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We study the asymptotic behaviour of solutions to the linear evolution problem for
clamped curved rods with the small thickness € under minimal regularity assumptions
on the geometry. In addition, nonconstant density of the curved rods is considered.

1. Introduction

The main task of this paper is to relax regularity assumptions on a shape of elastic curved
rods in a general asymptotic dynamic model and to derive this asymptotic model from a
linear evolution equation of three dimensional elasticity by asymptotic technique.

We use the asymptotic approach presented by Aganovic and Tutek [17] for straight
rods, which was modified by Jurak and Tambaca [8, 9] (see also Trabucho and Viano
[16]) and by Ignat, Sprekels, and Tiba [7] for curved rods generated by a function ® €
Ck([0,1])%, k = 3, and k > 2, respectively. The approach from [8, 9] was applied to a dy-
namic model of curved rods in [13]. Following an idea from Blouza and Le Dret [3], a
new formulation of the equations of elasticity which required ® € C?([0,1])* was found
in Tiba and Vodak [14]. In addition, the general asymptotic model obtained in [14] was
well-defined for a Jordan unit speed curve with Lipschitzian parameterization which led
to a special construction of its approximations with smooth Jordan unit speed curves.
The whole construction was valid for ®; >0 a.e. on (0,]) for some i, i = 1,2,3. This re-
strictive condition was excluded by the modification of the construction in [15]. In this
paper, we want to extend the theory presented in [14, 15] on the dynamic model for the
curved rods. Among other papers concerning with the dynamic models for thin curved
structures we mention here Raoult [10], Xiao [18], and Sprekels and Tiba [12]. Further
we recommend the reader Alvarez-Dios and Viafo [1], Bermadez and Viafo [2].

Finally, we give a brief outline of the paper. In Section 2, we introduce the basic no-
tations and notions that will be further needed. Section 3 contains auxiliary proposi-
tions, which are used throughout the paper. Section 4 is devoted to a weak formulation
of the linear elasticity equation and its transformation. Section 5 deals with basic esti-
mates. Section 6 gives us a basic overview about behaviour of the displacements if € — 0
and about qualitative properties of their limit state. In Section 7, the passage to the limit
€ — 0 is performed and the main existence and uniqueness result is proved.
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426  An asymptotic dynamic model for curved rods

The main result of this paper can be summarized in the following theorem.

THEOREM 1.1. Let a function ® € WH*(0,1)* be a parametrization of a unit speed curve.
Let, further, F € L2(0, T;L*(Q)?), G € WH1(0, T;L2(0,1;L2(3S)?)) and ¥y, be defined as
in Lemma 7.4. Then, there is a unique pair (U,¢) € L*(0, T;°V5’n’b(0,l)) such that 0;U €
L>(0,T;L2(0,1)%) N C([0, T}; [VE™(0,1)]"), which generates a unique solution to the prob-
lem (7.41)—(7.42). Moreover, the constant extension to Q = (0,1) X S of (U, ¢) may be ap-
proximated by solutions Ue € L™ (0, T; V(Q)*) n Wb (0, T; L2(Q)?) of the problem (4.13)—
(4.14) as follows:

U= lin&Ue x-weakly in L™ (0, T; V(Q)?),
P
0,;U = 1im9,U, *-weakly in L (0, T;L*(Q)?),
€e—0 (1-1)

((92Ue,be) — (95U, n¢)) *-weakly in L (0, T; L*(Q)).

. 1
¢ =lim -2

2. Preliminaries

We denote by R? the usual three-dimensional Euclidean space with scalar product (-, -)
and norm | - |. Let S C R? be a bounded simply connected domain of class C! satisfying
the “symmetry” condition

J deXZdX3 = J X3dX2dX3 = J x2x3dx2dx3 =0. (2.1)
S S S

We denote by Q = (0,1) X S, Q¢ = (0,]) X €S open cylinders in R?, where [ >0 and € >0
“small,” are given.

Let a function @ : [0,]] — R3, ® € W">(0,])?, be a parametrization of a Jordan unit
speed curve € in R® and let t, n, b denote its tangent, normal and binormal vectors.
Let @ : [0,]] — R? be a smoothing of ® such that it remains a Jordan unit speed curve
(i.e., [O (1) =1, Vy; € [0,]]) and t, n¢, be be the associated local frame. Alternative
ways, how to construct local frames under low regularity assumptions, may be found in
[12]. The whole construction of the local frame associated with the function @ and its
smoothing can be found in [14, 15]. Here we mention only the needed properties of the
approximation: {@¢}ec(o,1); {te}eec(o,1) {Netee(o1)> {beteco € C*([0,1])%,

te —t, n.—n, b.— Db inmeasurein (0,]), (2.2)
@.() = [tz + @) — o() inc((0,)] 23)
0
for e — 0,
’ ’ 7 C ’r rr 124 C 1
el + Il + el < S N+ Il + 1B < 5 re(05). @)

The whole construction can be found in [14, 15].
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The orthogonality properties (tc,t;) = 0, (ne,n;) = 0, (be,b;) = 0 lead to so called
“laws of motion” of the local frame

t’e = aebe +/))En€J
n, = —fete — yebe, (2.5)
b, = —aete + pene.

From (2.4), it follows that

c , , , C 1
el # 18ell +llyelle < S Naelly + 1820w +1yello < 5 7 (0.3) (26)

We adopt the usual notation for the standard Sobolev and Lebesgue spaces, that is, H!(Q),
Hy(Q) and LP(Q), p € [1, 0] for the spaces and || - [I12, || - |, for their norms. We will
use the same notation of the norms also for vector or tensor functions in the case that all
their components belong to the above mentioned Sobolev or Lebesgue spaces. H1(Q)
and [X]’ stand for the dual space to H}(Q) or X, respectively. The notation C™(Q), with
m € Ny, means the usual spaces of continuous functions whose derivatives up to the
order m are continuous in Q, and we denote by C’(Q) the space of all functions which
have derivatives of any order on Q) and whose supports are compact subsets of Q. The
symbols LP(I;X), p € [1,00] and C(I;X), where X is a Banach space and I is a bounded
interval, stand for the Bochner spaces endowed with the norms [|v||»,x) and [Vl ¢z.x)»
respectively. We say that v € C([0, T];La,eak(Q)) if the function [, v(f)wdx is continuous
on [0, T] for an arbitrary function w € L*(Q).

Except for the standard definition of the weak convergence in X or L (I;X), p € (1, ),
and *-weak convergence in L*(I,[X]"), we say without danger of confusion that v, — v
in L2(0, ; H-(S)), if

!
Jo H18) (v (1) — V(Xl),ll/(xl)>H(;(5)dx1 — 0 foranyy € L*(0,HL(S)), (2.7)

where [x} (-, -)x denotes the dual pairing of [X]" and X, and v, X yinL® (I,L*(Q)) if

J J (va —v)ydxdz — 0 (2.8)
1Ja
for any y € L'(I,L*(Q)). Further, we introduce the space

VEP(0,0) ={|V,w] € HL(0,1)* X L2(0,]) : (V',t) =0,

(2.9)
Vi = —yt+(V,b)n— (V/,n)b € H} (0,1)*}.

