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We study the three-point boundary value problem of higher-order fractional differential equations of the form 𝑐𝐷𝜌
0+

𝑢(𝑡) +

𝑓(𝑡, 𝑢(𝑡)) = 0, 0 < 𝑡 < 1, 2 ⩽ 𝑛 − 1 < 𝜌 < 𝑛, 𝑢
󸀠

(0) = 𝑢
󸀠󸀠

(0) = ⋅ ⋅ ⋅ = 𝑢
(𝑛−1)

(0) = 0, 𝑢(1) + 𝑝𝑢
󸀠

(1) = 𝑞𝑢
󸀠

(𝜉), where 𝑐𝐷𝜌
0+

is
the Caputo fractional derivative of order 𝜌, and the function 𝑓 : [0, 1] × [0, ∞) 󳨃→ [0, +∞) is continuously differentiable. Here,
0 ⩽ 𝑞 ⩽ 𝑝, 0 < 𝜉 < 1, 2 ⩽ 𝑛 − 1 < 𝜌 < 𝑛. By virtue of some fixed point theorems, some sufficient criteria for the existence and
multiplicity results of positive solutions are established and the obtained results also guarantee that the positive solutions discussed
are monotone and concave.

1. Introduction

Applications of fractional differential equations can be
found in various areas, including engineering, physics, and
chemistry [1–4]. In recent years, the interest in the study of
fractional differential equations has been growing rapidly.

As one of the focal topics in the research of fractional
differential equations, the study of the boundary value
problems (BVPs for short) recently has attracted a great deal
of attention from many researchers. A series of works have
been presented to discuss the existence of (positive) solutions
in the BVPs for fractional differential equations [5–15].

However, there are few results in the literature to discuss
the positive, monotone, and concave solutions to the BVPs
of fractional differential equations; it is difficult to establish
the relation between the monotonicity and concavity of a
function and its fractional derivatives. It is worth pointing out
that Wang et al. [7] obtained the existence and multiplicity
results of the positive, monotone, and concave solutions to
the following problem:
𝑐

𝐷
𝜌

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1, 𝑛 − 1 < 𝜌 < 𝑛,

𝑢 (0) = 𝑢
󸀠󸀠

(0) = ⋅ ⋅ ⋅ = 𝑢
(𝑛−1)

(0) = 0,

𝑢
󸀠

(1) = 0,

(1)

where 𝑐𝐷𝜌
0+

is the Caputo fractional derivative of order 𝜌.
The multiplicity results of solutions are obtained by using the
Legget-Williams fixed point theorem. However, the question
of how to establish the connection between the monotonicity
and concavity of a function and its fractional derivatives is far
from being solved; and the concavity of a function is also not
used sufficiently.

Motivated by the aforementioned results, we then turn to
investigating the existence of monotone and concave positive
solutions for the following boundary value problem (BVP for
short):

𝑐

𝐷
𝜌

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1, 𝑛 − 1 < 𝜌 < 𝑛,

𝑢
󸀠

(0) = 𝑢
󸀠󸀠

(0) = ⋅ ⋅ ⋅ = 𝑢
(𝑛−1)

(0) = 0,

𝑢 (1) + 𝑝𝑢
󸀠

(1) = 𝑞𝑢
󸀠

(𝜉) ,

(2)

where 𝑐𝐷𝜌
0+

is the Caputo fractional derivative of order 𝜌.
The case 𝜌 = 2 was discussed in [16] by virtue of the Avery-
Henderson and Legget-Williams fixed point theorems.While
in the setting of the fractional-order derivatives, as far as we
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know, the existence of positive solutions for BVP (2) has not
been discussed in the literature.

We nowmake the following assumptions to be used later:

(A1) the function 𝑓 : [0, 1] × [0, ∞) 󳨃→ [0, +∞) is
continuously differentiable;

(A2) 0 ⩽ 𝑞 ⩽ 𝑝, 0 < 𝜉 < 1, 2 ⩽ 𝑛 − 1 < 𝜌 < 𝑛.

The rest of paper is organized as follows. Section 2 prelim-
inarily provides some definitions and lemmas which are cru-
cial to the following discussion, and the connection between
the monotonicity and concavity of a function and its Caputo
derivatives is established in this section. Section 3 gives some
sufficient conditions for the existence of at least two positive
solutions of BVP (2) by means of the Avery-Henderson fixed
point theorem. Section 4 gives some sufficient conditions for
the existence of at least three positive solutions by virtue of the
five-functional fixed point theorem. In addition, the sufficient
conditions also guarantee that the positive solutions obtained
are monotone and concave. Finally, Section 5 provides an
example to illustrate a possible application of the obtained
results.

