in the IQR vs. α
plot, reasonable sensitivity index (SI) is reached after taking 5th root (bottom-middle

and bottom-right, Figure 4). The parameter elicitation procedure at α > 0.15, where

the IQRR is substantially away from the limit 1.7107 as α departs from 0, is similar

to skew-normal case (Section 2.4). We observe that, the skewness parameter elicitation

is sensitive for skew-normal and normal-exponential priors when the true value is close

to zero, while it is less sensitive for skew Student’s t case under small degrees of freedom.

A more rigorous mathematical statement to support the above elicitation proce-

dures is that any three distinct quantiles uniquely determines the location-scale-shape

parameter set. For two density functions belonging to the same location-scale-shape

family with two sets of parameters, we have observed that one or two density function

crossovers occurs if these two sets of parameters are not exactly equal to each other. If

two distinct density functions have two identical sets of three quantiles, then at least

four density function crossovers are required, since there is at most one common quantile

between two consecutive crossovers, and there is no common quantile either less than

the first crossover or greater than the last crossover. The open problem is that there are

at most three density function crossovers under any two sets of different parameters.

2.7 Approximate Scale Parameter Elicitation

Now we propose an elicitation scheme based on approximation for Student’s t-distribution.

The expert provides three quantiles: q0.25, q0.50 and q0.75, but is not sure about normal-

ity assumptions. Suppose Fλ,µ,σ is the cumulative density function of the distribution of

expert, a member of location-scale-shape (µ-σ-λ) family, and p is the inter-quartile prob-

ability between q0.25 and q0.75, then by first order Taylor’s expansion at g(?)=µ+σg(λ),
where g(λ) is some characteristic point (median, mean, mode, etc) of the standardized
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density fλ,0,1 with µ = 0 and σ = 1. We have

Fλ,µ,σ(q0.75) ≈ Fλ,µ,σ(g(?)) + fλ,µ,σ(g(?))(q0.75 − g(?)) + 1
2f

(1)
λ,µ,σ(g(?))(q0.75 − g(?))2 · · ·

Fλ,µ,σ(q0.25) ≈ Fλ,µ,σ(g(?)) + fλ,µ,σ(g(?))(q0.25 − g(?)) + 1
2f

(1)
λ,µ,σ(g(?))(q0.25 − g(?))2 · · ·

.

(2)

Consequently, if we take 1
2 = Fλ,µ,σ(q0.75) − Fλ,µ,σ(q0.25) ≈ fλ,µ,σ(g(?))(q0.75 − q0.25)

= 1
σfλ,0,1(g(λ))IQR, then a rough approximation for scale parameter elicitation is

2IQRfλ,0,1(g(λ)).

Theorem 2 Under Taylor’s expansion approximation (2), denote

∆=
∑∞

k=1
1

k+1f
(k)
λ,0,1(g(λ))[(q0.75,λ − g(λ))k+1 − (q0.25,λ − g(λ))k+1].

Then

(i) the relative error of the scale parameter elicitation by 2IQRfλ,0,1(g(λ)) is −2∆
1−2∆ ,

a function only associated with the shape parameter λ;

(ii) ∆ = 1
2 − fλ,0,1(g(λ))IQR(λ), where IQR(λ) is the standardized IQR under Fλ,0,1.

The proof is given in the appendix. For g(λ) = mode function M(λ), mean function

E(λ) or median function q0.50(λ), we have the following observations:

Corollary 1 IQR(λ) =
1
2−∆

fλ,0,1(g(λ)) .

Corollary 2 Under skew-normal distribution (Section 2.4),

limλ→0

∑∞
k=1

1
k+1f

(k)
λ,0,1(g(λ))[(q0.75,λ − g(λ))k+1 − (q0.25,λ − g(λ))k+1] = 1

2 (1−
√

2
πZq).

Corollary 3 Under skew Student’s t-distribution with degrees of freedom ν (Sec-

tion 2.5), limλ→0

∑∞
k=1

1
k+1f

(k)
λ,0,1(g(λ))[(q0.75,λ − g(λ))k+1 − (q0.25,λ − g(λ))k+1]= 1

2 (1−
Γ( ν+1

2 )

Γ( ν
2 )

√
νπ
tν,q), where tν,q is the standardized inter-quartile range for Student’s t-distribution

with ν degrees of freedom.

We point out that (2) seems to work for many flexible location-scale-shape classes

(details later, in Propositions 3, 4). Suppose f is the probability density function of

general Student’s t-distribution with ν degrees of freedom (shape parameter) and inter-
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quantile range IQR, then we get the following approximation (after neglecting the error)

p

IQR
=

1√
νπσ

Γ( ν+1
2 )

Γ( ν
2 )

(1 +
(q0.50 − µ)2

νσ2
)−

ν+1
2 , (3)

where µ is the location parameter and σ is the scale parameter. Then µ̂ = q0.50 is the

estimate of the prior mean (location parameter), and the approximate estimate of σ can

be obtained as

σ̂ =
IQR

p
√
νπ

Γ( ν+1
2 )

Γ( ν
2 )

. (4)

Proposition 2 Scale-parameter elicitation is implemented by scaling the requested

IQR by certain value, or in accordance with the underlying distribution assumption.