We refer the reader to [14] for the proof that OV})’“’b(O,l) is a nontrivial Hilbert space
endowed with the norm

NV w1 = IV, + 3+ [Vl . (2.10)
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Letv e L} (0,T) and ¢ € Cy(0,T). Then we denote ¥ = fOT v(t)p(t)dt. Now, we in-
troduce the mappings R¢ and Pe,

RE:Q—>Qe, Re(xl,xz,x3) = (X1,€X2,€X3), (2.11)
Po:Qc— R, Pc(y) =®c(y1) +yne(y1) + ysbe (1), (2.12)

(y1,¥2,¥3) € Q¢ = (0,]) x €S, where the second one gives the parametrization of the
curved rod Q = P.(Q¢). Furthermore,

JE(}’) = det(vpe(}’)) =1 *ﬂe()’l))/z *“6()’1))’3 V}’ Eﬁe- (2.13)

We can suppose that de( y) >0 for all y € Q¢ and for € “small” (see (2.6) and the defini-
tion of Q¢). Then P¢ : Q¢ — Qc isa C! -diffeomorphism according to Ciarlet [4, Theorem
3.1-1]. In the sequel, we will write 5 = 9/dy;, where y = (51,92, 73) € Q, 0; = 0/9y;, for
y =0y ys) € - Qe, 0; = 0/0x;, where x = (x1,%2,%x3) € Q, 9, = 9/0t and 9y, = 0/9t>.

Thus, in (2.13), V = (9;,0,,03). In the case that a function v depends only on t or x; (or
¥1), we denote its first (second) derivation by v (¥) and v' (v'"), respectively. Sometimes
it is more convenient to use the notation (d/dt)v instead of v.

The definition of the domain () enables us to introduce the following spaces:

V(Qe) = {‘N/ € H'(Q) : V|5, opxes) = V | ot xes) = 0}’ (2.14)
V(Q) = [V eH'(Q): V| g5 =V (115 = 0. (2.15)

In an analogous way as above, we denote by V a function defined on €}, V a function
defined on Q,, and V a function defined on Q.

The covariant and the contravariant basis at the point Pc(y), y € Qc, of the curved
rod are defined by g;¢(y) = 0iPc(y) and (g, &"¢) = 67, and (using (2.5)) these vectors
are given by

81e(y) = (1= y2Be (1) = ysae (y1))te (y1) + y3ye (y1)me (y1) = y2ye (y1)be (31),

g.00)=ne(y1),  &e(y) =be(n),

(2.16)
ey teOn) ooy y3ve(r)te(y1)
g™ (») iy’ ® (y) 0 +nc(y1), .
gSE(y) yzyegll()tE(yl)*'be( 1) ‘

Further, we define the covariant and contravariant metric tensors (g; ¢ )?, =1 ( gif € )i =1
where

Gije = (Bie8jc),  §7°=(8"¢). (2.18)
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After substitution y = R¢(x), we adopt the notation
g7(x) =g (Re(x)),  Zije(®) =GijeRe(x)),  giel®) = Zie(Re(x)), (2.19)
gj’e(x) = gj’e (Re(x))’ de(x) = d_e (Re(x))’ (2.20)

where x € Q. Analogously as above, we can find the contravariant tensor o'/¢ for the
mapping P¢ o R¢ having the form

i _ X3Ye X2Ye
d? d? dé
ey _ X3y 1 xyl X2X3Y¢
V=" @tz & (2.21)
Xye  xwxmye 1 %y
d? a2 e 42

«w »

By “x” we will denote the Cartesian product of two spaces and by | -, - | any ordered
pair. In the text, the symbol |A| will also denote the Lebesgue measure of some mea-
surable set A, without danger of confusion. The summation convention with respect to
repeated indices will be also used, if not otherwise explicitly stated. We use for constants
the symbols C or C;, for i € Ny = {0,1,2,...}.

3. Auxiliary propositions

ProprosITION 3.1 [14]. Let te, ne, be satisfy (2.2)—(2.6) and let the space °fo’n€’b€ (0,1) be de-
fined by (2.9) using the functions te, ne, be instead of t, n, b. Let, further, | V,y | € °Vf)‘"‘b(0, )
be an arbitrary but fixed couple. Then there exist the couples

[Ve,ye| € VE™(0,]) (3.1)

generating the functions V¢ such that {Ve}ee0,1)> {Vietee,1) € C5(0,1)3, {Weteeon) C
Gy (0,D),

Ve —V, Vie — Vi in H(0,1)%, (3.2)
Ve — v in measure on (0,1), (3.3)
for e — 0, and
rr r C 1
Vel +lvell < 50 e (03): (34)

ProrosITION 3.2 [14]. Let A = 0, >0 and

’€] kl,e zk,eg]l,e +gzl,eg]k,e)' (35)

= Agegthe+u(g

Then there exists a constant Cs > 0 such that the estimate

3
2 ijkl
Z |tij| < C3Al€] (x)tkll’,‘j (3.6)
ij=1
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holds for all x € Q, all € € [0,1] and all symmetric matrices (tij)iS,j:I’ with the constant Cs
being independent of € and x.

ProrosITION 3.3 [14]. There exists a constant Cy4 > 0 independent of € such that
Cyyf ¢ 3
Ve < 2o Wl YV e V(Q)P, Vee (0. (3.7)

ProposiTiON 3.4 [9]. Let {v,}io; C L2(0,,L*(S)), {01vn}iey C L*(0,;H7Y(S)) be such
that vyly,—0 = Vnlx,=1 = 0, for all n € N, in the sense of the space C([0,1];H~'(S)). Assume,
in addition, that these sequences satisfy

v, — & djvn — 0, inL*(0,LH(S)), j=2,3, (3.8)

where & € L2(0,, H(S)). Then & € L?(0,1), and there exists a unique function v € H{ (0,1)
such thatv' = & and

Vo —v in L2(0,,L*(S)) , (3.9)
v, — v in C([0,1];H(S)). (3.10)

If the convergences in (3.8) are strong then the convergence (3.9) is also strong.

ProproOSITION 3.5 [14]. We have

de—1 inC(Q), (3.11)
€de(x)\vi(x)0€(x)vj(x) — 1 in C((0,]) X 9S), (3.12)

for € — 0, where v;, i = 1,2,3, are components of a unit outward normal to (0,1) X 9S. Thus,
there exist constants Cj, j = 0,1,2, such that 0 < Cy < dc(x) < C, for all x € Q, and 0 <

de(x)€q[vi(x)0€(x)vj(x) < C; for all x € (0,1) X dS and € € (0,1).

