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LOCAL SOLUTIONS OF CONSTRAINED MINIMIZATION PROBLEMS
AND CRITICAL POINTS OF LIPSCHITZ FUNCTIONS

Alexander J. Zaslavski

Abstract. In this paper we use the penalty approach in order to study two con-
strained nonconvex minimization problems with locally Lipschitzian objective
and constraint functions in a Banach space. We show that a local minimizer
of the constrained minimization problem which is not a critical point of the
constraint function is also a local minimizer of a corresponding unconstrained
penalized problem if a penalty coefficient is large enough.

1. INTRODUCTION AND THE MAIN RESULT

Penalty methods are an important and useful tool in constrained optimization.
See, for example, [1, 2, 4] and the references mentioned there. In this paper we
use the penalty approach in order to study two constrained nonconvex minimization
problems with locally Lipschitzian objective and constraint functions in a Banach
space. The first problem is an equality-constrained problem and the second one is an
inequality-constrained problem. A penalty function is said to have the exact penalty
property if there is a penalty coefficient for which a solution of an unconstrained
penalized problem is a solution of the corresponding constrained problem. The
notion of exact penalization was introduced by Eremin [5] and Zangwill [12] for
use in the development of algorithms for nonlinear constrained optimization. Since
that time exact penalty functions have continued to play a key role in the theory of
mathematical programming [1-4, 6-10]. A local exactness of penalties was studied
in [6, 8, 10]. For more discussions and various applications of exact penalization
to various constrained optimization problems see [1, 2, 4, 10].

Usually the exact penalty property is related to calmness of the perturbed con-
straint function. In [14] we use an assumption of different nature which is not
difficult to verify. In particular, we show in [14] that the problem f(x) → min
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subject to g(x) = c possesses the exact penalty if the real number c is not a critical
value of the function g. In other words the set g−1(c) does not contain a critical
point of the function g. Note that in [14] we used the notion of a critical point of a
Lipschitz function introduced in [13]. The result of [14] was generalized in [15] for
a constrained minimization problem with an arbitrary number of mixed constraints.
Moreover, in [15] we do not assume that the set g−1(c) does not contain a criti-
cal point of the function g. Instead of it we suppose that the set g−1(c) does not
contain a critical point of the function g which is a minimizer of the constrained
minimization problem. In the present paper we make another development of the
result of [14] and establish the existence of a local penalty. More precisely, we
show that a local minimizer of the constrained minimization problem which is not a
critical point of the constraint function is also a local minimizer of a corresponding
unconstrained penalized problem if a penalty coefficient is large enough.

Let R be the set of all real numbers, (X, || · ||) be a Banach space, (X∗, || · ||∗)
its dual space and let φ : X → R be a locally Lipschitzian function. For each
x ∈ X let

φ0(x, h) = lim sup
t→0+,y→x

[φ(y + th) − φ(y)]/t, h ∈ X

be the Clarke generalized directional derivative of φ at the point x [3], let

∂φ(x) = {l ∈ X∗ : φ0(x, h) ≥ l(h) for all h ∈ X}
be Clarke’s generalized gradient of φ at x [3] and set

(1.1) Ξφ(x) = inf{φ0(x, h) : h ∈ X and ||h|| ≤ 1}
(see [13, 14]).

A point x ∈ X is called a critical point of φ if 0 ∈ ∂φ(x) [13, 14]. It is not
difficult to see that x ∈ X is a critical point of φ if and only if Ξφ(x) ≥ 0.

A real number c ∈ R is called a critical value of φ if there is a critical point x

of φ such that φ(x) = c.
For each x ∈ X and each r > 0 put

B(x, r) = {y ∈ X : ||x− y|| ≤ r}.
Suppose that a function f : X → R ∪ {∞}, a function g : X → R is locally

Lipschitzian and that a real number c is such that the set g −1(c) is nonempty.
We consider the constrained problems

(Pe) f(x) → min subject to x ∈ g−1(c)

and

(Pi) f(x) → min subject to x ∈ g−1((−∞, c]).
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We associate with these two problems the corresponding families of unconstrained
minimization problems

(Pλe) f(x) + λ|g(x)− c| → min, x ∈ X

and

(Pλi) f(x) + λ max{g(x)− c, 0} → min, x ∈ X

where λ > 0.
The following theorem is our main result.

Theorem 1.1. Assume that

(1.2) x̄ ∈ X satisfies g(x̄) = c,

x̄ is not a critical point of g and that there exists r̄ > 0 such that the following
properties hold: the function f is finite-valued and Lipschitzian on the set B(x̄, r̄);

(1.3) f(x) ≥ f(x̄) for each x ∈ B(x̄, r̄) ∩ g−1(c).

