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LOCAL SOLUTIONS OF CONSTRAINED MINIMIZATION PROBLEMS
AND CRITICAL POINTS OF LIPSCHITZ FUNCTIONS

Alexander J. Zaslavski

Abstract. In this paper we use the penalty approach in order to study two con-
strained nonconvex minimization problems with locally Lipschitzian objective
and constraint functions in a Banach space. We show that a local minimizer
of the constrained minimization problem which is not a critical point of the
constraint function is also a local minimizer of a corresponding unconstrained
penalized problem if a penalty coefficient is large enough.

1. INTRODUCTION AND THE MAIN RESULT

Penalty methods are an important and useful tool in constrained optimization.
See, for example, [1, 2, 4] and the references mentioned there. In this paper we
use the penalty approach in order to study two constrained nonconvex minimization
problems with locally Lipschitzian objective and constraint functions in a Banach
space. The first problem is an equality-constrained problem and the second one is an
inequality-constrained problem. A penalty function is said to have the exact penalty
property if there is a penalty coefficient for which a solution of an unconstrained
penalized problem is a solution of the corresponding constrained problem. The
notion of exact penalization was introduced by Eremin [5] and Zangwill [12] for
use in the development of algorithms for nonlinear constrained optimization. Since
that time exact penalty functions have continued to play a key role in the theory of
mathematical programming [1-4, 6-10]. A local exactness of penalties was studied
in [6, 8, 10]. For more discussions and various applications of exact penalization
to various constrained optimization problems see [1, 2, 4, 10].

Usually the exact penalty property is related to calmness of the perturbed con-
straint function. In [14] we use an assumption of different nature which is not
difficult to verify. In particular, we show in [14] that the problem f(z) — min
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subject to g(x) = ¢ possesses the exact penalty if the real number c is not a critical
value of the function g. In other words the set g~!(c) does not contain a critical
point of the function g. Note that in [14] we used the notion of a critical point of a
Lipschitz function introduced in [13]. The result of [14] was generalized in [15] for
a constrained minimization problem with an arbitrary number of mixed constraints.
Moreover, in [15] we do not assume that the set g~!(c) does not contain a criti-
cal point of the function g. Instead of it we suppose that the set g —!(c) does not
contain a critical point of the function g which is a minimizer of the constrained
minimization problem. In the present paper we make another development of the
result of [14] and establish the existence of a local penalty. More precisely, we
show that a local minimizer of the constrained minimization problem which is not a
critical point of the constraint function is also a local minimizer of a corresponding
unconstrained penalized problem if a penalty coefficient is large enough.

Let R be the set of all real numbers, (X, ||-||) be a Banach space, (X*,||-||«)
its dual space and let ¢ : X — R be a locally Lipschitzian function. For each
x € X let

¢°(x, h) = limsup [¢(y +th) — d(y)]/t, h € X

t—0t y—zx

be the Clarke generalized directional derivative of ¢ at the point = [3], let
Op(x) ={l € X*: ¢°(x,h) > I(h) forall h € X}

be Clarke’s generalized gradient of ¢ at = [3] and set

(1.1) Z4(x) = inf{¢"(x,h) : h € X and ||h]| < 1}

(see [13, 14]).

A point z € X is called a critical point of ¢ if 0 € d¢(x) [13, 14]. It is not
difficult to see that = € X is a critical point of ¢ if and only if =,(z) > 0.

A real number ¢ € R is called a critical value of ¢ if there is a critical point x
of ¢ such that ¢(z) = c.

For each € X and each r > 0 put

Blz,r)={ye X : [lz -yl <r}.

Suppose that a function f : X — R U {occ}, a function g : X — R is locally
Lipschitzian and that a real number c is such that the set g ~*(c) is nonempty.
We consider the constrained problems

(P,) f(z) — min subject to 2 € g7(c)

(P)) f(z) — min subject to = € g~ ((—o0, c]).
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We associate with these two problems the corresponding families of unconstrained
minimization problems

(Pr) F(@) + Ag(x) — ¢| — min, z € X
and

(Py;) f(z)+ Amax{g(z) — ¢, 0} —» min, z € X
where A > 0.