4. Weak formulation of an evolution equation for the curved rods
and its transformation

We consider Q¢ defined by mapping P¢ o R (see (2.11)—(2.12)) for € € (0,1) arbitrary
but fixed as a three-dimensional homogeneous and isotropic elastic body with the Lamé
constants A > 0, 4 >0 and with mass density .. Let Fe be the body force and G, the
surface traction acting on the curved rod Qe such that Fe € L2(0, T;L?(€)¢)?) and G €
W0, T; L2 ((Pe o Re)((0,1) % 3S))3), for € € (0,1). Let Q, be clamped on both bases
P. ({0} x €S) and P({I} x €S). The equilibrium displacement U, is a (weak) solution of
the equation

T N ~ ~
Jo Jﬁ [ = (Pca:Uc(1),0, V(1)) + A¥ey (Ue (1)) eij (V (1)) |dF dt
(4.1)

‘ T N N T ~ o ~
=J J (Fe(t),V(t))didHJ J (&e(0), V(1)) dS. dy, dt
0 Qe 0 Se
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for all V€ C& (0, T; V(Qe)?), where S = (P o Re)((0,1) x 3S), Akl = 187 65 + (8% 87! +
818i%) and (e;;(V))? j-1 stands for the symmetric part of the gradient of the function V.

The solution Uy satisfies the initial state
Ue |t:0 = Qo,e: atUe|t:0 = Ql,e- (4~2)

Using the fact that the functions te,ne,be € C*([0,1])° together with (2.11), (2.12),
it is easy to see that the mapping P¢ o R is the parametrization of the smooth three-
dimensional curved rod.

We transform now (4.1). Denoting U, = Uc(Pe o RY), pe = pe(Pc oR¢) and V¢ =
V(P o R,), we get

T . N N T
L JQ (pgatUe(t),atV(t))dydt=JO JQ (P Ue(0),0Ve(t) 2dedxdt.  (43)

For the transformation of other terms we refer the reader to [14]. It is easy to see that if
V e CF(0,T; V(€ )?), then Ve € CF (0, T; V(€)3). Denoting Qo = Qoe(Pe o Re), Q1 e =
Qic(PcoRy), Fe = Fo(Pc o R.) and Ge = G (Pe © R, ), we can rewrite the model (4.1)-
(4.2) using (4.3) and the transformation from [14] as

j j (PedUL(0),V(8)) de + AP (U (1)) Sy (Ve (1) dedxdt

:J J (B (£), V( dedxdt+J jj (Ge (1), V(1)) devioi v, dSdx,dt
0 Q

(4.4)
for all V € C (0, T; V(Q)?), where the solution U, satisfies the initial state
Ue |t:0 = Qo,e: atUe |t:0 = Ql,e: (4~5)

v, i = 1,2,3, are the components of the unit outward normal to (0,1) X 3, (07€)? Pj=1 was
introduced in (2.21), and where the symmetric tensor w(V) has the form

WS(V) = OV +KE(V), (4.6)
The individual nonzero components of the symmetric tensors 8¢ and x€ are defined by
0.0V =3 @Vg), 05V = @Vind,  05(V)= (@b,  (47)
;3(V) = (93V>81,e), 55(V) = ((an be) +(95V,ne)), (4.8)
KW= @Vige) GV =3@V), KW =J@Vb).  (49)

Assumptions. The following assumptions will be needed throughout the paper:
(1) pe = €%p, where p € L*(Q)) and

0<Cs=<p=<Cs ace.in; (4.10)
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(2) Fe = €’F, F € L*(0, T;L*(Q)?), Gc = €G, G € WI1(0, T;L%(0,1;L%(9S)?));
(3) {Qoctecon C V(Q)?, {Quetee) C L2(Q)°,

1
E||w€(QO,€)||2sC, Ve e (0,1), (4.11)
where the constant C is independent of €, and
Qe —Qp in V(Q), Qe —Q inL*(Q)° (4.12)

for € — 0, where Qo € H}(0,1)> and Q, € L?(0,1)%, that is, the functions Qg, Q;
are the constant functions in the second and third variable.
The reason for the choice of these scalings can be found in the inequalities (3.7) and
(5.1). We are not able to guarantee boundedness of the functions U, in appropriate spaces
without the scalings, which means that the curved rod can be broken when the diameter
converges to zero.
After substitution of the above assumptions to (4.4)-(4.5), we get

ikl 1
J J — (03U (1), V(1)) de +AJ"lwkl(Ue(t)) W (Ve(D)) de | dxt
(4.13)
J j V() dedxdt+J j (GOV(©)deeyno; dSdndr
forall Ve C§(0,T; V(Q)?), and
Ue|t:0 = QO,e; atUe|t:0 = Ql,e- (4-14)

5. Basic estimates of a solution to (4.13)-(4.14)

ProrosriTiON 5.1. Under the assumptions of Section 4, there exists a unique weak solution
Uc to the problem (4.13)—(4.14) such that U € L*(0,T; V(Q)?), 0;Uc € L*(0, T;L*(Q)?),
p0uUc € L2(0, T; [V (Q)]"), where the initial conditions in (4.14) are fulfilled in the sense
of the space C([0, T];L*(Q)3) or C([0, T1;L2,,,.(Q)?), respectively. In addition, this solution
satisfies for all € € (0,1) the estimates

2
2 1
||atU6||Lw(O’T;L2(Q)3) + Hf(U(Ue)

L°°(0 T;L2(Q)%)

2
SC(HQl,eHz H w(Qoe) +||FHL2(0TL2(Q>3 + Gy 0,122 0112(38) )))
(5.1)

| |PattU€ | |L2(0,T;[V(Q)3]/)

1 (5.2)
< C(||F||L2(0,T;L2(Q)3) + Gl 20,7522 (0,512(38)3)) + g”we (Ue) ||L2(0,T;L2(Q)9)>’

where the constant C is independent of €.
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Before we start to prove Proposition 5.1, we construct a finite dimensional approxi-
mation of the weak solution to our problem using analogous arguments as in [5, 6], and
we prove an auxiliary lemma, which enable us to prove Proposition 5.1.

Let € € (0,1) be arbitrary but fixed. Since the space V() is a separable Hilbert space
with the scalar product ((V, W))pi.0 = JopVWde dx+ [op(VV,VW)dcdx, we can se-
lect smooth functions Wy, k = 1,2,..., such that

{Wi},_, is a basis of V(Q) and an orthonormal basis of L*(() (5.3)

in the sense of the scalar product (V, W), = [opV W de dx. The proof that the above
mentioned scalar products are well-defined follows from (3.11) and (4.10).
Now, we fix a positive integer m, and we write

Z DWk(x),  Qfle;(x) = Z 7 /(0 Wi(x (5.4)

Qe j(x) = Z dry (0)Wi(x), (5.5)
k=1

where j = 1,2,3, (x,t) € Q% (0,T) and U = (U, Ugh, Us). Using the vectors Wk =
(Wk,0,0), Wi = (0, Wy, 0), W3 = (0,0, W), we will study the system of equations

i 1 1 N
J paU™ t)WkdederJ AT L0 (U2 () L ofy (W) ded

(5.6)
= J Fi(t)Wi dsd’”{ J G;(t) Widc€vio'h€v;dSdxy,
Q o)) Jas
fora.a.t € (0,T), completed with the initial states
dexi(0) = JQPQO,e,?Wk dedx,  d7 (0)= Jﬂpal,g,fwk dedx (5.7)

for j=1,2,3,k=1,...,m, i = 1,2,3.
Since the proof of the existence and uniqueness of a solution to the problem (5.6)-(5.7)
is very close to the proofs in [5] or [6], we omit it.