Then there exist r1 > 0 and Λ0 > 0 such that if λ ≥ Λ0 and if x ∈ B(x̄, r1)
satisfies

f(x) + λ|g(x)− c| ≤ f(x̄),

then g(x) = c.

Corollary 1.1. Assume that all the assumptions of Theorem 1.1 hold and let
r1 > 0 and Λ0 > 0 be as guaranteed by Theorem 1.1 Then if λ ≥ Λ0 and if
x ∈ B(x̄, r1) satisfies

f(x) + λ max{g(x)− c, 0} ≤ f(x̄),

then g(x) ≤ c. Denote by co(A) the convex hull of a set A ⊂ X∗.

Theorem 1.1 implies the following result which establishes a necessary optimal-
ity condition for the problem (Pe).

Proposition 1.1. Assume that all the assumptions of Theorem 1.1 hold. Then
there is Λ0 > 0 such that

0 ∈ ∂f(x̄) + Λ0co(∂g(x̄) ∪ (−∂g(x̄)).
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Proof. Let r1 > 0 and Λ0 > 0 be as guaranteed by Theorem 1.1. We may
assume that r1 < r̄. Then for each x ∈ B(x̄, r1)

f(x̄) + Λ0|g(x̄) − c| = f(x̄) ≤ f(x) + Λ0|g(x)− c|.
This implies that

0 ∈ ∂f(x̄) + Λ0∂(|g(·)− c|)(x̄) ⊂ ∂f(x̄) + Λ0co(∂g(x̄) ∪ (−∂g(x̄)).

Proposition 1.1 is proved.

Corollary 1.1 implies the following result which establishes a necessary opti-
mality condition for the problem (Pi).

Proposition 1.2. Assume that all the assumptions of Theorem 1.1 hold and that

f(x) ≥ f(x̄) for each x ∈ B(x̄, r̄) ∩ g−1((−∞, c]).

Then there is Λ0 > 0 such that

0 ∈ ∂f(x̄) + Λ0co(∂g(x̄) ∪ {0}).
Proof. Let r1 > 0 and Λ0 > 0 be as guaranteed by Theorem 1.1. We may

assume that r1 < r̄. Corollary 1.1 implies that for each x ∈ B(x̄, r1)

f(x̄) + Λ0 max{g(x̄) − c, 0} = f(x̄) ≤ f(x) + Λ0 max{g(x)− c, 0}.
This implies that

0 ∈ ∂f(x̄) + Λ0∂(max{g(·)− c, 0})(x̄) ⊂ ∂f(x̄) + Λ0co(∂g(x̄) ∪ {0}).
Proposition 1.2 is proved.

2. AN AUXILIARY RESULT

Let (Y, || · ||) and (Z, || · ||) be Banach spaces, A ⊂ Y and B ⊂ Z. We say that
h : A → B ia an L-mapping if for each x ∈ A there exists r > 0 such that the
restriction h : A ∩ B(x, r) → B is Lipschitz.

Assume that g : X → R is a locally Lipschitz function. In the sequel we use
the following auxiliary result obtained in [16].

Lemma 2.1. Assume that x0 ∈ X , δ > 0 and that Ξg(x0) < −δ. Then there
exist r > 0 and an L−mapping V : X → X such that

||V (x)|| ≤ 2 for all x ∈ X,

g0(x, V (x)) ≤ 0 for all x ∈ X,

g0(x, V (x)) ≤ −δ for all x ∈ B(x0, r).
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3. PROOF OF THEOREM 1.1

There exists M0 > 0 such that

(3.1) |f(z)| ≤ M0 for all z ∈ B(x̄, r̄)

and

(3.2) |f(z1) − f(z2)| ≤ M0||z1 − z2|| for all z1, z2 ∈ B(x̄, r̄).

Since x̄ is not a critical point of g there is δ > 0 such that

(3.3) Ξg(x̄) < −δ.

By Lemma 2.1 and (3.3) there exist r0 > 0 and an L-mapping V : X → X such
that

(3.4) ||V (x)|| ≤ 2 for all x ∈ X,

(3.5) g0(x, V (x)) ≤ 0 for all x ∈ X

and

(3.6) g0(x, V (x)) ≤ −δ for all x ∈ B(x̄, r0).

We may assume without loss of generality that

(3.7) r0 < r̄.

It was shown in [11] that the mapping V generates a flow σ : R × X → X such
that the mapping σ is continuous and that

(3.8) (d/dt)σ(t, x) = V (σ(t, x)) for all x ∈ X and all t ∈ R.

Assume that

(3.9) x ∈ X, t1, t2 ∈ R, and t1 < t2.

