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((I), p)-MONOTONICITY AND GENERALIZED ((I), p)-MONOTONICITY
Tadeusz Antczak

Abstract. In this paper, new concepts of monotonicity, namely (®, p)-monotonicity,
(®, p)-pseudo-monotonicity and (P, p)-quasi-monotonicity are introduced for func-
tions defined in Banach spaces. Series of necessary conditions are also given that

relate (@, p)-invexity and generalized (@, p)-invexity of the function with (®, p)-

monotonicity and generalized (®, p)-monotonicity of its gradient.

1. INTRODUCTION

A concept closely related to the convexity of a real-valued function is the mono-
tonicity of a vector-valued function. It is well known that the convexity of a real-valued
function is equivalent to the monotonicity of the corresponding gradient function. It
is worth noting that monotonicity has played a very important role in the study of the
existence of solutions and numerical methods for the solution of variational inequality
problems.

Just as convex functions are characterized by a monotone gradient, different kinds
of generalized convex functions give rise to gradient maps with certain generalized
monotonicity properties which are inherited from generalized convexity of the underly-
ing function. Recently, various kinds of generalized monotonicity have been introduced
for different classes of maps (see, for instance, [8, 9, 10, 15, 14], and the recent Had-
jisavvas et al.’s handbook [6]).

In [8], Karamardian and Schaible defined seven kinds of monotone and gener-
alized monotone maps. They showed in the case of a gradient map that general-
ized monotonicity corresponds to generalized convexity of the underlying function.
However, for strongly pseudo-monotone maps, they have only established that strong
pseudo-monotonicity of the gradient implies strong pseudo-convexity of the function.
Later, Karamardian et al. [9] derived first-order characterizations of generalized mono-
tone maps based on a geometrical analysis of generalized monotonicity. Komlosi [10]
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showed how quasi-convexity, pseudo-convexity, and strict pseudo-convexity of lower
semicontinuous functions can be characterized via the quasi-monotonicity, pseudo-
monotonicity, and strict pseudo-monotonicity of different types of generalized deriva-
tives, including the Dini, Dini-Hadamard, Clarke, and Rockafellar derivatives. Zhu
and Marcotte [18] introduced new classes of monotone and pseudo-monotone map-
pings. Further, they related them to previously introduced classes of (generalized)
monotonicity. Yang et al. [16] studied generalized invariant monotonicity and its
relationships with generalized invexity. They introduced several types of generalized
invariant monotonicities which are generalizations of the (strict) monotonicity, (strict)
pseudo-monotonicity, and quasi-monotonicity reported in Karamardian and Schaible
[8]. Further, they established relations among generalized invariant monotonicities and
generalized invexities.

On the other hand, there are some relationships between generalized invexity and
generalized invariant monotonicity. Pini and Singh [12] analyzed some relationships
between generalized invexity and generalized invariant monotonicity. Ruiz-Garzon et
al. [13] defined the generalized invex monotone functions as an extension of monotone
functions. They underlined the significance of these new classes of invariant mono-
tonicity in order to characterize the solutions of the variational-like inequality problem
and of a classical mathematical programming problem. Yang et al. [17] pointed out that
some necessary conditions in [13] are wrong and corrected them with Condition C (see
[11]). Further, Behera et al. [4] defined generalized (p, §)-n-invariant-monotonicity
and used them to characterize generalized (p, 6)-n-invexity.

In this paper, we introduce new classes of monotone, pseudomonotone and quasi-
monotone mappings defined in a real Banach space. The so-called (strict) (P, p)-
monotonicity, (strict) (®, p)-pseudo-monotonicity and (®, p)-quasi-monotonicity are
analyzed and their properties and relationships with respect to other concepts of mono-
tonicity by means of theoretical results, examples, and counterexamples are presented.
We will connect (®, p)-invex and generalized (&, p)-invex functions (introduced in
finite dimensional spaces by Caristi et al. [5]) to (P, p)-monotonicity and general-
ized (®, p)-monotonicity of their gradients through necessary conditions. We also give
suitable counterexamples to show that, in general, the converse results may not hold.
Further, we also show the relationships between (generalized) (®, p)-monotonicity and
other generalized monotonicity notions existing in the literature.