LemMA 5.2. Under the assumptions of Section 4, the solution to the problem (5.6)-(5.7)
satisfies the estimates

1 2

2
10:UE ||+ (071200005 + ng(UZ")
L=(0,T5L2(Q)?) (5.8)
1 2 ’
< C(IIQ |+ HEw(QS",E) ot IF 20,1220 + ||G||2W1,1(O,T;LZ(O,,;LZ(BS)S))),
||P8”U2n||L2(0,T;[V(Q)3]’) + ||Pd€attU2”||L2(0,T;[V(Q)3]’)
(5.9)

1
< C<||F||L2<0,T;L2(m3> TGk @) + llo (Ug) ||L2(0,T;L2(Q)9)>’

where the constant C is independent of €.
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Proof. We multiply (5.6) by de",lk,i(t)’ i=1,2,3, sum k = 1,...,m and recall (5.4)-(5.5) to

discover (we do not use the summation convention for index i here) that

f pAuU”-()9,U"(1)d dx+J A’f"’l

- | 03U (0dedx+ L | Gioa Uz e noev;dsdx,

i=1,2,3, where U™! = ( 71,0,0), U = (0, ,0), U™ = (0,0, ). Summing i=
1,2,3 in (5.10) and integrating (5.10) over the interval [0,¢], t € (0, ) yield, together
with (5.4)-(5.5) and (5.7),

£(U2(0)) £ (2, 01(1) dedx
(5.10)

alNpacowz |+ 55 | A2af Uz 0) w02 @) e

= %H\//TJEQTG

262[ A (Qp )l (QR) ddx+J J E(s),3,U"(s)) dedxds

; L L (G209 decy o, dS dxds

for all t € [0, T]. Further, we can estimate the third and fourth term on the right-hand
side, using (3.11), (3.12) and the Young inequality, by

(5.11)

C] C7

< 3 [ IF s+
C1C7
2

[ Voo

F(s ),0:U(s))dcdxds
(5.12)

1
= Z—C% ”F”%Z(O,T;LZ(QP) +T ||atU2n(t)||Loo(0’T;L2(Q)3)7

1
J (G(s),3,U™(s)) deer [0y, dS dxyds
U J G(£), U (1)) deer[vio e, dSdx, — J I (G(0), QY ) deexlvioev, dSdx,
J J (O1G(5), U2(9)dee o, dS dx ds

CzC 2
—8 02| 0,732 0,122 05)))

2C2 IGIZ= (0, 75120.1225)%)

C2C
2C2||G O)HLZ 051228)%) T 9||Q0€||L2 (0,512(3S)%)

Cz

||atG||L‘ 0,T5L2(0,512(35)?))

C,C?
+ Tw”UmHLw 0,T512(0,;L2(3S)3)) +

(5.13)
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for arbitrary positive constants C;, Cg, Co, Co. Let constants Cy;, Cj» come from the

imbeddings

W0, T; L2 (0, L*(9S)*)) < C([0, T];L*(0,,L*(3S)?)), H'(S) & 1*(99) ,
(5.14)
respectively. The estimate ||(A1] ik ,3 g k)l:1||c(§) < Cy3 holds with the constant C;3 being
independent of € as a consequence of the relations (2.6), (2.18)-(2.19) and (3.5). Hence,
from (4.10), from the estimates (3.6), (3.7) and (5.11)—(5.13), it follows that

CoC GG m||?
( 025 T 7>||arUe||Lm(o,T;L2(Q)3>
C07C2C3C4C (C8+C10 €
2€2Cs e

C\Ci3+C,CiC3C?
||Q1,€||2+ b 26224 2 12||(U€ QOE ||2 C2 HF”LZ (0,T;L2(Q)3)

2
uy)|| L=(0,T;L2(Q)?)

5.15
e (5.15)

¢ oy )
+C2<2C8 2C9 ZC%O) ”G”W“(O,T;LZ(O,I;LZ(BS)3))'

Putting now C; = \/C,Cs/2TCy, Cyg = Cg, Cg = (Co/4C,C5C;C3,) V4, we obtain (5.8).

It remains to show (5.9). We fixany V € V(Q) such that || V]|, , < 1. The function V/d,
belongs to V(Q) for € sufficiently small as well, which is a consequence of (2.5), (2.13),
(2.20) and (3.11). In addition, || V/dcll1, < Ci4, where the constant Cy4 is independent of
€. We can decompose this function as a sum V/d. = Vi + V5, where V| € span{ Wi}]",
and ((V5, Wi))pd..0 = 0, k = 1,...,m. We can derive from (3.11) and (4.10) the estimate

CoCs
Ci G

and thus [| Vi |12 < Ci5 = C14C; C¢/CyCs, where C;5 is independent of €. Then (5.4)—(5.6)
imply, after substitution Wy = V7, that

VI, =

Vil (5.16)

J PO U d dx

_ L} PO U™ (1) Vi dedx

I
- J FA(t) Vfdedx+J Jascg(t)vlfdee,/vioif)evj dsdx,

J Al]kll e ( ))éwfj (V%)dedx,

(5.17)

i=1,2,3, where VI = (V£,0,0), V> = (0, VE,0), Vi€ = (0,0, VE). We can see that the
estimate

ijki 1 e 1 € i€ c e€(m
| APt Uz ) ga (Vi) dedx < Sllof (U2, (5.18)
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holds for a.a. t € (0, T), where the constant C is independent of €. Hence

[:/Jw
=

Q) <PattUZ;(t), |4

> V(Q)

~
I
—

(HF ), +IG( t)||L201LZBS3)+ ||w Ul (¢ )||2)’ foraa.t e (0,7),
(5.19)

where the constant C is independent of €. Taking the function V instead of V/d,, and
using the same procedure as above for the term pd.d;/U?, we get (5.9). O

Proof of Proposition 5.1. Using (4.12), (5.4), (5.5), (5.7), we can easily derive that
Qe — Qoe in V(Q), Q. — Qie inL* Q). (5.20)

From the estimates (3.7) and (5.8), it follows (passing to a subsequence if necessary)
that

U” X~ U, inL>(0,T;H'(Q)), (5.21)

o,Um 2~ 3,U. inL™(0,T;L2(Q)3), (5.22)
pd U 2~ p3, U in L®(0,T;L2(Q)?) , (5.23)
P UM — W, inL2(0, T;H1(Q)?) , (5.24)
pdedy Ul — W, in L2(0, T;H1(Q)?) (5.25)

for m — co. It remains to show that W¢ = pd;; U, and W, = pdc04Ue. From (5.23), it
follows that

panUg” — pa”UE, PdEaIIUZI — pdga“UE, in W‘1’2(0, T,LZ(Q)S) (526)

for m — oo, which leads to the desired conclusion. The estimates (5.1)-(5.2) immediately
follow from (5.8)-(5.9) and (5.20)—(5.25). Using the standard theorems about compact
imbeddings in Bochner’s spaces (see [11]) together with (5.21)—(5.25), we can deduce
that

U”" — Uc in C*([0,T;L*(Q)*),
(5.27)
9,U" — 9,Uc in C([0,T];L%,,.(Q)?)
for m — co. The uniqueness of the solution follows from the linearity of (4.13) and from

the estimate (5.1). O
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CoOROLLARY 5.3. Under the assumptions of Proposition 5.1, there exists a sequence {€y,} -,
c (0,1) such that €, — 0 and

U, =~U inL®(0,T;V(Q)), (5.28)
0 Ue, =~ 9,U inL>(0,T;L%(Q)?) , (5.29)
cw(Ug,) == inL®(0,T;L(Q)°) (5.30)
for €, — 0 and thus
0., —1U" inH'(Q)?, (5.31)
2.0, —23U0" in12(Q)?, (5.32)

(5.33)

_ —(P — .
Lo (T”) = Laar(U,)" — 7" in12(Q)°

forall ¢ € Cy(0,T).