2. Preliminaries

In this section, we preliminarily provide some definitions and
lemmas to be used in the following discussion.

Definition 1 (see [3]). The fractional integral of order 𝜌 > 0

of a function 𝑦 : (0, ∞) 󳨃→ R is given by

𝐼
𝜌

0+
𝑦 (𝑡) =

1

Γ (𝜌)
∫

𝑡

0

(𝑡 − 𝑠)
𝜌−1

𝑦 (𝑠) 𝑑𝑠, (3)

provided the right side is pointwise defined on (0, ∞).

Definition 2 (see [3]). The Riemann-Liouville fractional
derivative of order 𝜌 > 0 of a continuous function 𝑦 :

(0, ∞) 󳨃→ R is given by

𝐷
𝜌

0+
𝑦 (𝑡) =

1

Γ (𝑛 − 𝜌)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝜌−1

𝑦 (𝑠) 𝑑𝑠, (4)

where 𝑛 = [𝜌]+1, provided the right side is pointwise defined
on (0, ∞).

Remark 3. Consider 𝐷
𝑚

0+
𝑦(𝑡) = 𝐷

𝑚

𝑦(𝑡), where 𝐷
𝑚

𝑦(𝑡) ≜

𝑑
𝑚

𝑦(𝑡)/𝑑𝑡
𝑚, 𝑚 ∈ 𝑁

0
≜ {0, 1, 2, . . .}.

Definition 4 (see [4]). For a function 𝑦 given on the interval
[0, ∞), the Caputo fractional derivative of order 𝜌 > 0 of 𝑦 is
defined by

𝑐

𝐷
𝜌

0+
𝑦 (𝑡) =

1

Γ (𝑛 − 𝜌)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝜌−1

𝑦
(𝑛)

(𝑠) 𝑑𝑠, (5)

where 𝑛 = [𝜌] + 1, [𝜌] denotes the integer part of 𝜌.

Lemma 5 (see [3]). Let 𝜌 and 𝜇 be positive numbers. If
𝑦 ∈ 𝐶[0, 1], then 𝐼

𝜌

0+
𝑦(𝑡) ∈ 𝐶[0, 1], and the equations

𝐷
𝜌

0+
𝐼
𝜌

0+
𝑦(𝑡) = 𝑦(𝑡) and 𝐼

𝜌

0+
𝐼
𝜇

0+
𝑦(𝑡) = 𝐼

𝜌+𝜇

0+
𝑦(𝑡) are satisfied for

each 𝑡 in [0, 1].

Lemma 6 (see [3]). Let 𝜌 > 0. If 𝑦 ∈ 𝐶
𝑛

[0, 1] or 𝑦 ∈

𝐴𝐶
𝑛

[0, 1], then

𝐼
𝜌

0+

𝑐

𝐷
𝜌

0+
𝑦 (𝑡) = 𝑦 (𝑡) + 𝑐

0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1

𝑡
𝑛−1

, (6)

for some 𝑐
𝑖
in R, 𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑛 = [𝜌] + 1.

The following two lemmas are fundamental in finding an
integral representation of solutions of BVP (2).

Lemma 7. Let 𝑔 : [0, 1] × R 󳨃→ R be a continuously
differentiable function. If a function 𝑦 in 𝐶[0, 1] is a solution
of the equation 𝑢(𝑡) = 𝐼

𝜌

0+
𝑔(𝑡, 𝑢(𝑡)), then 𝑦 ∈ 𝐶

(𝑛−1)

[0, 1] and
𝑦
(𝑛)

∈ 𝐶(0, 1]∩𝐿(0, 1], and the relation 𝑐𝐷𝜌
0+

𝑦(𝑡) = 𝑔(𝑡, 𝑦(𝑡))

holds for each 𝑡 in [0, 1].

Proof. Let 𝑦 ∈ 𝐶[0, 1] be a solution of the equation 𝑢(𝑡) =

𝐼
𝜌

0+
𝑔(𝑡, 𝑢(𝑡)).
Since 𝑔 is continuous on [0, 1] ×R, Lemma 5 implies that

𝐼
𝜌−1

0+
𝑔 (𝑡, 𝑦 (𝑡)) ∈ 𝐶 [0, 1] (7)

and that

𝐼
1

0+
𝐼
𝜌−1

0+
𝑔 (𝑡, 𝑦 (𝑡)) = 𝐼

𝜌

0+
𝑔 (𝑡, 𝑦 (𝑡)) . (8)

