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LIKELIHOOD INFERENCE UNDER THE GENERAL RESPONSE
TRANSFORMATION MODEL WITH HETEROSCEDASTIC ERRORS

Chih-Rung Chen and Lih-Chung Wang

Abstract. In this paper, we propose the likelihood inference under the general
response transformation model with heteroscedastic errors when the range of
the response transformation is possibly different from the whole real line.
Three commonly used families of response transformations are reviewed to
illustrate the importance and applicability of the proposed model.

1. INTRODUCTION

For modeling independent continuous data, it is a common practice simply to
assume the following regression model: For i = 1; : : : ;n,

yi = f(xi;¯) + "i;(1)

where yi is the observation for subject i, xi is a known covariate vector for sub-
ject i, ¯ is a finite-dimensional regression parameter vector, f is a known regression
function of both xi and ¯, and "i’s are i.i.d. N(0; ¾2) errors with unknown variance
¾2 > 0. Then f(xi;¯) is not only the mean of observation yi, but also its median
for i = 1; : : : ; n.

When there exist heteroscedastic errors and/or departures from normality in the
data, a popular approach is to transform the response. Originally, the response
transformation was proposed both as a means of achieving homoscedasticity and
approximate normality and for inducing a simpler linear model for the transformed
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response (Box and Cox, 1964). In such situations, we may assume the follow-
ing response transformation model rather than model (1) for modeling independent
continuous data: For i = 1; : : : ;n,

h(yi; ¸) = f(xi;¯) + "i;(2)

where ¸ is a finite-dimensional response transformation parameter vector, h(¢; ¸) is
a known strictly monotonic and differentiable response transformation, and "i’s are
i.i.d. N (0; ¾2) errors with unknown variance ¾2 > 0. In the following, without loss
of generality, we assume that h(¢; ¸) is a known strictly increasing and differentiable
response transformation.

When both heteroscedastic errors and departures from normality cannot be re-
moved simultaneously in the data by any single response transformation, model (2)
is further generalized to

h(yi; ¸) = f(xi;¯) + g(f(xi;¯); zi;°) "i;(3)

where zi is a known covariate vector for subject i, ° is a finite-dimensional variance
parameter vector, g is a known positive weight function of f(xi;¯), zi, and ° , and
"i’s are i.i.d. N(0; 1) standardized errors.

However, if the range of response transformation h(¢; ¸) is different fromR (´
(¡1;1)), "i’s in model (3) cannot be normally distributed. They don’t even have
the same distributions, due to the fact that they may have different supports. In this
paper, we propose the general response transformation model with heteroscedastic
errors by relaxing the assumption that all "i’s in model (3) are identically and
normally distributed.

In Section 2, three commonly used families of response transformations with
ranges possibly different fromR are reviewed. The general response transformation
model with heteroscedastic errors is proposed. In Section 3, the likelihood inference
under the proposed model is discussed thoroughly. Some concluding remarks are
given in Section 4.

2. GENERAL RESPONSE TRANSFORMATION MODEL WITH HETEROSCEDASTIC ERRORS

In this section, first of all, three commonly used families of response transfor-
mations with ranges possibly different fromR are reviewed to illustrate the need to
extend model (3) as follows:

Example 1. The family of power transformations (Box and Cox, 1964)

h(u;¸) = (u¡ ¸2)
( 1̧) =

8
><
>:

(u¡ ¸2)
¸1 ¡ 1

¸1
; ¸1 6= 0;

log(u¡¸2); ¸1 = 0;

(4)
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is most frequently used in the literature to transform continuous data with supports
contained in (¸2;1), where ¸ = (¸1; ¸2)

T . Then the range h((¸2;1); ¸) of re-
sponse transformation h(¢;¸) is (¡1;¡1=¸1) for ¸1 < 0, R for ¸1 = 0, and
(¡1=¸1;1) for ¸1 > 0, respectively. Similarly, the family of response transforma-
tions

h(u;¸) =¡(¸2 ¡ u)( 1̧) =

8
<
:

1¡ (¸2¡ u) 1̧

¸1
; ¸1 6= 0;

¡ log(¸2¡ u); ¸1 = 0;
(5)

can be used to transform continuous data with supports contained in (¡1; ¸2),
where ¸ = (¸1;¸2)T . Then the range h((¡1;¸2);¸) of response transformation
h(¢;¸) is (1=¸1;1) for ¸1 < 0, R for ¸1 = 0, and (¡1;1=¸1) for ¸1 > 0,
respectively.