6. Qualitative properties of the limit displacements

PrROPOSITION 6.1. Suppose that {€,} -1 C (0,1) and €, — 0. Let, in addition, a sequence
{Ue, }ooy € L=(0,T; V(Q)?) be such that

U, =~U inL=(0,T;V(Q)?), (6.1)
cw(Ug,) == inL=(0,T;L3(Q)°) (6.2)

for €, — 0. Then the couple | U,¢| € L*(0, T;OVto’n’b(O,l)) (in the sense 0;U = 0, j = 2,3),
where the function ¢ is such that

ﬁ ((azUEn’bEn) - (a3U6n’nEn)) R [0 (6.3)

in L°(0,T;L*(Q)) for €, — 0. In addition, the couple | U,¢| generates a function U, €
L*(0,T;H}(0,1)3) which together with the function U satisfies the relations

(01U,t) =0 a.e. in (0,1) x (0, T), (6.4)
(01Us,t) = 05812 — 02013 in L™(0, T;L*(0,LH(S))), (6.5)
(01Us,n) = —05(1; a.e. in (0,1) x (0,T), (6.6)
(B1ULb) =00 ace. in (0,1) x (0,T), 6.7)

Remark 6.2. Since (1/€,)w% (U, )’ = (1/€,)w% (Ue,*) (see (4.6)—(4.9)), we can use (5.31),
(5.33) and [14, Proposition 7.2] to derive the existence of the pair [U(p,(/)(pj IS °V5’n’b(0,
I) (in the sense BJUq’ =0, j = 2,3) for arbitrary ¢ € Cg°(0,T), where the function ¢, is
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such that

L (0:0,7,b,) - (05057 ne,)) — by (6.8)

in L2(Q) for €, — 0 and for arbitrary ¢ € C5°(0, T). In addition, the couple [U¢,¢¢J gen-
erates the function Uy , € H}(0,1)> which together with the function U satisfies the re-
lations

(0,U%,t) =0 a.e.in (0,]), (6.9)
(01Uspot) = 05012 — 2G5 in L2(0,LHY(S)), (6.10)
(31Uspon) = —05(11"  ace.in (0,0), (6.11)
(31U p,b) = 3,017 ae.in (0,1), (6.12)

for arbitrary ¢ € C$(0,T). If the sequence {(1/€,)w® (Ug,”)}, converges strongly in
L2(Q)?, the convergence of the sequence {Ug,?}%; is strong as well for arbitrary ¢ €
Cy(0,T).

Remark 6.3. From Remark 6.2, it follows that to prove Proposition 6.1, we must check
that

¢y (x1) = ¢ (x1), Uy p(x1) =07 (x1) (6.13)

forall p € C5°(0,T) and for a.a. x; € (0,1), which is the main task of this section.

We define auxiliary functions ¢, € € (0,1), by the relation
1
¢e = ﬁ((ang,bg) - (83Ue,ng)). (6.14)

Further, we define the vector functions Uy ¢, € € (0, 1), by

1 1
U*,e = _¢ete - E (aSUE)gl,e)ne + E(ateagl,e)be- (6-15)

Proof of Proposition 6.1. To simplify the notation, we will use € instead of €,. Using (2.5),
(2.16), (4.6)—(4.9) and (6.15), we can derive the expressions

1 1 1 1
(01Uxerte) = ga3efz(Us) + Eaa’cfz (Ue) - 9329% (Ue) - Eazk% (Ue)
- (ﬁgx2 + (X€/3€X3) (a3Ue>t€) + (“e,gexZ + “ng) (aZUe’te)

- (ﬁe)’d@ + %) (a3U€abe)

- (“eYexS + %) (aZUeane) +ﬂ€))6x3 (a3U€,n€) + “eYexz(aZUe’be)’
(6.16)
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€
(alU*,ErnG) = - a3K11 (Ue) + ﬁ_e ( (aZUE)be) + (83U5’n€) )
€ € 2
+ E< (BZUE)gle) (aer)ne)>
(6.17)
+ ( — =t tacfexatyixg+ yex3> (93U¢,be)
+ (Bexz + agxs + Peyexs — acyexz) (93Ue te)
+ (aefexs + Bexr + yixs — yexs) (03Ue,ne) — ae (01Ue te),
(01U b) = 2800 e ((:0ube) - (0:Tne)
+ E( (33U5,g1 e) (alU€7b€)>
(6.18)
( c TE 4 B2xy + A feXs — Yixs + yexz) (0,Ue,ne)
— (Bexz +agxs + Peyexs — aeyexz) (02Ue, te)
- (oce/}exz + (ng3 + )’gxs + yng) (azUEybe) - /-’)e (aerate)
in the sense of the space L* (0, T; L*(0,; H~'(S))). Since the estimate
1 1
| G @Utma) | +| 5 @aven.bo)|
3
1
< || 5 (@Ue1m0) + @20c01b0) | +Ce 2 31056 Ol
i=2
C 1 . .
+— | |[2930% (Ue(t)) +05x1, (Ue(t))
€ L2(0,5HY(S))
1
" H—8201€3(U5(t)) T a5, (U (1)) ) (6.19)
€ L2(0,5LH-1(S))
C
+ o (1[(05Ue(t),g1,e) ||, +1[(02Ue(8), g1.e) I],)
+Ce' M ([(9:Ue (1), te) ||, + [[(9:Ue (), te) [[,)
+ ?(||(33Ue(t),b€)||2+||(82U€(t),n€)||2)
1 1
+Ce (| 55 @:Ue(b0)| +]| 5 @Utm) | )
holds for a.a. t € (0,T) (see [14]) and
1
82(/56 t) (az(ate(t) ) +82 (a3U€(t),ne)) — Ea3(ate(t),n€),
(6.20)

03¢ (t) = Z(as(ate(t)’be) +03(93Uc(t),n¢)) — éaz(aaUe(t),be)



440  An asymptotic dynamic model for curved rods

in L?(0,;H~1(S)) for a.a. t € (0, T), we get from (2.6) and (6.2) *-weak convergence of
the functions (91U, tc), (91U e,n¢), (91U ¢, be) in the space L (0, T;L?(0,; H1(S))),
where the limit states correspond to the right-hand sides in (6.5)—(6.7), which is a conse-
quence of Remark 6.2. Since

alU*,e = (alU*,eate)te + (alU*,eyne)ne + (alU*,obe)bea (6-21)

we can easily derive from (2.2) that
N Use == (35012 — 3:013)t — :im + (11 b (6.22)

in L= (0, T;L*(0,.; H™'(S)?)).
Further, we want to prove that

0jUsc “~0 inL™(0,T;L2(0,LH'(S)%)), j = 2,3, (6.23)

and Uy ¢ ()14, 20 = U e (£) |y, =1 =0 for almost all ¢ € (0, T') in the sense of the space C([0,!];
H™'(S)).