The above equation, together with Remark 3 and Lemma 5,
yields

𝐷
1

0+
𝐼
1

0+
𝐼
𝜌−1

0+
𝑔 (𝑡, 𝑦 (𝑡)) = 𝐼

𝜌−1

0+
𝑔 (𝑡, 𝑦 (𝑡)) . (9)

Hence 𝑦(𝑡) is continuously differentiable on [0, 1] and 𝑦
󸀠

(𝑡) =

𝐼
𝜌−1

0+
𝑔(𝑡, 𝑦(𝑡)).
Generally, noticing 𝑛 − 1 < 𝜌 < 𝑛, we have

𝑦
(𝑘)

(𝑡) = 𝐼
𝜌−𝑘

0+
𝑔 (𝑡, 𝑦 (𝑡)) , (10)

which implies 𝑦
(𝑘)

∈ 𝐶[0, 1] for 𝑘 = 1, 2, . . . , 𝑛 − 1.
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Furthermore, using the assumptions imposed on the
function 𝑔(𝑡, 𝑢) and integrating by parts, we obtain

𝑦
(𝑛−1)

(𝑡)

=
1

Γ (𝜌 − 𝑛 + 1)
∫

𝑡

0

(𝑡 − 𝑠)
𝜌−𝑛

𝑔 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

=
𝑔 (0, 𝑦 (0))

Γ (𝜌 − 𝑛 + 2)
𝑡
𝜌−𝑛+1

+
1

Γ (𝜌 − 𝑛 + 2)
∫

𝑡

0

(𝑡 − 𝑠)
𝜌−𝑛+1

(
𝜕𝑔

𝜕𝑠
+ 𝑦
󸀠

(𝑠)
𝜕𝑔

𝜕𝑦
) 𝑑𝑠

=
𝑔 (0, 𝑦 (0))

Γ (𝜌 − 𝑛 + 2)
𝑡
𝜌−𝑛+1

+ 𝐼
𝜌−𝑛+2

0+
(

𝜕𝑔

𝜕𝑡
+ 𝑦
󸀠

(𝑡)
𝜕𝑔

𝜕𝑦
) .

(11)

This yields that, for every 𝑡 in (0, 1],

𝑦
(𝑛)

(𝑡) =
𝑔 (0, 𝑦 (0))

Γ (𝜌 − 𝑛 + 1)
𝑡
𝜌−𝑛

+ 𝐼
𝜌−𝑛+1

0+
(

𝜕𝑔

𝜕𝑡
+ 𝑦
󸀠

(𝑡)
𝜕𝑔

𝜕𝑦
) .

(12)

Since the second term of the right-hand side of the above
equality is continuous on the interval [0, 1], 𝑦

(𝑛)

∈ 𝐶(0, 1] ∩

𝐿(0, 1]. Consequently, direct computations produce

𝑐

𝐷
𝜌

0+
𝑦 (𝑡) = 𝐼

𝑛−𝜌

0+
𝑦
(𝑛)

(𝑡)

=
𝑔 (0, 𝑦 (0))

Γ (𝜌 − 𝑛 + 1)
𝐼
𝑛−𝜌

0+
𝑡
𝜌−𝑛

+ 𝐼
𝑛−𝜌

0+
𝐼
𝜌−𝑛+1

0+
(

𝜕𝑔

𝜕𝑡
+ 𝑦
󸀠

(𝑡)
𝜕𝑔

𝜕𝑦
)

= 𝑔 (0, 𝑦 (0)) + 𝐼
1

0+
𝐷𝑔 (𝑡, 𝑦 (𝑡))

= 𝑔 (𝑡, 𝑦 (𝑡)) .

(13)

The proof is completed.

By Lemma6,we next present an integral representation of
the solution of the linearized problem corresponding to BVP
(2).

Lemma 8. Let ℎ ∈ 𝐶
1

[0, 1]; if (A1)-(A2) hold, then BVP

𝑐

𝐷
𝜌

0+
𝑢 (𝑡) + ℎ (𝑡) = 0, 0 < 𝑡 < 1, 2 ⩽ 𝑛 − 1 < 𝜌 < 𝑛,

𝑢
󸀠

(0) = 𝑢
󸀠󸀠

(0) = ⋅ ⋅ ⋅ = 𝑢
(𝑛−1)

(0) = 0,

𝑢 (1) + 𝑝𝑢
󸀠

(1) = 𝑞𝑢
󸀠

(𝜉)

(14)

has a unique solution

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (15)

where

𝐺 (𝑡, 𝑠) = 𝐺
1

(𝑡, 𝑠) + 𝐺
2

(𝑡, 𝑠) . (16)

𝐺
1

(𝑡, 𝑠) =

{{{{

{{{{

{

(1 − 𝑠)
𝜌−1

− (𝑡 − 𝑠)
𝜌−1

Γ (𝜌)
, 𝑠 ⩽ 𝑡,

(1 − 𝑠)
𝜌−1

Γ (𝜌)
, 𝑠 ⩾ 𝑡,

(17)

𝐺
2

(𝑡, 𝑠) =
1

Γ (𝜌 − 1)
[𝑝 (1 − 𝑠)

𝜌−2

− 𝑞 (𝜉 − 𝑠)
𝜌−2

𝜒
𝐸𝜉

(𝑠)] .