Example 2. The family of folded power transformations (Mosteller and Tukey,
1977)

h(u; ¸) =

8
>>><
>>>:

(u¡¸2) 1̧ ¡ (¸3 ¡ u) 1̧

¸1
; ¸1 6= 0;

log

µ
u¡ ¸2

¸3¡ u
¶
; ¸1 = 0;

(6)

is frequently used in the literature to transform continuous data with supports con-
tained in (¸2;¸3), where ¸ = (¸1; ¸2; ¸3)

T . Then the range h((¸2; ¸3); ¸) of
response transformation h(¢;¸) is R for ¸1 · 0, and (¡(¸3 ¡ ¸2)

¸1=¸1; (¸3 ¡
¸2)

¸1=¸1) for ¸1 > 0, respectively.

Example 3. The family of modulus power transformations (John and Draper,
1980)

h(u; ¸) =sgn(u¡ ¸2) (ju¡ ¸2j +1)( 1̧) =

8
><
>:

sgn(u¡¸2)

·
(ju¡¸2j +1)¸1 ¡ 1

¸1

¸
; ¸1 6= 0;

sgn(u¡¸2) log(ju¡¸2j+ 1); ¸1 = 0;

(7)

is frequently used in the literature to transform continuous data with supports con-
tained in R, where ¸= (¸1; ¸2)T . Then the range h(R;¸) of response transforma-
tion h(¢;¸) is (1=¸1;¡1=¸1) for ¸1 < 0 and R for ¸1 ¸ 0, respectively.

Examples 1-3 above are three commonly used families of response transforma-
tions with ranges possibly different from R in the literature. In order to cover such
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kinds of families, we propose the following general response transformation model
with heteroscedastic errors to extend model (3) for modeling independent continuous
data: For i = 1; : : : ; n,

h(yi; ¸) = f(xi;¯) + g(f(xi;¯); zi;°) "i;(8)

where all assumptions are the same as model (3) except that "i’s are assumed to be
independent standardized errors with median 0 and distributions either N(0; 1) or
truncation of some N(ci(¯; ;̧ °);1) with ci(¯; ;̧ °) 2 R.

Note that, for i = 1; : : : ; n, h¡1(f(xi;¯); ¸) is the median of yi, but not
necessarily the mean of yi, which may have no closed-form formula to be evaluated
directly or even may not exist. Thus, we are mainly concerned with the median rather
than mean regression problem for original data yi’s. Moreover, for i = 1; : : : ; n,
"i is distributed as N (0;1) if and only if the support of h(yi; ¸) is R. When all
supports of h(yi; ¸)’s are R, the proposed model is exactly the same as model (3).

3. LIKELIHOOD INFERENCE UNDER THE GENERAL RESPONSE TRANSFORMATION MODEL

WITH HETEROSCEDASTIC ERRORS

In this section, the likelihood inference under the general response transformation
model with heteroscedastic errors is discussed thoroughly as follows.

3.1 Maximum Likelihood Estimation

Let µ ´ (¯T ;¸T ; °T )T be the d-dimensional parameter vector and let £ be
the corresponding parameter space. Assume that £ is a non-empty open subset of
Rd and that, for i = 1; : : : ; n, yi has a known support (a1(wi), a2(wi)) (e.g., R,
(0;1), or (0; 1)) contained in the domain of response transformation h(¢;¸), where
wi is a known covariate vector for subject i. Set a1i ´ a1(wi) and a2i ´ a2(wi).
Let © be the cumulative distribution function (c.d.f.) of N (0;1), let Á be the
probability density function (p.d.f.) of N(0; 1), and set (a1; a2) ´

Sn
i=1(a1i; a2i).