2. (@, p)-MoNoToNICITY

Let X be a real Banach space and S be a nonempty open convex subset of X.
Throughout the paper, we denote by X* the space of all continuous linear functionals
on X (X* is the dual space of X) and by (z*, z) the duality pairing between z € X
and z* € X*. The symbols R and R representing the sets of real and nonnegative real
numbers. Further, let p € R and ® be a function defined from S x S x X* x R into R,
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where ® (z, u, (-, -)) isconvex on X* x R, ® (z,u, (0,a)) > 0 for every (z,u) € S xS
and any a € R..

Definition 1. [11]. Let V be a subset of X and n : V x V' — X be a given map.
If the following relation

u+ An(x,u) eV

holds for all z,u € V and X € [0, 1], then V' is said to be an invex set (with respect to
n)-

In this section, we shall introduce a new concept of a generalized monotonicity of a
function, that is, the so-called (®, p)-monotonicity. In this way, we extend the concept
of a monotone function and the concept of an invariant monotone function to that is
more general and we shall relate it to (P, p)-invex functions.

Definition 2. Let I be a function from S into X*. Then F is said to be a
(®, p)-monotone function if the relation

1) ® (z,u, (F(u),p)) + @ (u,z, (F(x),p) <0
holds for all z,u € S.

Remark 3. If the inequality (1) in Definition 2 is satisfied with p < 0, then F’
is called weakly (®, p)-monotone on S, whereas in the case when it is satisfied with
p >0, then F is called strongly (®, p)-monotone on S. In the case when p =0, F'is
called ®-monotone on S.

Definition 4. Let F' be a function from S into X*. Then F' is said to be a strictly
(®, p)-monotone function if the relation

) ® (2, u, (F (u),p) + @ (u,z, (F(2),p)) <0
holds for all z,u € S, z # w.

Remark 5. If we take X = R", ® (x,u, (€, p)) = [z —u]” € and p = 0, then the
above definition of a (®, p)-monotone function reduces to the definition of a monotone
function h : D — R"™, where D C R"™ is a nonempty open convex set, that is, the
inequality

[ —u]" (h(u) = h(2)) <0,
holds for all =, € D, where T" denotes transpose of a vector in R™ (see [8], [13]).

If the inequality above is sharp for all x,u € D, x # u, then h is strictly monotone on
D.
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Remark 6. If we take X = R", & (z,u, (¢,p)) = [n(z,u)]" &, then the above
definition of a (®, p)-monotone function reduces to the definition of an invariant mono-
tone function h : D — R™ with respect to , where D C R™ is a nonempty open invex
set with respectto  : D x D — R"™, that is, the relation

[ (z, )] h(u) + [0 (u,2)]" h(z) <0

holds for all z,u € D (see [13, 16, 17]).
If the inequality above is sharp for all z,u € D, x # u, then h is strictly invariant
monotone with respect to n on D.

Now, we give the definition of a Fréchet differentiable (®, p)-invex function and
the definition of a Fréchet differentiable strictly (®, p)-invex function (see Caristi et
al. [5] in finite dimensional spaces).

Definition 7. Let f : S — R be a Fréchet differentiable function on S and v € S.
Then f is said to be a (P, p)-invex function at w on S if the following inequality

3) f(@) = f(u) = @ (z,u, (Vf(u),p)

holds for all z € S.
If the inequality (3) is satisfied at every point «, then f is said to be a (P, p)-invex
function on S.

In order to define an analogous class of (strictly) (®, p)-incave functions, the di-
rection of the inequality in the definition of these functions should be changed to the
opposite one.

Definition 8. Let f : S — R be a Fréchet differentiable function on S and v € S.
Then f is said to be a strictly (®, p)-invex function at w on S if the following inequality

(4) f(@) = f(u) > @ (z,u, (Vf (u),p))

holds for all z € S, x # w.
If the inequality (4) is satisfied at every point u, x # u, then f is said to be a strictly
(®, p)-invex function on S.