The following theorem is our main result.
Theorem 1.1. Assume that
(1.2) z € X satisfies g(z) = c,

Z is not a critical point of g and that there exists 7 > 0 such that the following
properties hold: the function f is finite-valued and Lipschitzian on the set B(z, 7);

(1.3) f(z) > f(z) for each = € B(z,7) N g~ (c).
Then there exist 1 > 0 and Ay > 0 such that if A\ > Ay and if x € B(z,rq)
satisfies
f(@) + Alg(x) — | < f(2),
then g(z) = c.

Corollary 1.1. Assume that all the assumptions of Theorem 1.1 hold and let
ry > 0 and Ay > 0 be as guaranteed by Theorem 1.1 Then if A > Ay and if
x € B(z,r) satisfies

f(@) + Amax{g(z) — ¢, 0} < f(2),
then g(z) < c¢. Denote by co(A) the convex hull of a set A ¢ X*.

Theorem 1.1 implies the following result which establishes a necessary optimal-
ity condition for the problem (P.).

Proposition 1.1. Assume that all the assumptions of Theorem 1.1 hold. Then
there is Ag > 0 such that

0 € df(z) + Aoco(dg(Z) U (—0g(T)).
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Proof. Letr; > 0 and Ag > 0 be as guaranteed by Theorem 1.1. We may
assume that r; < 7. Then for each z € B(z,r;)

f(@) + Dolg(z) — e = f(z) < f(z) + Aolg(x) —cf.
This implies that
0€ 0f(Z) + Mod(lg(-) — c)(Z) C If(T) + Aoco(dg () U (=09(z)).
Proposition 1.1 is proved. ]

Corollary 1.1 implies the following result which establishes a necessary opti-
mality condition for the problem (F;).

Proposition 1.2. Assume that all the assumptions of Theorem 1.1 hold and that
f(z) > f(z) for each z € B(z,7) N g~ ((—o0, d]).
Then there is Ag > 0 such that
0 € 0f(z) + Aoco(dg(z) U {0}).

Proof. Letr; > 0 and Ag > 0 be as guaranteed by Theorem 1.1. We may
assume that r; < 7. Corollary 1.1 implies that for each x € B(z,r)

f(@) + Aomax{g(z) — ¢, 0} = f(Z) < f(x) + Agmax{g(z) — ¢, 0}
This implies that
0€ df(x) + Apd(max{g(-) —¢,0})(z) C Of(x) + Apco(dg(z) U {0}).
Proposition 1.2 is proved. ]
2. AN AuXILIARY ResuLT

Let (Y,||-]]) and (Z,||-||) be Banach spaces, A C Y and B C Z. We say that
h : A — B iaan L£-mapping if for each = € A there exists » > 0 such that the
restriction b : AN B(x,r) — B is Lipschitz.

Assume that g : X — R is a locally Lipschitz function. In the sequel we use
the following auxiliary result obtained in [16].

Lemma 2.1. Assume that o € X, 6 > 0 and that =,(x¢) < —d. Then there
exist » > 0 and an £L—mapping V : X — X such that

|V (z)|] <2forall z € X,
9°(z,V(x)) <0 forall » € X,
9%(x, V() < =6 for all = € B(xo, ).
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3. ProoF oF THEOREM 1.1

There exists My > 0 such that

(3.1) |f(2)| < My for all z € B(z,7)
and
(3.2) \f(zl) — f(ZQ)‘ < MOHZl — ZQH forall z1, 29 € B(i‘,?).

Since Z is not a critical point of ¢ there is § > 0 such that
(3.3) Eq(7) < —o0.

By Lemma 2.1 and (3.3) there exist o > 0 and an £-mapping V' : X — X such
that

(3.4) ||V (z)|| <2forall x € X,

(3.5) ¢°(z,V(z)) <Oforall z € X

and

(3.6) g%z, V(z)) < =6 for all = € B(z,ro).

We may assume without loss of generality that
(3.7) ro < T.

It was shown in [11] that the mapping V' generates a flow o : R x X — X such
that the mapping o is continuous and that

(3.8) (d/dt)o(t,z) =V (o(t,z)) forall z € X and all ¢t € R.
Assume that

(3.9) z € X, t1,t0 € R, and t; < to.

