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SECOND ORDER ASYMPTOTICS FOR MATRIX MODELS

BY ALICE GUIONNET AND EDOUARD MAUREL-SEGALA

Ecole Normale Supérieure de Lyon

We study several-matrix models and show that when the potential is con-
vex and a small perturbation of the Gaussian potential, the first order cor-
rection to the free energy can be expressed as a generating function for the
enumeration of maps of genus one. In order to do that, we prove a central
limit theorem for traces of words of the weakly interacting random matrices
defined by these matrix models and show that the variance is a generating
function for the number of planar maps with two vertices with prescribed
colored edges.

1. Introduction. In this paper we study the asymptotics of Hermitian random
matrices whose distribution is given by a small convex perturbation of the Gaussian
Unitary Ensemble (denoted GUE). We shall consider m-tuples of random matrices,
with an integer number m ∈ N fixed throughout this paper. Then, the law µN of m

independent matrices following the GUE is given, for N × N Hermitian matrices
A = (A1, . . . ,Am), by

dµN(A) = e(−N/2)Tr(
∑m

i=1 A2
i )

m∏
i=1

N∏
j=1

d(Ai)jj
∏

1≤j<k≤N

d�e(Ai)jkd�m(Ai)jk,

with Tr the nonnormalized trace Tr(A) = ∑N
i=1 Aii . In other words, the A =

(A1, . . . ,Am) are independent Hermitian matrices whose entries are, above the
diagonal, independent complex centered Gaussian variables with variance N−1.
Let V (X) be a polynomial in m noncommutative indeterminates X = (X1, . . . ,

Xm) such that Tr(V (A)) is real for all m-tuple of Hermitian matrices A =
(A1, . . . ,Am). Then, we shall study the following probability measure µN

V on the
set HN(C)m of m-tuple of N × N Hermitian matrices

dµN
V (A) = 1

ZN
V

e−NTr(V (A)) dµN(A),

where ZN
V is the normalizing constant so that µN

V is a probability measure.
Besides, we require that the trace of W(A) := V (A) + 1

2
∑m

i=1 A2
i is a strictly

convex function of the entries of A = (A1, . . . ,Am) ∈ HN(C)m for any N ∈ N.
In that case ZN

V is automatically finite. More precisely, for c > 0, we say that V
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is c-convex if for any N ∈ N, A ∈ HN(C)m → Tr(W(A)) is real-valued and with
Hessian bounded below by cI . An example of c-convex potential is

V (X1, . . . ,Xm) = ∑
j

Pj

(∑
i

α
j
i Xj

)
+ ∑

j,k

βj,kXiXj ,

with convex polynomials Pj on R, real numbers α
j
i , βj,k and

∑
j |βj,k| ≤ 1− c for

all k ∈ {1, . . . ,m} (see Section 2 for more details).
The central result of this paper can roughly be stated as follows.

THEOREM 1.1. Let V = Vt(X1, . . . ,Xm) = ∑n
j=1 tj qj (X1, . . . ,Xm) be a

polynomial potential with n ∈ N, t = (t1, . . . , tn) ∈ C
n and monomials (qj )1≤j≤n

fixed. For all c > 0, there exists η > 0 so that if |t| := max1≤j≤n |tj | ≤ η and Vt is
c-convex, there exists F i(Vt) = F i(t1, . . . , tn) for i = 0,1 so that

logZN
Vt

= N2F 0(Vt) + F 1(Vt) + o(1).

The first order expansion F 0(Vt) was already obtained in [14] and we extend
our study here to the second order. The higher order expansions can also be tack-
led by a refinement of our strategy; this is the subject of a separate article by
Maurel-Segala [19]. Moreover, we believe our tools sufficiently robust to tackle
other models such as the Gaussian orthogonal ensemble, or the Haar measure on
the unitary group, for instance. Again, this is the subject of further studies.

We next turn to the combinatorial interpretation of F 0(Vt), F 1(Vt) has generat-
ing functions of maps.

Matrix models have been used intensively in physics in connection with the
problem of enumerating maps; see the reviews [9, 12]. Let us recall that a map
of genus g is a graph which is embedded into a surface of genus g in such a
way that the edges do not intersect and dissecting the surface along the edges
decomposes it into faces which are homeomorphic to a disk. We will call a star
the couple of a vertex and the half-edges which are glued to this star. A star will
have a distinguished half-edge and an orientation and will eventually have colored
half-edges when m ≥ 2. When m = 1, it is well known that if Vt = 0 [i.e., t =
(0, . . . ,0)] moments of the random matrices from the GUE are related with the
enumeration of maps; for instance, the number M

g
k of maps with genus g with one

star with 2k half-edges were computed by Harer and Zagier [16] using the formula

∫ 1

N
Tr(A2k

1 ) dµN(A1) =
[k/2]∑
g=0

1

N2k
M

g
k .

It was shown in [10] (see also [1, 2]) that when m = 1, this enumerative prop-
erty extends to the free energy of matrix models at all orders, as conjectured and
widely used in physics (see, e.g., [7]). More precisely, if Vt = ∑n

i=1 tix
ni with
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D = maxni = np even and tp/
∑

i �=p |ti | large enough, for all k ∈ N, there exists
η > 0 so that, for |t| ≤ η,

logZN
Vt

= N2
k∑

g=0

1

N2g
F g(Vt) + o(N2−2k),

with

Fg(Vt) = ∑
k1,...,kn∈Nn\{0,...,0}

∏
i

(−ti)
ki

ki ! M
g
k1,...,kn

,

where M
g
k1,...,kn

is the number of maps of genus g with ki vertices of degree ni ,
1 ≤ i ≤ n.

Several-matrices integrals are related with the enumeration of colored (or dec-
orated) maps. To make this statement clear, let us associate to a monomial q(X) =
Xi1 · · ·Xip a colored star as follows. We choose m different colors {1, . . . ,m}. The
star associated to q (called a star of type q) is a vertex equipped with colored half-
edges such that the first half-edge has color i1, the second has color i2 till the last
half-edge which has color ip . Because the star has a distinguished half-edge (the
one associated with Xi1 ) and an orientation, this defines a bijection between non-
commutative monomials and colored stars. Then, it can be seen [23] that, for any
monomial q ,

lim
N→∞

∫ 1

N
Tr(q(A)) dµN(A) = M0(q),

with M0(q) the number of planar maps with one-colored star of type q such that
only half-edges of the same color can be glued pair-wise together (then forming a
one-colored edge). In [14], we proved that if Vt is c-convex and t = (t1, . . . , tn) is
small enough, the limit F 0(Vt) of the free energy given in Theorem 1.1 is analytic
in the variables ti in a neighborhood of the origin and its expansion is a generating
function for planar maps with prescribed colored stars;

F 0(Vt) = ∑
k1,...,kn∈Nn\{0,...,0}

n∏
i=1

(−ti)
ki

ki ! Mk1,...,kn,(1)

with Mk1,...,kn the number of planar maps with ki colored stars of type qi , the
gluing being allowed only between half-edges of the same color. Note, however,
that we cannot retrieve all the numbers Mk1,...,kn from the F 0(Vt)’s because the
condition that Tr(Vt) is real requires that the parameters t satisfy some relations.
Namely, if ∗ denotes the involution (zXi1 · · ·Xik )

∗ = z̄Xik · · ·Xi1 , we must have
Tr(Vt) = 1

2Tr(Vt + V ∗
t ) and, therefore, if Vt = ∑

tiqi , to each ti must corresponds
a tj such that Tr(qj ) = Tr(q∗

i ) and tj = t̄i . Thus, the F 0(Vt)’s are generating func-
tions for the number of planar maps with ki colored stars of type qi or q∗

i . The
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convexity assumption also should induce some extra relations between the para-
meters, but it can be removed as shown in Theorem 1.4.

In this paper we shall prove that such a representation also holds for the correc-
tion F 1(Vt) to the free energy given in Theorem 1.1.

PROPERTY 1.2. F 1(Vt) is analytic in the parameters ti in some neighborhood
of the origin. Its expansion is a generating function of maps:

F 1(Vt) = ∑
k1,...,kn∈Nn\{0,...,0}

n∏
i=1

(−ti)
ki

ki ! M1
k1,...,kn

,

with M1
k1,...,kn

the number of maps with genus one with ki colored stars of type qi .
In particular, the above sum converges absolutely for max1≤i≤n |ti | small enough.

Let us remark that such a representation is commonly assumed to hold in
physics since the formal result is always true for finite N . For a few models
(viz., models similar to the Ising model on random graphs), the analysis has been
pushed forward to actually give a rather explicit formula for the generating func-
tion F 1(Vt) in terms of the limiting spectral measure of one matrix under the Gibbs
measure µN

Vt
(see, e.g., Eynard, Kokotov and Korotkin [11]). Our strategy is here

to study the most general potentials, providing a general formula for F 1(Vt) in
terms of the limiting empirical measure of all the matrices (see Section 6).

Our arguments to prove Theorem 1.1 are rather different from [10] or [1] where
orthogonal polynomials were used. In [10], the idea was to develop a Riemann–
Hilbert approach based on precise asymptotics of orthogonal polynomials. In the
case of several-matrices models, the technology of orthogonal polynomials is far
to be as much developed (except for the Ising model; see [6]). We shall therefore
use different tools; the first, which is well spread in physics, is the use of the
Schwinger–Dyson equation, the second, for which we need a convex potential, is
the a priori concentration inequalities. To sketch our strategy, let us denote µ̂N the
empirical measure

µ̂N :P −→ 1

N
Tr(P (A)) = 1

N
Tr(P (A1, . . . ,Am)),

where P runs over the set C〈X1, . . . ,Xm〉 of noncommutative polynomials in m

indeterminates. Note that when m = 1, µ̂N is the spectral measure of A1, and
therefore a probability measure on R. When m ≥ 2, µ̂N is a tracial state, which
generalizes the notion of measures to a noncommutative setting (see, e.g., [24]).
Observe that, for 1 ≤ i ≤ m,

∂ti logZN
Vt

= −N2µN
Vt

(µ̂N(qi))

so that the second order asymptotics of the free energy will follow from that of
µN = µN

Vt
[µ̂N ] evaluated at the monomials qi , 1 ≤ i ≤ n. Then, a simple integra-

tion by parts shows that, for any N ∈ N, the following finite N Schwinger–Dyson
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equation holds

µN
Vt

(
µ̂N ⊗ µ̂N(∂iP )

) = µN
Vt

(
µ̂N (

(Xi + DiVt)P
))

for any polynomial P and i ∈ {1, . . . ,m}. Here, ∂i,Di are noncommutative deriv-
atives (see Section 2 for a definition). Based on this equation and concentra-
tion inequalities, it was shown in [14] that for sufficiently small parameters
t = (t1, . . . , tn), µ̂N converges almost surely and in expectation (for the weak
topology generated by the set C〈X1, . . . ,Xm〉 of noncommutative polynomials).
Its limit µt is a solution of the Schwinger–Dyson equation

µt ⊗ µt(∂iP ) = µt
(
(Xi + DiVt)P

)
(2)

∀P ∈ C〈X1, . . . ,Xm〉,1 ≤ i ≤ m.

It is the unique solution which satisfies a bound of the form |µt(X
d
i )| ≤ Cd for all

d ∈ N and all i ∈ {1, . . . ,m}, when t = (t1, . . . , tn) is small enough and C finite,
independent of t.

In this paper we investigate the correction to this convergence by proving
a central limit theorem for µ̂N − µt. More precisely if we define δ̂N

t (P ) :=
N(µ̂N(P ) − µt(P )), then we show the following:

THEOREM 1.3. For all c > 0, there exists η > 0 such that for all t in
Bη,c = B(0, η) ∩ {t|Vt is c-convex}, for all P in C〈X1, . . . ,Xm〉, under µN

Vt
,

δ̂N
t (P ) converges in law toward a complex centered Gaussian law γP . Moreover,

{γP |P ∈ C〈X1, . . . ,Xm〉}, equipped with the natural addition γP +γQ = γP+Q, is
a Gaussian space and the covariance function is a generating function for planar
maps with two prescribed stars.

Such a central limit theorem was proved for more general potentials when m = 1
by Johansson in [18]. When m = 1 but the entries are not Gaussian, we refer the
reader to [3]. In the case m ≥ 2 but V = 0, the central limit theorem was obtained
in [8, 13, 20]. Our proof is rather close to that of [18] and in the physics spirit; by
doing an infinitesimal change of variables, it can be seen that the random variable

δ̂N
t (ξtP) :=

m∑
i=1

δ̂N
t

(
(I ⊗ µt + µt ⊗ I )(∂iDiP ) − (Xi + DiVt)DiP

)

converges in law toward a centered Gaussian variable. The main issue is then to
show that the ξtP ’s are dense in the set of polynomials. When m = 1, Johansson
could use finite Hilbert transformation to invert the operator ξt. In our case, we
deal with a differential operator acting on noncommutative test functions and we
prove by hand that it is invertible for sufficiently small ti’s in Section 4. Clearly,
our analysis is perturbative at this point and does not try to find the optimal domain
of validity of the central limit theorem.
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To use the central limit theorem to obtain the second order asymptotics of
µN

Vt
(δ̂N

t (P )) observe that, by the finite dimensional Schwinger–Dyson equation,
we get

NµN
Vt

(δ̂N
t (ξtP)) = µN

Vt

(
δ̂N

t ⊗ δ̂N
t (∂iDiP )

)
and the right-hand side converges toward the variance of the central limit theorem.
So again, to obtain the limit of NµN

Vt
(δ̂N

t (P )), we need to invert the operator ξt (see
Section 6). The resulting formula for the free energy and the variance are given in
terms of differential operators acting on noncommutative polynomial functions.
Note that a similar formula for the variance of the central limit theorem governing
the fluctuations of words of band matrices was found in [13]. Their interpreta-
tion in terms of enumeration of maps can be retrieved from the interpretation of
noncommutative derivatives in terms of natural operations on maps (see [14]).

Finally, in the spirit of [14], we study matrix models with a nonnecessarily con-
vex potential V . Since in that case ZN

V has no reason to be finite, we need to add a
cut-off. For a positive constant L, we define

µN
V,L(dA) = 1

ZN
V,L

1λmax(A)<L e−NTr(V (A)) dµN(A),

with λmax(A) the maximum of the spectral radius of the Ai ’s and ZN
V,L a normal-

izing constant. The remarkable point that we shall prove is that asymptotically the
behavior of this measure is independent of L and gives the same type of expansion
as in the convex case.

THEOREM 1.4. Let V = Vt(X1, . . . ,Xm) = ∑n
j=1 tj qj (X1, . . . ,Xm) be a

polynomial potential with n ∈ N, t = (t1, . . . , tn) ∈ C
n and monomials (qj )1≤j≤n

fixed. Assume that Tr(Vt(A))) is real for all A ∈ HN(C)m, all N ∈ N. There exists
L0 > 0 such that, for all L > L0, there exists η > 0 so that if |t| := max1≤j≤n

|tj | ≤ η then

logZN
Vt,L

= N2F 0(Vt) + F 1(Vt) + o(1)

with F 0(Vt),F
1(Vt) as in (1) and Property 1.2.