Remark 9. For other properties of a class of scalar differentiable (®, p)-invex
functions, the readers are advised to consult [5], and, for a class of scalar locally
Lipschitz (@, p)-invex functions, see [1]. In [2], moreover, Antczak established both
parametric and nonparametric optimality conditions and several duality results in the
sense of Mond-Weir and in the sense of Wolfe for a new class of nonconvex nons-
mooth minimax programming problems with nondifferentiable (®, p)-invex functions.
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He also showed that invexity and generalized invexity notions existing in the litera-
ture fail in proving the sufficiency of the Karush-Kuhn-Tucker necessary optimality
conditions and duality results in the sense of Mond-Weir and in the sense of Wolfe
for such a class of nonsmooth minimax programming problems. Furthermore, Antczak
[3] introduced the concepts of vector (@, p)-invexity and generalized (®, p)-invexity
for strongly compact Lipschitz mappings in Banach spaces extending the definitions
of (@, p)-invexity and generalized (®, p)-invexity defined previously for optimization
problems in finite-dimensional Euclidean spaces. Further, he used them to establish the
sufficient optimality conditions for proper efficiency and duality results for nonsmooth
vector minimization problems in which the involved functions belong to the class of
(generalized) nondifferentiable (@, p)-invex functions defined in Banach spaces. As
it follows from the results established in [2] and [3], the concepts of (P, p)-invex
functions and generalized (®, p)-invex functions are useful to prove the sufficiency of
Karush-Kuhn-Tucker necessary optimality conditions and various duality theorems for
a larger class of nonconvex optimization problems than other generalized convexity
concepts, for instance invexity introduced by Hanson [7].

Proposition 10. Let F' : S — X* be an invariant monotone function on S with
respect to n. Then, it is also a (®, p)-monotone function on S, where ® (x, u, (£, p)) =

(&, n(z,u)) and p = 0.

Proof.  Let F' be a monotone function on S with respect to n. If we set
O (z,u, (& p)) = (&, n(z,u)) and p = 0, then, by Definition 2, it follows that f
is a (®, p)-monotone function on S (see also Remark 6). ]

The converse result is, in general, not true.

Example 11. Let X = R, S = R and we consider the function F' : R — R defined
by

.9
sin® &
F(x):—x2+1.

Letn: R x R — R be defined by
0 (x,u) = (z +u)?,
and the function ® be defined by
@ (@,u, (6 0) = (€7 = 1) (@),
where p = 0. Note that the function ® defined above satisfies all conditions in the

definition of a (®, p)-monotone function on R (see Definition 2). Indeed, ® (z, w, (-, ))
is convex on R x R, ® (z,u, (0,a)) > 0 for every (z,u) € Rx Randany a € R.
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Then, we have
P (wv u, (F <u> ) P)) + @ (u, €, (F <x> ) P)) =

sin? w _sin2x
<e_ TEETN 1) (z+u) + <e 2 — 1) (z+u)® <0.

Thus, by Definition 2, it follows that F' is a (®, p)-monotone function on R with
respect to ® and p given above.

Now, we show that F' is not an invariant monotone function on R with respect to
given above. Indeed, we have

[ (2, w)]" F (u) + [ (u,2)]" F (2) =

(2 + u)” %+ (2 + )’ oL — (o +0)? (B2 4 222) >0,

Then, we conclude, by the inequality above, that F' is not an invariant monotone
function with respect to n on R.

Remark 12. The case when p = 0 considered in Example 11 is not unique, for
which the converse result is not true. Now, we show, for an another p, that the converse
to the result in Proposition 10 is not true.

Example 13. Let X = R, S = (—v/2,v2) C R and we consider the function
F : S — R defined by
F (z) :ln(2—x2).

Letn: S x S — R be defined by

n(w,u):(a:—u)2,

and the function ® by

@(w,u,(f,p)) :77(35;“)65+P($—u>2,

and, moreover, we set p = —2. Note that the above defined function & satisfies
all conditions in the definition of a (®, p)-monotone function on R (see Definition 2).
Indeed, @ (z,u, (-,-)) isconvex on Rx R, ® (z,u, (0,a)) > 0 for every (z,u) € S xS
and any @ € R. Then, we have

s (wv u, (F <u> ,P)) + @ (u, T, (F <x> ) P)) =
= (z —u)? en(2u®) _ 9 (z —u)? + (z —u)? en(2=%) _ 9 (z —u)?

:(x—u)2(4—u2—x2)—4(m—u)2:—(u2+x2)(x—u)2SO.
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Thus, by Definition 2, it follows that F' is a (®, p)-monotone function on S with respect
to ® and p given above (more exactly, as it follows from Remark 3, F' is a weakly
(®, p)-monotone function on .S with respect to ® and p given above).
Now, we show that F' is not an invariant monotone function on S with respect to
given above. We set x = % and u = i. Indeed, by definition, we have

[ (z,w)]" F (u) + [ (u,z)]" F(z) = (z—u)’In (2 —u?) + (z — u)’In (2 — 2?)