(18)

Here 𝐸
𝜉

= {𝑠 : 𝑠 ⩽ 𝜉}, and 𝜒
𝐸𝜉

denotes the characteristic
function of the set 𝐸

𝜉
.

Proof. Lemma 6 implies

𝑢 (𝑡) = −𝐼
𝜌

0+
ℎ (𝑡) + 𝑐

0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1

𝑡
𝑛−1

. (19)

Differentiating (19) with respect to 𝑡 up to the order 𝑛 − 1 and
using the boundary conditions that 𝑢

󸀠

(0) = 𝑢
󸀠󸀠

(0) = ⋅ ⋅ ⋅ =

𝑢
(𝑛−1)

(0) = 0, we obtain

𝑢 (𝑡) = −𝐼
𝜌

0+
ℎ (𝑡) + 𝑐

0
. (20)

From the above equation and the condition that 𝑢(1) +

𝑝𝑢
󸀠

(1) = 𝑞𝑢
󸀠

(𝜉), it follows that

𝑐
0

= 𝐼
𝜌

0+
ℎ (1) + 𝑝𝐼

𝜌−1

0+
ℎ (1) − 𝑞𝐼

𝜌−1

0+
ℎ (𝜉) . (21)

Substituting 𝑐
0
into (20), we have

𝑢 (𝑡) = −𝐼
𝜌

ℎ (𝑡) + 𝐼
𝜌

0+
ℎ (1) + 𝑝𝐼

𝜌−1

0+
ℎ (1) − 𝑞𝐼

𝜌−1

0+
ℎ (𝜉)

= ∫

𝑡

0

(1 − 𝑠)
𝜌−1

− (𝑡 − 𝑠)
𝜌−1

Γ (𝜌)
ℎ (𝑠) 𝑑𝑠

+ ∫

1

𝑡

(1 − 𝑠)
𝜌−1

Γ (𝜌)
ℎ (𝑠) 𝑑𝑠

+ 𝑝 ∫

1

0

(1 − 𝑠)
𝜌−2

Γ (𝜌 − 1)
ℎ (𝑠) 𝑑𝑠 − 𝑞 ∫

𝜉

0

(𝜉 − 𝑠)
𝜌−2

Γ (𝜌 − 1)
ℎ (𝑠) 𝑑𝑠

= ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠,

(22)

where 𝐺(𝑡, 𝑠) is defined by (16). The proof is completed.

We now give some properties of the functions 𝐺
𝑖
(𝑡, 𝑠).

Lemma 9. If condition (A2) holds, then

𝐺
𝑖
(𝑠, 𝑠) ⩾ 𝐺

𝑖
(𝑡, 𝑠) ⩾ 𝜂 (𝑡) 𝐺

𝑖
(𝑠, 𝑠) ⩾ 0, (23)

for all 𝑠, 𝑡 in [0, 1] and 𝑖 = 1, 2, where 𝜂(𝑡) = 1 − 𝑡
𝜌−1.
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Proof. It follows from the definition of 𝐺
1
(𝑡, 𝑠) that, for 𝑡 ⩾ 𝑠,

𝐺
1

(𝑠, 𝑠) ⩾ 𝐺
1

(𝑡, 𝑠) =
(1 − 𝑠)

𝜌−1

− (𝑡 − 𝑠)
𝜌−1

Γ (𝜌)

⩾
(1 − 𝑠)

𝜌−1

− (𝑡 − 𝑡𝑠)
𝜌−1

Γ (𝜌)

= 𝜂 (𝑡) 𝐺
1

(𝑠, 𝑠) ⩾ 0.