Note that in the large N limit, the dependence in L disappears.
In the next section we will describe our hypothesis of convexity and show some

useful consequences. In Section 3 we give an estimate on the rate of convergence
of µN

Vt
[µ̂N ] to µt. Then, in Section 4 we prove a central limit theorem, first only for

some specific polynomials and then for arbitrary polynomials. In Sections 5 and 6,
we give an interpretation of the variance and of the free energy in terms of enumer-
ation of maps. Finally, in Section 7 we give some hints to generalize our proofs to
the setting of Theorem 1.4.
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2. Convex hypothesis and standard consequences.

2.1. Framework and standard notation.

2.1.1. Noncommutative polynomials. We denote C〈X1, . . . ,Xm〉 the set of
complex polynomials on the noncommutative unknown X1, . . . ,Xm. Let ∗ denote
the linear involution such that for all complex z and all monomials

(zXi1 · · ·Xip)∗ = zXip · · ·Xi1 .

We will say that a polynomial P is self-adjoint if P = P ∗ and denote C〈X1, . . . ,

Xm〉sa the set of self-adjoint elements of C〈X1, . . . ,Xm〉.
For an integer number N , we denote HN(C) the set of N × N Hermitian ma-

trices. We shall sometimes identify HN(C) with the set R
N2

of the correspond-
ing real entries [by the bijection which associates to A ∈ HN(C) the N2-tuple
((�e(Aij )1≤i≤j≤N, (�m(Aij )1≤i<j≤N)))].

Moreover, we shall denote in general by A a random matrix, by X a generic
noncommutative indeterminate (e.g., to write polynomials). Bold symbols will in
general denotes vectors; A (resp. X) will in general denote a m-tuple of matrices
(resp. noncommutative indeterminates), whereas t will denote a vector of complex
scalars.

The potential V will be later on assumed to be self-adjoint which guarantees
that, for all integer N , all A = (A1, . . . ,Am) ∈ HN(C)m, Tr(V (A)) is real. Note
that, conversely, if Tr(V (A)) is real, Tr(V (A)) = Tr((V + V ∗)(A)/2) and so we
can replace V by (V + V ∗)/2 without loss of generality.

We shall assume also that V satisfies some convexity property in this paper.
Namely, we will say that V is convex if, for any N ∈ N,

φN
V :HN(C)m � (RN2

)m −→ R,

((Ak)ij )1≤i≤j≤N
1≤k≤m

−→ Tr(V (A1, . . . ,Am))

is a convex function of its entries.
Note that as we add a Gaussian potential 1

2
∑m

i=1 X2
i to V we can relax the

hypothesis a little. We will say that V is c-convex if c > 0 and V + 1−c
2

∑m
1 X2

i is
convex. Then the Hessian of φN

W with W = V + 1
2

∑m
1 X2

i is symmetric positive
with eigenvalues bigger than c.

An example is

Vt(X1, . . . ,Xm) =
n∑

i=1

Pi

(
m∑

k=1

αi
kXk

)
+ ∑

k,l

βk,lXkXl,

with convex real polynomials Pi in one unknown and real αi
k, βk,l such that, for

all l,
∑

k |βk,l| ≤ (1 − c). This is due to Klein’s lemma (see [15]) which states that
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the trace of a real convex function of a self-adjoint matrix is a convex function of
the entries of the matrix.

In the rest of the paper we shall assume that V is c-convex for some c > 0
fixed. We will denote B(0, η) = {t ∈ C

n : max1≤i≤n |ti | ≤ η} and Bη,c = B(0, η) ∩
{t :Vt is c-convex}.

2.1.2. Noncommutative derivatives. We define for 1 ≤ i ≤ m the noncommu-
tative derivatives ∂i : C〈X1, . . . ,Xm〉 → C〈X1, . . . ,Xm〉⊗2 by the Leibniz rule

∂iPQ = ∂iP × (1 ⊗ Q) + (P ⊗ 1) × ∂iQ

and ∂iXj = 1i=j 1 ⊗ 1. So for a monomial P , the following holds:

∂iP = ∑
P=RXiS

R ⊗ S,

where the sum runs over all possible monomials R,S so that P decomposes
into RXiS. We can iterate the noncommutative derivatives; for instance, ∂2

i :
C〈X1, . . . ,Xm〉 → C〈X1, . . . ,Xm〉 ⊗ C〈X1, . . . ,Xm〉 ⊗ C〈X1, . . . ,Xm〉 is given
on monomial functions by

∂2
i P = 2

∑
P=RXiSXiQ

R ⊗ S ⊗ Q.

We denote 
 : C〈X1, . . . ,Xm〉⊗2×C〈X1, . . . ,Xm〉 → C〈X1, . . . ,Xm〉 the map P ⊗
Q
R = PRQ and generalize this notation to P ⊗ Q ⊗ R
(S,T ) = PSQT R. So
∂iP 
R corresponds to the derivative of P with respect to Xi in the direction R,
and, similarly, 2−1[D2

i P 
(R,S) + D2
i P 
(S,R)] the second derivative of P with

respect to Xi in the directions R,S.
We also define the so-called cyclic derivative Di . If m is the map m(A ⊗ B) =

BA, let us define Di = m ◦ ∂i . For a monomial P , DiP can be expressed as

DiP = ∑
P=RXiS

SR.

We shall denote in short D the cyclic gradient (D1, . . . ,Dm).

2.1.3. Noncommutative laws. For (A1, . . . ,Am) ∈ HN(C)m, we define the
linear form µ̂N

A1,...,Am
on C〈X1, . . . ,Xm〉 by

µ̂N
A1,...,Am

(P ) = 1

N
Tr(P (A1, . . . ,Am)),

with Tr the standard trace Tr(A) = ∑N
i=1 Aii . µ̂N

A1,...,Am
will sometimes be called

the empirical distribution of the matrices (A1, . . . ,Am). When there is no ambi-
guity and the matrices A1, . . . ,Am follow the law µN

V , we shall drop the subscript
A1, . . . ,Am; µ̂N = µ̂N

A1,...,Am
. In [14] it was shown that if Vt = ∑

i tiqi is c-convex,
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for |t| := max1≤i≤n |ti | small enough, µ̂N converges weakly in expectation and al-
most surely under µN

V toward a limit µt [i.e., for all P in C〈X1, . . . ,Xm〉, µ̂N(P )

converges in expectation and almost surely to µt(P )]. We denote

µN
t (P ) = µN

Vt
[µ̂N(P )].

We shall later estimate differences between µ̂N and its limit. So, we set

δ̂N
t = N(µ̂N − µt),

δt
N =

∫
δ̂N dµN

V = N(µN
t − µt),

δ̂
N

t = N(µ̂N − µN
t ) = δ̂N

t − δt
N

.

In order to simplify the notation, we will make t implicit and drop the subscript t

in the rest of this paper so that we will denote µN,µ, δ̂N, δ
N

and δ̂
N

in place of

µN
t ,µt, δ̂

N
t , δt

N
and δ̂

N

t , as well as V in place of Vt.

2.2. Brascamp–Lieb inequality and a priori controls. We use here a general-
ization of the Brascamp–Lieb inequality shown by Hargé [17] which implies that
if V is c-convex, for all convex function g on (R)mN2 � HN(C)m,∫

g(A − M) dµN
V (A) ≤

∫
g(A) dµN

c (A),(3)

where M = ∫
AdµN

V (A) is the m-tuple of deterministic matrices with entries
(Mj )k� = ∫

(Aj )k� dµN
V (A) for k, � ∈ {1, . . . ,N}, j ∈ {1, . . . ,m}, and µN

c is the
Gaussian law on HN(C)m with covariance (Nc)−1, that is,

∫
f (A) dµN

c (A) =∫
f (c−1/2A) dµN(A) for all measurable function f on R

mN2
.

Recall that Bη,c is the subset of the complex numbers t ∈ C
n which are bounded

by η and so that V is c-convex. Based on the Brascamp–Lieb inequality, the fol-
lowing was shown in [14] (Theorem 3.4):

LEMMA 2.1 (Compact support). If c, η > 0, then there exists C0 = C0(c, η)

finite such that, for all i ∈ {1, . . . ,m}, all n ∈ N, all t ∈ Bη,c,

µ(X2n
i ) ≤ lim sup

N

µN(X2n
i ) ≤ C2n

0 .

Note that this lemma shows that, for i ∈ {1, . . . ,m}, the spectral measure of Xi

is asymptotically contained in the compact set [−C0,C0].
PROOF OF LEMMA 2.1. Let us recall the proof of this result for completeness.

Let k ∈ {1, . . . ,m}. As g : A ∈ HN(C)m → N−1Tr(A4d
k ) = µ̂N(X4d

k ) is convex by
Klein’s lemma, we can use the Brascamp–Lieb inequalities (3) to see that

µN (
(Xk − Mk)

4d) ≤ µN
c (µ̂N(X4d

k )),(4)
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where Mk := µN
V (Ak) is the deterministic matrix with entries (Mk)ij = µN

V ×
((Ak)ij ). Thus, since µN

c (µ̂N(X4d
i )) converges by Wigner theorem [25] toward

c−2dC2d ≤ (c−14)2d with C2d the Catalan number, we only need to control Mk .
First observe that, for all k, the law of Ak is invariant under the unitary group so
that, for all unitary matrices U ,

Mk = µN
V [UAkU

∗] = UµN
V [Ak]U∗ ⇒ Mk = µN

V (µ̂N(Xk))I = µN(Xk)I.(5)

Let us bound µN(Xk). Jensen’s inequality implies

ZV
N ≥ e−N2µN((1/N)Tr(V )) = e−N2µN◦µ̂N (V ).

According to [23], µN ◦ µ̂N converges in moments to the law of m free semicir-
cular operators, which are uniformly bounded. Thus, there exists a finite constant
L such that ZV

N ≥ e−N2L. We now use the convexity of V to find that, for all N ,
all A = (A1, . . . ,Am) ∈ HN(C)m,

Tr

(
V (A) + 1 − c

2

m∑
i=1

A2
i

)
≥ Tr

(
V (0) +

m∑
i=1

DiV (0)Ai + (1 − c)

m∑
i=1

Ai

)
.

By Chebyshev’s exponential inequality, and then using the above bound, we there-
fore obtain that, for any λ ≥ 0,

µN
V

(
µ̂N(Xk) ≥ y

) ≤ e−λN2yµN
V

(
eλN2µ̂N (Xk)

)
= e−λN2y ZN

c

ZN
1 ZN

V

µN
c

(
eλN2µ̂N (Xk)−NTr(V (A)+((1−c)/2)

∑m
i=1 A2

i )
)

≤ eN2(L−V (0)−λy+m/2 log c)µN
c

× (
e−NTr(

∑m
i=1((1−c)+DiV (0))Ai−λAk)

)
= eN2(L−V (0)−λy+m/2 log c)

× e(N2/(2c))
∑

i �=k(1−c+DiV (0))2+(N2/(2c))(1−c+DkV (0)−λ)2
,

where we denoted V (0) := V (0, . . . ,0) and DiV (0) := DiV (0, . . . ,0). Remark
that these constants are uniformly bounded for t in B(0,R), R > 0. Thus, we
deduce that

µN
V

(
µ̂N(Xk) ≥ y

) ≤ eN2[(a−λy)+(1/(2c))(λ−b)2]

with two constants a, b which are uniformly bounded in terms of c, η for t ∈ Bη,c.
Optimizing with respect to λ shows that there exists A < +∞ so that, for t in Bη,c,

µN
V

(
µ̂N(Xk) ≥ y

) ≤ eN2(a−(c/2)y2−by)

≤ eN2(A−(c/4)y2).
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Replacing Xk by −Xk , we bound similarly µN
V (µ̂N(Xk) ≤ −y) and, hence, we

have proved

µN
V

(|µ̂N(Xk)| ≥ y
) ≤ 2eN2(A−(c/4)y2).

As a consequence,

µN
V (|µ̂N(Xk)|) =

∫ ∞
0

µN
V

(|µ̂N(Xk)| ≥ y
)
dy

(6)
≤ 2

√
c−1A + 2

∫ ∞
2
√

c−1A
e−(N2c/4)(y2−4A/c) dy ≤ 4

√
c−1A,

where the last inequality holds for N sufficiently large. Recall that A is a contin-
uous function of the ti ’s and, therefore, our bound on supN µN

V (|µ̂N(Xk)|), which
controls the spectral radius of Mk in any dimension N , is locally bounded in t.
This completes the proof with (4). �

Let us derive some other useful properties due to the convexity hypothesis. Let
λN

max(Ai) be the maximum of the absolute value of the eigenvalues of Ai . We first
obtain an estimate on λN

max(A), the maximum of the (λN
max(Ai))1≤i≤m under the

law µN
V .

LEMMA 2.2 (Exponential tail of the largest eigenvalue). If c, η > 0, then there
exists α > 0 and M0 < ∞ such that, for all t ∈ Bη,c, all M ≥ M0 and all integer N ,

µN
V

(
λN

max(A) > M
) ≤ e−αMN.

PROOF. Since the largest eigenvalue

λN
max(A) = max

1≤i≤m
sup

‖u‖=1
〈u,AiA

∗
i u〉1/2

is a convex function of the entries of the Ai ’s, we can apply the Brascamp–Lieb
inequality (3) to obtain that, for all s ∈ [0, c

10 ],∫
esNλN

max(A−M) dµN
V (A) ≤

∫
esNλN

max(A) dµN
c (A) ≤ CN

0 ,

where the last inequality comes from the bound on the largest eigenvalue of the
GUE shown, for instance, in [5]. Now,

λN
max(A) ≤ λN

max(A − M) + λN
max(M) ≤ λN

max(A − M) + 4
√

Ac−1,

where we used the bound (6). Consequently, we deduce that∫
esNλN

max(A) dµN
V (A) ≤ CN

for a positive finite constant C. We conclude by a simple application of Cheby-
shev’s inequality. �
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2.3. Concentration inequalities. We next turn to concentration inequalities for
the trace of polynomials on the subset of HN(C)m � R

N2m:

�N
M =

{
A ∈ HN(C)m :λN

max(A) = max
i

(λN
max(Ai)) ≤ M

}

for some fixed M > 0. Recall that δ̂
N = N(µ̂N − µ̄N). We shall prove concen-

tration inequalities for δ̂
N

(P ) on �N
M for polynomial functions P . However, con-

centration inequalities should not restrict to polynomial functions but hold more
generally for Lipschitz functions (see, e.g., [15]). We thus define the following
Lipschitz semi-norm:

‖P‖M
L = sup

AC∗-algebra
sup

x1,...,xm∈A
∀i,xi=x∗

i ,‖xi‖A≤M

(
m∑

k=1

‖DkPDkP
∗‖A

)1/2

.(7)

Be aware that this is not a norm, since, for example, ‖1‖M
L = 0 or ‖X1X2 −

X2X1‖M
L = 0. However, on these particular polynomials, δ̂

N
vanishes. This fact

can be generalized as follows; if we set

mN
M,P := 1

µN
V (�N

M)
µN

V (1�N
M

δ̂
N

(P )),

we shall see (see the proof below) that on �N
M

|δ̂N
(P ) − mN

M,P | ≤ 2M
√

mN‖P‖M
L .

Therefore, if we denote C〈X1, . . . ,Xm〉ML the completion and separation of

C〈X1, . . . ,Xm〉 for ‖ · ‖M
L , we can extend δ̂

N − mN
M,P to C〈X1, . . . ,Xm〉ML on

�N
M . A similar result will be proved for µ in Lemma 4.9 (note, however, that the

arguments of this lemma do not apply here because µ̄N is not the law of uniformly
bounded matrices).