Denote the inter-quantile range Tq,ν of Student’s t-distribution with degrees of freedom

ν to be T0.75,ν-T0.25,ν , then the ratio of the approximate scale parameter by (4) to the

exact scale parameter from Student’s t version of (1) is a monotonically decreasing func-

tion of the degrees of freedom ν with limit Zq

√
2
π =1.0763 (Zq=1.349).

We now describe an exploratory scale parameter elicitation for Student’s t-distribution

with degrees of freedom ν (shape parameter), the exact scale parameter is
IQR
Tq,ν

, which

goes to
IQR

Zq
as ν increases. By Stirling’s formula, we can show that the approximately

elicited scale parameter (4) goes to
IQR
p
√

2π
, where the inter-quartile probability p=0.50.

Although (4) seems to be a rough approximation, from Figure 6 it turns out to be an

efficient estimator retaining proportional high-fidelity (stable relative error) as degrees

of freedom ν increases. Of the two relative error curves, one is between the approximate

and the exact scale parameters both under Student’s t-distribution (solid curve), the

other is between the approximate scale parameter under normal distribution and the

exact scale parameter under Student’s t-distribution (dotted curve), both approach the

limit ratio and the former one approaches the limit more quickly. Consequently, when

the degrees of freedom ν is greater than 5, the approximation (4) under Student’s t is

realistic after scaling by 1.0763. However, the crude approximation under the normal

assumption is worse for most values of degrees of freedom, say less than 20. Taylor’s

expansion based approximate scale parameter elicitation may be quite efficient in the

sense of a proportional high-fidelity when the shape parameter (say degrees of freedom

ν for Student’s t-distribution) approaches certain limit (say positive infinity). This ob-

servation will guide us to elicit scale and shape parameters jointly in certain regions

by means of flexible Taylor’s expansion based iterations (Section 3). From exploratory

point of view, we may potentially elicit the degrees of freedom reversely conditional on

σ̂, although intuitively they are independent parameters without any inherent associ-

ation. The ν ∼ pσ̂

IQR
plot derived from (4) is given in Figure 7, where pσ̂

IQR
range of

∼(0.2, 0.396) gives sensitive ν (shape parameter) estimates in (0,10). In other words,
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other values will lead to the normal distribution. Theoretically, If we assume symmetry

a priori, then eliciting degrees of freedom ν and the scale parameter σ concurrently

is not possible, since these two parameters are mutually determined within a certain

domain for σ (Figure 7).

For only scale-parameter model, no approximation is needed. For example, if f is

the pdf of an exponential distribution with only scale parameter σ, then σ̂ should be

obtained by solving the equation

q0.50σ − lnσ = ln(
IQR

p
). (5)

Although approximation (4) is shown to be an efficient scale elicitation for symmetric

Student’s t priors, a similar procedure may not work for some skewed cases. For the

log-normal case in Proposition 1, assume we are given q0.25, q0.50 and q0.75 for X which

forms a symmetric normal distribution for ln(X) requiring q0.50=
√
q0.25 × q0.75. We use

first order Taylor’s expansion to make a rough approximation: p = IQRf(q0.50), where

f is the pdf of a log-normal distribution, then µ̂=ln(q0.50) and

p =
IQR

q0.50

√
2πσ

, thus σ̂ =
IQR

q0.50

√
2πp

. (6)

The exact σ elicitation under log-transformation is ∆
Zq

, where ∆ is ln( q0.75

q0.25
), and (6) be-

comes

√
2
π (e∆ − e−∆). The ratio of the approximate and exact scale elicitation is thus

approximately

√
2
πZq(1+ ∆2

6 ) with quadratic increment of ∆. The weakness of Taylor’s

expansion may be due to the fact that, log-normal distribution is not a location-scale

family member.

For the skew-normal case (Section 2.4), the exact scale elicitation is
IQR

IQR(λ)
, where

IQR(λ) is the IQR for the standard skew-normal distribution with location parameter

0, scale parameter 1 and skewness (shape) parameter λ.

. If we apply Taylor’s expansion at the location parameter µ, then σ̂ =
√

2
π IQR,

thus location based expansion makes use of no skewness information. The ratio

of the approximate to the exact scale elicitation is

√
2
π IQR(λ).