(24)

On the other hand, for 𝑡 ⩽ 𝑠, the assertion for 𝐺
1
(𝑡, 𝑠) is

obvious.
As for the assertion for 𝐺

2
(𝑡, 𝑠), it is sufficient to verify

that 𝐺
2
(𝑠, 𝑠) ⩾ 0 for each 𝑠 in [0, 1]. In fact, the definition of

𝐺
2
(𝑡, 𝑠) and condition (A2) directly imply

𝐺
2

(𝑠, 𝑠) =
1

Γ (𝜌 − 1)
[𝑝 (1 − 𝑠)

𝜌−2

− 𝑞 (𝜉 − 𝑠)
𝜌−2

𝜒
𝐸𝜉

(𝑠)]

⩾
1

Γ (𝜌 − 1)
[𝑝 (1 − 𝑠)

𝜌−2

− 𝑞 (1 − 𝑠)
𝜌−2

]

=
𝑝 − 𝑞

Γ (𝜌 − 1)
(1 − 𝑠)

𝜌−2

⩾ 0.

(25)

The proof is completed.

The following results establish the connection between
the monotonicity and concavity of a function and its Caputo
fractional derivatives under some conditions.

Lemma 10. Let 𝑢 be a function defined on [0, 1]. Assume
𝑢
(𝑘)

(0) = 0 for 𝑘 = 1, 2, . . . , 𝑛 − 1. Suppose that 𝑐𝐷𝜌
0+

𝑢(𝑡) is
continuously differentiable on [0, 1]; if 𝑐𝐷𝜌

0+
𝑢(𝑡) ⩽ 0 on [0, 1],

then 𝑢
(𝑘)

(𝑡) ⩽ 0 on [0, 1] for 𝑘 = 1, 2, . . . , 𝑛 − 1.

Proof. Set ℎ(𝑡) =
𝑐

𝐷
𝜌

0+
𝑢(𝑡). Then, as in the proof of Lemma 8,

the assumptions made on 𝑐𝐷𝜌
0+

𝑢(𝑡) and 𝑢
𝑘

(0) yield

𝑢 (𝑡) = 𝐼
𝜌

0+
ℎ (𝑡) + 𝑐

0
. (26)

This implies

𝑢
(𝑘)

(𝑡) = 𝐼
𝜌−𝑘

0+
ℎ (𝑡) , (27)

for 𝑘 = 1, 2, . . . 𝑛 − 1. Thus the desired results follow from the
nonpositivty of ℎ(𝑡). The proof is completed.

Lemmas 8–10 yield the following important properties of
the solution of BVP (14), which is easy to check.

Lemma 11. Let ℎ ∈ 𝐶
1

([0, 1], [0, +∞)). If condition (A2)
holds, then the solution of BVP (14) is nonnegative, monotone,
and concave on [0, 1].

Lemma 12 (see [17]). If a function 𝑢 is nonnegative and
concave on [0, 1] and 𝑢

󸀠

(0) = 0, then

(i) 𝑢(𝑡) ⩾ (1 − 𝑡) ‖𝑢‖ for each 𝑡 in [0, 1], where ‖𝑢‖ =

sup{|𝑢 (𝑡)| : 𝑡 ∈ [0, 1]};
(ii) (1 − 𝑠)𝑢(𝑡) ⩾ (1 − 𝑡)𝑢(𝑠) for all 𝑡, 𝑠 in [0, 1] with 𝑡 ⩾ 𝑠.

Now, denote by E = 𝐶[0, 1] the classical Banach space
with the norm ‖𝑢‖ = sup

𝑡∈[0,1]
|𝑢 (𝑡)|, where 𝑢 ∈ E.

Furthermore, define a cone, denoted byP, through

P = {𝑢 ∈ E | 𝑢 (𝑡) ⩾ 0, 𝑢
󸀠

(𝑡) ⩽ 0, 𝑢
󸀠󸀠

(𝑡) ⩽ 0

for each 𝑡 in [0, 1]} .

(28)

Also, for a given positive real number 𝑟, define a function set
P
𝑟
by

P
𝑟

= {𝑢 ∈ P | ‖𝑢‖ < 𝑟} . (29)

Naturally, we denote that P
𝑟

= {𝑢 ∈ P | ‖𝑢‖ ⩽ 𝑟} and that
𝜕P
𝑟

= {𝑢 ∈ P | ‖𝑢‖ = 𝑟}.
Next, define the operatorA : P → E by

[A𝑢] (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, (30)

for any 𝑢 ∈ P. We now show some important properties on
this map.

Lemma 13. Assume that hypotheses (A1)-(A2) are all fulfilled.
ThenA(P) ⊂ P andA : P

𝑟
→ P is completely continuous.

Proof. It is easy to check thatA(P) ⊂ P. Moreover, analysis
similar to that in [6] shows thatA : P

𝑟
→ P is completely

continuous. The proof is completed.

Lemma 14. If (A1)-(A2) hold, then a function 𝑢 in 𝐶[0, 1] is a
solution of BVP (2) if and only if it is a fixed point ofA inP.