We shall prove the following:

LEMMA 2.3 (Concentration inequality). Let t be such that V is c-convex.
There exists α,M0 > 0 such that, for all N in N, all M > M0, all P ∈
C〈X1, . . . ,Xm〉ML , there exists a positive constant εN

P,M such that, for any ε > 0,

µN
V

({|δ̂N
(P ) − mN

P,M | ≥ ε + εN
P,M} ∩ �N

M

) ≤ 2e−cε2/(2(‖P‖M
L )2).(8)

Moreover, there exists a universal constant C such that

εN
P,M ≤ 2CNM‖P‖M

L e−αNM.

If P is a monomial of degree 0 < d < αN , we have

‖P‖M
L ≤ dMd−1, εN

P,M ≤ NCdMde−αMN,

|mN
P,M | ≤ N(3Md + d2)e−αMN.
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PROOF. Since V is c-convex, for all integer number N , the Hessian of

φN
V : A � ((Ak)ij )1≤i≤j≤N

1≤k≤m

∈ R
mN2 −→ Tr(V (A1, . . . ,Am)) ∈ R

is bounded below by cI . Therefore, since µN
V has density e−NφN

V (A) with respect
to the Lebesgue measure, µN

V satisfies a Log–Sobolev inequality with constant
(Nc)−1 (see, e.g., Corollaire 5.5.2, page 87 in [4]). In other words, for any contin-
uously differentiable function f from R

mN2
into R,

∫
f 2 log

f 2

µN
V (f 2)

dµN
V ≤ 2

Nc

∫
‖∇f ‖2 dµN

V ,

with ∇f the gradient of f and ‖ · ‖ the Euclidean norm. Here and in the sequel we
identify the measure µN

V as a measure on R
N2m. This implies, by the well-known

Herbst argument (see, e.g., [4], Théorème 7.4.1, page 123), that µN
V satisfies con-

centration inequalities. Let us briefly summarize this argument for completeness. If
f is a continuously differentiable function, differentiating X(λ) := 1

λ
logµN

V [eλf ]
and using the Log–Sobolev inequality yields

∂λX(λ) ≤ 2

cNλ2µN
V (eλf )

µN
V

(∥∥∇e(1/2)λf
∥∥2) ≤ 1

2cN
‖‖∇f ‖2‖∞.

If we assume µN
V (f ) = 0, we find that X(0) = 0 and so integrating with respect

to λ yields

µN
V (eλf ) ≤ eλ2‖‖∇f ‖2‖∞/(2cN).

Using Chebyshev’s inequality thus gives, for ε > 0 and λ > 0,

µN
V (f ≥ ε) ≤ e−λεeλ2‖‖∇f ‖2‖∞/(2cN)

and so optimizing with respect to λ results with

µN
V (f ≥ ε) ≤ e−cNε2/(2‖‖∇f ‖‖2∞).

Replacing f by −f gives the well-known concentration estimate, for any ε > 0,

µN
V (|f | ≥ ε) ≤ 2e−cNε2/(2‖‖∇f ‖‖2∞)

for any continuously differentiable function f such that µN
V (f ) = 0. This esti-

mate extends, modulo some extra technicalities, to Lipschitz functions and then
‖‖∇f ‖‖∞ is replaced by the Lipschitz norm

‖f ‖L := sup
x �=y

|f (x) − f (y)|
‖x − y‖ ,
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where x, y belong to R
mN2

and ‖x‖ denotes the Euclidean norm of x. Then, for
all ε > 0, the following estimate holds:

µN
V

(|f − µN
V (f )| > ε

) ≤ 2e−Ncε2/(2‖f ‖2
L).(9)

We set

fP (X) := δ̂
N

(P ) − mN
P,M

= Tr(P (X)) − cN
P,M,

with cN
P,M = 1

µN
V (�N

M)

∫
1�N

M
Tr(P (A)) dµN

V (A). Observing that

∂(Ai)kl
Tr(P (A)) = (DiP (A))lk,

we find that on the closed set �N
M , fP is a Lipschitz (actually an infinitely differ-

entiable) function of the entries of A ∈ HN(C)m with constant

(‖fP ‖�N
M

L )2 := sup
A∈�N

M

‖∇TrP(A)‖2

= sup
A∈�N

M

m∑
k=1

Tr(DkP (DkP )∗) ≤ N(‖P‖M
L )2,

where we simply used that the set of N × N matrices is a C∗-algebra. As a conse-
quence, we also find that, for B ∈ �N

M ,

|fP (B)| =
∣∣∣∣Tr(P (B)) − 1

µN
V (�N

M)

∫
1�N

M
Tr(P (A)) dµN

V (A)

∣∣∣∣

≤ ‖TrP‖�N
M

L

µN
V (�N

M)

∫
1�N

M

(
m∑

i=1

Tr(Bi − Ai)
2

)1/2

dµN
V (A)(10)

≤ 2
√

mMN‖P‖M
L

and so on �N
M we can extend fP to P ∈ C〈X1, . . . ,Xm〉ML .

We can also extend fP to the whole space HN(C)m with the same Lipschitz
constant by putting

f̄P (A) = sup
B∈�N

M

{
fP (B) − √

N‖P‖M
L

(
m∑

i=1

Tr(Ai − Bi)
2

)1/2}
.

Then applying (9), with

εN
P,M = ∣∣µN

V

(
1(�N

M)c f̄P

)∣∣ + |1 − µN
V (�N

M)−1||µN
V (1�N

M
fP )|,
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we obtain

µN
V

({|δ̂N
(P ) − mN

P,M | ≥ ε + εN
P,M} ∩ �N

M

)
= µN

V

({∣∣∣∣f̄P − 1

µN
V (�N

M)
µN

V (1�N
M

f̄P )

∣∣∣∣ ≥ ε + εN
P,M

}
∩ �N

M

)

≤ µN
V

(|f̄P − µN
V (f̄P )| ≥ ε

)
≤ 2e−Ncε2/(2(‖fP ‖�N

M
L )2) = 2e−cε2/(2(‖P‖M

L )2).

We now use the exponential decay of the largest eigenvalue to control εN
P,M . By

(10) and the definition of f̄P , note that

f̄P (A) ≤ 2
√

mMN‖P‖M
L + √

N‖P‖M
L

((
m∑

i=1

Tr(A2
i )

)1/2

+ √
mNM

)
.

Consequently, if M,N are large enough so that µN
V ((�N

M)c) ≤ e−αNM ≤ 1
2 , by

Property 2.2,

εN
P,M ≤ µN

V

(
1(�N

M)c

(
MNm‖P‖M

L

(
3 + λmax(A)

))) + 2MmN‖P‖M
L e−αNM

≤ MNm‖P‖M
L

(
5e−αNM +

∫ ∞
0

µN
V

({λmax(A) ≥ y ∨ M})dy

)

≤ 6m

(
M2 + 1

αN

)
N‖P‖M

L e−αNM.

When P is a monomial of degree d ,

‖P‖M
L ≤ dMd−1.

Thus, we only need to control mN
P,M ;

|mN
P,M | ≤

∣∣∣∣
(

1

µN
V (�N

M)
− 1

)
µN

V (1�N
M

Tr(P ))

∣∣∣∣ + ∣∣µN
V

(
1(�N

M)cTr(P )
)∣∣

≤ 2Ne−αMNMd + NµN
V

(
1(�N

M)cλmax(A)d
)

= 2Ne−αMNMd + dN

∫ ∞
0

yd−1µN
V

({λmax(A) ≥ y ∨ M})dy

≤ 2Ne−αMNMd + dN

∫ ∞
0

yd−1e−αNy∨M dy

≤ (2 + 1)Ne−αMNMd + dNe−αNM
d∑

k=1

d − 1

αN
· · · d − k

αN

≤ N(3Md + d2)e−αNM,
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where we assumed that d < αN . �

For later purposes, we have to find a control on the variance of µ̂N . Recall that

δ̂
N

(P ) = N(µ̂N(P ) − µN(P )).

LEMMA 2.4. For any ε, η, c > 0, there exists B,C,M0 > 0 such that, for all
t ∈ Bη,c , all M ≥ M0, for all N ∈ N, and all monomial P of degree less than
εN(2/3),

µN
V ((δ̂

N
(P ))2) ≤ B(‖P‖M

L )2 + CdN2e−αMN/2.

PROOF. If P is a monomial of degree d , we write

µN
V ((δ̂

N
(P ))2) ≤ µN

V (1�N
M

(δ̂
N

(P ))2) + µN
V

(
1(�N

M)c(δ̂
N

(P ))2) = I1 + I2.(11)

For I1, the previous Lemma implies that

I1 = 2
∫ ∞

0
xµN

V

({|Tr(P ) − µN
V (Tr(P ))| ≥ x} ∩ �N

M

)
dx

≤ (εN
P,M + |mN

P,M |)2 + 4
∫ ∞

0
xe−cx2/(2(‖P‖M

L )2) dx

≤ Ce−αMN + B(‖P‖M
L )2,

with a constant B = 4
c

and a constant C such that (εN
P,M + |mN

P,M |)2 ≤ Ce−αMN

for all d ≤ εN2/3. For the second term, we take M ≥ M0 with M0 as in Lemma 2.2
(exponential tail of the largest eigenvalue) to get

I2 ≤ µN
V [(�N

M)c]1/2µN
V ((δ̂

N
(P ))4)1/2 ≤ e−αMN/2µN

V ((δ̂
N

(P ))4)1/2.

By the Cauchy–Schwarz inequality, we obtain the control

µN
V [δ̂N

(P )4] ≤ 24µN
V ((Nµ̂N(P ))4) ≤ 24N4µN

V ((µ̂N(PP ∗))2).

Now, by the noncommutative Hölder’s inequality (see, e.g., [21]),

[µ̂N(PP ∗)]2 ≤ max
1≤i≤m

µ̂N(X4d
i )

so that we obtain the bound

µN
V [δ̂N

(P )4] ≤ 24N4 max
1≤i≤m

µN(X4d
i ).

By (5) and (6), we obtained a uniform bound x(= 4
√

Ac−1) on µ̄N(Xi) so that we
have proved using (4) that

µN(X4d
i ) ≤ 24d(

µN
c (µ̂N(X4d

i )) + x4d)
.
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We can now use the control on the moments as obtained, for instance, by Sosh-
nikov (Theorem 2, page 17 in [22]) to see that there exists C(ε), C(ε) < ∞ for
ε > 0, so that

µN
c (µ̂N(X4d

i )) ≤ C(ε)4d,

provided d ≤ εN2/3. As a consequence, we get that

µN(X4d
i ) ≤ C(ε)4d(12)

for all d ≤ εN2/3 and all integer number N . Here C(ε) denotes a finite constant
depending only on ε, η and c which may have changed from line to line. Hence,
we conclude that

I2 ≤ 4N2e−αMN/2C(ε)2d .

Plugging back this estimate into (11), we have proved that for N and M suffi-
ciently large, all monomials P of degree d ≤ εN2/3, all t ∈ Bη,c,

µN
V ((δ̂N(P ))2) ≤ B(‖P‖M

L )2 + C2dN2e−αMN/2

with a finite constant C depending only on ε, c and η. �

3. Bound on the distance between µ and µN . We here bound, for all mono-
mial P ,

δ
N

(P ) = N
(
µN(P ) − µ

)
(P ).

PROPOSITION 3.1. For all c, ε > 0, there exists η > 0,C < +∞, such that
for all integer number N , all t ∈ Bη,c, and all monomial functions P of degree less
than εN2/3,

|δN
(P )| ≤ Cdeg(P )

N
.

In particular, |(δ̂N − δ̂N )(P )| ≤ Cdeg(P )

N
almost surely.

PROOF. The starting point is the finite dimensional Schwinger–Dyson equa-
tion that one gets readily by integration by parts (see [14], proof of Theorem 3.4)

µN
V

(
µ̂N [(Xi + DiV )P ]) = µN

V

(
µ̂N ⊗ µ̂N(∂iP )

)
.(13)

Therefore, since µ satisfies the Schwinger–Dyson equation (2)

µ[(Xi + DiV )P ] = µ ⊗ µ(∂iP ),(14)

by taking the difference, we get that for all polynomial P ,

δ
N

(XiP ) = −δ
N

(DiV P ) + δ
N ⊗ µN(∂iP ) + µ ⊗ δ

N
(∂iP ) + r(N,P ),(15)
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with

r(N,P ) := N−1µN
V

(
δ̂
N ⊗ δ̂

N
(∂iP )

)
.

If we take P a monomial of degree d ≤ εN2/3 and assume M ≥ M0, then we see,
by using Lemma 2.4,

|r(N,P )| ≤ 1

N

∑
P=P1XiP2

µN
V (|δ̂N

(P1)|2)1/2µN
V (|δ̂N

(P2)|2)1/2

≤ C

N

d−1∑
l=0

(
Bl2M2(l−1) + ClN2e−αMN/2)1/2

× (
B(d − l − 1)2M2(d−l−1) + C(d−l−1)N2e−αMN/2)1/2

≤ C

N
d
(
B(d − 1)2M2(d−2) + C(d−1)N2e−αMN/2) := r(N,d,M).

We set

�N
d = max

P monomial of degree d
|δN

(P )|.

Observe that by (12), for any monomial of degree d less than εN2/3, |µN(P )| ≤
C(ε)d, |µ(P )| ≤ Cd

0 ≤ C(ε)d . It allows us to obtain the rough bound �N
d ≤

2NC(ε)d if d < εN2/3. By (15), writing DiV = ∑
tjDiqj , we get that, for

d < εN2/3,

�N
d+1 ≤ max

1≤i≤m

n∑
j=1

|tj |�N
d+deg(Diqj ) + 2

d−1∑
l=0

C(ε)d−l−1�N
l + r(N,d,M).

We next define, for κ ≤ 1,

�N(κ, ε) :=
εN2/3∑
k=1

κk�N
k .

We obtain, if D is the maximal degree of V ,

�N(κ, ε) ≤ [
C′κ−D|t| + 2

(
1 − C(ε)κ

)−1
κ2]

�N(κ, ε)
(16)

+ C|t|
εN2/3+D∑

k=εN2/3+1

κk−D�N
k +

εN2/3∑
k=1

κk+1r(N, k,M),

where we choose κ small enough so that C(ε)κ < 1. Moreover, since D is finite,
using the bound on �N

k , we get

εN2/3+D∑
k=εN2/3+1

κk−D�N
k ≤ 2DN(κC(ε))εN

2/3
κ−D.
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Since κC(ε) < 1, as N goes to infinity, this term is negligible with respect to N−1

for all ε > 0. The following estimate holds:

εN2/3∑
k=1

κkr(N, k,M)

≤ C

N

εN2/3∑
k=1

kκk(B(k − 1)2M2(k−2) + C(k−1)N2e−αNM/2) ≤ C′′

N

if κ is small enough so that M2κ < 1 and Cκ < 1. We observed here that
N2e−αNM/2 is uniformly bounded independently of N ∈ N. Now, if |t| is small,
we can choose κ so that

ζ := 1 − [
C′κ−D|t| + 2

(
1 − C(ε)κ

)−1
κ2]

> 0.