By the properties of the Clarke generalized directional derivative [3]
(3.10) g9(o(ta, x)) — g(o(tr, x)) < (t2 — t1)I((do/dt) (o (s, x))),
where

(3.11) s € [t1,to] and I € Dg(o (s, x)).

By (3.10), (3.11), (3.8), (3.9) and (3.5),
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(3.12) g9(o(te, x)) = g(o(tr,2)) = 1(V(a(s, 2)))(t2 — t1) < 0.
Thus

9(o(t2,x)) — g(o(tr,2)) < 0
(3.13) for all x € X, each t € R and each ty > t;.
There are
(3.14) 1 € (0,1), r1 € (0,70)
such that

llo(t,z) — Z|| <o
(3.15)

for each t € [—7, 1] and each x € B(z,r1).
Assume now that
(3.16) S B(i‘,?“l), t1,12 € [—7‘1,7‘1] and ¢; < to.

By the properties of the Clarke generalized directional derivative [3], (3.8) and
(3.16),

(3.17) g(o(tz, 2)) — g(o(t1,2)) = l(do/dt(o (s, x)))(t2 = t1),
where
(3.18) s € [t1,t2] and I € g(o (s, x)).

By (3.17) and (3.8),

(3.19) g(o(te, x)) — g(o(tr, x)) = 1(V(a(s, x)))(t2 — t1).
In view of (3.18), (3.16) and (3.15),

(3.20) o(s,z) € B(z,ro).

By (3.20) and (3.6),

(3.21) 9°(o(s,2),V(a(s,x))) < —0.

It follows from (3.19), (3.18) and (3.21) that

(3.22) 9(o(t2, ) — g(o(tr,x)) < =6(t2 —t1)

for each x € B(z,r1) and each t1,ty € [—71, 72 satisfying t; < to. By (3.22) for
each z € B(z,r),
g(o(m,x)) < g(z) —om
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and

(3.23) g9(o(=m,2)) = g(x) + om1.
Choose a positive number Ag such that

(3.24) Ao > 2Moo Lt

Assume that

(3.25) A > Ay, x € B(z,r1)
and

(3.26) f(@) + Mg () — ¢ < f(2).
We show that g(x) = ¢. Assume the contrary. Then
(3.27) g(x) # c.

By (3.25), (3.26), (3.14), (3.7) and (3.1),
Aolg(x) — | < f(z) + My < 2M)y
and
(3.28) lg(x) — c| < 2MpA,™.
In view of (3.23), (3.25), (3.28) and (3.24),
g(o(m,z)) < g(x) — 61 < c+2MoAyt — o < ¢

and
glo(=71,2)) > om1 +g(z) > o1 +c— 2MOAO_1 > c.

It follows from the inequality above, (3.22) and (3.25) that there is a unique

(3.29) s € [=71, 7]

such that

(3.30) g(o(s,z)) =c.

In view of (3.30), (3.29), (3.22) and (3.25),

(3.31) lc—g(x)[ = lg(o(s,2)) — g(o(0,2))[ = d]s|.

By (3.8) and (3.5),

lz = (s, z)[| = [lo(0,z) = a (s, )]

3.32 s
(332 < \/0 V(o (t, ) [dt] < 2]s].
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By (3.

(3.33)
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25), (3.29), (3.14) (3.15), (3.7), (3.2) and (3.32),
|f(z) = f(o(s,2))| < Mol|lz — o (s, z)|| < 2Mols|.

It follows from (3.30), (3.33), (3.31), (3.27) and (3.14) that

flo(s,x))+ Ag(o(s, z)) —c
= flo(s,2)) < f(z) + 2Mo|s|
< f(@) +2Mod e — g(2)| < f(x) + Aole — g(x)].

Together with (1.3), (3.30), (3.29), (3.25), (3.15) and (3.7) this implies that

f(@) < flo(s, @) < fz) + Alg(z) — ¢l

This contradicts (3.26). The contraction we have reached proves that g(z) = c.
Theorem 1.1 is proved.
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