. If we apply Taylor’s expansion at mean Eλ =

√
2
π

λ√
1+λ2

, then σ̂ is [2φ(Eλ)Φ(λEλ)]

IQR/p, where p=0.50 and Eλ is the mean of the standardized skew-normal distri-

bution with location parameter 0, scale parameter 1 and skewness parameter λ.
The ratio of the approximate to the exact scale elicitation is IQR(λ)[2φ(Eλ)Φ(λEλ)]/p.
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. If we apply Taylor’s expansion at mode Mλ, then σ̂ is IQR[2φ(Mλ)Φ(λMλ)]/p,
where p=0.50 and Mλ is the mode of the standardized skew-normal distribution

with location parameter 0, scale parameter 1 and skewness parameter λ. The ratio

of the approximate to the exact scale elicitation is [2φ(Mλ)Φ(λMλ)] IQR(λ)/p.

. If we apply Taylor’s expansion at median q0.50,λ, then σ̂ is [2φ(q0.50,λ)Φ(λq0.50,λ)]

IQR/p, where p=0.50 and q0.50,λ is the median of the standardized skew-normal

distribution with location parameter 0, scale parameter 1 and skewness parameter

λ. The ratio of the approximate to the exact scale elicitation is [2φ(q0.50,λ)Φ(λq0.50,λ)]

IQR(λ)/p.

Remark 1 The scale parameter σ elicitation based on (2) expanded at the location

parameter µ leads to identical results under naive normal or skew-normal distributions.

If we ignore the skewness completely by assuming naive normal, then the elicited scale

parameter σ is
IQR

Zq
accordingly. All of these options are compared by a “whiskers” plot

(Figure 8). Except for the native normal based approximation, all skew-normal based

approximations are visually undistinguishable as horizontal segments expanding from

∼-1 to ∼1, which is exactly where λ is highly sensitive to the IQRR(λ) (the top-right

panel of Figure 1), also represented by a horizontal segment expanding from ∼-1 to ∼1.

Thus the sensitive region and the critical value of λ are to be identified visually. Over-

all, the performance ordering may be Taylor’s expansion at: median, mean, mode, and

location. We envision that this observation also works for skew Student’s t conditional

on the degrees of freedom ν. Thus quantile (probability) based prior elicitation could

increase the potential flexibility and efficiency.

Proposition 3 For the skew-normal distribution, the ratio of the approximate scale

parameter to the exact scale parameter goes to
√

2
πZq=1.0763 as λ approaches 0.

For the normal-exponential case (Section 2.6), the exact scale elicitation is
IQR

IQR(α)
,

where α is the shape parameter, and IQR(α) is the IQR for the standard normal-

exponential distribution with location parameter 0 and scale parameter 1. Again,

p=0.50.

. If we apply Taylor’s expansion at the location parameter δ, then σ̂= α
2p exp(−α2

2 )IQR,

in contrast to skew-normal case, location based expansion incorporates the shape

information. The ratio of the approximate to the exact scale elicitation is 2p
α exp(α2

2 )

IQR(α).

. If we apply Taylor’s expansion at mean Eα=σ( 1
α − α), then σ̂ = α

p exp(α2

2 −
1)Φ( 1

α − α)IQR. The ratio of the approximate to the exact scale elicitation is
α
p exp(α2

2 − 1)Φ( 1
α − α)IQR(α).

. If we apply Taylor’s expansion at mode Mα which does not have an explicit for-

mula, then σ̂ = α
p exp[−(α2

2 +αMα)]Φ(Mα)IQR. The ratio of the approximate to
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the exact scale elicitation is α
p exp[−(α2

2 + αMα)]Φ(Mα)IQR(α).

. If we apply Taylor’s expansion at median q0.50,α, then σ̂ is α
p exp[−(α2

2 +αq0.50,α)]

Φ(q0.50,α)IQR. The ratio of the approximate to the exact scale elicitation is
α
p exp[−(α2

2 + αq0.50,α)]Φ(q0.50,α)IQR(α).

Remark 2 The comparisons are given by a “whiskers” plot (Figure 9), where the

location or median based approximation performs more stably and retains more pro-

portional high-fidelity (≈1.09) than others at small α. Note that the location based

approximation takes into account the shape information, which is a different attribute

from skew-normal and skew Student’s t. The performance ordering may be Taylor’s ex-

pansion at: median, location, mean and mode at small α; at large α, the location based

approximation cannot be used since the shape and scale parameters jointly induces

large location displacement, and all other approximations have visually undistinguish-

able performances.

Proposition 4 For normal-exponential distribution, the ratio of the approximate

scale to the exact scale approaches 1.0763 as α approaches positive infinity.

3 Elicitation on Shape-Parameter-Sensitive Regions

3.1 Skew-normal case

Complementary to the discussion on skew-normal in Section 2.4, we propose several

iterative algorithms for |λ| ≤1 under alternative moderate sensitivity index (∼1). If the

original procedure in Section 2.4 is followed, then λ will be highly sensitive to minor

changes of IQRR(λ); while the approximate σ elicitation based on first order Taylor’s

expansion at mean (with a favorable explicit expression, Section 2.4) retains propor-

tional (

√
2
πZq) high-fidelity (the middle panel of Figure 8) for that very λ range.