For u 2 [a1i; a2i] and i = 1; : : : ;n, set

ei(u;µ) ´ h(u; ¸)¡ fi(¯)

gi(¯; °)
;

where h(a1; ¸) ´ limv#a1 h(v;¸), h(a2;¸) ´ limv"a2 h(v; ¸), fi(¯) ´ f(xi;¯)
and gi(¯;°) ´ g(f(xi;¯); zi;°). Since "i’s have median 0 and distributions either
N(0;1) or truncation of some N(ci(µ); 1) with ci(µ) 2 R, ci(µ) is the root of
equation Gi(t; µ)jt=ci (µ) = 0 for i = 1; : : : ;n, where

Gi(t; µ) =
2X

j=1

©(ei(aji; µ)¡ t)¡ 2 ©(¡t)
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with ©(¡1) ´ 0 and ©(1) ´ 1. One way to obtain ci(µ)’s is to utilize the
following Newton-Raphson method: For i = 1; : : : ; n, first choose a good initial
value c(0)

i (µ) (e.g., c(0)
i (µ) = 0) and then iterate the following equations

c
(k+1)
i (µ) = c

(k)
i (µ)¡ Gi(c

(k)
i (µ); µ)

G0i(c
(k)
i (µ); µ)

; k = 0;1; 2; : : : ;

until c(k)i (µ)’s converge to ci(µ), where

G0i(t; µ) = ¡
2X

j=1

Á(ei(aji; µ)¡ t) + 2Á(¡t)

with Á(§1) ´ 0.
The p.d.f. of yi is

pi(yi;µ) =
1(a1i;a2i)(yi)Á(ri(yi; µ))h

0(yi; ¸)
gi(¯; °) [©(ri(a2i;µ))¡ ©(ri(a1i; µ))]

(9)

for i = 1; : : : ; n, where 1(a1i;a2i)(yi) = 1 for yi 2 (a1i; a2i) and 0 otherwise,
ri(u;µ) ´ ei(u; µ) ¡ ci(µ) for u 2 [a1i; a2i], and h0(v; ¸) ´ @h(v;¸)=@v for
v 2 (a1; a2). Set ei(µ) ´ ei(yi;µ), ri(µ) ´ ri(yi;µ), and h0i(¸) ´ h0(yi; ¸) for
i = 1; : : : ; n. Then the log-likelihood function `(µ) for µ is

Pn
i=1 `i(µ), where

`i(µ) = log[Á(ri(µ))] + log[h0i(¸)]¡ log[gi(¯;°)]

¡ log[©(ri(a2i; µ))¡©(ri(a1i;µ))]:
(10)

Assume that there exists the score function @`(µ)=@µ (´ S(µ)) for µ. Then
S(µ) =

Pn
i=1 @`i(µ)=@µ, where

@`i(µ)

@µ
=
Á0(ri(µ)) @

@µri(µ)

Á(ri(µ))
+

@
@µh

0
i(¸)

h0i(¸)
¡

@
@µgi(¯; °)

gi(¯; °)

¡
@
@µ©(ri(a2i; µ))¡ @

@µ©(ri(a1i; µ))

©(ri(a2i; µ))¡©(ri(a1i;µ))

(11)

with Á0(t)´ dÁ(t)=dt,

@ri(µ)

@µ
=
@ei(µ)

@µ
¡ @ci(µ)

@µ
;

@©(ri(aji;µ))

@µ
=Á(ri(aji;µ))

·
@ei(aji;µ)

@µ
¡ @ci(µ)

@µ

¸
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for t 2 R and j = 1; 2. For i = 1; : : : ; n, by differentiating both sides of equation
Gi(ci(µ);µ) = 0 with respect to µ, we obtain @ci(µ)=@µ = ci1(µ)=ci2(µ), where

ci1(µ) ´
2X

j=1

Á(ri(aji; µ))
@ei(aji; µ)