Plugging these controls into (16) shows that for all ε > 0, and for κ > 0 small
enough, there exists a finite constant C(κ, ε) so that

�N(κ, ε) ≤ C(κ, ε)N−1

and so for all monomial P of degree d ≤ εN2/3,

|δN
(P )| ≤ C(κ, ε)κ−dN−1. �

To get the precise evaluation of Nδ
N

(P ), we shall first obtain a central limit theo-
rem under µN

V which in turn will allow us to estimate

lim
N→∞Nr(N,P ).

4. Central limit theorem. We shall here prove that

δ̂N (P ) = N(µ̂N − µ)(P )

satisfies a central limit theorem for all polynomial P . By Proposition 3.1, it is
equivalent to prove a central limit theorem for δ̂

N
(P ), P ∈ C〈X1, . . . ,Xm〉. We

start by giving a weak form of a central limit theorem for Stieljes-like functions.
We then extend the result to polynomial functions in the image of some differential
operator. We finally generalize our result to any polynomial functions.

For the rest of the paper, we will always assume the following hypothesis (H).
(H): Let c be a positive real number. The parameter t is in Bη,c with η suffi-

ciently small such that we have the convergence to the solution of (2) as well as
the control given by Lemma 2.1 (Compact support) and Proposition 3.1.

Note that (H) implies also that the control of Lemma 2.1 (Compact support) is
uniform, and that we can apply Lemma 2.2 (Exponential tail of the largest eigen-
value) and Lemma 2.3 (Concentration inequality) with uniform constants.
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4.1. Central limit theorem for Stieljes test functions. One of the issues that one
needs to address when working with polynomials is that they are not uniformly
bounded. For that reason, we will prefer to work in this section with the complex
vector space Cm

st (C) generated by the Stieljes functionals

ST m(C) =
{ →∏

1≤i≤p

(
zi −

m∑
k=1

αk
i Xk

)−1

; zi ∈ C\R, αk
i ∈ R,p ∈ N

}
,(17)

where
∏→ is the noncommutative product. We can also equip ST m(C) with an

involution( →∏
1≤k≤p

(
zk −

m∑
i=1

αk
i Xi

)−1)∗
=

→∏
1≤k≤p

(
zp−k −

m∑
i=1

α
p−k
i Xi

)−1

.

We denote Cm
st (C)sa the set of self-adjoint elements of Cm

st (C). The derivation is
defined by the Leibniz rule and

∂i

(
z −

m∑
i=1

αiXi

)−1

= αi

(
z −

m∑
i=1

αiXi

)−1

⊗
(
z −

m∑
i=1

αiXi

)−1

.

We recall notation; first 
 is the operator

(P ⊗ Q)
h = PhQ and (P ⊗ Q ⊗ R)
(g,h) = PgQhR

so that, for a monomial q ,

∂i ◦ ∂jq#(hi, hj ) = ∑
q=q0Xiq1Xjq2

q0hiq1hjq2 + ∑
q=q0Xjq1Xiq2

q0hjq1hiq2.

LEMMA 4.1. Assume (H) and let h1, . . . , hm be in Cm
st (C)sa . Then the random

variable

YN(h1, . . . , hm) = N

m∑
k=1

{µ̂N ⊗ µ̂N(∂khk) − µ̂N [(Xk + DkV )hk]}

converges in law toward a real centered Gaussian variable with covariance

C(h1, . . . , hm) =
m∑

k,l=1

(
µ ⊗ µ[∂khl × ∂lhk] + µ

(
∂l ◦ ∂kV 
(hk, hl)

)) +
m∑

k=1

µ(h2
k).

PROOF. Define W = 1
2

∑
i X

2
i + V . Notice that YN(h1, . . . , hm) is real valued

because the h′
ks and W are self adjoint. The proof follows from the usual change

of variable trick. We take h1, . . . , hm in Cm
st (C)sa , λ ∈ R and perform a change of

variable Ai → Bi = F(A)i = Ai + λ
N

hi(A) in ZN
V . Note that since the hi are C∞

and uniformly bounded, this defines a bijection on HN(C)m for N big enough.
We shall compute the Jacobian of this change of variables up to its second order
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correction. The Jacobian J may be seen as a matrix (Ji,j )1≤i,j≤m where the Ji,j are
in L(HN(C)) the set of endomorphisms of HN(C), and we can write J = I + λ

N
J

with

J i,j :HN(C) −→ HN(C),

X −→ ∂ihj #X.

Now, for 1 ≤ i, j ≤ m, X −→ ∂ihj #X is bounded for the operator norm uniformly
in N [since hj ∈ Cst (C), ∂ihj ∈ Cst (C) ⊗ Cst (C) is uniformly bounded] so that,
for sufficiently large N , the operator norm of λ

N
J is less than 1. From this, we

deduce

|detJ | =
∣∣∣∣det

(
I + λJ

N

)∣∣∣∣
= exp

(
Tr log

(
I + λJ

N

))
= exp

(∑
k≥1

(−1)k+1λk

kNk
Tr(J

k
)

)
.

Observe that as J is a matrix of size m2N2 and of uniformly bounded norm, the

kth term (−1)k+1λk

Nk Tr(J
k
) is bounded by m2|λ|k

Nk−2 . Hence, only the two first terms in
the expansion will contribute to the order 1 and the sum sN of the other terms will
be of order 1

N
. To compute the two first terms in the expansion, we only have to

remark that if φ is an endomorphism of HN(C) is of the form φ(X) = ∑
l AlXBl ,

with N × N matrices Ai ,Bi , then Trφ = ∑
l TrAl TrBl [this can be checked by

decomposing φ on the canonical basis of HN(C)]. Now,

J
k

ij :X −→ ∑
1≤i1,...,ik−1≤m

∂ihi2
(∂i2hi3
(· · · (∂ik−1hj
X) · · ·)).

Thus, we get

Tr(J ) = ∑
i

TrJ ii = ∑
1≤i≤m

Tr ⊗ Tr(∂ihi)

and

Tr(J
2
) = ∑

i

Tr(J
2
ii) = ∑

1≤i,j≤m

Tr ⊗ Tr(∂ihj ∂jhi).

We now make the change of variable Ai → Ai + λ
N

h(A) to find that

ZN
V =

∫
e−NTr(V (A)) dµN(A)

=
∫

e−NTr(W(Ai+(λ/N)hi(A))−W(Ai))e(λ/N)
∑

i Tr⊗Tr(∂ihi)

× e(−λ2/(2N2))
∑

i,j Tr⊗Tr(∂ihj ∂j hi)esN dµN
V (A)
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with sN of order 1
N

. The first term can be expanded into

W

(
Ai + hi(A)

N

)
− W(Ai) = 1

N

∑
i

∂iW
hi + 1

N2

∑
i,j

∂i ◦ ∂jW#(hi, hj ) + RN

N3 ,

where RN is a polynomial in the hi’s and in the Xi’s, of degree less than the degree
of V minus two in the later. To sum up, the following equality holds:∫

eλYN(h1,...,hm)−(λ2/2)CN(h1,...,hm)+(1/N)(µ̂N (RN)+NsN) = 1,

with

CN(h1, . . . , hm) := µ̂N

(∑
i,j

∂i ◦ ∂jW#(hi, hj )

)
+ µ̂N ⊗ µ̂N

(∑
i,j

∂ihj ∂jhi

)
.

We can decompose the previous expectation in two terms E1 and E2 with

E1 = µN
V

[
1�N

M
eλYN(h1,...,hm)−(λ2/2)CN (h1,...,hm)+(1/N)(µ̂N (RN)+NsN)]

and

E2 = µN
V

[
1(�N

M)ce
λYN(h1,...,hm)−(λ2/2)CN(h1,...,hm)+(1/N)(µ̂N (RN)+NsN)].

We first consider E1. On �N
M = {A : maxi (λ

N
max(Ai)) ≤ M} the polynomial RN

is uniformly bounded and so µ̂N(RN) + NsN is of order one, bounded by a con-
stant AN which goes uniformly to 0 when N goes to infinity. We next show that we
can replace CN(h1, . . . , hm) by its limit C(h1, . . . , hm) in the exponential in E1.
An intermediate step is to replace it by

C̄N(h1, . . . , hm) = µ̄N

(∑
i,j

∂i ◦ ∂jW#(hi, hj )

)
+ µ̄N ⊗ µ̄N

(∑
i,j

∂ihj ∂jhi

)
.

In fact, by Lemma 2.3, µ̂N(P ) converges toward its expectation µN(P ) under
µN

V (1�N
M

·) except on sets with probability of order e−N2
once evaluated at any

products of the hi ’s and the Xi’s (because the Lipschitz constant of finite products
of hi’s and Xi’s are bounded on �N

M and the error terms εN
P,M and mN

P,M can be
bounded as we did for polynomials). Hence, we can find a constant C(M,c) > 0
such that for N large enough,

µN
V

({|CN(h1, . . . , hm) − C̄N(h1, . . . , hm)| > 2ε} ∩ �N
M

)
≤ 2e−C(M,c)N2(εN )2

,

with εN = ε − εN
P,M − mN

P,M ∼ ε. Moreover, µN(P ) converges to µ(P ) for any
polynomial function P (see [14], Theorems 3.1 and 3.4). Since by the Weier-
strass theorem the hi ’s can be uniformly approximated by polynomials on �N

M ,
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uniformly in N , we also know that C̄N(h1, . . . , hm) converges to C(h1, . . . , hm).
Consequently, we obtain for some positive constant C(M,c), N large enough

µN
V

({|CN(h1, . . . , hm) − C(h1, . . . , hm)| > ε} ∩ �N
M

)
≤ 2e−C(M,c)N2(εN )2

.

Finally, YN(h1, . . . , hm) is at most of order N and CN(h1, . . . , hm) of order one.
Hence, the exponential in E1 is at most of order eCN for some finite constant C.
Therefore, if we let

E′
1 := µN

V

[
1�N

M
eλYN(h1,...,hm)−(λ2/2)C(h1,...,hm)],

we deduce that
∣∣∣∣log

E1

E′
1

∣∣∣∣ ≤
∣∣∣∣log eAN

µN
V [1�N

M
eλYN(h1,...,hm)−(λ2/2)(CN(h1,...,hm)−C(h1,...,hm))]

µN
V [1�N

M
eλYN(h1,...,hm)]

∣∣∣∣
≤ ∣∣log

(
e(λ2/2)εN + 2eCNe−C(M,c)N2ε2

N
)∣∣ + AN.

Letting first N going to infinity and then ε going to zero yields

lim
N→∞

E1

E′
1

= 1.

Note that this estimate is valid for any M large enough so that Lemma 2.3 holds.
Our goal is now to show that, for M sufficiently large, E2 vanishes when N goes

to infinity. It would be an easy task if the term in the exponential were bounded,
but it may in fact be large due to some derivatives of V appear so that there are
polynomials term in the exponential. The idea to pass this difficulty is to make
the reverse change of variables. For N bigger than the norm of the hi’s, and with
Bi = Ai + 1

N
hi(A),

E2 = µN
V

[
1{A:λN(A)≥M}eλYN(h1,...,hm)−(λ2/2)CN(h1,...,hm)+(1/N)(µ̂N (RN)+NsN)]

= µN
V

(
B :λN

max(A) ≥ M
) ≤ µN

V

(
B :λN

max(B) ≥ M − 1
)
.

This last quantity goes exponentially fast to 0 for M sufficiently large by
Lemma 2.2 (exponential tail of the largest eigenvalue).

Hence, we arrive, for M large enough, at

lim
N→∞

∫
1�N

M
eλYN(h1,...,hm) dµN

V = e(λ2/2)C(h1,...,hm).(18)

Since µN
V (�N

M) goes to one as N goes to infinity, we find that YN(h1, . . . , hm) con-
verges in law under µN

V (�N
M)−1µN

V (· ∩ �N
M) toward a centered Gaussian variable

with covariance C(h1, . . . , hm), for any M large enough. For the same reason, we
conclude that the same convergence holds under µN

V . �
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4.2. Central limit theorem for some polynomial functions. We now extend
Lemma 4.1 to polynomial test functions.

LEMMA 4.2. Assume (H) and let P1, . . . ,Pm be in C〈X1, . . . ,Xm〉sa . Then,
the variable

YN(P1, . . . ,Pm) = N

m∑
k=1

[
µ̂N ⊗ µ̂N(∂kPk) − µ̂N [(Xk + DkV )Pk]]

converges in law toward a real centered Gaussian variable with covariance

C(P1, . . . ,Pm) =
m∑

k,l=1

(
µ⊗µ[∂kPl × ∂lPk]+µ

(
∂l ◦ ∂kV 
(Pk,Pl)

)) +
m∑

k=1

µ(P 2
k ).

PROOF. Let P1, . . . ,Pm be self-adjoint polynomials and hε
1, . . . , h

ε
m be Stiel-

jes functionals which approximate P1, . . . ,Pm such as

hε
i (X) = Pi

(
X1

1 + εX2
1

, . . . ,
Xm

1 + εX2
m

)
.

Since E[YN ] = 0 by (13),

YN(P1, . . . ,Pm) = δ̂
N

(KN(P1, . . . ,Pm)),

with

KN(P1, . . . ,Pm) =
m∑

k=1

(
µ̂N ⊗ I (∂kPk) − (Xk + DkV )Pk

)

and, similarly, YN(hε
1, . . . , h

ε
m) = δ̂

N
(KN(hε

1, . . . , h
ε
m)). It is not hard to see that

‖KN(hε
1, . . . , h

ε
m) − KN(P1, . . . ,Pm)‖M

L ≤ εC(M)

for some finite constant C(M) which only depends on M . Hence, we deduce by
Lemma 2.3 (Concentration inequality) that there exists mN

P,ε,M and εN
P,ε,M going

to zero as N goes to infinity (note here that the control on mN
P,ε,M and εN

P,ε,M

follows exactly the same line as for monomials) such that

µN
V

(∣∣δ̂N (
KN(hε

1, . . . , h
ε
k) − KN(P1, . . . ,Pk)

) − mN
P,ε,M

∣∣ ≥ δ + εN
P,ε,M

)
≤ e−αMN + e−δ2/(2cε2C(M)2)

and so for any bounded continuous function f : R → R, if νσ 2 is the centered
Gaussian law of covariance σ 2,

lim
N→∞µN

V (f (δ̂
N

(KN(P1, . . . ,Pk)))) = lim
ε→0

lim
N→∞µN

V (f (δ̂
N

(KN(hε
1, . . . , h

ε
k))))

= lim
ε→0

νC(hε
1,...,h

ε
m)(f ) = νC(P1,...,Pm)(f ),
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where we used in the second line Lemma 4.2 and in the last line Lemma 2.1 (Com-
pact support) to obtain the convergence of C(hε

1, . . . , h
ε
m) to C(P1, . . . ,Pm). �

YN depends on Nµ̂N ⊗ µ̂N , in which clearly one of the empirical distribution
µ̂N shall converge to its deterministic limit. This is the content of the next lemma.

LEMMA 4.3. Assume (H) and let P1, . . . ,Pm be self-adjoint polynomial func-
tions. Then, the variable

ZN(P1, . . . ,Pm) = δ̂N

(
m∑

k=1

(Xk + DkV )Pk −
m∑

k=1

(µ ⊗ I + I ⊗ µ)(∂kPk)

)

converges in law toward a centered Gaussian variable with covariance

C(P1, . . . ,Pm) =
m∑

k,l=1

(
µ ⊗ µ[∂kPl × ∂lPk] + µ

(
∂l ◦ ∂kV 
(Pk,Pl)

)) +
m∑

k=1

µ(P 2
k ).