� Iteration Based on Taylor’s Expansion at Median

1. Start with current λ, apply the first order Taylor’s expansion at median q0.50,λ with

location parameter 0 and scale parameter 1. Then σ̂ is IQR[2φ(q0.50,λ)Φ(λq0.50,λ)]/p,
the elicited scale parameter is σ̂√

2
π

Zq

, and the standardized (q0.75,λ-q0.50,λ) is (q0.75-

q0.50)/( σ̂√
2
π

Zq

).

2. The skewness parameter λ can be obtained by (q0.75,λ−q0.50,λ) vs. λ plot (bottom-

left, Figure 1) under moderate sensitivity index (∼1). Note that, one-to-two

matching around small λ is not an issue, since the sign of λ is correctly kept.

3. Go to 1 until convergence (complete λ and σ).
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4. The location parameter µ is simply q0.25−σq0.25,λ, q0.50−σq0.50,λ or q0.75−σq0.75,λ.

� Iteration Based on Taylor’s Expansion at Mean

1. Start with current λ, apply the first order Taylor’s expansion at meanEλ=

√
2
π

λ√
1+λ2

with location parameter 0 and scale parameter 1. Then σ̂ is IQR[2φ(Eλ)Φ(λEλ)]/p,
the elicited scale parameter is σ̂√

2
π

Zq

, and the standardized (q0.75,λ-q0.50,λ) is (q0.75-

q0.50)/( σ̂√
2
π

Zq

).

2. The skewness parameter λ can be obtained by (q0.75,λ−q0.50,λ) vs. λ plot (bottom-

left, Figure 1) under moderate sensitivity index (∼1). Note that, one-to-two

matching around small λ is not an issue, since the sign of λ is correctly kept.

3. Go to 1 until convergence (complete λ and σ).

4. The location parameter µ is simply q0.25−σq0.25,λ, q0.50−σq0.50,λ or q0.75−σq0.75,λ.

� Iteration Based on Taylor’s Expansion at Mode

1. Start with current λ, apply the first order Taylor’s expansion at modeMλ=

√
2
π

λ√
1+λ2

with location parameter 0 and scale parameter 1. Then σ̂ is IQR[2φ(Eλ)Φ(λEλ)]/p,
the elicited scale parameter is σ̂√

2
π

Zq

, and the standardized (q0.75,λ-q0.50,λ) is (q0.75-

q0.50)/( σ̂√
2
π

Zq

).

2. The skewness parameter λ can be obtained by (q0.75,λ−q0.50,λ) vs. λ plot (bottom-

left, Figure 1) under moderate sensitivity index (∼1). Note that, one-to-two

matching around small λ is not an issue, since the sign of λ is correctly kept.

3. Go to 1 until convergence (complete λ and σ).

4. The location parameter µ is simply q0.25−σq0.25,λ, q0.50−σq0.50,λ or q0.75−σq0.75,λ.

� Iteration Based on the Inter-quartile Ranges

1. Start with current λ, (q0.75,λ − q0.25,λ) vs. λ plot (Figure 1) with moderate sensi-

tivity index (∼1). The elicited σ is (q0.75 − q0.25)/(q0.75,λ − q0.25,λ).

2. The skewness parameter λ can be obtained by (q0.75,λ−q0.50,λ) vs. λ plot (bottom-

left, Figure 1) under moderate sensitivity index (∼1).

3. Go to 1 until convergence (complete λ and σ).

4. The location parameter µ is simply q0.25−σq0.25,λ, q0.50−σq0.50,λ or q0.75−σq0.75,λ.
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Remark 3 We create the (q0.25,λ, q0.50,λ, q0.75,λ) vs. λ look-up table (the top-left

panel of Figure 1), where the λ step is 0.01, the iteration involves obtaining the optimal

λ given (q0.75,λ − q0.50,λ) and the optimal (q0.75,λ − q0.25,λ) given λ, till convergence.

The one-way elicitation of λ followed by σ (Section 2.4) is replaced by a two-way joint

λ and σ elicitation. The elicitation comparison is given in Table 1, and Figures 11

through 14, where ratios are calculated at all declared 50% quantiles (from 0.01 to 0.20

with step 0.01). The IQR, mean and median based Taylor’s expansion iterations are

consistent, while mode based Taylor’s expansion iteration is likely to be less satisfactory.