By the properties of the Clarke generalized directional derivative [3]

(3.10) g(σ(t2, x))− g(σ(t1, x)) ≤ (t2 − t1)l((dσ/dt)(σ(s, x))),

where

(3.11) s ∈ [t1, t2] and l ∈ ∂g(σ(s, x)).

By (3.10), (3.11), (3.8), (3.9) and (3.5),
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(3.12) g(σ(t2, x))− g(σ(t1, x)) = l(V (σ(s, x)))(t2 − t1) ≤ 0.

Thus
g(σ(t2, x))− g(σ(t1, x)) ≤ 0

(3.13) for all x ∈ X, each t ∈ R and each t2 > t1.

There are

(3.14) τ1 ∈ (0, 1), r1 ∈ (0, r0)

such that

(3.15)
||σ(t, x)− x̄|| < r0

for each t ∈ [−τ1, τ1] and each x ∈ B(x̄, r1).

Assume now that

(3.16) x ∈ B(x̄, r1), t1, t2 ∈ [−τ1, τ1] and t1 < t2.

By the properties of the Clarke generalized directional derivative [3], (3.8) and
(3.16),

(3.17) g(σ(t2, x))− g(σ(t1, x)) = l(dσ/dt(σ(s, x)))(t2 − t1),

where

(3.18) s ∈ [t1, t2] and l ∈ ∂g(σ(s, x)).

By (3.17) and (3.8),

(3.19) g(σ(t2, x))− g(σ(t1, x)) = l(V (σ(s, x)))(t2 − t1).

In view of (3.18), (3.16) and (3.15),

(3.20) σ(s, x) ∈ B(x̄, r0).

By (3.20) and (3.6),

(3.21) g0(σ(s, x), V (σ(s, x))) ≤ −δ.

It follows from (3.19), (3.18) and (3.21) that

(3.22) g(σ(t2, x))− g(σ(t1, x)) ≤ −δ(t2 − t1)

for each x ∈ B(x̄, r1) and each t1, t2 ∈ [−τ1, τ2] satisfying t1 < t2. By (3.22) for
each x ∈ B(x̄, r1),

g(σ(τ1, x)) ≤ g(x)− δτ1
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and

(3.23) g(σ(−τ1, x)) ≥ g(x) + δτ1.

Choose a positive number Λ0 such that

(3.24) Λ0 > 2M0δ
−1τ−1

1 .

Assume that

(3.25) λ ≥ Λ0, x ∈ B(x̄, r1)

and

(3.26) f(x) + λ|g(x)− c| ≤ f(x̄).

We show that g(x) = c. Assume the contrary. Then

(3.27) g(x) 	= c.

By (3.25), (3.26), (3.14), (3.7) and (3.1),

Λ0|g(x)− c| ≤ f(x̄) + M0 ≤ 2M0

and

(3.28) |g(x)− c| ≤ 2M0Λ−1
0 .

In view of (3.23), (3.25), (3.28) and (3.24),

g(σ(τ1, x)) ≤ g(x)− δτ1 ≤ c + 2M0Λ−1
0 − δτ1 < c

and
g(σ(−τ1, x)) ≥ δτ1 + g(x) ≥ δτ1 + c − 2M0Λ−1

0 > c.

It follows from the inequality above, (3.22) and (3.25) that there is a unique

(3.29) s ∈ [−τ1, τ1]

such that

(3.30) g(σ(s, x)) = c.

In view of (3.30), (3.29), (3.22) and (3.25),

(3.31) |c− g(x)| = |g(σ(s, x))− g(σ(0, x))| ≥ δ|s|.
By (3.8) and (3.5),

(3.32)
||x− σ(s, x)|| = ||σ(0, x)− σ(s, x)||

≤ |
∫ s

0
||V (σ(t, x))||dt| ≤ 2|s|.
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By (3.25), (3.29), (3.14) (3.15), (3.7), (3.2) and (3.32),

(3.33) |f(x)− f(σ(s, x))| ≤ M0||x− σ(s, x)|| ≤ 2M0|s|.

It follows from (3.30), (3.33), (3.31), (3.27) and (3.14) that

f(σ(s, x)) + λ|g(σ(s, x))− c|
= f(σ(s, x)) ≤ f(x) + 2M0|s|
≤ f(x) + 2M0δ

−1|c− g(x)| < f(x) + Λ0|c − g(x)|.
Together with (1.3), (3.30), (3.29), (3.25), (3.15) and (3.7) this implies that

f(x̄) ≤ f(σ(s, x)) < f(x) + λ|g(x)− c|.

This contradicts (3.26). The contraction we have reached proves that g(x) = c.
Theorem 1.1 is proved.
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