PROOF. The only point is to notice that using (2),

YN(P1, . . . ,Pm) =
m∑

k=1

(δ̂N ⊗ µ + µ ⊗ δ̂N )(∂kPk) − δ̂N (
(Xk + DkV )Pk

) + rN,P

with rN,P = N−1 ∑m
k=1 δ̂N ⊗ δ̂N (∂kPk) of order N−1 with probability going to 1

by Lemma 2.3 (Concentration inequality) and Property 3.1. Thus,

YN(P1, . . . ,Pm)

= δ̂N

(
m∑

k=1

(−(Xk + DkV )Pk + (I ⊗ µ + µ ⊗ I )(∂kPk)
)) + rN,P

= −ZN(P1, . . . ,Pm) + O

(
1

N

)
.

This, with the previous lemma, proves the claim. �

4.3. Central limit theorem for all polynomial functions. In the previous part
we have obtained CLT’s only for the family of random variables δ̂N (Q) with Q in
the following subset F of C〈X1, . . . ,Xm〉:

F :=
{

m∑
k=1

(Xk + DkV )Pk −
m∑

k=1

(µ ⊗ I + I ⊗ µ)(∂kPk),∀i,Pi self-adjoint

}
.

In this section we wish to extend it to δ̂N (Q) for any self-adjoint polynomial func-
tion Q, that is, to prove Theorem 1.3. We have to show a form of density of F in
C〈X1, . . . ,Xm〉.
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The strategy is to see F as the image of an operator that we will invert. The first
operator that comes to mind is

� : (P1, . . . ,Pk) →
m∑

k=1

(Xk + DkV )Pk −
m∑

k=1

(µ ⊗ I + I ⊗ µ)(∂kPk)

as we immediately have F = �(C〈X1, . . . ,Xm〉sa, . . . ,C〈X1, . . . ,Xm〉sa).
In order to obtain an operator from C〈X1, . . . ,Xm〉sa to C〈X1, . . . ,Xm〉sa , we

will prefer to apply � to Pk = DkP for all k and for a given P ; as we shall see
later, �(D1P, . . . ,DmP ) is closely related with the projection on functions of the
type TrP of the operator on the entries � − ∇N Tr(W).∇ which is symmetric in
L2(µN

V ). The resulting operator is a differential operator and, hence, it would be
hard to prove that it is continuous on a fixed space of functions. To avoid this issue
and make the argument more readable we have first to divide each monomial of P

by its degree.
Then, we define a linear map � on C〈X1, . . . ,Xm〉 such that, for all monomials

q of degree greater or equal to 1,

�q = q

degq
.

Moreover, �(q) = 0 if degq = 0. For later use, we set C0〈X1, . . . ,Xm〉 to be the
subset of polynomials P of C〈X1, . . . ,Xm〉sa such that P(0, . . . ,0) = 0. We let
� be the projection from C〈X1, . . . ,Xm〉sa onto C0〈X1, . . . ,Xm〉 [i.e., �(P ) =
P −P(0, . . . ,0)]. We now define some operators on C0〈X1, . . . ,Xm〉 that is, from
C0〈X1, . . . ,Xm〉 into C0〈X1, . . . ,Xm〉,

�1 :P −→ �

(
m∑

k=1

∂k�P
DkV

)
,

�2 :P −→ �

(
m∑

k=1

(µ ⊗ I + I ⊗ µ)(∂kDk�P)

)
.

We denote �0 = Id − �2 and � = �0 + �1, where I is the identity on
C0〈X1, . . . ,Xm〉. Note that the images �i ’s and � are indeed included in
C〈X1, . . . ,Xm〉sa since V is assumed self-adjoint. With this notation, Lemma 4.3,
once applied to Pi = Di�P , 1 ≤ i ≤ m, reads as follows:

PROPOSITION 4.4. For all P in C0〈X1, . . . ,Xm〉, δ̂N (�P ) converges in law
to a centered Gaussian variable with covariance

C(P ) := C(D1�P, . . . ,Dm�P).

PROOF. We have for all tracial state τ , τ(∂kP 
V ) = τ(DkPV ) and if P is in
C0〈X1, . . . ,Xm〉 [i.e., P(0, . . . ,0) = 0], we have the identity

P = ∑
k

∂k�P
Xk.
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Then, as δ̂N is tracial and null on constant terms (so that the projection � can be
removed in the definition of �), for all polynomial P ,

δ̂N (�P ) = δ̂N

(
P +

m∑
k=1

∂k�P
DkV −
m∑

k=1

(µ ⊗ I + I ⊗ µ)(∂kDk�P)

)

= δ̂N

(
m∑

k=1

(Xk + DkV )Dk�P −
m∑

k=1

(µ ⊗ I + I ⊗ µ)(∂kDk�P)

)

= ZN(D1�P, . . . ,Dm�P).

We then use the Lemma 4.3 to conclude. �

To generalize the central limit theorem to all polynomial functions, we need
to show that the image of � is dense and to control approximations. If P is a
polynomial and q a nonconstant monomial, we will denote λq(P ) the coefficient
of q in the decomposition of P in monomials. We can then define a norm ‖ · ‖A on
C0〈X1, . . . ,Xm〉 for A > 1 by

‖P‖A = ∑
degq �=0

|λq(P )|Adegq.

In the formula above, the sum is taken on all nonconstant monomials. We also
define the operator norm given, for T from C0〈X1, . . . ,Xm〉 to C0〈X1, . . . ,Xm〉,
by

|||T |||A = sup
‖P‖A=1

‖T (P )‖A.

Finally, let C0〈X1, . . . ,Xm〉A be the completion of C0〈X1, . . . ,Xm〉 for ‖ · ‖A. We
say that T is continuous on C0〈X1, . . . ,Xm〉A if |||T |||A is finite. We shall prove that
� is continuous on C0〈X1, . . . ,Xm〉A with continuous inverse when t is small.

LEMMA 4.5. With the previous notation:

1. The operator �0 is invertible on C0〈X1, . . . ,Xm〉.
2. There exists A0 > 0 such that, for all A > A0, the operators �2, �0 and �−1

0
are continuous on C0〈X1, . . . ,Xm〉A and their norms are uniformly bounded
for t in Bη.

3. For all ε,A > 0, there exists ηε > 0 such for |t| < ηε , �1 is continuous on
C0〈X1, . . . ,Xm〉A and |||�1|||A ≤ ε.

4. For all A > A0, there exists η > 0 such that for t ∈ Bη, � is continuous, invert-
ible with a continuous inverse on C0〈X1, . . . ,Xm〉A. Besides, the norms of �

and �−1 are uniformly bounded for t in Bη.
5. There exists C > 0 such that, for all A > C, C is continuous from C0〈X1, · · · ,

Xm〉A into R.
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PROOF. 1. We can write

�0 = I − �2.

Observe that since �2 reduces the degree of a polynomial by at least 2,

P → ∑
n≥0

(�2)
n(P )

is well defined on C0〈X1, . . . ,Xm〉 as the sum is finite for any polynomial P . This
clearly gives an inverse for �0.

2. First remark that a linear operator T has a norm less than C with respect to
‖ · ‖A if and only if for all nonconstant monomial q ,

‖T (q)‖A ≤ CAdegq .

Recall that µ is uniformly compactly supported [see Lemma 2.1 (Compact sup-
port)] and let C0 < +∞ be such that |µ(q)| ≤ C

degq
0 for all monomial q . Take

a monomial q = Xi1 · · ·Xip , and assume that A > 2C0,∥∥∥∥∥�
(∑

k

(I ⊗ µ)∂kDk�q

)∥∥∥∥∥
A

≤ p−1
∑

k,q=q1Xkq2,

q2q1=r1Xkr2

‖r1µ(r2)‖A

≤ p−1
∑

k,q=q1Xkq2,

q2q1=r1Xkr2

Adeg r1C
deg r2
0 = 1

p

p−1∑
n=0

p−2∑
l=0

AlC
p−l−2
0

≤ Ap−2
p−2∑
l=0

(
C0

A

)p−2−l

≤ 2A−2‖q‖A,

where in the second line, we observed that once deg(q1) is fixed, q2q1 is
uniquely determined and then r1, r2 are uniquely determined by the choice of
l the degree of r1. Thus, the factor 1

p
is compensated by the number of pos-

sible decompositions of q , that is, the choice of n the degree of q1. If A > 2,
P → �(

∑
k(I ⊗ µ)∂kDk�P) is continuous of norm strictly less than 1

2 . And a
similar calculus for �(

∑
k(µ⊗ I )∂kDk�) shows that �2 is continuous of norm

strictly less than 1. It follows immediately that �0 is continuous. Recall now
that

�−1
0 = ∑

n≥0

�n
2.

As �2 is of norm strictly less than 1, �−1
0 is immediately continuous.
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3. Let q = Xi1 · · ·Xip be a monomial and let D be the degree of V and B(≤ Dn)

the sum of the maximum number of monomials in DkV :

‖�1(q)‖A ≤ 1

p

∑
k,q=q1Xkq2

‖q1DkV q2‖A

≤ 1

p

∑
k,q=q1Xkq2

|t|BAp−1+D−1

= |t|BAD−2‖q‖A.

It is now sufficient to take ηε < (BAD−2)−1ε.
4. We choose η < (BAD−2)−1|||�−1

0 |||−1
A so that when |t| ≤ η,

|||�1|||A|||�−1
0 |||A < 1.

By continuity, we can extend �0, �1, �2, � and �−1
0 on the space C0〈X1, . . . ,

Xm〉A. The operator

P → ∑
n≥0

(−�−1
0 �1)

n�−1
0

is well defined and continuous. And this is clearly an inverse of

� = �0 + �1 = �0(I + �−1
0 �1).

5. We finally prove that C is continuous from C0〈X1, . . . ,Xm〉A into R where we
recall that we assumed A > C0. Let us consider the first term

C1(P ) :=
m∑

k,l=1

µ ⊗ µ(∂kDl�P × ∂lDk�P ).

Then we obtain, as in the second point of this proof,

|C1(P )| ≤ 4
m∑

k,l=1

∑
q,q ′

|λq(P )||λq ′(P )|
degq degq ′

∑
q=q1Xkq2,q

′=q ′
1Xlq

′
2

q2q1=r1Xlr2,q
′
2q

′
1=r ′

1Xkr
′
2

C
degq+degq ′−4
0

≤ 4
∑
q,q ′

|λq(P )||λq ′(P )|degq degq ′Cdegq+degq ′−4
0

≤ 4
(

sup
�≥0

�C�−2
0 A−�

)2

‖P‖2
A.

We next turn to show that

C2(P ) :=
m∑

k,l=1

µ
(
∂k ◦ ∂lV 
(Dk�P,Dl�P )

)
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is also continuous for ‖·‖A. In fact, noting that we may assume V ∈ C0〈X1, . . . ,

Xm〉 without changing C2,

|C2(P )| ≤ ∑
p,q,q ′,k,l

|λp(V )|

× ∑
q,q ′,p=p1Xkp2Xlp3

q=q1Xkq2,q
′=q ′

1Xkq
′
2

|λq(P )||λq ′(P )|Cdegp+degq+degq ′−4
0

degq degq ′

≤ n|t|D2
∑
q,q ′

|λq(P )||λq ′(P )|CD+degq+degq ′−4
0

≤ n|t|D2CD−4
0 ‖P‖2

A.

The continuity of the last term C3(P ) = ∑m
i=1 µ((Dj�P)2) is obtained simi-

larly. �

We can compare the norm ‖ ·‖A to a more intuitive norm, namely, ‖ ·‖M
L defined

in (7).
We will say that a semi-norm N is weaker than a semi-norm N ′ if and only if

there exists C < +∞ such that, for all P in C0〈X1, . . . ,Xm〉,
N (P ) ≤ CN ′(P ).

LEMMA 4.6. For A > M , the semi-norm ‖ · ‖M
L restricted to the space

C0〈X1, . . . ,Xm〉 is weaker than the norm ‖ · ‖A.

PROOF. For all P in C0〈X1, . . . ,Xm〉, the following inequalities hold:

‖P‖M
L ≤ ∑

q

|λq(P )|‖q‖M
L ≤ ∑

q

|λq(P )|degqMdegq ≤
(

sup
l

l

(
M

A

)l)
‖P‖A.

�

To take into account the previous results, we define a new hypothesis (H′)
stronger than (H).

(H′): (H) is satisfied, A − 1 > max(A0,M0,C) for the M0 which appear in
Lemma 2.2 (Exponential tail of the largest eigenvalue) and the C which appear in
Proposition 3.1. Besides, |t| ≤ η with η as in the fourth point of Lemma 4.5 in order
that � and �−1 are continuous on C0〈X1, . . . ,Xm〉A and C0〈X1, . . . ,Xm〉A−1, and
that C is also continuous for these norms.

The two main additional consequences of this hypothesis are the continuity of �

for ‖ · ‖A. The strange condition about the continuity of � on C0〈X1, . . . ,Xm〉A−1
is here for a technical reason which will appear only in the last section on the
interpretation of the first order correction to the free energy.
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While (H′) is full of conditions, the only important hypothesis is the c-convexity
of V . Given such a V , we can always find constants A and η which satisfy the
hypothesis. The only restriction will be then that t is sufficiently small.

We can now prove the general central limit theorem which is up to the identifi-
cation of the covariance equivalent to Theorem 1.3.

THEOREM 4.7. Assume (H′). For all P in C〈X1, . . . ,Xm〉sa , δ̂N (P ) con-
verges in law to a centered Gaussian variable γP with covariance

σ 2(P ) := C(�−1�(P )) = C(D1��−1�(P ), . . . ,Dm��−1�(P )).

If P ∈ C〈X1, . . . ,Xm〉, δ̂N (P ) converges to the complex centered Gaussian vari-
able γ(P+P ∗)/2 + iγ(P−P ∗)/2i [the covariance of γ(P+P ∗)/2 and γ(P−P ∗)/2i being
given by σ 2((P + P ∗)/2, (P − P ∗)/2i), where σ 2(·, ·) is the bilinear form asso-
ciated to the quadratic form σ 2].

PROOF. As δ̂N (P ) does not depend on constant terms, we can directly take
P = �(P ) in C0〈X1, . . . ,Xm〉. Now, by part 4 of Lemma 4.5, we can find an el-
ement Q of C0〈X1, . . . ,Xm〉A such that �Q = P . But the space C0〈X1, . . . ,Xm〉
is dense in C0〈X1, . . . ,Xm〉A by construction. Thus, there exists a sequence Qn in
C0〈X1, . . . ,Xm〉 such that

lim
n→∞‖Q − Qn‖A = 0.

Let us define Rn = P − �Qn in C0〈X1, . . . ,Xm〉.
Now according to Property 4.4 for all n, δ̂N (�Qn) converges in law to a

Gaussian variable γn of variance C(Qn) with

C(Qn) = C(D1�Qn, . . . ,Dm�Qn).

As C is continuous by part 4 of Lemma 4.5, it can be extended to the space
C0〈X1, . . . , Xm〉A and σ 2(P ) = C(�−1P) = C(Q) = limn C(Qn) is well defined.
Hence, γn converges weakly toward γ∞, the centered Gaussian law with covari-
ance C(Q), when n goes to +∞. The last step is to prove the convergence in
law of δ̂N (P ) to γ∞. We will use the Dudley distance. For f : R → R, we define
|f |L = ‖f ‖L + ‖f ‖∞. The Dudley distance between two measures on R is

D(µ, ν) = sup
|f |L≤1

|µ(f ) − ν(f )|.