If we fix t € (0,T), we can prove the second part of the above assertion in the same
way as in [14]. The proof of (6.23) follows from the expression

ajU*,e = —a]'(pete +aj (aer,be)ne - aj (alU€$nE)b€

1 1
- aj (E (a3Ueag1,e) + (81U€>be)>ne +aj (E (aZUe:gl,e) + (aer:ne))be’
(6.24)

from (4.6)—(4.9), (6.2) and from the fact that the function U depends only on t and x;
(see Remark 6.2). Applying Proposition 3.4 together with (6.22)-(6.23), we get

0jUsc” =0;Use — ;U =0;U.’" inC([0,I;H(S)) »
(6.25)

U —U."=U,y inl}Q). -

7. The main result

In this section, we pass from the three-dimensional model (4.13)-(4.14) to the asymptotic
model and our main result is stated and proved.
Let us mention for the reader’s convenience that we have proved in Corollary 5.3 that

U, *~U inL*(0,T;V(Q?), 9U.==aU inL®(0,T;12(Q)%), (7.1
cw(Ug,) == inL™(0,T;L*(Q)°) , (7.2)
for €, — 0, where U € L*(0, T; H} (0,1)?) according to Proposition 6.1.

Now, we mention without proofs two propositions and one corollary, because the
proofs can be obtained similarly as in [14].
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ProPOSITION 7.1. Let the tensor { be the limit determined by (7.2). Then it satisfies the
equation

f AT (060 (V)dx = 0 (7.3)

forallV e L2(0,;H'(S)?) and for a.a. t € (0, T), where the tensor °(V) is defined by

0 (an,t) (a3v)t)
2 2
QO(V) — (aZZ)t) (an,n) (aZV)b) ;’ (a3V’n) (7.4)
(a3V)t) (aZV’b) + (a3V)n) (83V,b)
2 2
We introduce the following notation:
o sz+ 2/\+ — & (33+ 2A+ — i, 3 = (. (7.5)
COROLLARY 7.2. We have
J Crodx,dxs = J Cizdx,dxs = J Croxadxydixs
S S S
(7.6)
= Lflsxadxzdﬁ% = L [(nxa +C13x2]dx2dx3 =0,
JS (gd.dex_?, = JS (g.dexzd.x?, = JS (gx3dx2dx3 = 0, (77)
[ ety = | @+ Erdnds
S s (7.8)

= L (C8 + &) x3dxadxs = 0,

a.e. in (0,1) x (0, T).

If we define the vector # € L*(0, T;L?(Q)?) by 1 = [ {12, (13|, the equations (7.3), after
putting V = ¢t, ¢ € L2(0,.; H!(S)), and (6.5) can be rewritten in the form

fg (1(8), Vasg),dx =0, Vo e I*(0,5HI(S)), (7.9)

JQ (1(1), rotesy) ydx = L} (UL (0, ) ydx, VyeH(Q), (7.10)

for a.a. t € (0, T), where we have denoted V3¢ = [ 0,¢,03¢], rot;3y = | —93y,0,v], and
where (-, -); means the scalar product in the usual two-dimensional Euclidean space R2.
ProrosiTioN 7.3. Under the assumptions on the domain S from Section 2, the system (7.9),
(7.10) has the unique solution in L* (0, T;L*(Q)?) given by

1
n=10203] = *5(31U*,t)[azp*x3,asp+xzj, (7.11)
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where the function p € H'(S) is the unique solution to the Neumann problem
J [(azp —x3)82r+ (a3p +x2)83r]dx2dx3 =0, I deQdX3 =0, (7.12)
s S

forallr € HY(S).

Now, we derive the asymptotic model. First we introduce some constants:

L= I x3dxydxs, L= J x3dx,dxs, (7.13)
§ s
30+2
E=u )t+[,¢‘“’ K:JS[(azp—x3)2+(83p+x2)2]dx2dx3, (7.14)

where p € H!(S) is the unique solution to the Neumann problem (7.12).

Lemma 7.4. Let {Ug, )1, €1 — 0, be a subsequence of the weak solutions to the problem
(4.13)—(4.14) satisfying (5.1), (7.1)—(7.2). Then the limit | U,¢| € L*(0, T;°Vf)’"’b(0,l)) ob-
tained in Proposition 6.1 generates the function Uy, which satisfies the equation

. : % S A7 ¢

—j (3,0, V) dx, +J E[L (3:0,%,b) (V,,b) + L (3:02",n) (V',,n) |dx:
o 0 l (7.15)
. , ¢

+ | HK@OT0 (Vidx = [ (e’ V)

for all functions V. € H{(0,1)* generated by an arbitrary couple | V,y| € VEP(0,1) (see
(2.9)) and for all functions ¢ € C§(0,T), where Frig(t,x1) = [{F(t,x1) dxadxs + [55G(t,
31)dS and p(x)) = [sp(x)dxadxs, (x1,8) € (0,) x (0, T).

Proof. Let | V,y] be an arbitrary couple of functions from the space YE™P(0,1) and the
couples | Ve, ye ] € °Vf{’n“b‘ (0,1) its smooth approximations given by Proposition 3.1. We
define the functions W, € C*(Q)* and V. € C*(Q)* n V(Q)? by

We (x1,%2,%3) = = (Ve (x1),me (1) ) x2 + (Ve (1), be (1) ) X3) te (x1)

(7.16)
= x3Ye (x1)ne (x1) + 229 (x1)be (x1)  for (x1,x2,%x3) € Q,

Ve =V +eW,. (7.17)

Using (2.5), (2.16), (4.6)—(4.9), we can verify analogously as in the proof of [14, Lemma
8.4] that

W (Vo) = €Y(Vae) +Be, (7.18)
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where
YH(V*,G) = —(V;,E,HE)X3+ (\7:k E,be)XZ, (7.19)
X
le (V*,E) = YZI (V*,E) = ?3 (V* e)tE) (720)
X "
Y13(V*,€) :Y31(V*,€) = _é(v*’gate)a (7.21)
Yij (V*,E) =0, l)] =2,3, (7.22)

BY = € ((Bexa +texs) (2 (VEame) +5(Viabie) — Bersyie + acaye)

(7.23)
+ YeX3 (aIWEyne) — YeX2 (alweabe))a

By =0 for i, j # 1. Further, we have from (2.2), (2.4), (2.6) and (3.2)—(3.4) that
Yij (V*»e) — Yl] (V*) in LZ(Q)) l:] =1,2,3, (724)
IBell = 1B, = €€, re (0.5), 7.29
Ve —V inH'(Q) (7.26)

for € — 0. In addition, we can deduce from (2.18), (2.19), and (3.5) that

KL AR 28T8M 4+ (807 + 87107%)  in C(Q). (7.27)