) ()

This means, by definition, that F' is not an invariant monotone function on S with
respect to 7.

Proposition 14. Let  : S xS — X and F' : S — R be a strictly invariant
monotone function on S with respect to n. Then, it is also a strictly (®, p)-monotone
function on S, where ® (z, u, (£, p)) = (£, n(z,u)) and p = 0.

Proof.  Proof is the same as proof of Proposition 10. ]

Remark 15. The converse result to that presented in Proposition 14 is, in general,
not true. There exist strictly (®, p)-monotone functions on S not being strictly invariant
monotone on S with respect to every function n defined by n : Sx.S — X. For instance,
we consider the function ' : S — R defined by F(z) = 1—22, where S = R. It is not
difficult to show, by Definition 4, that F' is strictly (®, p)-monotone on R, for example,
with respect to @ (z,u, (€, p)) = Eu® + p (22 + u?), where p = —%. However, F is
not a strictly invariant monotone function on R with respect to every function n defined

byn:S xS — R.

Theorem 16. A necessary condition for f : S — R to be a (®, p)-invex function
on S is that V£ is (®, p)-monotone on S.

Proof. Assume that f : S — Risa (P, p)-invex function on S. Then, by Definition
7, it follows that the following inequalities

f(@) = f(u) = @ (2,u, (Vf(u),p),
fw) = f(@) = @ (u,2, (V[ (z),p))
hold. Adding both sides of the above inequalities, we obtain
® (2, u, (Vf(u),p) + @ (u,z,(Vf(z),p) <0.

Therefore, by Definition 2, we conclude that V f is (®, p)-monotone with respect to ®
and p on S. n
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In general, the converse result is not true. Now, we give an example of such
a function f, for which Vf is (®, p)-monotone on R, but f is not a (P, p)-invex
function on R.
Example 17. Let X = R and we consider a function f : R — R defined by
L 3
f(x)= 38 T
We set

® o, €)=+ (2t 5) (@4 0)

and p = 1. Then, we have
P (z,u, (Vf(u),p)+ @ (u,z,(Vf(x),p))

=2 (e 1) 5 (2 2) 4o (= 1) 5 (o o)
= —922%u% — 2% — P + 2% +u? = —22%° <0.

Then, by Definition 2, we conclude that V f is (®, p)-monotone on R. Now, we show
that f is not a (@, p)-invex function on R with respect to the same functional ¢ and
the same scalar p given above. Indeed, by Definition 7, the following inequality

is not satisfied for all z,u € R. We have
L 5 L 4 2 2 L, o 2
- — -z —u) > —u? — - .
330 T < 3u u)_m(u 1)+2($ +u)

It is not difficult to show that the above inequality is not satisfied for all x,u € R.
Indeed, if we set u = 0, then the inequality —223 + 12% — z > 0 is not satisfied for
all z € R.

Remark 18. Note that the function f considered in Example 17 is such a function,
for which V f is (®, p)-monotone on R, where & (z, u, (V£ (1), p)) = [ (2, u)]" Vf (u)+
(0 — p+3) 110 (z,u)|? where 6 : SxS — X, but Vf is not (p, §)-n-invariant mono-
tone on R in the sense of Definition 2.3 [4]. Indeed, by Definition 2.3 [4], the following
inequality
[0 (e, w)] "V F ) + [ (u,2)]" V£ @)+ p |10 (@, 0)|> + 6 (w,2)|P] <0
is not satisfied for all z,w € R. We have
[ (e, )] VF )+ In (w, 2] F )+ p [10 (2, w)]]? + 110 (u, 2)]2]
= g2 (—u2 — 1) + u? (—x2 — 1) +2 (ac2 +u2)

= —22%u® 4+ 2% +u? = (z — u)2 > 0.
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Thus, V f is not (p, 8)-n-invariant monotone with respect to n and 6 on R, although
V[ is (®, p)-monotone on R, where ® (z,u, (Vf (u),p)) = [n(z,u)]) VS (u) +
(0% = p+ ) 116 (=, w)|>

Theorem 19. A necessary condition for f : S — R to be a strictly (®, p)-invex
function on S is that V f be strictly (®, p)-monotone on S.