The topology induced by the Dudley metric is the topology of the convergence in
law. Below, as a parameter of D , we denote in short δ̂N (P ) for the law of δ̂N (P ).
We make the following decomposition:

D(δ̂N (P ), γ∞) ≤ D(δ̂N (P ), δ̂N (�Qn))
(19)

+ D(δ̂N (�Qn), γn) + D(γn, γ∞).
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By the above remarks, D(δ̂N (�Qn), γn) goes to 0 when N goes to +∞ and
D(γn, γ∞) goes to 0 when n goes to +∞. We now use the bound on the Dud-
ley distance:

D(δ̂N (P ), δ̂N(�Qn)) ≤ E[|δ̂N (P ) − δ̂N (�Qn)| ∧ 1] = E[|δ̂N (Rn)| ∧ 1].
We control the last term by Lemmas 2.3 (Concentration inequality) and 2.2 (Ex-
ponential tail of the largest eigenvalue) so that, for M ≥ M0,

E[|δ̂N (Rn)| ∧ 1] ≤ e−αNM + 2

√
2π

c
‖Rn‖M

L + εN
Rn,M + |mN

Rn,M |.

But we deduce from Lemma 4.6 that since we chose M < A, there exists a finite
constant C such that

‖Rn‖M
L ≤ C‖Rn‖A = C‖�(Q − Qn)‖A ≤ C|||�|||A‖Q − Qn‖A

and so ‖Rn‖M
L goes to zero as n goes to infinity. And since ‖Rn‖M

L is finite, εN
Rn,M

goes to zero. Similarly, using the bound of Lemma 2.3 on mN
P,M for P monomial,

we find that

|mN
Rn,M | ≤ N

∑
q

|λq(Rn)|deg(q)
(
3Mdeg(q) + deg(q)2)

e−αMN

≤ N sup
�≥0

(
�(3M� + �2)A−�)‖Rn‖Ae−αMN

goes to zero as N goes to infinity. Thus, E[|δ̂N (Rn)| ∧ 1] goes to zero as n and N

go to infinity. Putting things together, we obtain if we let first N going to +∞ and
then n, the desired convergence limN D(δ̂N (P ), γ∞) = 0. �

Note that the convergence in law in Theorem 4.7 can be generalized to a con-
vergence in moments;

COROLLARY 4.8. Assume (H′). Let P be a self-adjoint polynomial, then
δ̂N (P ) converges in moments to a real centered Gaussian variable with variance
σ 2(P ), that is, for all k in N,

lim
N→∞

∫
(δ̂NP )k dµN

V = 1√
2πσ 2(P )

∫
xke−x2/(2σ 2(P )) dx.

PROOF. Indeed, once again we decompose
∫
(δ̂NP )k dµN

V into EN
1 +EN

2 with

EN
1 =

∫
1�N

M
(δ̂NP )k dµN

V EN
2 =

∫
1(�N

M)c(δ̂
NP )k dµN

V ,

with M ≥ M0. For E1, we notice that the law of δ̂NP has a sub-Gaussian tail
according to Lemma 2.3 (Concentration inequality). Therefore, we can replace xk
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by a bounded continuous function, producing an error independent of N . Applying
Theorem 4.7 then shows that

lim
N→∞

∫
1�N

M
(δ̂NP )k dµN

V = 1√
2πσ 2(P )

∫
xke−x2/(2σ 2(P )) dx.

For the second term, we use the trivial bound

|EN
2 | ≤ Nk

∫
1(�N

M)c

(|λmax(A)| + |µ|(P )
)k

dµN
V

≤ kNk
∫
λ≥M

(
λ + |µ|(P )

)k−1
e−αλN dλ,

which goes to zero as N goes to infinity for all finite k. �

Another generalization of Theorem 4.7 is to extend the set of test functions
from polynomials to the completion of C0〈X1, . . . ,Xm〉 for the Lipschitz semi-
norm ‖ · ‖M

L . We shall assume that M is strictly greater than C, the constant which
bounds uniformly the radius of the support of µ according to Lemma 2.1 (Compact
support), and also greater than M0, the constant which appears in Lemma 2.2 (Ex-
ponential tail of the largest eigenvalue) in order to have λmax(A) less than M with
high probability. We denote C0〈X1, . . . ,Xm〉ML the completion of C0〈X1, . . . ,Xm〉
for that norm.

Let us first extend some of the previous quantities to this setting. Recall that, for

all N ∈ N,
√

N‖P‖M
L is always bigger than ‖TrP‖�N

M

L , so that if λmax(A) < M ,
TrP(A) is well defined. This allows us to define, for P in C0〈X1, . . . ,Xm〉ML ,
µ̂N(P ) = 1

N
TrP(A) on �N

M . We can also extend µ to this context by the following:

LEMMA 4.9. Let P ∈ C0〈X1, . . . ,Xm〉. Then, with C0 as in Lemma 2.1 (Com-
pact support),

|µ(P )| ≤ √
mC0‖P‖C0

L .

PROOF. Let us consider the following norm on C〈X1, . . . ,Xm〉:
‖P‖µ := lim sup

n
(µ((PP ∗)n))1/(2n).

The completion and separation of C〈X1, . . . ,Xm〉 for this norm is then a
C∗-algebra (see, e.g., the Gelfand–Neimark–Segal construction). As µ is com-
pactly supported, the norm of the Xi’s are bounded by C0. Besides, for all P ,

|µ(P )| ≤ ‖P‖µ.

Therefore, we can write

|µ(P )| = |µ(P (X)) − µ(P (0))| =
∣∣∣∣∣µ

(∫ 1

0

m∑
k=1

(DkP )(sX)Xk ds

)∣∣∣∣∣
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≤
∫ 1

0

∣∣∣∣∣µ
(

m∑
k=1

DkP (sX)Xk

)∣∣∣∣∣ds

≤
∫ 1

0

(
m∑

k=1

µ(DkP (sX)DkP (sX)∗)
)1/2(

m∑
k=1

µ(X2
k)

)1/2

ds

≤ C0 sup
AC∗-algebra

xi=x∗
i ‖xi‖≤C0

(
m∑

k=1

‖DkP (x1, . . . , xm)‖2
A

)1/2

= √
mC0‖P‖C0

L .

�

Thus, µ extends to C〈X1, . . . ,Xm〉ML . It is a natural question to study the be-
havior of

δ̂N (P ) := N
(
µ̂N(P ) − µ(P )

)
1�N

M

for P in C0〈X1, . . . ,Xm〉ML , the completion of C0〈X1, . . . ,Xm〉 for ‖ · ‖M
L .

COROLLARY 4.10. Assume (H′) and let M be bigger than C0 and M0:

1. σ 2 is continuous for ‖ · ‖M
L and so extends to C0〈X1, . . . ,Xm〉ML .

2. For all P in C0〈X1, . . . ,Xm〉ML , δ̂N (P ) converges in law to a Gaussian variable
with variance σ 2(P ).

PROOF. We take a sequence of polynomials Sn which converges to P for the
norm ‖ ·‖M

L . Let Rn = P −Sn be the rest. For all n, δ̂N (Sn) converges to a centered
Gaussian variable γn of variance σ 2(Sn).

Let us show that σ 2 is continuous for ‖ · ‖M
L . Let P be a polynomial, and M

sufficiently large,

σ 2(P ) = lim
N

E[δ̂N
(P )2] = lim

N
E[1�N

M
δ̂
N

(P )2].
The first equality comes from the previous corollary about the convergence in mo-
ments, as well as Lemma 3.1, which allows to recenter with respect to the mean
rather than the limit, and the second equality comes from Lemma 2.2 (Exponential
tail of the largest eigenvalue). Now by Lemma 2.3 (Concentration inequality), as
‖P‖M

L controls the Lipschitz norm of 1
N

Tr(P ),

lim
N→∞µN

V [1�N
M

(δ̂
N

(P ))2]

= 2 lim
N→∞

∫ ∞
0

εµN
V

(
�N

M ∩ {|δ̂N
(P )| > ε})dε

≤
∫ ∞

0
2εe−cε2/(2(‖P‖M

L )2) dε = 4

c
(‖P‖M

L )2,
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where we used that mN
M,P and εN

M,P of Lemma 2.3 go to zero as N goes to infinity
since P is a polynomial. Thus, the quadratic form σ 2 is continuous for ‖ · ‖M

L

and can be extended on C0〈X1, . . . ,Xm〉ML . This implies that σ 2(Sn) converges to
σ 2(P ). The rest of the proof is exactly as that of Theorem 4.7 and we omit it. �

Note that by Lemma 4.5 the norm ‖ · ‖A is stronger than the norm ‖ · ‖M
L

so that we can use this corollary to extend out the central limit theorem on
C0〈X1, . . . ,Xm〉A and, by continuity of σ 2, on this space the formula

σ 2(P ) := C(�−1P) = C(D1��−1P , . . . ,Dm��−1P)

remains valid.

5. Identification of the variance.

5.1. Exact formula. We shall provide here a more tractable formula for the
variance σ 2(P ) of the limiting Gaussian distribution found in Theorem 4.7.
Note that for all polynomials P , Q, δ̂N (P + Q) converges to γP+Q. Thus,
{γP |P ∈ C〈X1, . . . ,Xm〉sa} = {γP |P ∈ C0〈X1, . . . ,Xm〉} has a natural structure
of Gaussian space. In this space all elements are centered and the covariance func-
tion is given, for P,Q ∈ C0〈X1, . . . ,Xm〉 by

σ 2(P,Q) = C(�−1P,�−1Q) = C(D��−1P ,D��−1Q),

where D is the cyclic gradient defined by DP = (D1P, . . . ,DmP ) and

C(P1, . . . ,Pm,Q1, . . . ,Qm)

=
m∑

k,l=1

(
µ ⊗ µ[∂kPl × ∂lQk] + µ

(
∂l ◦ ∂kV 
(Pk,Ql)

)) +
m∑

k=1

µ(PkQk).

We now give a more explicit formula for σ 2(P,Q). We therefore need to study
C and the commutation relations of the cyclic gradient and �.

Let us define the following operators on C〈X1, . . . ,Xm〉:

�̄1 :P −→
m∑

k=1

∂kP 
DkV, �̄2 :P −→
m∑

i=1

(I ⊗ µ)M ◦ ∂2
i P ,

where M(A⊗B ⊗C) = AC ⊗B. We also define �̄0 = �−1 − �̄2 and �̄ the oper-
ator on C0〈X1, . . . ,Xm〉 given by �̄P = �̄0P + �̄1P if P ∈ C0〈X1, . . . ,Xm〉.
We extend �̄ to C〈X1, . . . ,Xm〉 by setting �̄1 = 0. We set, for i = 0,1,2
or nothing, �̄i the operator on C〈X1, . . . ,Xm〉m such that �̄i(P1, . . . ,Pm) =
(�̄iP1, . . . , �̄iPm).
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LEMMA 5.1. For all l ∈ {1, . . . ,m}, for all P ∈ C0〈X1, . . . ,Xm〉, the follow-
ing equalities hold:

Dl�
−1P = �−1DlP + DlP,

Dl�1P = �̄1Dl�P +
m∑

i=1

∂iDlV 
Di�P,

Dl�2P = �̄2Dl�P.

Besides, let Hess(V ) : C〈X1, . . . ,Xm〉m → C〈X1, . . . ,Xm〉m be given by

Hess(V )(v)l =
m∑

i=1

∂iDlV 
vi.

Then, for any (P1, . . . ,Pm) ∈ C〈X1, . . . ,Xm〉m , with I the identity on C〈X1, . . . ,

Xm〉m, the following relation of commutation relation holds:

D� = (
I + Hess(V ) + �̄

)
D�.

PROOF. By linearity, it is sufficient to prove these equalities for a monomial
P = Xi1 · · ·Xip . Moreover, the projection � onto C0〈X1, . . . ,Xm〉 is irrelevant in
the definition of the operators �i ’s since they are followed by derivatives:

Dl�
−1P = pDlP = (p − 1)DlP + DlP = �−1DlP + DlP.

To prove the second equality, write

Dl�1P = Dl

∑
i,�P=q1Xiq2

q1DiV q2,

then Dl can differentiate q1, q2 or DiV so that

Dl�1P = ∑
i,�P=r1Xlr2Xir3

r2DiV r3r1 + ∑
i,�P=r1Xir2Xlr3

r3r1DiV r2

+ ∑
i,�P=q1Xiq2,DiV =q3Xlq4

q4q2q1q3.

The sum of the first two terms gives exactly �̄1Dl�P and the last one is∑
i,DiV =q3Xlq4

q4DiPq3 = ∂iDlV 
Di�P.

Note that if P is a monomial,

�2P = 2
∑

i,�P=q1Xiq2Xiq3

{µ[q1q3]q2 + µ[q2]q1q3}
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so that we obtain

Dl�2P = 2
∑

i,�P=q1Xlq
′
1Xiq2Xiq3

µ[q2]q ′
1q3q1

+ 2
∑

i,�P=q1Xiq2Xlq
′
2Xiq3

µ[q3q1]q ′
2q2

+ 2
∑

i,�P=q1Xiq2Xiq3Xlq
′
3

µ[q2]q ′
3q1q3.

Similar algebra shows that

�̄2Dl�P = 2
∑

i,Dl�P=q1Xiq2Xiq3

{µ(q2)q3q1} = Dl�2P.

Finally, the last point we only have to sum the previous equalities for P ∈
C0〈X1, . . . ,Xm〉 and all l ∈ {1, . . . ,m},

Dl��−1P = (Dl + �−1Dl − �̄2Dl + �̄1Dl)(P ) +
m∑

i=1

∂iDlV 
DiP

= [(
I + Hess(V ) + �̄

)
DP

]
l . �

Thus, we can deduce an expression for D ◦ ��−1.

LEMMA 5.2. The operator �̄ is a symmetric nonnegative operator in L2(µ).
Let ·t be the involution on C〈X1, . . . ,Xm〉⊗C〈X1, . . . ,Xm〉 defined by (A⊗B)t =
B ⊗ A, then for any (P,Q) ∈ C〈X1, . . . ,Xm〉m,

µ(P �̄Q) =
m∑

k=1

µ ⊗ µ(∂kP × [∂kQ]t ).

�̄ is thus nonnegative in L2(µ)m equipped with the scalar product 〈P,Q〉 =∑m
i=1 µ(PiQ

∗
i ).

1−c
2 I + HessV is a nonnegative operator in the sense that for

every polynomial P1, . . . ,Pm,

m∑
i=1

(Hess(V )P )iP
∗
i ≥ −(1 − c)

m∑
i=1

PiP
∗
i .

Thus, (I + HessV + �̄) is symmetric definite positive in L2(µ)m and is invert-
ible. If we consider D��−1 as a continuous operator from C0〈X1, . . . ,Xm〉A into
L2(µ)m, the following rule of commutation holds:

D��−1 = (I + HessV + �̄)−1D.
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PROOF. Here, it is easier to come back to the origin of the problem. The idea
is that the operator �̄ is a projection of the Laplace operator

L = 1

N

m∑
k=1

N∑
i,j=1

eNTr(V +2−1 ∑
X2

l ) ∂xk
ij
e−NTr(V +2−1 ∑

X2
l ) ∂xk

ji

on functions of the matrices. Here, ∂xk
ji

is a notation and stands for

1
2

(
∂�exk

ji
+ √−1∂�mxk

ji

)
.