Proof. If 𝑢 is a solution of BVP (2), then Lemma 11 implies
𝑢 ∈ P. Furthermore, replacing ℎ(𝑡) in Lemma 8 by 𝑓(𝑡, 𝑢(𝑡)),
we getA𝑢 = 𝑢. Hence 𝑢 is a fixed point ofA inP.

On the other hand, if 𝑢 ∈ P andA𝑢 = 𝑢, then

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

= −𝐼
𝜌

0+
𝑓 (𝑡, 𝑢 (𝑡)) + 𝐼

𝜌

0+
𝑓 (1, 𝑢 (1))

+ 𝑝𝐼
𝜌−1

0+
𝑓 (1, 𝑢 (1)) − 𝑞𝐼

𝜌−1

0+
𝑓 (𝜉, 𝑢 (𝜉)) .

(31)

The above equation and Lemma 7 imply

𝐷
𝜌

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0. (32)

Moreover, it is easy to check that all the boundary conditions
in BVP (2) are satisfied. Therefore 𝑢 is a positive solution of
BVP (2). We consequently complete the proof.

3. Two Positive Solutions in Boundary
Value Problems

In this section, we aim to adopt the well-known Avery-
Henderson fixed point theorem to prove the existence of at
least two positive solutions in BVP (2). For the sake of self-
containment, we first state the Avery-Henderson fixed point
theorem as follows.
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Theorem 15 (see [18]). LetP be a cone in a real Banach space
E. For each 𝑑 > 0, set P(𝜓, 𝑑) = {𝑥 ∈ P | 𝜓(𝑥) < 𝑑}. Let 𝛼

and 𝛾 be increasing, nonnegative continuous functional onP,
and let 𝜃 be a nonnegative continuous functional on P with
𝜃(0) = 0 such that, for some 𝑐 > 0 and 𝐻 > 0,

𝛾 (𝑥) ⩽ 𝜃 (𝑥) ⩽ 𝛼 (𝑥) , ‖𝑥‖ ⩽ 𝐻𝛾 (𝑥) , (33)

for all 𝑥 ∈ P(𝛾, 𝑐). Suppose that there exist a completely
continuous operator A : P(𝛾, 𝑐) → P and three positive
numbers 0 < 𝑎 < 𝑏 < 𝑐 such that

𝜃 (𝜆𝑥) ⩽ 𝜆𝜃 (𝑥) , 0 ⩽ 𝜆 ⩽ 1, 𝑥 ∈ 𝜕P (𝜃, 𝑏) , (34)

and (i) 𝛾(A𝑥) > 𝑐 for all 𝑥 ∈ 𝜕P(𝛾, 𝑐); (ii) 𝜃(A𝑥) < 𝑏 for all
𝑥 ∈ 𝜕P(𝜃, 𝑏); (iii) P(𝛼, 𝑎) ̸= 0 and 𝛼(A𝑥) > 𝑎 for all 𝑥 ∈

𝜕P(𝛼, 𝑎). Then, the operator A has at least two fixed points,
denoted by 𝑥

1
and 𝑥

2
, belonging toP(𝛾, 𝑐) and satisfying 𝑎 <

𝛼(𝑥
1
) with 𝜃(𝑥

1
) < 𝑏 and 𝑏 < 𝜃(𝑥

2
) with 𝛾(𝑥

2
) < 𝑐.

Now, select 𝑡
⋆
and 𝑡
⋆ such that 0 < 𝑡

⋆
< 1/2 < 𝑡

⋆

< 1. Let

𝑀 =

(1 − 𝑡
⋆

) (1 − (1 − 𝑡
⋆

)
𝜌

)

Γ (𝜌 + 1)
,

𝑁 =
𝑝𝜌 + 1

Γ (𝜌 + 1)
,

𝐿 =
(1 − 𝑡
⋆
)
𝜌+1

Γ (𝜌 + 1)
,

𝐿
0

=
1 + 𝑝𝜌 − 𝑡

𝜌

⋆

Γ (𝜌 + 1)
.

(35)

We are now in a position to obtain the following result.

Theorem 16. Assume that hypotheses (A1)-(A2) all hold and
that there exist positive real numbers 𝑎, 𝑏, and 𝑐 such that

0 < 𝑎 < 𝑏 < 𝑐, 𝑎 <
𝐿

𝑁
𝑏 <

𝐿 (1 − 𝑡
⋆

)

𝑁
𝑐. (36)

Furthermore, assume that 𝑓 satisfies the following conditions:

(C1) 𝑓(𝑡, 𝑢) > 𝑐/𝑀 for (𝑡, 𝑢) in [0, 𝑡
⋆

] × [𝑐, (1/(1 − 𝑡
⋆

))𝑐];
(C2) 𝑓(𝑡, 𝑢) < 𝑏/𝑁 for (𝑡, 𝑢) in [0, 1] × [0, (1/(1 − 𝑡

⋆

))𝑏];
(C3) 𝑓(𝑡, 𝑢) > 𝑎/𝐿 for (𝑡, 𝑢) in [𝑡

⋆
, 1] × [0, 𝑎].