Proof.  The proof is similar to that of Theorem 16. ]

3. (P, p)-QUASI-MONOTONICITY

In this section, we introduce the new concept of (®, p)-quasi monotonicity which
is the generalization of the corresponding definition in the literature (see [13], [16]).
We will give a necessary condition for (®, p)-quasi-invexity.

Definition 20. Let F' be a function from S into X*. Then F' is said to be a
(®, p)-quasi-monotone function if the following implication

(5) ® (u,z, (F(x),p) > 0= @ (z,u, (F(u),p)) <0
holds for all z,u € S.

Remark 21. If the relation (5) in Definition 20 is satisfied with p < 0, then F'is
called a weakly (@, p)-quasi-monotone function on S, whereas in the case when it is
satisfied with p > 0, then F' is called a strongly (®, p)-quasi-monotone function on S.
In the case when p = 0, F' is called ®-quasi-monotone on S.

Remark 22. If we take X = R", ® (x,u, (£, p)) = [z — u)” € and p = 0, then the
above definition of (®, p)-quasi-monotonicity with respect to ® and p reduces to the
definition of a quasi-monotone function h : D — R™, where D C R™ is a nonempty
open convex set, that is, the following implication

[u—a2)" h(z)>0= [z —u h(u) <0
holds for all z,u € D.

Remark 23. If we take X = R", ® (z,u, (£, p)) = [n(z,u)]" € and p = 0, then
the above definition of a (®, p)-quasi-monotone function reduces to the definition of
an invariant quasi-monotone function » : D — R™ with respect to n, where D C R" is
a nonempty open invex set with respect to n : D x D — R™ that is, the following
implication

[ (u, @) b (x) > 0= [n(,u)]" h(u) <O

holds for all z,u € D (see [16, 17]).
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Remark 24. In general, the given function can be (@, p)-quasi-monotone with
respect to more than one function ® and the scalar p. Now, we give an example of
such a function.

Example 25. Let X = R%?, S = R? and F : R?> — R? be defined by
F(x1,29) = (In (2 — sin®(21 + 22)) ,In (2 — cos®(z1 + 72))) .
We set
el fef2 — 24 py (COS2<$1 + m9) — cos?(uy + ug))
if cosQ(acl + z9) > cosQ(ul + ug)
(I)l <x7u7 (faﬂl)) = 5 5 2
€St + €52 — 2 + py cos”(ug + ug)

if cos?(zy + x9) < cos?(ug + us)

and p; = —2. Then, by Definition 20, F' is a (®1, p1)-quasi-monotone function on
R?. However, if we set

—¢ —&5 1+sin?(uj +uz) cos? (z1+x2)
el te™? =24 (2—sin2(u1+uz)>(2—cos2(u1 +uz))

if cos?(x1 + x9) > cos?(uy + us)
(I)2 ([E, u, (fa P2>> =

%—i—sin2 (u1+uz) cos?(z1+x2)
2—sin? (u1+usz) ) (2—cos?(u1+u2))

if cos?(x1 + x9) < cos?(uy + us)
and py = 2, then, by Definition 20, F' is a (®2, po)-quasi-monotone function on R2.

Remark 26. Every (®, p)-monotone function is a (®, p)-quasi-monotone function,
but the converse is not necessarily true.

Now, we illustrate this result in the next example.
Example 27. Let X = R%, S = R? and F : R?> — R? be defined by
F(z) = (In(2 —sin(z; + x2)),In (2 —sin(z1 + 22))) .
We set

3 (5 + €52 + p) (1 + sin(ug + u2)),
5 ) if sin(u; + ug) > sin(zy + z2)
Z,u,\G,pP)) = .
3 (5 + €52 — 2) (1 + sin(uy + up)) + p cos®(z1 + x2),

if sin(u; + ug) < sin(zy + z2)
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and p = —2. Then, by Definition 20, F' is a (®, p)-quasi-monotone function with
respect to ® and p on R%2. However, F is not a (®, p)-monotone function on R2,
since the inequality ® (u, z, (F (x), p)) + @ (z,u, (F (u), p)) < 0 is not satisfied for
all z,u € R%. Indeed, if we set 2 = (0, 0) and u = (0, 0), then the above inequality is
not satisfied. We conclude, by Definition 2, that £ is not a (®, p)-monotone function
on R2.