In fact, if we take P a polynomial function,

LP = 1

N

[
m∑

k=1

N∑
i,j=1

N(−DkV − Xk)ji ∂kP 
�ji +
m∑

k=1

N∑
i,j=1

∂k ◦ ∂kP 
(�ij ,�ji)

]

=
m∑

k=1

∂kP 
(−DkV − Xk) +
m∑

k=1

(I ⊗ µ̂N)M ◦ (∂k ◦ ∂k)P,

with �ij the matrix with null entries except in (i, j) where it is equal to 1. As
a consequence, we deduce from the convergence of µ̂N toward µ that, for all
polynomials P,Q,

lim
N→∞

∫ 1

N
Tr(QLP)dµV

N = −µ(Q�̄P ).

But now, by integration by parts, we obtain∫ 1

N
Tr(QLP)dµV

N

=
∫ 1

N2

N∑
α,β=1

Qα,β(LP )β,α dµV
N

= −
∫ 1

N2

m∑
k=1

N∑
i,j,α,β=1

∂
x

ij
k

Qα,β ∂
x

ji
k

Pβ,α dµV
N(20)

= −
∫ 1

N2

m∑
k=1

N∑
i,j,α,β=1

[∂kQ
�ij ]α,β[∂kP 
�ij ]β,α dµV
N

= −
m∑

k=1

∫
µ̂N ⊗ µ̂N (

∂kP × (∂kQ)t
)
dµV

N,

which converges as N goes to infinity toward
m∑

k=1

µ ⊗ µ
(
∂kP × (∂kQ)t

) = µ(Q�̄P ).
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This shows that �̄ is symmetric and nonnegative [since if Q = P ∗, the right-hand
side of (20) is clearly nonpositive for all N ]. Similarly, remark that

(HessV P)l = ∑
i

∂iDlV 
Pi.

Once estimated at a finite matrix, it is easily seen that

Tr(∂iDlV 
PiP
∗
l ) = ∑

α,β,γ,δ

(∂xi
αβ

∂xl
γ δ

TrV )(Pi)βα(Pl)δγ

and so the positivity of Hess is deduced at finite N from the convexity of V which,
by definition, is the positivity of the Hessian of Tr(V ) in any finite dimension. As
a consequence, the operator I + Hess(V ) + �̄ is invertible on C〈X1, . . . ,Xm〉m ⊂
(L2(µ))m. We then obtain the commutation relation by using the third point of the
previous lemma. �

This gives us an explicit formula for σ 2.

LEMMA 5.3. For all P,Q in C0〈X1, . . . ,Xm〉, for all 1 ≤ k, l ≤ m, the fol-
lowing identities hold:

µ ⊗ µ[∂kDlP × ∂lDkQ] = µ ⊗ µ
[
∂kDlP × [∂kDlQ]t ],

C(DP,DQ) =
m∑

i=1

µ
(
DiP [(I + HessV + �̄)DQ]i),

σ 2(�P,Q) =
m∑

i=1

µ(Di�PDiQ),

σ 2(P,Q) =
m∑

i=1

µ
(
DiP (I + HessV + �̄)−1DiQ

)
.

PROOF. An elementary computation shows that, for all polynomials P ,

∂kDlP = (∂lDkP )t .

To prove the second equality, recall that

C(DP,DQ) =
m∑

k,l=1

(
µ ⊗ µ[∂kDlP × ∂lDkQ] + µ

(
∂l ◦ ∂kV 
(DkP,DlQ)

))

+
m∑

k=1

µ(DkPDkQ).
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The third term can be directly written
∑m

i=1 µ(DiP [DQ]i ). For the second term,
we use the first equality and Lemma 5.2:

m∑
k,l=1

µ ⊗ µ[∂kDlP × ∂lDkQ] =
m∑

i=1

µ(DiP �̄DiQ).

Finally, we only need to check if the two terms in the second derivative of V

coincide, but this is clear by the trace property:
m∑

k,l=1

µ
(
∂l ◦ ∂kV 
(DkP,DlQ)

) =
m∑

i,j=1

µ(DiP∂jDiV 
DjQ).

For the last points we only have to use the commutation rule of Lemma 5.2 and
the previous point:

σ 2(�P,Q) = C(D�P,D��−1Q)

=
m∑

i=1

µ
(
Di�P [(I + HessV + �̄)D��−1Q]i)

=
m∑

i=1

µ(Di�PDiQ).

The last point is proved with the same technique. �

5.2. Combinatorial interpretation. It was shown in [14] that for small t’s the
limit measure µ has a combinatorial interpretation. More precisely, let V = ∑

i tiqi

with some monomials qi . Note that in order to have a self-adjoint potential, in the
decomposition in monomials, the coefficient of a monomial must be the complex
conjugate of the coefficient of its adjoint.

We define a set of colors as the set {1, . . . ,m} and associate to each monomial
q = Xi1 · · ·Xip a star (i.e., a vertex with some half-edges pointing out of it) of
p half-edges which are in the clockwise order respectively of color i1, i2, . . . , ip .
Besides, we distinguish the first half-edge so that we clearly obtain a bijection
between monomials and stars. We will say that the star is of type q if it comes
from a monomial q in that way. Note that a star can equivalently be represented by
an annulus with ordered colored dots and a distinguished dot.

Given a set of such stars embedded in the sphere, we can construct some graphs
among them simply by gluing pairwise different half-edges of the same color and
such that the resulting edges do not cross each other. We call a graph obtained in
this way a planar graph. Two planar graphs are said to be equivalent if there is a
homeomorphism of the sphere which fix each star and take the first graph on the
second. A map is a class of equivalence of connected planar graphs for the relation
of homomorphism. We now define

Mk1,...,kn(P ) = 


{
maps with ki stars of type qi

and one of type P

}
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and

Mk1,...,kn(P ,Q) = 


{
maps with ki stars of type qi

one of type P and one of type Q

}
.

These quantities are only defined for P and Q monomials, but we immediately
extend them by linearity to arbitrary polynomials P and Q. By convention, the star
associated to the monomial 1 is empty so that Mk1,...,kn(P ,1) = 0.

In [14], Section 3.2 there is the following relation between the limit measure
and the enumeration of planar graphs.

THEOREM 5.4. There exists η > 0 such that, for t ∈ Bη, for all polynomial P ,

µ(P ) = ∑
k1,...,kn

n∏
i=1

(−ti)
ki

ki ! Mk1,...,kn(P ).

We now prove that there is a similar link between the variance σ 2(P )

which appears in our central limit theorem and the generating function of the
Mk1,...,kn(P ,Q). We define

M(P,Q) = ∑
k1,...,kn

n∏
i=1

(−ti)
ki

ki ! Mk1,...,kn(P ,Q).

We shall prove that σ 2(P,Q) and M(P,Q) satisfy the same kind of induction
relation.

PROPOSITION 5.5. For all monomials P,Q and all k,

Mk1,...,kn(XkP,Q)

= ∑
0≤pi≤ki

∑
P=RXkS

∏
i

C
pi

ki
Mp1,...,pn(R,Q)Mk1−p1,...,kn−pn(S)

+ ∑
0≤pi≤ki

∑
P=RXkS

∏
i

C
pi

ki
Mp1,...,pn(S,Q)Mk1−p1,...,kn−pn(R)

+ ∑
0≤j≤n

kjMk1,...,kj−1,...,kn(DkV P,Q) + Mk1,...,kn(DkQP)

and

M(XkP,Q) = M
(
(I ⊗ µ + µ ⊗ I )∂kP

) − M(DkV P,Q) + µ(DkQP).(21)

Besides, there exists η > 0 so that, there exists R < +∞ such that for all monomi-
als P and Q, all t ∈ B(0, η),

|M(P,Q)| ≤ RdegP+degQ.
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PROOF. The proof is very close to that given of Theorem 2.2 in [14] which
explains the decomposition of planar maps with one root. We look at the first half-
edge with color k corresponding to Xk in XkP :

1. The first possibility is that the half-edge is glued to another half-edge of P =
RXkS. It cuts P in two monomials R and S and it occurs for all decomposition
of P into P = RXkS which is exactly what does D. Then either the component
R is linked to Q and to pi stars of type qi for each i, this leads to∏

i

C
pi

ki
Mp1,...,pn(R,Q)Mk1−p1,...,kn−pn(S)

possibilities, or we are in the symmetric case with S linked to Q in place of R.
2. The second case occurs when the half-edge is glued to a star of type qj for a

given j , then first we have to choose between the kj vertices of this type, then
we contract the edges arising from this gluing to form a star of type DiqjP1;
there are

kjMk1,...,kj−1,...,kn(DkqjP,Q)

choices.
3. The last case is that the half-edge can be glued with the star associated to Q =

RXiS. We contract this half-edge and obtain a star of type DkQP . This leads
to

Mk1,...,kn(DkQP)

possibilities.

We can now sum on the k’s to obtain the relation on M.
Finally, to show the last point of the proposition, we only have to prove that

there exists A > 0,B > 0 such that, for all k’s, for all monomials P and Q,

Mk1,...,kn(P ,Q)∏
i ki ! ≤ A

∑
i kiBdegP+degQ.

This follows easily by induction over the degree of P with the previous relation on
the M since we have proved such a control for Mk1,...,kn(Q) in [14]. �

We can now relate the variance and the generating function for the enumeration
of planar maps with two prescribed vertices.

THEOREM 5.6. Assume (H′) with η small enough. Then, for all polynomials
P,Q,

σ 2(P,Q) = M(P,Q).
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PROOF. First we transform the relation on M. We use (21) with P = Dk�R

to deduce

M(�R,Q) = ∑
k

µ(DkQDk�R).

Let us define � = σ 2 −M. Then according to (5.2) and the previous property, � is
compactly supported and for all polynomials P and Q,

�(�P,Q) = 0.

Moreover, with M(1,Q) = 0 = σ 2(1,Q),

�(1,Q) = 0.

To conclude, we have to invert one more time the operator �. For a polynomial P ,
we take, as in the proof of the central limit theorem, a sequence of polynomial Sn

which goes to S = �−1P in C0〈X1, . . . ,Xm〉A. Then, write

�(P,Q) = �
(
�(Sn + S − Sn),Q

) = �
(
�(S − Sn),Q

)
.

But by continuity of �, �(S − Sn) goes to 0 for the norm ‖ · ‖A. We can always
assume A ≥ R if η is small enough. Moreover, because � is compactly supported,
� is continuous for ‖ · ‖A, and so �(�(S − Sn),Q) goes to zero when n goes to
+∞. This proves the theorem. �

6. Second order correction to the free energy. We now deduce from the
central limit theorem the precise asymptotics of Nδ

N
(P ) and then compute the

second order correction to the free energy.
Let φ0 and φ be the linear forms on C0〈X1, . . . ,Xm〉 which are given, if P is a

monomial by

φ0(P ) =
m∑

i=1

∑
P=P1XiP2XiP3

σ 2(P3P1,P2)(22)

and φ = φ0 ◦ �.

PROPOSITION 6.1. Assume (H′). Then, for any P in C0〈X1, . . . ,Xm〉,
lim

N→∞Nδ
N

(P ) = φ(�−1�(P )).

PROOF. Again, we base our proof on the finite dimensional Schwinger–
Dyson equation (13) which, after centering, and since we can always assume that
P ∈ C0〈X1, . . . ,Xm〉, reads for i ∈ {1, . . . ,m},
N2µN

V

(
(µ̂N − µ)[(Xi + DiV )P − (I ⊗ µ + µ ⊗ I )∂iP ]) = µN

V

(
δ̂N ⊗ δ̂N (∂iP )

)
.
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Taking P = Di�P and summing over i ∈ {1, . . . ,m}, we thus have

N2µN
V

(
(µ̂N − µ)(�P )

) = µN
V

(
δ̂N ⊗ δ̂N

(
m∑

i=1

∂i ◦ Di�P

))
.(23)

By Corollary 4.8 and Lemma 5.1, we see that

lim
N→∞µN

V

(
δ̂N ⊗ δ̂N

(
m∑

i=1

∂i ◦ Di�P

))
= φ(P ),

which gives the asymptotics of Nδ
N

(�P) for all P .
To generalize the result to arbitrary P , we proceed as in the proof of the full

central limit theorem. We take a sequence of polynomials Qn which goes to Q =
�−1P when n goes to ∞ for the norm ‖ ·‖A. We denote Rn = P −�Qn = �(Q−
Qn). Note that as P and Qn are polynomials, then Rn is also a polynomial. Then
we write

Nδ
N

(P ) = Nδ
N

(�Qn) + Nδ
N

(Rn).

According to Property 3.1, for any monomial P of degree less than εN2/3,

|Nδ
N

(P )| ≤ Cdeg(P ).

So if we take the limit in N , for any monomial P ,

lim sup
N

|Nδ
N

(P )| ≤ Cdeg(P )

and if P is a polynomial,

lim sup
N

|Nδ
N

(P )| ≤ ‖P‖C ≤ ‖P‖A.

The last inequality comes from the hypothesis (H′) which require C < A.
We now fix n and let N go to infinity,

lim sup
N

|Nδ
N

(P − �Qn)| ≤ lim sup
N

|Nδ
N

(Rn)| ≤ ‖Rn‖A.

If we now let n go to infinity, the right-hand side term vanishes and we are left
with

lim
N

Nδ
N

(P ) = lim
n

lim
N

Nδ
N

(Qn) = lim
n

φ(Qn).

It is now sufficient to show that φ is continuous for the norm ‖ · ‖A. But it can
be checked easily that P → ∑m

i=1 ∂i ◦ DiP is continuous from C0〈X1, . . . ,Xm〉A
to C0〈X1, . . . ,Xm〉A−1 and σ 2 is continuous for ‖ · ‖A−1 due to the technical hy-
pothesis in (H′). This proves that φ is continuous and then can be extended on
C0〈X1, . . . ,Xm〉A. Thus,

lim
N

Nδ
N

(P ) = lim
n

φ(Qn) = φ(Q). �

This result allows us to estimate the first order correction to the free energy.
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THEOREM 6.2. Assume (H′), then the following asymptotics hold:

logZN
Vt

= N2F 0(Vt) + F 1(Vt) + o(1),

with

F 0(Vt) = −
∫ 1

0
µαt

(
n∑

i=1

tiqi

)
dα

and

F 1(Vt) = −
∫ 1

0
φαt

(
�−1

αt

n∑
i=1

tiqi

)
ds,

with �αt (resp. φαt) the operator � (resp. the linear form φ) corresponding to the
potential Vαt = αVt with parameters αt.