@µ
;

ci2(µ) ´
2X

j=1

Á(ri(aji; µ))¡ 2Á(¡ci(µ)):

Assume that there exists the Hessian matrix @2`(µ)=@µ@µT (´¡J(µ)) of `(µ).
Then J(µ) =¡Pn

i=1 @
2`i(µ)=@µ@µ

T (´Pn
i=1 Ji(µ)), where

Ji(µ) =¡Á
00(ri(µ)) @

@µri(µ)
@
@µT

ri(µ) +Á0(ri(µ)) @2

@µ@µT
ri(µ)

Á(ri(µ))

+
[Á0(ri(µ))]2 @

@µri(µ)
@
@µT

ri(µ)

Á2(ri(µ))
¡

@2

@µ@µT
h0i(¸)

h0i(¸)
+

@
@µh

0
i(¸)

@
@µT

h0i(¸)

[h0i(¸)]2

+
@2

@µ@µT gi(¯; °)

gi(¯;°)
¡

@
@µgi(¯;°) @

@µT gi(¯; °)

g2
i (¯;°)

+
@2

@µ@µT
©(ri(a2i;µ))¡ @2

@µ@µT
©(ri(a1i;µ))

©(ri(a2i;µ))¡ ©(ri(a1i; µ))

¡
£
@
@µ©(ri(a2i;µ))¡ @

@µ©(ri(a1i;µ))
¤ £

@
@µT ©(ri(a2i;µ))¡ @

@µT ©(ri(a1i; µ))
¤

[©(ri(a2i;µ))¡ ©(ri(a1i;µ))]2

(12)

with Á00(t) ´ d2Á(t)=dt2,

@2ri(µ)

@µ@µT
=
@2ei(µ)

@µ@µT
¡ @2ci(µ)

@µ@µT
;

@2©(ri(aji;µ))

@µ@µT
=Á0(ri(aji;µ))

·
@ei(aji;µ)

@µ
¡ @ci(µ)

@µ

¸ ·
@ei(aji; µ)

@µT
¡ @ci(µ)

@µT

¸

+Á(ri(aji; µ))

·
@2ei(aji;µ)

@µ@µT
¡ @2ci(µ)

@µ@µT

¸

for t 2R and j = 1;2. Here Á0(§1) ´ 0 and

@2ci(µ)

@µ@µT
=

@
@µT

ci1(µ)¡ @
@µ ci(µ)

@
@µT

ci2(µ)

ci2(µ)
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for i = 1; : : : ; n, where

@ci1(µ)

@µT
=

2X

j=1

½
Á0(ri(aji; µ))

@ei(aji; µ)

@µ

·
@ei(aji; µ)

@µT
¡ @ci(µ)

@µT

¸

+Á(ri(aji;µ))
@2ei(aji;µ)

@µ@µT

¾
;

@ci2(µ)

@µT
=

2X

j=1

Á0(ri(aji;µ))
·
@ei(aji;µ)

@µT
¡ @ci(µ)

@µT

¸
+ 2Á0(¡ci(µ)) @ci(µ)

@µT
:

Assume that

@

@µ

Z a2i

a1i

pi(yi;µ)dyi =

Z a2i

a1i

@

@µ
pi(yi; µ)dyi

for i = 1; : : : ; n. Then Eµ(S(µ)) = 0. Set K(µ)´Pn
i=1[@`i(µ)=@µ][@`i(µ)=@µ

T ].
Assume that Eµ([@`i(µ)=@µ]T [@`i(µ)=@µ]) <1 for i = 1; : : : ; n. Then there exists
the expected Fisher information Covµ(S(µ)) (´ I(µ)) of µ and Eµ(K(µ)) = I(µ).
Assume that

@2

@µ@µT

Z a2i

a1i

pi(yi;µ)dyi =

Z a2i

a1i

@2

@µ@µT
pi(yi;µ)dyi

for i = 1; : : : ; n. Then Eµ(Ji(µ)) = Covµ(@`i(µ)=@µ) for i = 1; : : : ; n, which
implies that Eµ(J(µ)) = I(µ).