Now, we give the definition of a Fréchet differentiable (®, p)-quasi-invex function
with respect to ® and p.

Definition 28. Let f : S — R be a Fréchet differentiable function on S and v € S.
Then f is said to be a (@, p)-quasi-invex function at « on S if the following implication

(6) f(x) < fu) = @ (2, u, (VS (u),p)) <O

holds for all z € S.
If the implication (6) is satisfied at any point u, then f is said to be a (®, p)-quasi-invex
function on S.

Theorem 29. A necessary condition for f : S — R to be a (®, p)-quasi-invex
function with respect to ® and p on S is that V f is (®, p)-quasi-monotone on S.

Proof.  Proof follows directly from Definition 28 and Definition 20. ]

In general, the converse result is not true. Now, we give an example of such a
function f, for which V f is (®, p)-quasi-monotone on S, but f is not a (®, p)-quasi-
invex function on S.

Example 30. Let X = R and consider a function f : R — R defined by

We set
(14e4)? e+ (20 —1)e* if z>u

® (z,u, (€, p)) =
(@ & 2) {u+wf¢u%—mwifx<u
and p = 1. Then, we have

S (x,u, (Vf(u),p)+@(u,z,(Vf(x),p)=—€"+e"—e"+e"=0<0.

Therefore, by Definition 20, we conclude that Vf is (®, p)-quasi-monotone on R.
Now, we show that f is not a (®, p)-quasi-invex function on R. Indeed, by Definition
28, the following implication

f(x) < fu) = @ (2, u, (VS (u),p)) <O
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is not satisfied for all z,u € R. Let f(x) < f(u). It is not difficult to show that
this inequality holds for 0 < u < z or u < z < 0. Now we show that the inequality
® (x,u, (Vf(u),p)) <0 is not satisfied for u < z. Indeed, we have

U

T __ _u x
70_’_6”)2—1-6 =—e"4+e" >0.

® (2, u, (Vf (), p) = (1+¢")?
Hence, if we set w = 0 and = = 1, then the inequality ® (z,u, (Vf (u), p)) <0 is not
satisfied. This means that f is not a (®, p)-quasi-invex function on R.

4. (®, p)-PSEUDO-MONOTONICITY

In this section, we introduce the concept of (®, p)-pseudo monotonicity which is
the generalization of the corresponding definitions in the literature (see [13], [16]).

Definition 31. Let F' be a function from S into X*. Then F is said to be a
(®, p)-pseudo-monotone function if the following implication

(7 ® (u,z, (F(2),p) 2 0= @ (z,u, (F(u),p)) <0
holds for all z,u € S.

Remark 32. If the relation (7) in Definition 31 is satisfied with p < 0, then F'is
called a weakly (®, p)-pseudo-monotone function on S, whereas in the case when it is
satisfied with p > 0, then F' is called a strongly (®, p)-pseudo-monotone function on
S. In the case when p = 0, F'is called ®-pseudo-monotone on S.

Remark 33. If we take X = R, & (z,u, (¢,p)) = [z —u]" ¢ and p = 0, then
the above definition of a (®, p)-pseudo-monotone function reduces to the definition of
a pseudo-monotone function » : D — R"™, where D C R"™ is a nonempty open convex
set, that is, the following implication

[u—a]"h(z)>0= [z —u]" h(u) <0

holds for all z € D.

Remark 34. If we take X = R", ® (z,u, (£,p)) = [(x,u)]” € and p = 0, then
the above definition of a (@, p)-pseudo-monotone function reduces to the definition
of an invariant pseudo-monotone function h : D — R™ with respect to 1, where
D C R™ is a nonempty open invex set with respectto n : D x D — R™, that is, the
implication

[ (u, @) b (x) 2 0= [n(2,u)]" h(u) <O

holds for all z € D.
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Remark 35. In general, there exist more than one function ® and the scalar p with
respect to which the given function F' is (®, p)-pseudo-monotone. Now, we give an
example of such a function.

Example 36. Let X = R, S= R and F' : R — R be defined by

F(x)zln(l_iem).

We set
(1feu> e 4 pe® if z<u
(I)l ([E, u, (fa pl)) = ” .
(1ieu> e +pret if z>u
and p; = —1. Then, by Definition 31, F' is a (®1, p1)-pseudo-monotone function on

R. However, if we set

e (1+e%) el +pge” if z<u

(I)2 ((E, u, (fa P2>> = {

et (1 +ev) et + poe* if x>u

and py = 1, then, by Definition 31, F' is also a (P2, p2)-pseudo-monotone function on
R.