From the convergences (3.11), (3.12), (7.1)-(7.2), (7.24)—(7.27), it follows that we can
pass from the equation

J p atUe Veod dx+J A”kl1 l(U_g(p)éwfj(\AQ)dedx
(7.28)
:JQ(F¢,VE)d€dx+JO (G Vo decvjorev;dsdx,

to

1
j 5(9,0°, V) dx, + J A’f"lck, Yi; (Vi) dx
0 (7.29)

for all functions | V,y] oV’B’“’b(O,l), which generate functions V.. (see (2.9)).
It remains to express the second term in (7.29). Equalities (6.6) and (6.7) enable us to
express the function {j; in this way

{11 =Qo+ (01U, b)xz — (01Uy,n)x3  in Q% (0,T). (7.30)
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Hence and from (2.1), (7.5)—(7.8), (7.11), (7.27), (7.30), we can conclude that

J AN (V) dx = JQ [A(a¢+5¢+@“’) +2ua¢]Yn(V*)dx
# [ (@ (V) + 5 (v.)
- JQ [M(T0" + 80" + 85" ) + 268 | (VL b) 2 — (V) s ] e

+ Zyj E(P(V;,t)ag - Etp (V;,t)xz]dx

=J [T+ (T + 8 |L(V2b) — (Vi) (7.31)
+Lz” = (320 = x3)x3 + (330 +x2) x2) (UL, 1) (V) ) dx

[ E G V) 5 ) (Vo
+fl#1<(m"it)(v;,t>dx1.

0 [l

LEMMA 7.5. Ttholds Qo= = = (8 =0in Q x (0,T).

Proof. According to Proposition 3.2 and (3.11), there exists a constant C > 0 independent
of € and ¢ such that

Héwe (T - Z“’Hz < CAey (7.32)
for all p € Cy(0,T), where
Aoy = | A2 (Zaf (0 -0 ) (Lo (0) - &7 ) dedx. (7.33)
Convergences (7.1)-(7.2) and (4.13) imply that
Ay = leifr(}Aw
= lim Uo (F*,U.7)d.dx + Ll N (GY, U deerfvioiiv; dSdx,
# | A((G0 - Zef(0N)5 -G Laf (U0 )dedx (734
[ p @00 |

1
J (Frrg »U”)dx; — J AN dx+J (2,0°,07)dx,.
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Using (7.5), (7.11), (7.15), (7.30), we get analogously as in the proof of [14, Lemma 8.5]
that

J Al]kl(kl Cl] dx
- Lz [E(aqj +(0,0.7,b)x, - (3,0, n)x3)°
1l —9 2
+4y<—§(81U* ,t)(azp—xs))
+4;4(— 1(@%)(a3p+x2))2+1@“’+@“’>2
2 () + (B +2(@7)) |

- Jol [ (Bre'»U*) +EISI Q) da

(7.35)

[ 500, 0ax
o T (@) () 2 (@) o
After substitution to (7.34), we obtain
Ao == [E@"Y AT +T) +2u( () + () +2(B) ) Jax - 7360

for all ¢ € Cg° (0, T). But the sequence A, for all ¢ € C§° (0, T) consists of non-negative
numbers by (7.32) and thus A, = 0 for all ¢ € C (0, T). O

Since we have denoted 5 = [ {12,{13 |, we obtain from Lemma 7.5 that

72 @ b)n - @Uenx, G T 6= L @0 (0 -,
( 7 11) (31 (alU*at) (33P+x2),
&2 = _%A%((alU*,b)xz — (01U4,n)x3), (3=02=0,
Gs (75) _1 A ((01Us,b)x2 — (01 Ux,n)x3).

20+
(7.37)

LEmMA 7.6. Let the function U be determined by (7.1) and the functions Qo and Q, by
(4.12). Then Ui~y = Qo and po;Ul,—o = pQy in the sense of the space C([0,T];L*(Q)*) or
C([0, T1; [VE™(0,1)]"), respectively.

Proof. The first initial condition follows easily from (4.12), (4.14), and (7.1). Let the func-
tion V¢ be defined by (7.17) and let ¢ € C5°(0,T) be an arbitrary but fixed function.
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Taking (p\Af6 as a test function in (4.13), and using (7.18)—(7.23), lead to the equation
- j é(t) J p(3Uc(t), V) de dxdt+J o t)J A0 L og (U 0) Y, (Vo) dedaedt

J o t)J A”kl] € (Ue(n) L B’gd dxdt
=JO (p(t)J (F(t), Ve)dedxdt+J o) j J (G(1), V) deevfvjoicy; dSdx, dt.
(7.38)

Equation (7.38) yields that the function |, p(atUe(t),Ve)dedx belongs to the space
Wb (0, T), which together with (4.14), (5.1), (5.2) enable us to rewrite (7.38) as

J P(atUe(t)a\A’e)dedx_J P(Ql,e:ve)dedx
Q

i 1 i 1 1 if
I J AP (U0) Y (Vo) de dxds—J J APy (UL(9) 2 B dcdxar

J J s),V€ )de dxds+J J Jas VE )de e\/vjofededel ds.

(7.39)

We leave to the reader the proof that the right-hand side of (7.39) is convergent in C([0,
T1]). Hence, from (7.26) and from the second convergence in (7.1), we get that

!
Jﬂp(atUe(t)—Ql,e,\Ale)dedx—»Joﬁ(atU(t)—Ql,V)dxl inC([0,T]).  (7.40)

The rest of the proof is obvious. O

We have proved that the asymptotic dynamic model for the curved rod has the form:
T !
- | o | pauvydxar

1
+j <p<t>j E[1,(3:U. (£),b) (V%,,b) + I (3,Us (£),m) (V',, ) dx,dt
0 0 (7.41)

T I
+J go(t)J UK (91U, (8),8) (V' t) dxydt

J o(t J (Frig(t),V)dxidt

for all functions ¢ € C5°([0,T]) and V. € H{(0,])® generated by an arbitrary couple
[V,y] e VB’""’(O,Z). The function U, which together with the function ¢ generate the
function Uy (see (2.9)), satisfies the initial state

Uli=0 = Qo, po:Uli=0 = pQ (7.42)

in the sense of the space C([0, T];L?(0,1)*) and C([0, T]; [V 0,0]), respectively.



Rostislav Vodak 447

Now, we decide upon the uniqueness of the solution to (7.41)-(7.42).
LEmMA 7.7. There exists the unique solution to (7.41) satisfying (7.42).