Then BVP (2) has at least two positive solutions 𝑢
1
and 𝑢

2
such

that

𝑎 < max
𝑡∈[𝑡⋆ ,1]

𝑢
1

(𝑡) with max
𝑡∈[𝑡
⋆
,1]

𝑢
1

(𝑡) < 𝑏,

𝑏 < max
𝑡∈[𝑡
⋆
,1]

𝑢
1

(𝑡) with min
𝑡∈[𝑡⋆ ,𝑡

⋆
]

𝑢
2

(𝑡) < 𝑐.

(37)

Proof. Let the coneP and the operatorA be defined by (28)
and (30), respectively. Furthermore, define the increasing,

nonnegative, and continuous functionals 𝛾, 𝜃, and 𝛼 on P,
respectively, by

𝛾 (𝑢) = min
𝑡∈[𝑡⋆ ,𝑡

⋆
]

𝑢 (𝑡) = 𝑢 (𝑡
⋆

) ,

𝜃 (𝑢) = max
𝑡∈[𝑡
⋆
,1]

𝑢 (𝑡) = 𝑢 (𝑡
⋆

) ,

𝛼 (𝑢) = max
𝑡∈[𝑡⋆ ,1]

𝑢 (𝑡) = 𝑢 (𝑡
⋆
) .

(38)

Evidently, 𝛾(𝑢) = 𝜃(𝑢) ⩽ 𝛼(𝑢) for each 𝑢 inP.
Moreover, for each 𝑢 inP, Lemma 12 implies that 𝑢(𝑡

⋆

) ⩾

(1 − 𝑡
⋆

) ‖𝑢‖. Observing 𝛾(𝑢) = 𝑢(𝑡
⋆

), we have

‖𝑢‖ ⩽
1

1 − 𝑡⋆
𝛾 (𝑢) , (39)

for each 𝑢 in P. Also, notice that 𝜃(𝜆𝑢) = 𝜆𝜃(𝑢) for
each 𝜆 in [0, 1] and 𝑢 in 𝜕P(𝜃, 𝑏). In addition, Lemma 13
guarantees that the operatorA : P(𝛾, 𝑐) → P is completely
continuous.

Next, we are to verify that all the conditions ofTheorem 15
are satisfied with respect to the operatorA.

Let 𝑢 ∈ 𝜕P(𝛾, 𝑐). Then 𝛾(𝑢) = min
𝑡∈[𝑡⋆ ,𝑡

⋆
]
𝑢(𝑡) = 𝑢(𝑡

⋆

) =

𝑐. This implies that 𝑢(𝑡) ⩾ 𝑐 for each 𝑡 in [0, 𝑡
⋆

], which,
combined with (39), yields that

𝑐 ⩽ 𝑢 (𝑡) ⩽
1

1 − 𝑡⋆
𝑐, (40)

for each 𝑡 in [0, 𝑡
⋆

]. This inequality and assumption (C1)
imply

𝑓 (𝑡, 𝑢 (𝑡)) >
𝑐

𝑀
, (41)

for each 𝑡 in [0, 𝑡
⋆

]. Now, from the definition of the operator
A and Lemmas 8 and 12, we obtain that

𝛾 (A𝑢) = [A𝑢] (𝑡
⋆

) ⩾ (1 − 𝑡
⋆

) ‖A𝑢‖ = (1 − 𝑡
⋆

) [A𝑢] (0)

= (1 − 𝑡
⋆

) ∫

1

0

𝐺 (0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

> (1 − 𝑡
⋆

) ⋅
𝑐

𝑀
⋅ ∫

𝑡
⋆

0

𝐺
1

(0, 𝑠) 𝑑𝑠

> (1 − 𝑡
⋆

) ⋅
𝑐

𝑀
⋅

1 − (1 − 𝑡
⋆

)
𝜌

Γ (𝜌 + 1)
= 𝑐.