Assume that there exists a unique MLE µ̂ of µ. Then µ̂ solves the score equation
S(µ̂) = 0 for µ. Assume that both of I(µ) and J(µ) are continuous functions of
µ. Then all of I(µ̂), J(µ̂) and K(µ̂) are nonnegative definite and generally positive
definite matrices. But, I(µ̂) generally has no closed-form formula to be evaluated
directly. Thus, µ̂ can be obtained by utilizing the following method: First choose a
good initial value µ(0) and then iterate the following equations

µ(k+1) = µ(k) +M¡1
³
µ(k)
´
S
³
µ(k)
´
; k = 0; 1;2; : : : ;(13)

until µ(k)’s converge to µ̂. If M(µ(k)) = J(µ(k)) for k = 0;1; 2; : : : , it is called the
Newton-Raphson method. If M(µ(k)) = I(µ(k)) for k = 0;1;2; : : : , it is called the
Fisher scoring method. Since I(µ(k))’s generally have no closed-form formulae, we
suggest only to choose M(µ(k)) as either J(µ(k)) or K(µ(k)) for k = 0;1;2; : : : .
Note thatK(µ(k))’s are nonnegative definite and generally positive definite matrices,
but J(µ(k))’s are not necessarily nonnegative definite matrices when the initial value
µ(0) is far from µ̂. Thus, if M(µ(k)) = K(µ(k)) for k = 0; 1;2; : : : , a good initial
value µ(0) is usually easier to find but more iterations are needed for convergence
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than the Newton-Raphson method. Therefore, a stable and quick method to obtain
µ̂ is suggested as follows: First choose M(µ(k)) as K(µ(k)) until near convergence
and then J(µ(k)) until convergence.

Now consider the case where the sample size n tends to infinity. Assume that
the following conditions hold:

(i) the minimum eigenvalue of I(µ) tends to infinity as n!1;

(ii) Eµ(max1·i·n j@`i(µ)=@µj j)=[Covµ(@`(µ)=@µj)]1=2 ! 0 as n! 1 for j =
1; : : : ; d, where µ ´ (µ1; : : : ; µd)T ;

(iii) I¡1=2(µ)J(µ)I¡1=2(µ)
p! Id and I¡1=2(µ)K(µ)I¡1=2(µ)

p! Id as n ! 1,
where Id is the identity matrix of order d ;

(iv) [diagfI(µ)g]¡1=2I(µ)[diagfI(µ)g]¡1=2 ! §(µ) as n!1, where §(µ) is a
positive definite matrix.

Then, by Theorem 1.80 of Prakasa Rao (1999),

M¡1=2 (µ) S(µ)
d!N (0; Id)(14)

as n!1, where M can be chosen as any of I , J , and K. Assume that

I¡1=2(µ)
n
S
³
µ̂
´
¡
h
S(µ)¡ J(µ)

³
µ̂ ¡ µ

´io
= op(1)

as n!1. Then, by equation (14) and condition (iii),

M1=2(µ)
³
µ̂¡ µ

´
= M¡1=2(µ)S(µ)+ op(1)

d! N(0; Id)(15)

as n ! 1, where M can be chosen as any of I , J, and K . Thus, by equa-
tion (15) and condition (i), the MLE µ̂ of µ is a weakly consistent estimator of
µ. Assume that I¡1=2(µ)I(µ̂)I¡1=2(µ)

p! Id, J¡1=2(µ)J(µ̂)J¡1=2(µ)
p! Id, and

K¡1=2(µ)K(µ̂)K¡1=2(µ)
p! Id as n!1. Then, by equation (15),

M1=2
³
µ̂
´ ³

µ̂ ¡ µ
´

= M1=2(µ)
³
µ̂¡ µ

´
+ op(1)

d!N (0; Id)(16)

as n!1, where M can be chosen as any of I , J , and K.