Proof. Suppose that there exist two solutions | Uj,¢;| € L*(0, T;°V(t)’n’b(0,l)) and 0;U; €
L>(0,T;L2(0,1)*) n C([0, T};[VE™P(0,1)]'), j = 1,2. Let us denote U= U, — U, and ¢ =
¢1 — ¢5. Then the couple | U,¢] € L*(0, T;V§™(0,1)), Uy € L(0,T;H{ (0,1)%), 9,0 €
L=(0,T;L2(0,1)*) n C([0, T]; [VE™(0,1)]"),

T I N
[ o0 [ p@00, V)i
0 0

T l - , - , (7.43)
+ . o(t) 0E[h (01Ux(1),b) (V,,b) + [, (01U (£),n) (V,,n)]
+uK (01U (£),8) (Vi, t)dxydt = 0
and the function U satisfies the initial state
Ulieo=0,  p0Uli0=0 (7.44)

in the sense of the space C([0, T];L*(0,1)*) and C([0,T]; [V 0,0)]), respectively.

From (7.43), it follows that the term féﬁ(atﬁ(t),V)dx dt € Wb*(0,T) for all but fixed
V € H{(0,1)* such that the couple | V,y] € "VB’n’b(O,l). This fact enables us to rewrite
(7.43) as

1 t rl
jomatﬁ(t),V)dxl n L LE[Il (0:0,.(5),b) (V2.,b) + 1, (9,0 (),m) (V)]
+ K (0,04 (5),1) (V. t) dxyds = 0

(7.45)

for all t € [0, T]. Since [lAJ(t),(ﬁ(t)J € °VB’“’I’(O, I) for a.a. t € (0,T), we can use this couple
as a test function in (7.45), and we get that

!
jomatﬁ(t),ﬁ(t))dxl

t el
+j0 jOE[Il(alfm),b)(alﬁ*a),b) 1430, () (@104 (1)m)] 740

+ K (9104(5),4) (01U (1), t) dxyds = 0
for all t € [0, T]. It is obvious that (7.46) can be rewritten as

d ('pl0wl* . d("EL

dt)o 2 dat i) (J (alU*()b)d5>2dxl

([ G0 ms) e [ ([ 0109, e -
(7.47)
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for all t € [0,T]. From the assumptions on the functions U and U, it follows that the
functions U and Io 0,U € C([0,T];L?(0,1)*), which enables us to integrate (7.47) over the
interval [0,¢], and we get from (7.44) that

[P0 g [ ([ 310,

+ﬂ%(ﬂ (alﬁ*(s),n)ds>2dx1 +f%(ﬂ (816*(5),t)ds>2dx1 ~0

2 0

(7.48)

forallt € [0,T]. Hence U=0asa consequence of (4.10) and non-negativity of all terms
in (7.48). Further, (7.48) yields that

0,0, (x1,5)ds = j (3,0, (x1,5), t(x1) ) t(x1)
0 0 (7.49)

+ (0104 (x1,5),n(x1))n (1) + (91U (x1,5),b (1) )b (x1)ds = 0

forallt € [0,T] and for arbitrarybut fixed x; € (0,1). Then 01Uy (t,x;) = 0 fora.a (x;,£) €
(0,1) X (0,T). Since U, € Hj(0,]) thenalso Uy = 0and ¢ = —(U,,t) = 0, a contradiction.
|

Thus, it is not necessary to pass to subsequences in (7.1) and (7.2).

8. Transformation of the limit equation

In this section, we go back to the original curve € described by the parametrization ®.
We introduce the following notation: v : 6 — R, where ¥(®1(x;), ©,(x1), P3(x1)) = v(x1)
for a.a. x; € (0,1). Then we can easily see that

v (x1) = [(9:7) o @]1; (8.1)
and hence

d ~ o OV
[dxl (vo(D)] o - ((9)v- % (8.2)

Using (8.2) we rewrite the limit model (7.41) as follows

—J ¢(t) J p(a:0(r)
L ) ) (R0
CIN

(8U*(t k: )(BV* N)d(@dt
ot

V)d6 dt

— JO o(t) L@( s, V)dedt, vVewy(C).
(8.3)
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9. Example of the limit model for a curve with a lipschitz parametrization

We finish our paper with a simple example of the limit model (7.41) and (8.3). Let € be
the Jordan unit speed curve defined by the parametrization:

1 1 . 1
o= E\/I—Xh\/_xh(? fol ) [01’2>, (9.1)
\fxl’ 7 \/>x1,0> ifx; € (2,1].

The appropriate tangent, normal and binormal vectors have the forms

t=4 (9.2)

n—;(%’_%’o) e [0,%)) b =(0,0,1). (9.3)

1 1 1
L) e (L],
\ < 22 ) e
If we define the mapping P o R, for the function ® instead of its smooth approximations
(see (2.12)) we get

1 1 > . [ 1)
x|+ €x — €X)——=,€X ifx;€0,= ),
B B <f1 Zf \/* 2\/2 3 1 2
P.oRc = 1

1 1 1
—=X1 — € —,——— —€x;—=,€ if E(al].
<\/§X1 X2 \/Z \/7 \/jxl X2 \/Z X3) 1 X 2
If we put x3 =0, x, = 1 and x; = 1/2 — € and x; = 1/2 + €, we can check that the mapping
P. o R, is not one-to-one.

Since @] = f; >0 we can use [14, Proposition 3.2] to construct smooth (Jordan) ap-
proximations. Then the limit model (7.41) has the form

(9.4)

T 1 T 1
—L gb(t)J p(a,U(t),V)dxldHL o(1) L EL3\Us o () V], . dx,dt

EL,

1/2
g0 [ 010100 - 00 0) (Vi Vi i

1
[ @00+ 0,020 (0) (V] + V) [ e
1/2
uK T 12 (9.5)
+2 JO o(1) [ L (91 Upe(£) + 9y Us,a (1)) (Vi + Vi)
1
; L @10~ U (0) (Vi - Vz')*)dxl]dt

J go(tJ (Freg (1), V) dx dt.
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Analogously as in the previous section, we transform the limit model as

J o t)J 50,000, V)dcdr
T EL[( &~ N o~ Yooy
#[ 005 | G0+ 8:000(0) G + 875 )dC

+ Jc (51 Us . (£) - d, Us, (1)) (51 Vs — 0, ‘73,*)‘1(7] dt

4

T ELT N o~ N o~ N o~ N~
+j0 o2 jc (30T (6) + 8,004 (1) — 81 () — D200 (1)
. (51 Vis +52\~/1,* -0 Vi — 52\72,*)61(3

+ J (01014 () = 02014 () + 01 U, (1) = 0,05 (1))
© (9.6)
. (81 VL* - 82‘71,* +0; ‘N/z)* - 82\72)*)dc:| dt

K (T ~ o~ N 5 5~
] 0] | G100+ 801 (048105 0+ 802 (0)
. (51 ‘N/L* +52‘N/1,* + 51 ‘72,* +52\N/2,*)dC

+ Jc (01014 (£) = 9,01, (1) = 01 Ui (1) + 02U (1)
. (51 ‘N/L* - 52 ‘N/l,* — 51 \Nfz,* + 52 ‘N/z,*)dC] dt

T ~
= t Fx.~ ., V)dCdt,
.[o 9 )Jclucz( Féwr V)

where the segment C; is given by the equation ), = ¥, y1 € [0,1/2+/2], and the segment
C, by the equation y, = 1//2 = y1, 31 € [1/24/2,1/1/2].
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