PROOF. Remark that, for i ∈ {1, . . . , n},

∂α logZN
αVt

= −N2µN
αVt

(
µ̂N

(
n∑

i=1

tiqi

))

so that we can write

logZN
Vt

= N2F 0(Vt) −
∫ 1

0

[
Nδ̄N

αt

(∑
tiqi

)]
dα.(24)

Since for all α ∈ [0,1], Vαt = αVt is c∧1-convex if Vt is c-convex, Proposition 6.1
and (24) finish the proof of the theorem since, by Proposition 3.1, all the Nδ̄N

αt(qi)

can be bounded independently of N , α ∈ [0,1] and t ∈ Bη,c so that the dominated
convergence theorem applies. �

As for the combinatorial interpretation of the variance, we relate F 1(Vt) to a
generating function of maps. This time, we will consider maps on a torus instead
of a sphere. Such maps are said to be of genus 1. We define

M1
k1,...,kn

(P ) = 


{
maps of genus 1 with ki stars of type qi

and one of type P

}

and

M1
k1,...,kn

= 
{maps with ki stars of type qi}.
We also define the generating function

M1(P ) = ∑
k1,...,kn

n∏
i=1

(−ti)
ki

ki ! M1
k1,...,kn

(P ).

If P is a monomial, we will denote M(∂iP ) for
∑

P=RXiS
M(R,S) and we extend

this notation to all polynomials by linearity.
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PROPOSITION 6.3. For all monomials P and all k,

M1
k1,...,kn

(XkP )

= ∑
0≤pi≤ki

∑
P=RXkS

∏
i

C
pi

ki
M1

p1,...,pn
(R)Mk1−p1,...,kn−pn(S)

+ ∑
0≤pi≤ki

∑
P=RXkS

∏
i

C
pi

ki
Mp1,...,pn(R)M1

k1−p1,...,kn−pn
(S)

+ ∑
0≤j≤n

kjM
1
k1,...,kj−1,...,kn

(DkV P,Q) + ∑
P=RXkS

Mk1,...,kn(R,S)

and

M1(XkP ) = M1(
(I ⊗ µ + µ ⊗ I )∂kP

) − M1(DkV P ) + M(∂kP ).(25)

Besides, for η small enough, there exists R < +∞ such that, for all monomials P ,
all t ∈ B(0, η),

|M1(P )| ≤ RdegP .

PROOF. We proceed as we did for the combinatorial interpretation of the vari-
ance. We look at the first half-edge corresponding to Xk , then two cases may occur.

1. The first possibility is that the half-edge is glued to another half-edge of P =
RXkS. It forms a loop starting from P . There are two cases:
(a) The loop can be retractable. It cuts P in two monomials R and S and it

occurs for all decomposition of P into P = RXkS which is exactly what
does D. Then either the component R or the component S is of genus 1 and
the other component is planar. It produces either∏

i

C
pi

ki
M1

p1,...,pn
(R)Mk1−p1,...,kn−pn(S)

possibilities or the symmetric formula (where we exchange R and S).
(b) The loop can also be nontrivial in the fundamental group of the surface.

Then the surface is cut in two. We are left with a planar surface with two
fixed stars R and S. This gives

Mk1,...,kn(R,S)

possibilities.
2. The second possibility occurs when the half-edge is glued to a half-edge of a

star of type qj for a given j , then first we have to choose between the kj stars
of this type, then we contract the edges arising from this gluing to form a star
of type DiqjP1; this creates

kjM
1
k1,...,kj−1,...,kn

(DkqjP,Q)

possibilities.
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We can now sum on the k’s to obtain the relation on M1.
Finally, to show that M1 is compactly supported, we only have to prove that

there exists A > 0,B > 0 such that, for all k’s, for all monomials P ,

M1
k1,...,kn

(P )∏
i ki ! ≤ A

∑
i kiBdegP .

Another time this follows easily by induction with the previous relation on the
M1(P )’s. �

We now give the combinatorial interpretation for the first order correction to the
free energy.

PROPOSITION 6.4. Assume (H′). There exists η > 0 small enough so that, for
t ∈ Bη,c, for all nonconstant monomial P ,

φ(�−1P) = M1(P )

and

F 1 = ∑
k1,...,kn∈Nn−{0}

n∏
i=1

(−ti)
ki

ki ! M1
k1,...,kn

.

PROOF. We use the previous property with P = Dk�P and we sum on k:

M1(�P ) = M

(∑
k

∂kDk�P

)
= ∑

k

σ 2(∂kDk�P) = φ(P ),

where we have used the combinatorial interpretation of the variance (Theo-
rem 5.6). As M1 and φ are continuous for ‖ · ‖A when η is small enough, we
can apply this to �−1P and conclude.

Finally, for η sufficiently small, the series is absolutely convergent so that we
can invert the integral and the sum to obtain

F 1(Vt) = −
∫ 1

0
M1

αt1,...,αtn

(∑
j

tj qj

)
dα

=
∫ 1

0

∑
k1,...,kn

∑
j

∏
i

(−αti)
ki

ki ! (−tj )M
1
k1,...,kn

(qj ) dα

= ∑
k1,...,kn

1

k1 + · · · + kn + 1

∑
j

∏
i

(−ti)
ki

ki ! (−tj )M
1
k1,...,kj+1,...,kn

= ∑
k1,...,kn

∏
i

(−ti)
ki

ki ! M1
k1,...,kj ,...,kn

.
�
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7. Diverging integrals. Physicists often use matrix models in more general
settings. We would like to study the case of a potential V for which the integral ZN

V

is not convergent. For example, one may wonder if we can obtain the generating
function for planar triangulation. The issue is that for V = tX3, ZN

V is infinite. The
idea to give a meaning to this integral is to add a cut-off; we define, for L > 0,

ZN
V,L =

∫
HN(C)m,λmax(A)<L

e−NTr(V (A1,...,Am)) dµN(A1, . . . ,Am).

This allows us to define the probability measure

µN
V,L(dA1, . . . , dAm)

= 1λmax(A)<L

ZN
V,L

e−NTr(V (A1,...,Am)) dµN(A1, . . . ,Am).

In [14], we show that, for all L > L0 for a well chosen L0, there exists η > 0 such
that for |t| < η, µ̂N goes almost surely toward the unique solution to Schwinger–
Dyson’s equation (2). This shows that the cut-off does not perturb too much the
model since the limit does not depend on the choice of the cut-off L and keeps the
same interpretation than in case of convex potentials. The aim of this section is to
show that we can also extend the central limit theorem to this setting. The key idea
is to see this potential as a convex potential. We bound the Hessian of

ϕN
Vt

: (Ak(ij)) ∈ (RN2
)m ∩ {λmax(A) ≤ L} → Tr(V (A1, . . . ,Am))(26)

uniformly in N :

HessϕN
Vt

(A,A) =
n∑

i=1

ti
∑

qi=RXSXT

Tr(RASAT ).

Now, using Hölder’s inequality,

|Tr(RASAT )| = |Tr(T RASA)| ≤ √
Tr((T R)A∗A(T R)∗)

√
Tr(SA∗AS∗)

≤ ‖T R‖‖S‖Tr(AA∗),

which implies that, for {λmax(A) ≤ L},
‖HessϕN

Vt
‖ ≤ C|t|

and C depends only on L. Therefore, we can find ε > 0 such that if t ∈ B(0, ε) ∩
{t|Vt = V ∗

t }, for all N , ϕN
Vt

+ 1
4

∑n
i=1 Tr(X2

i ) is convex on {λmax(A) ≤ L}.
Thus, Ṽt(A) = Vt(A) + ∞1λmax(A)>L is a convex potential and

1λmax(A)≤Le−NTr(Vt(A)) = e−NTr(Ṽ (A))

is log-concave so that most of the step we proved so far can be generalized to
this case. Indeed, the Brascamp–Lieb and concentration inequalities do not require
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smoothness for the potential V . In fact, we could have included this case in all of
the previous proofs but they would have been less readable. We will only sketch the
proof in this generalized case and highlight the main differences with the convex
case.

First, we must control the rate of convergence of the measure to its limit. The
important fact is that up to the choice of t we can obtain bounds independent of L.

PROPOSITION 7.1. There exist nonnegative constants L0,M0,C,α such that,
for L > L0, we can find η > 0 such that, for |t| < η:

1.

µ(X2n
i ) ≤ lim sup

N

µN(X2n
i ) ≤ C2n.

2. For all M > M0

µN
V

(
λN

max(A) > M
) ≤ e−αMN.

3. There exists a finite constant εN
P,M such that, for any ε > 0,

µN
V

({|δ̂N
(P ) − mN

P,M | ≥ ε + εN
P,M} ∩ �N

M

) ≤ 2e−cε2/(2‖P‖M
L )

and if P is a monomial of degree d , εP,M ≤ NCdMde−αMN .

PROOF. Since e−NTr(Ṽ (A)) is log-concave, we can still use the Brascamp–Lieb
inequalities. The only point to check is that we can still find a lower bound for
ZN

V,L, but this was already done in [14] using Jensen’s inequality:

Z
N,L
Vt

=
∫
λmax(A)≤L

e−NTr(Vt(A))
∏

dµN(Ai)

≥ µN (
λmax(A) ≤ L

)
exp

(
−N

∫
λmax(A)≤L

Tr(Vt(A))

∏
dµN(Ai)

µN(λmax(A) ≤ L)

)
.

The biggest eigenvalue goes almost surely to 2 and∣∣∣∣
∫
λmax(A)≤L

1

N
Tr(Vt(A))

∏
dµN(Ai)

∣∣∣∣
is bounded by µN(VtV

∗
t )1/2 which goes to σm(VtV

∗
t )1/2 < +∞ according to [23].

Thus, if L > 2, Z
N,L
Vt

≥ e−dN2
for a finite constant d . Thus, we can prove the

property as in Section 2. The proof of the two last points do not differ from the
convex case. �

The idea, once we have an a priori control on the radius C of the support inde-
pendently of L, is that we can use it to approximate any polynomial by a compactly
supported function with support in [−L,L]. We choose L > L0 = max(M0,C)
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and define for L0 < R < L, φR the piecewise affine function such that, for |x| < R,
φR(x) = x and φR has a compact support strictly inside [−L,L]. Then we can ap-
proximate any polynomial P(X) by hR = P(φR(X1), . . . , φR(Xm)). The main im-
provement in the replacement of P by hR is that hR satisfies the finite Schwinger–
Dyson’s equation (13).

PROPOSITION 7.2. If L is bigger than some L0 > 0, and ε > 0, there exist
C,η,M0 such that, for M > M0, |t| < η for all polynomial P of degree d < εN2/3,

|δN
(P )| ≤ C

‖P‖M

N
.

PROOF. In order to prove the analogue in the convex case (Property 3.1), we
use the finite Schwinger-Dyson’s equation which is not always satisfied in this
case. In fact, it is only satisfied for compactly supported function h with support
in [−L,L], since for such h we can make the infinitesimal change of variable. For
a polynomial P ,

µN
V

(
µ̂N [(Xi + DiV )P ]) − µN

V

(
µ̂N ⊗ µ̂N(∂iP )

)
= µN

V

(
µ̂N [(Xi + DiV )(P − hR)]) − µN

V

(
µ̂N ⊗ µ̂N (

∂i(P − hR)
))

.

Therefore, since µ satisfies the Schwinger–Dyson equation, we get that, for all
polynomial P ,

δ
N

(XiP ) = −δ
N

(DiV P ) + δ
N ⊗ µN(∂iP ) + µ ⊗ δ

N
(∂iP ) + r(N,P ),(27)

with

r(N,P ) := N−1µN
V

(
δ̂
N ⊗ δ̂

N
(∂iP )

)
+ N

(
µN

V

(
µ̂N [(Xi + DiV )(P − hR)])

− µN
V

(
µ̂N ⊗ µ̂N (

∂i(P − hR)
)))

.

Thus, the only difference with the convex case is the term N(µN
V (µ̂N [(Xi +

DiV )(P −hR)])−µN
V (µ̂N ⊗ µ̂N(∂i(P −hR)))) but, since on �N

M , P(A) = hR(A)

and R > M , this term decreases exponentially fast and this allows to finish the
proof exactly as in the proof of Proposition 3.1. �

Since the main tools are available, we next turn to the proof of the central
limit theorem. Here we have to be careful since the technique of the “infinitesi-
mal change of variable” is no longer true in its full generality. But it still holds
if we restrict ourseves to compactly supported functional, thus, we immediately
obtain a weaker version of Lemma 4.1:
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LEMMA 7.3. If L is bigger than some L0 > 0, there exists η such that, for
|t| < η if h1, . . . , hm are compactly supported with support in ] − L,L[ and self-
adjoint, the random variable

YN(h1, . . . , hm) = N

m∑
k=1

{µ̂N ⊗ µ̂N(∂khk) − µ̂N [(Xk + DkV )hk]}

converges in law toward a real centered Gaussian variable with variance

C(h1, . . . , hm) =
m∑

k,l=1

(
µ ⊗ µ[∂khl × ∂lhk] + µ

(
∂l ◦ ∂kV 
(hk, hl)

)) +
m∑

k=1

µ(h2
k).

The last step is to show that even if we do not have the result for all Stieljes
functions, it is sufficient to approach polynomials by compactly supported function
with support inside ]−L,L[. We will again use the fact that the limit measure has
a support bounded independently of L. Using this idea, we prove a result similar
to Lemma 4.2.

LEMMA 7.4. If L is bigger than some L0 > 0, there exists η such that for
|t| < η, if P1, . . . ,Pm are in C〈X1, . . . ,Xm〉sa , then the variable

YN(P1, . . . ,Pm) = N

m∑
k=1

[
µ̂N ⊗ µ̂N(∂kPk) − µ̂N [(Xk + DkV )Pk]]

converges in law toward a real centered Gaussian variable with variance

C(P1, . . . ,Pm) =
m∑

k,l=1

(
µ ⊗ µ[∂kPl × ∂lPk] + µ

(
∂l ◦ ∂kV 
(Pk,Pl)

)) +
m∑

k=1

µ(P 2
k ).

PROOF. First choose L > L0 = max(M0,C) and for L0 < R < L, approx-
imate the polynomials Pi(X) by hi

R = Pi(φR(X1), . . . , φR(Xm)). Then since C

bounds the support of µ, observe that C(P1, . . . ,Pm) = C(h1
R, . . . , hm

R) and we
only have to prove that

YN(P1, . . . ,Pm) − YN(h1
R, . . . , hm

R)

goes in law to 0 when N goes to infinity. But, we have the inequality

P
(|YN(P1, . . . ,Pm) − YN(h1

R, . . . , hm
R)| > ε

) ≤ P
(
λmax(A) > R

)
and the right-hand side goes exponentially fast to 0. �

The other results can be proved as in the convex case with only minor modifi-
cations. Following the same way than in the convex case, this allows us to prove
the theorem:
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THEOREM 7.5. If L is bigger than some L0 > 0, there exists η such that,
for |t| < η, for all P in C0〈X1, . . . ,Xm〉, δ̂N (P ) converges in law to a Gaussian
variable with variance

σ 2(P ) := C(�−1P) = C(D1��−1P , . . . ,Dm��−1P ).

Besides, the convergence in moments occurs and the covariance keeps its com-
binatorial interpretation, allowing us to enumerate a larger variety of graphs.

Finally, applying the same strategy than in the convex case, we are able to prove
the convergence of the free energy.

THEOREM 7.6. For L is bigger than some L0 > 0, there exists η such that,
for |t| < η, the following asymptotics hold:

logZN
Vt,L

= N2F 0(Vt) + F 1(Vt) + o(1),

with

F 0(Vt) = ∑
k1,...,kn∈N−{0}

n∏
i=1

(−ti)
ki

ki ! Mk1,...,kn

and

F 1(Vt) = ∑
k1,...,kn∈N−{0}

n∏
i=1

(−ti)
ki

ki ! M1
k1,...,kn

.
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