3.2 Hypothesis Testing and Confidence Regions

In this subsection, let ! (´ (ÃT ;ÂT )T) be a one-to-one reparameterization of
µ such that j@µ=@!Tj 6= 0 and @2µj=@Â@ÂT is a continuous function of Â for
j = 1; : : : ; d, where Ã is the d0-dimensional parameter vector of interest and Â is a
(d¡d0)-dimensional nuisance parameter vector with d0 2 f1; : : : ; dg. Here Â does
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not exist when d0 = d. Suppose that we are interested in testing null hypothesis
H0 : Ã = Ã0 versus alternative hypothesis H1 : Ã 6= Ã0.

Set SÃ(Â)´ @`(µ)=@Â, IÃ(Â) ´ Covµ(SÃ(Â)), JÃ(Â) ´¡@SÃ(Â)=@ÂT , and
KÃ(Â) ´Pn

i=1[@`i(µ)=@Â][@`i(µ)=@ÂT ]. Then SÃ(Â) = @µT=@ÂS(µ), IÃ(Â) =
@µT=@ÂI(µ)@µ=@ÂT ,

JÃ(Â) =
@µT

@Â
J(µ)

@µ

@ÂT
¡

dX

j=1

@2µj
@Â@ÂT

Sj(µ);

and KÃ(Â) = @µT=@ÂK(µ)@µ=@ÂT , where S(µ)´ (S1(µ); : : : ;Sd(µ))
T . Assume

that there exists a unique MLE Â̂Ã of Â given Ã. Then Â̂Ã solves the score equation
SÃ(Â̂Ã) = 0 for Â given Ã. Similarly, Â̂Ã can be obtained by using the same
technique as in Section 3.1.

Set W (Ã) ´ 2[`(µ̂)¡ `(µ(Ã; Â̂Ã))]. Assume that I¡1=2
Ã (Â)JÃ(Â̂Ã)I

¡1=2
Ã (Â)

p!
Id¡d0 ,

I1=2
Ã (Â)

¡
Â̂
Ã ¡ Â

¢
= I¡1=2

Ã (Â) SÃ(Â) + op(1);

`(µ) = `
³
µ̂
´

+ ST
³
µ̂
´ ³

µ ¡ µ̂
´
¡ 1

2

³
µ¡ µ̂

´T
J
³
µ̂
´ ³

µ ¡ µ̂
´

+ op(1);

`(µ) = `
¡
µ
¡
Ã; Â̂Ã

¢¢
+STÃ

¡
Â̂Ã
¢ ¡
Â¡ Â̂Ã

¢¡1

2

¡
Â ¡ Â̂Ã

¢T
JÃ
¡
Â̂Ã
¢ ¡
Â ¡ Â̂Ã

¢
+op(1)

as n!1. Then, by equations (15) and (16),

W (Ã) =ST (µ) I¡1=2(µ)

(
Id ¡ I1=2(µ)

@µ

@ÂT

·
@µT

@Â
I(µ)

@µ

@ÂT

¸¡1
@µT

@Â
I1=2(µ)

)

I¡1=2(µ)S(µ) + op(1)
p! Â2

d0

(17)

as n!1.
Let ® 2 (0;1) be fixed. The likelihood ratio test with asymptotic size ® is to

rejectH0 if and only if W (Ã0) > Â2
d0;1¡®, where Â2

d0 ;1¡® is the 1¡® quantile of the
Â2 distribution with d0 degrees of freedom. Therefore, fÃ0 : W (Ã0) · Â2

d0 ;1¡®g is
an asymptotic size 1 ¡® confidence region for Ã.