Compared to the IQR based iteration, we recommend the explicit mean based Taylor’s

expansion in view of numerical stability. In the top-right panel of Figure 1, when the

IQRR varies within a very short range around 1.0, the λ ranges among [-1,1], leading

to a sensitivity index with a huge magnitude. Under iterative elicitation procedures,

highly sensitive regions are avoided, and the applied regions in the IQR(λ) vs. λ plots

(the bottom-left and bottom-right panels of Figure 1) show a workable sensitivity index

(∼1). By observing that, the standard mean

√
2
π

λ√
1+λ2

has a derivative

√
2
π (1+λ2)−

3
2

(∼1 at small λ) and conclusion (ii) in Theorem 2, we conclude that, iteration by Taylor’s

expansion at mean will work well under moderate sensitivity index. Generally, ∂shape

parameter/∂standardized IQR needs to be moderate in order to apply the iterative

algorithms, similar procedures will apply to the normal-exponential prior and skew

Student’s t prior conditional on the degrees of freedom ν. Because the standard IQRs are

tabulated by numerical integration which is subject to accuracy evaluation for irregular

skewed classes, we prefer an explicit expression involved in the algorithm, such as mean

based Taylor’s expansion. One piece of evidence is seen in Table 1, where there is a

switching between two elicited λ’s at q0.50=0.07 and q0.50=0.08.

3.2 Gamma Case

Gamma distribution can be generalized into a location-scale-shape family member as

fα,β,µ = 1
β

1
Γ(α) (

x−µ
β )α−1e−

x−µ

β 1[x≥µ], whose quantile plots are given in Figure 5. We can

find that the sensitivity index is around 100 by using (q0.75,α−q0.50,α)/(q0.50,α−q0.25,α)

vs. α plot when α ≥1.5, and the sensitivity index is decreased to less than 10 by using

(q0.75,α − q0.50,α) or (q0.50,α − q0.25,α) vs. α plot. For α ≥1.5, we propose the following

iteration procedure.

Iteration Based on the Inter-quartile Ranges

1. Start with current α, (q0.75,α−q0.50,α) vs. α plot (Figure 5) with sensitivity index

∼10, the elicited β is (q0.75 − q0.50)/(q0.75,α − q0.50,α).

2. The shape parameter α can be obtained by (q0.50,α − q0.25,α) vs. α plot, where

(q0.50,α − q0.25,α)=(q0.50 − q0.25)/β.

3. Repeat 1-2 until convergence (complete α and β).

4. The location parameter µ is simply q0.25−βq0.25,α, q0.50−βq0.50,α or q0.75−βq0.75,α.
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Remark 4 IMSL library is used to call the gamin function to return the standard

quantiles for arbitrary α (Table 2). We create the look-up table of (q0.25,α, q0.50,α,

q0.75,α) vs. α, where the α step is 0.001, the iteration alternates between finding the

optimal α given (q0.50,α − q0.25,α) and finding the optimal (q0.75,α − q0.50,α) given α
from the look-up table (the lower panels of Figure 5), till convergence. The one-way

elicitation of α followed by β (the top-right panel of Figure 5) is replaced by a two-way

joint elicitation of α and β. The comparison is given in Table 2. where the numerical

difference is substantially greater than 0.001 (α step). One-way elicitation introduced in

Section 2.4 only works well for those regions where the shape parameter is not sensitive,

only two-way iterating elicitation works on regions where the shape parameter is highly

sensitive, including the IQR based iteration and Taylor’s expansion based iterations.

Unfortunately, we also observe those regions where both elicitations encounter high

sensitivity index (SI), such as the tail regions (λ approaches 10) in the lower panels of

Figure 1.

4 Interactive Graphical Display of Prior Probability Dis-
tribution

In this section, we propose visual aids to help elicit skewed priors and behavior of the

tail shape with an emphasis on the degrees of freedom ν of skew Student’s t priors.

This section is a follow-up of preceding sections to streamline the “sketching” principle

recommended by Berger (1985, Chapter 3).

Trial on Degrees of Freedom

A. We consider ν = 1, 5, 10, 15, 30, . . . to apply the general procedure in Section 2.5,

with an exact or an approximate scale elicitation, to select the most agreeable ν
for skewed Student’s t prior by repeatedly drawing distribution shapes.

B. We start with a tentative ν out of (1, 5, 10, 15, 30,. . .) to obtain σ̂ in an exact

way, then immediately update the degrees of freedom for Student’s t-distribution

by reverse of (4) and show the distribution shape to the expert in order to make

an exploratory effort to reach an agreement on ν.

Other Cases

C. The expert provides his/her opinion in the form of a graph, then we estimate

q0.25, q0.50 and q0.75 directly from the graph. If the graph is close to symmetric

normal we use (1); if it is close to log-normal with a positive domain, we apply

Proposition 1; if it is close to symmetric heavier tail, we go to option [B].

D. For generalized symmetric Student’s t-distribution with two degrees of freedom,

the graphical approach seems more necessary and similar procedures apply.
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E. For skew-normal and normal-exponential priors, the aforementioned general pro-

cedures apply (Sections 2.4, 2.6 and 3), we need to redraw distribution shape for

expert’s evaluation.