Proposition 37. Every (®, p)-monotone functionis a (®, p)-pseudo-monotone func-
tion.

Proof. ~Assume that F': S — X* is a (®, p)-monotone function with respect to
® and p on S. Then, by Definition 2, it follows that the inequality

(®) O (2, u, (F (u),p)) + @ (u, z, (F (2),p)) <0
holds for all z,u € S. Let x,u € S be such that
©) ® (u, z, (F (x),p)) = 0.
Combining (8) and (9), we get that the inequality

® (2, u, (F (u),p)) <0

holds. This means, by Definition 31, that £ is a (P, p)-pseudo-monotone function on
S. |

The converse result is, in general, not true.
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Example 38. Let X = R, S= R and F' : R — R be defined by
F(x) =sin®z + 1.

We set
® (z,u, (&, p)) =& (sinz —sinu)

and p = 0. Then, by Definition 31, F' is a (®, p)-pseudo-monotone function with
respect to ® and p on R. However, F' is not a (P, p)-monotone function on R, since
the inequality ® (u,z, (F (x),p)) + ® (z,u, (F (u),p)) < 0 is not satisfied for all
r,u € R. Indeed, if we set z = —% and u = 0, then the above inequality is not
satisfied. Therefore, we conclude, by Definition 2, that F' is not a (®, p)-monotone
function on R.

Remark 39. There exist more than one function ® and a scalar p with respect
to which the considered function F' is (®, p)-pseudo-monotone, but it might not be
(®, p)-monotone.

Theorem 40. If f : S — R is a (®, p)-invex function on S, then V f is (®, p)-
pseudo-monotone on S.

Proof. By Theorem 16 and as (®, p)-monotonicity implies (®, p)-pseudo-mono-
tonicity (see Proposition 37), the theorem is proved. ]

Now, we give the definition of a Fréchet differentiable (®, p)-pseudo-invex function.

Definition 41. Let f : S — R be a Fréchet differentiable function on S and
u € S. Then f is said to be a (®, p)-pseudo-invex function at « on S if the following
implication

(10) O (z,u, (Vf(u),p) 20= f(z) = f(u)

holds for all z € S.
If the implication (10) is satisfied at any point u, then f is said to be a (®, p)-pseudo-
invex function on S.

Theorem 42. Let f : S — R be a (P, p)-pseudo-invex function with respect to
® and p on S and a (P, p)-quasi-invex function on S. Then Vf is (@, p)-pseudo-
monotone on S.

Proof. Assumethat f:.S — R is a (P, p)-pseudo-invex function on S. Assume
that for z,u € S, we have

@ (u, 2, (Vf (2),p)) 2 0.

Since f is a (P, p)-pseudo-invex function with respect to ® and p on S, then the above
inequality implies
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(11) fu) > f(z).
In order to prove (®, p)-pseudo-monotonicity with respect to ® and p of Vf on S, we
have to show that

® (z,u, (V[ (u),p)) <O0.

We proceed by contradiction. Suppose that
® (z,u, (V[ (u),p)) > 0.

By assumption, f is a (®, p)-quasi-invex function with on S. Hence, by Definition 28,
the above inequality implies

f(@)> f(u),
contradicting (11). n

Now, we give an example of such a function f, for which Vf is (®, p)-pseudo-
monotone on S, but f is not a (®, p)-pseudo-invex function on S.

Example 43. Let X = R, S = R, and we consider a function f : Ry — R

defined by

f(z)=a(lnz—-1).
We set 1
¢ (.’B, u, (fa p)) - §€§ + (2/7 - 1>[E

and p = —1. It is not difficult to show, by Definition 31, that V f is (®, p)-monotone
on R.. Now, we show that f is not a (®, p)-pseudo-invex function on S. Indeed, by
Definition 41, we have to show that the following implication

® (2, u, (Vf(u),p) 20= fz) = f(u)

is not satisfied for all z,uw € R. Letz =1and u = 2. Then ® (z,u, (V[ (u),p)) > 0,
but

fl@)=f(1)=-122(n2-1) = f(2) = f(u).