3.3 Quantile Estimation of a Future Observation

Suppose that

h(yn+1;¸) = f(xn+1;¯) + g(f(xn+1; ¯); zn+1; °) "n+1;(18)

where yn+1 is the future observation for subject n+1, both xn+1 and zn+1 are known
covariate vectors for subject n + 1, and "n+1 is a standardized error independent
of "1; : : : ; "n with median 0 and distribution as either N (0;1) or truncation of
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some N(cn+1(µ); 1) with cn+1(µ) 2 R. Assume that yn+1 has a known support
(a1(wn+1); a2(wn+1)) contained in the domain of response transformation h(¢;¸),
where wn+1 is a known covariate vector for subject n+1. Set a1;n+1 ´ a1(wn+1)
and a2;n+1 ´ a2(wn+1). Similarly, cn+1(µ) can be obtained by using the same
technique as in Section 3.1. For u 2 [a1;n+1; a2;n+1], set

en+1(u;µ) ´ h(u; ¸)¡ fn+1(¯)

gn+1(¯;°)

and rn+1(u; µ) ´ en+1(u;µ) ¡ cn+1(µ), where h(a1;n+1;¸) ´ limv#a1;n+1 h(v;¸),
h(a2;n+1; ¸) ´ limv"a2;n+1 h(v; ¸), fn+1(¯) ´ f(xn+1;¯), and gn+1(¯;°) ´ g(f
(xn+1; ¯); zn+1;°).

Let ® 2 (0; 1) be fixed, let ©n+1(¢;µ) be the c.d.f. of "n+1, and let qn+1;®(µ)
be the ® quantile of yn+1. Then

qn+1;®(µ) = h¡1
¡
fn+1(¯) + gn+1(¯; °)©¡1

n+1(®;µ); ¸
¢
;(19)

where

©¡1
n+1(t;µ) = ©¡1((1 ¡ t)©(rn+1(a1;n+1; µ)) + t©(rn+1(a2;n+1;µ)))+ cn+1(µ)

for t 2R.
Assume that h0(qn+1;®(µ); ¸) 6= 0. Then

@qn+1;®(µ)

@µ
=

@

@µ
fn+1(¯) + ©¡1

n+1(®; µ)
@

@µ
gn+1(¯; °) + gn+1(¯; °)

@

@µ
©¡1
n+1(®; µ)

h0(qn+1;®(µ);¸)

¡

@

@µ
h(u;¸)

¯̄
¯̄
u=qn+1;®(µ)

h0(qn+1;®(µ); ¸)
;

where

@©¡1
n+1(t; µ)

@µ
=

(1¡ t) @
@µ

©(rn+1(a1;n+1;µ)) + t
@

@µ
©(rn+1(a2;n+1; µ))

Á(©¡1
n+1(t;µ)¡ cn+1(µ))

+
@cn+1(µ)

@µ

for t 2 R. Similarly, all of @©(rn+1(a1;n+1; µ))=@µ, @©(rn+1(a2;n+1;µ))=@µ, and
@cn+1(µ)=@µ can be obtained by using the same techniques as in Section 3.1.

Note that the MLE of qn+1;®(µ) is qn+1;®(µ̂). Assume that @qn+1;®(µ)=@µ is a
continuous function of µ. Then, by equations (15) and (16),

·
@qn+1;®(µ)

@µT
M¡1(µ)

@qn+1;®(µ)

@µ

¸
¡1=2

h
qn+1;®

³
µ̂
´
¡ qn+1;®(µ)

i
d!N(0;1);(20)
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·
@qn+1;®(µ)

@µT

¯̄
¯̄
µ=µ̂

M¡1
³
µ̂
´ @qn+1;®(µ)

@µ

¯̄
¯̄
µ=µ̂

¸¡1=2

h
qn+1;®

³
µ̂
´
¡ qn+1;®(µ)

i
d! N(0;1)

(21)

as n!1, where M can be chosen as any of I, J and K.
Let ®1 2 [0;®] be fixed (e.g., 0, ®=2 or ®). Then [qn+1;®1(µ); qn+1;1¡®+®1(µ)]

is a 1 ¡® prediction interval for yn+1 with MLE [qn+1;®1(µ̂); qn+1;1¡®+®1(µ̂)].

4. DISCUSSION

In this final section, when the range of the response transformation is possibly
different from R, the inappropriateness of the likelihood inference under model (3)
is shown to demonstrate the importance of our work.