Now we briefly explore the shapes of generalized Student’s t-distribution. General-

ized Student’s t-distribution is a special case of a scale mixture of normal distribution. It

is obtained asX |λ ∼N(µ, λ/σ2) and λ ∼ Gamma(ν1/2, ν2/2), the marginal distribution

produces the generalized t, which has the form f(x) = 1√
πν2

Γ(
ν1+1

2 )

σΓ(
ν1
2 )

(1 +
(x−µ)2

ν2σ2 )−
ν1+1

2 .

When ν1 = ν2 we get back to the usual Student’s t-distribution. The two degrees of free-

dom parameters make the distribution extremely flexible keeping the symmetry intact.

For example, t(30,1) and t(1,30), t(10,1) and t(1,10) densities are shown in Figure 10.

The tail could be even heavier than Cauchy. For prior elicitation, this distribution can

be used for any symmetric specification, similar to Section 2, the realistic approximate

algorithm will be to set p

IQR
as 1√

πν2

Γ(
ν1+1

2 )

σΓ(
ν1
2 )

(1 +
(q0.50−µ)2

ν2σ2 )−
ν1+1

2 , thus

µ̂ = q0.50 and σ̂ =
IQR

p

1√
πν2

Γ( ν1+1
2 )

Γ( ν1

2 )
. (7)

Note that the only difference between (4) and (7) is the presence of ν2 in the denomi-

nator, a very minor change in the code.

5 Concluding Remarks

We demonstrate that, for those univariate skewed priors belonging to location-scale-

shape families, the elicitation procedure on the non-sensitive regions is: shape param-

eter followed by the scale and location parameters. Moreover, we take the initiatives

to quantitatively study technical details for flexible direct prior elicitation, which will

streamline the induced interactive graphical procedures. The quantile based Taylor’s ex-

pansion approximation was interestingly found to enjoy sufficient efficiency to pinpoint

the scale parameter on shape-parameter sensitive regions, when the shape information is

incorporated for approximation. The exact procedure is in the sense of numerical com-

putation, and the iterative elicitation is numerically tested to be satisfactorily stable

and efficient. Prior elicitation from multiple expert opinions could be done by averaging

these summaries (Kadane, et al, 1980) or applying linear regression to take into account

multiple experts (Gill and Walker, 2005). Throughout we assumed that experts provide

a unimodal distribution, which is realistic in practice. However, if the experts believe

that the distribution could be multimodal then we have to consider discrete mixtures of

unimodal distributions. If the prior predictive space is necessary and a well-established

response model is available, then expert opinions on the response distribution may be

more practical. But we can envision that the calculation load will be much more in-

tensive under skewed priors. How to develop efficient prior elicitation algorithm under

that circumstance is another area of research.
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Supplemental Material: Proofs, Figures and Results

Proof of Theorem 1

Proof of part 1. From 2
∫ Qq(λ)

−∞ φ(x)Φ(λx)dx = q, we have 2
∫ +∞

Qq(λ) φ(x)Φ(λx)dx =

1 − q and 2
∫ Qq(λ)

+∞
−φ(−x)Φ(λx)dx = 1 − q. Substituting y = −x, it follows that

2
∫ −Qq(λ)

−∞ φ(y)Φ(−λy)dy = 1 − q, which proves part 1.

Proof of part 2.

∫ Qq(λ+∆λ)

−∞
2φ(x)Φ((λ + ∆λ)x)dx

=
∫ Qq(λ)

−∞ 2φ(x)Φ((λ + ∆λ)x)dx +
∫ Qq(λ+∆λ)

Qq(λ) 2φ(x)Φ((λ + ∆λ)x)dx

=
∫ Qq(λ)

−∞ 2φ(x)Φ((λ + ∆λ)x)dx

+(Qq(λ+ ∆λ) −Qq(λ))2φ(pQq(λ) + (1 − p)Qq(λ+ ∆λ))

×Φ((λ+ ∆λ)(pQq(λ) + (1 − p)Qq(λ+ ∆λ))), (∃p ∈ [0, 1])

=
∫ Qq(λ)

−∞
2φ(x)Φ(λx)dx = q.

(8)

Thus,

∫ Qq(λ)

−∞ 2xφ(x)(Φ((λ+∆λ)x)−Φ(λx)
x∆λ

)dx +
Qq(λ+∆λ)−Qq(λ)

∆λ

×2φ(pQq(λ) + (1 − p)Qq(λ+ ∆λ))

×Φ((λ+ ∆λ)(pQq(λ) + (1 − p)Qq(λ+ ∆λ)))

= 0.

(9)

Letting ∆λ approach 0, we get
∫ Qq(λ)

−∞ 2xφ(x)φ(λx)dx +Q′
q(λ)2φ(Qq(λ))Φ(λQq(λ)) =

0. The final result follows after some simplifications. Our result shows that Qq(λ) is

differentiable. The proof ends.