This means, by Definition 41, that f is not a (®, p)-pseudo-invex function on R..
5. STRICTLY (P, p)-PSEUDO-MONOTONICITY

Finally, we introduce the concept of strictly (®, p)-pseudo monotonicity, which is
an extension of corresponding definitions in the literature (see [13], [16]). We will
give a necessary condition for strictly (®, p)-pseudo-invexity.

Definition 44. Let F' be a function from S into X*. Then F' is said to be a strictly
(®, p)-pseudo-monotone function with respect to ® and p if the following implication

(12) ® (u,z, (F(2),p)) 2 0= @ (z,u, (F(u),p)) <0

holds for all points x,u € S,  # u.
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Remark 45. If we take X = R", ® (x,u, (£, p)) = [z — u)” € and p = 0, then the
above definition of strictly (@, p)-pseudo-monotonicity with respect to ® and p reduces
to the definition of a strictly pseudo-monotone function . : D — R™, where D C R™ is
a nonempty open convex set, that is, the implication

[u—a]"h(z)>0= [z —u]" h(u) <0
is satisfied for all z € D, z # .

Remark 46. If we take X = R", ® (z,u, (£, p)) = [n(z,u)]" € and p = 0, then
the above definition of strictly (®, p)-pseudo-monotonicity reduces to the definition of
a strictly invariant pseudo-monotone function h : D — R™ with respect to », where
D C R™ is a nonempty open invex set with respectto n : D x D — R™, that is, the
implication

[ (w, )" b (x) > 0= [ (&, w)]" h(u) <0
is satisfied for all z € D, x # .

Remark 47. Every strictly (®, p)-pseudo-monotone map is (®, p)-pseudo-monotone
with, but the converse is not necessarily true.

Now, we give an example of a function which is strictly (®, p)-pseudo-monotone,
but it is not (P, p)-pseudo-monotone.

Example 48. Let X = R, S= R and F' : R — R be defined by
F(z) =In(sin® zcos®x + 1) .
We set 1
O (z,u, (& p) = 5 (eg — 1) + (2° — 1)sin® z cos® =

and p = —1. Then, by Definition 31, F' is a (®, p)-pseudo-monotone function on S.
However, as it follows from Definition 44, F' is not a strictly (®, p)-pseudo-monotone
function on S.

Now, we give the definition of a Fréchet differentiable strictly (®, p)-pseudo-invex
function with respect to ® and p.

Definition 49. Let f : S — R be a Fréchet differentiable function on S and v € S.
Then f is said to be a strictly (®, p)-pseudo-invex function at « on .S if the following
implication

(13) @ (z,u, (Vf(u),p)) 2 0= f(z) > f(u)

is satisfied for all z € S, = # w.
If the implication (13) is satisfied at every point wu, then f is said to be a strictly
(®, p)-pseudo-invex function on S.
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Theorem 50. A necessary condition for f : S — R to be a strictly (®, p)-pseudo-
invex function on S is that V f is strictly (@, p)-pseudo-monotone on S.

Proof. ~ Assume that f : S — R is a strictly (®, p)-pseudo-invex function with
respectto ® and p on S. Let x,u € S, x # u, be such that

® (u, 2, (Vf(),p)) = 0.

By assumption, f : S — R is a strictly (®, p)-pseudo-invex function on S. Thus, by
Definition 49, it follows that

(14) fu) > f(z).

We need to show that

On the contrary, suppose that
® (z,u, (V[ (u),p)) = 0.

Since f : S — R is a strictly (®, p)-pseudo-invex function on .S, then, by Definition
49, the above inequality implies

fx)> f(u),
contradicting (14). Thus, V f is strictly (®, p)-pseudo-monotone on S. ]

6. CONCLUSION

In this paper, we have introduced the concepts of (®, p)-monotone and generalized
(®, p)-monotone functions defined in a Banach space. Therefore, the concepts of
monotonicity and generalized monotonicity previously defined in the literature have
been extended to these new ones. We have managed to prove that there are relationships
between (®, p)-invexity and generalized (®, p)-invexity of the function f and (@, p)-
monotonicity and generalized (®, p)-monotonicity of the function V f, respectively, by
way of the necessary conditions. Further, we have shown that (®, p)-monotonicity
and generalized (9, p)-monotonicity are proper generalizations of monotonicity and
generalized monotonicity, and also invariant monotonicity and generalized invariant
monotonicity.
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