First of all, suppose that model (3) holds. Then it is exactly the same as
the proposed model. Thus, the likelihood inference under the proposed model in
Section 3 can be used. In particular, we have (a1i; a2i) = (a1; a2), ci(µ) = 0 and
©(ri(a2i; µ))¡ ©(ri(a1i;µ)) = 1 for i = 1; : : : ;n. Then the p.d.f. of yi is

1(a1;a2)(yi)Á(ei(yi; µ)) h0(yi;¸)

gi(¯;°)
(22)

for i = 1; : : : ;n. Set ei(µ) = ei(yi;µ) for i = 1; : : : ;n. Then the log-likelihood
function for µ is `¤(µ) =

Pn
i=1 `

¤
i (µ), the score function for µ is @`¤(µ)=@µ =Pn

i=1@`
¤
i (µ)=@µ (´ S¤(µ)), the Hessian matrix of `¤(µ) is @2`¤(µ)=@µ@µT =Pn

i=1@
2`¤i (µ)=@µ@µ

T (´ ¡Pn
i=1J

¤
i (µ) ´ ¡J¤(µ)), and the MLE µ¤ of µ solves

the score equation S¤(µ¤) = 0 for µ, where

`¤i (µ) = log[Á(ei(µ))] + log[h0i(¸)] ¡ log[gi(¯; °)];(23)

@`¤i (µ)
@µ

=
Á0(ei(µ))

@

@µ
ei(µ)

Á(ei(µ))
+

@

@µ
h0i(¸)

h0i(¸)
¡

@

@µ
gi(¯; °)

gi(¯;°)
;(24)

J¤i (µ) =¡Á
00(ei(µ)) @

@µ ei(µ)
@
@µT ei(µ) +Á0(ei(µ)) @2

@µ@µT ei(µ)

Á(ei(µ))

+
[Á0(ei(µ))]2 @

@µei(µ)
@
@µT

ei(µ)

Á2(ei(µ))
¡

@2

@µ@µT
h0i(¸)

h0i(¸)

+
@
@µh

0
i(¸) @

@µT
h0i(¸)

[h0i(¸)]2
+

@2

@µ@µT
gi(¯; °)

gi(¯;°)
¡

@
@µgi(¯; °)

@
@µT

gi(¯;°)

g2
i (¯;°)

:

(25)
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Next, suppose that the range of response transformation h(¢;¸) is possibly dif-
ferent from R. In such situations, the proposed model can hold, but model (3)
cannot hold. Now consider the following two different cases:

Case 1. Suppose that the sample size n is fixed. When the proposed model
holds, the likelihood inference under the proposed model in Section 3 is correct.
However, the likelihood inference under model (3) is incorrect because model (3)
cannot hold.

Case 2. Suppose that the sample size n tends to infinity. When the proposed
model holds, the MLE µ̂ of µ under the proposed model is consistent, asymptotically
normally distributed and generally asymptotically efficient if all proposed conditions
in Section 3 hold. Now assume that some particular model holds (e.g., the proposed
model). Since model (3) cannot hold, S¤(µ) is generally of order O(n)+Op(n

1=2)
but not op(n) as n!1 and each eigenvalue of [J¤(µ)]¡1 is of order O(n¡1) +

Op(n
¡3=2) but not op(n¡1) as n ! 1. If the MLE µ¤ of µ under model (3) is

a consistent estimator of µ, then µ¤ ¡ µ is generally asymptotically equivalent to
[J¤(µ)]¡1S¤(µ) as n ! 1. Since [J¤(µ)]¡1S¤(µ) is generally of order O(1) +
Op(n

¡1=2) but not op(1) as n!1, the MLE µ¤ of µ under model (3) is generally
an inconsistent estimator of µ.

By Cases 1 and 2, when the range of the response transformation is possibly
different from R, the likelihood inference under model (3) is inappropriate and thus
should not be used. Therefore, when the range of the response transformation is
possibly different from R, we may assume that the proposed model holds and the
likelihood inference under the proposed model in Section 3 can be used.
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