Proof of Theorem 2

Obviously, g(?) retains linearity of the standardized characteristic point by g(?) =

µ+ σg(λ), where g(?) is the characteristic point of general location-scale-shape family

and g(λ) is the characteristic point of the standard location-scale-shape family with

location 0 and scale 1. Thus, (2) becomes

Fλ,µ,σ(q0.75) = Fλ,0,1(g(λ)) + 1
σ fλ,0,1(g(λ))(q0.75 − g(?)) + 1

2f
(1)
λ,0,1(g(λ))(q0.75,λ − g(λ))2 · · ·

Fλ,µ,σ(q0.25) = Fλ,0,1(g(λ)) + 1
σ fλ,0,1(g(λ))(q0.25 − g(?)) + 1

2f
(1)
λ,0,1(g(λ))(q0.25,λ − g(λ))2 · · ·

.

(10)

Consequently,
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1
2 = 1

σ fλ,0,1(g(λ))IQR +
∑∞

k=1
1

k+1f
(k)
λ,0,1(g(λ))[(q0.75,λ − g(λ))2 − (q0.25,λ − g(λ))2].

Denote ∆=
∑∞

k=1
1

k+1f
(k)
λ,0,1(g(λ))[(q0.75,λ − g(λ))2 − (q0.25,λ − g(λ))2], the relative error

for scale parameter elicitation is (
f
(k)
λ,0,1(g(λ))

0.50 − f
(k)
λ,0,1(g(λ))

0.50−∆ )/(
f
(k)
λ,0,1(g(λ))

0.50−∆ ) = −2∆
1−2∆ . The

second statement in Theorem 2 comes from the following fact: the true scale parameter

σ is equal to
IQR

IQR(λ)
by direct numerical calculation from the look-up table IQR(λ) vs.

λ, or
IQRfλ,0,1(g(λ))

0.50−∆ by keeping the first term from the fully Taylor’s expansion. The

proof ends.
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Table 1: Iteration Comparison: Inter-quartile range (IQR), Taylor’s expansion at me-

dian, mean and mode (skew-normal: q0.25 = −10, q0.75 = 10)

q0.50 λ σ µ
IQR median mean mode IQR median mean mode IQR median mean mode

0.01 -0.23 -0.23 -0.23 -0.23 15.06 15.07 15.07 15.07 2.69 2.69 2.69 2.69
0.02 -0.37 -0.32 -0.32 -0.32 15.42 15.29 15.29 15.29 4.26 3.70 3.70 3.70
0.03 -0.41 -0.41 -0.41 -0.41 15.56 15.56 15.56 15.56 4.69 4.69 4.69 4.69
0.04 -0.53 -0.54 -0.54 -0.54 15.99 16.04 16.04 16.04 5.93 6.04 6.04 6.04
0.05 -0.54 -0.55 -0.55 -0.55 16.03 16.08 16.08 16.08 6.04 6.15 6.15 6.15
0.06 -0.64 -0.56 -0.56 -0.56 16.44 16.12 16.12 16.12 7.00 6.24 6.23 6.24
0.07 -0.70 -0.67 -0.69 -0.67 16.70 16.58 16.66 16.58 7.56 7.30 7.47 7.30
0.08 -0.68 -0.68 -0.68 -0.71 16.62 16.62 16.62 16.76 7.39 7.39 7.39 7.67
0.09 -0.71 -0.72 -0.72 -0.72 16.74 16.80 16.80 16.80 7.65 7.75 7.74 7.75
0.10 -0.77 -0.82 -0.77 -0.85 17.01 17.25 17.02 17.40 8.17 8.62 8.18 8.88
0.11 -0.82 -0.85 -0.85 -0.86 17.23 17.39 17.38 17.44 8.60 8.87 8.86 8.95
0.12 -0.85 -0.86 -0.86 -0.89 17.37 17.43 17.42 17.58 8.85 8.94 8.93 9.21
0.13 -0.88 -0.89 -0.89 -0.92 17.50 17.57 17.56 17.72 9.08 9.19 9.18 9.43
0.14 -0.89 -0.92 -0.91 -0.95 17.55 17.71 17.65 17.86 9.17 9.41 9.33 9.67
0.15 -0.94 -0.95 -0.92 -1.01 17.78 17.85 17.69 18.14 9.55 9.65 9.40 10.12
0.16 -0.95 -1.01 -0.95 -1.03 17.83 18.12 17.83 18.23 9.64 10.10 9.63 10.26
0.17 -1.01 -1.03 -1.01 -1.04 18.09 18.21 18.09 18.28 10.07 10.24 10.07 10.33
0.18 -1.01 -1.04 -1.01 -1.11 18.09 18.25 18.09 18.60 10.07 10.30 10.07 10.82
0.19 -1.04 -1.09 -1.04 -1.24 18.24 18.48 18.22 19.18 10.29 10.65 10.27 11.66
0.20 -1.09 -1.11 -1.04 -1.26 18.46 18.57 18.22 19.27 10.62 10.78 10.27 11.80

Table 2: Shape parameter elicitation comparison: iterative inter-quartile range algo-

rithm (Gamma: q0.25 = −2.0, q0.75 = 3.0)

q0.50 α (iterative) α (IQR ratio) q0.50 α (iterative) α (IQR ratio)

0.02 1.655 1.652 0.22 4.329 4.324

0.04 1.778 1.775 0.24 4.975 4.969

0.06 1.919 1.916 0.26 5.775 5.782

0.08 2.080 2.076 0.28 6.818 6.825

0.10 2.266 2.261 0.30 8.189 8.197

0.12 2.481 2.476 0.32 10.040 10.049

0.14 2.711 2.728 0.34 12.631 12.640

0.16 3.029 3.024 0.36 16.408 16.418

0.18 3.382 3.378 0.38 22.226 22.244

0.20 3.809 3.804 0.40 31.864 31.899
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Figure 1: Relationship between quantiles and skewness parameter λ for skew-normal

distribution. (Top-left: (q0.75,λ, q0.50,λ, q0.25,λ) vs. λ; top-right: (
q0.75,λ−q0.50,λ

q0.50,λ−q0.25,λ
) vs. λ;

bottom-left: (q0.75,λ − q0.50,λ) vs. λ; bottom-right: (q0.75,λ − q0.25,λ) vs. λ)
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Figure 2: Relationship between quantiles and skewness parameter λ for skew Student’s

t distribution. (Top-left: (q0.75,λ, q0.50,λ, q0.25,λ) vs. λ; top-right: (
q0.75,λ−q0.50,λ

q0.50,λ−q0.25,λ
) vs. λ;

bottom-left: (q0.75,λ − q0.50,λ) vs. λ; bottom-right: (q0.75,λ − q0.25,λ) vs. λ)
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exponential distribution.
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Figure 4: Relationship between quantiles and shape parameter α for normal-exponential

distribution. (Top-left: (q0.75,α, q0.50,α, q0.25,α) vs. α; top-middle: (q0.75,α − q0.50,α) vs.

α; top-right: (q0.75,α−q0.25,α) vs. α; bottom-left: (
q0.75,α−q0.50,α

q0.50,α−q0.25,α
) vs. α; bottom-middle:

(q0.75,α − q0.50,α)
1
5 vs. α; bottom-right: (q0.75,α − q0.25,α)

1
5 vs. α)
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Figure 5: Relationship between quantiles and shape parameter α for Gamma distribu-

tion. (Top-left: (q0.75,α, q0.50,α, q0.25,α) vs. α; top-right: (q0.75,α − q0.50,α)/(q0.50,α −
q0.25,α) vs. α; bottom-left: (q0.75,α − q0.50,α) vs. α; bottom-right: (q0.50,α − q0.25,α) vs.

α)
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Figure 6: Scale parameter elicitation comparison vs. degrees of freedom ν in terms of

relative error for Student’s t prior.

Figure 7: Estimated degrees of freedom ν from σ̂.
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Figure 8: Scale parameter elicitation comparison for skew-normal. (Left and middle:

approximate σ/exact σ vs. λ, Right: mean, mode and median vs. λ.)

Figure 9: Scale parameter elicitation comparison for normal-exponential. (Left and

middle: approximate σ/exact σ vs. α, Right: mean, mode and median vs. α.)
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Figure 10: Generalized Student’s t probability density function with different degrees

of freedom.
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Figure 11: Skew-normal prior elicitation comparison (relative to IQR based iteration

algorithm) among Taylor’s expansions at median, mean and mode: the left panel is for

λ, the middle panel is for σ, the right panel is for µ; from left to right in each panel,

the ratios are for median, mean and mode
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Figure 12: Skew-normal prior elicitation comparison (relative to median based iteration

algorithm) among IQR based iteration, Taylor’s expansions at mean and mode: the left

panel is for λ, the middle panel is for σ, the right panel is for µ; from left to right in

each panel, the ratios are for IQR, mean and mode
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Figure 13: Skew-normal prior elicitation comparison (relative to mean based iteration

algorithm) among IQR based iteration, Taylor’s expansions at median and mode: the

left panel is for λ, the middle panel is for σ, the right panel is for µ; from left to right

in each panel, the ratios are for IQR, median and mode
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Figure 14: Skew-normal prior elicitation comparison (relative to mode based iteration

algorithm) among IQR based iteration, Taylor’s expansions at median and mean: the

left panel is for λ, the middle panel is for σ, the right panel is for µ; from left to right

in each panel, the ratios are for IQR, median and mean
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