(42)

Thus condition (i) in Theorem 15 is satisfied.
We now claim that condition (ii) in Theorem 15 is

satisfied. To this end, let 𝑢 ∈ 𝜕P(𝜃, 𝑏). Then, 𝛾(𝑢) = 𝜃(𝑢) =

max
𝑡∈[𝑡
⋆
,1]

𝑢(𝑡) = 𝑢(𝑡
⋆

) = 𝑏, from which we have 0 ⩽ 𝑢(𝑡) ⩽ 𝑏

for each 𝑡 in [𝑡
⋆

, 1]. Analogously, it follows from inequality
(39) that, for each 𝑢 inP,

‖𝑢‖ ⩽
1

1 − 𝑡⋆
𝛾 (𝑢) =

1

1 − 𝑡⋆
𝑏, (43)
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which implies 0 ⩽ 𝑢(𝑡) ⩽ (1/ (1 − 𝑡
⋆

))𝑏 for each 𝑡 in [0, 1].
This, combined with assumption (C2), yields 𝑓(𝑡, 𝑢(𝑡)) <

𝑏/𝑁 for each 𝑡 in [0, 1]. Thus we have

𝜃 (A𝑢) = max
𝑡∈[𝑡
⋆
,1]

[A𝑢] (𝑡) = [A𝑢] (𝑡
⋆

) ⩽ [A𝑢] (0)

= ∫

1

0

𝐺 (0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

= ∫

1

0

𝐺
1

(0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

1

0

𝐺
2

(0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

<
𝑏

𝑁
[∫

1

0

1

Γ (𝜌)
(1 − 𝑠)

𝜌−1

𝑑𝑠

+ ∫

1

0

1

Γ (𝜌 − 1)
𝑝 (1 − 𝑠)

𝜌−2

𝑑𝑠]

=
𝑏

𝑁
⋅

1 + 𝑝𝜌

Γ (𝜌 + 1)
= 𝑏,

(44)

which consequently implies the validity of condition (ii) in
Theorem 15.

Finally, notice that the constant function (1/2)𝑎 ∈

P(𝛼, 𝑎) so that P(𝛼, 𝑎) ̸= 0. Letting 𝑢 ∈ 𝜕P(𝛼, 𝑎), we get
𝛼(𝑢) = max

𝑡∈[𝑡⋆ ,1]
𝑢(𝑡) = 𝑢(𝑡

⋆
) = 𝑎. This with assumption

(C3) implies that 0 ⩽ 𝑢(𝑡) ⩽ 𝑎 and 𝑓(𝑡, 𝑢) > 𝑎/𝐿 for each 𝑡 in
[𝑡
⋆
, 1]. Similarly, we have

𝛼 (A𝑢) = [A𝑢] (𝑡
⋆
) ⩾ (1 − 𝑡

⋆
) [A𝑢] (0)

= (1 − 𝑡
⋆
) ∫

1

0

𝐺 (0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

> (1 − 𝑡
⋆
)

𝑎

𝐿
⋅ ∫

1

𝑡⋆

𝐺
1

(0, 𝑠) 𝑑𝑠

> (1 − 𝑡
⋆
)

𝑎

𝐿
⋅

(1 − 𝑡
⋆
)
𝜌

Γ (𝜌 + 1)
= 𝑎.

(45)

Thus condition (iii) in Theorem 15 is satisfied.
Consequently, an application of Theorem 15 implies that

BVP (2) has at least two positive solutions, denoted by 𝑢
1
and

𝑢
2
, satisfying 𝑎 < 𝛼(𝑢

1
) with 𝜃(𝑢

1
) < 𝑏 and 𝑏 < 𝜃(𝑢

2
) with

𝛾(𝑢
2
) < 𝑐, respectively.

4. Three Positive Solutions in Boundary
Value Problems

In this section, we are to prove the existence of at least three
positive solutions in BVP (2) by using the five-functional
fixed point theorem which is attributed to Avery [19].

Let 𝛾, 𝛽, 𝜃 be nonnegative continuous convex func-
tionals on P. 𝛼 and 𝜓 are supposed to be nonnegative
continuous concave functionals onP. Thus, for nonnegative

real numbers ℎ, 𝑎, 𝑏, 𝑐, and 𝑑, define five convex sets,
respectively, by

P (𝛾, 𝑐) = {𝑥 ∈ P | 𝛾 (𝑥) < 𝑐} ,

P (𝛾, 𝛼, 𝑎, 𝑐) = {𝑥 ∈ P | 𝑎 ⩽ 𝛼 (𝑥) , 𝛾 (𝑥) ⩽ 𝑐} ,

Q (𝛾, 𝛽, 𝑑, 𝑐) = {𝑥 ∈ P | 𝛽 (𝑥) ⩽ 𝑑, 𝛾 (𝑥) ⩽ 𝑐} ,

P (𝛾, 𝜃, 𝛼, 𝑎, 𝑏, 𝑐)={𝑥 ∈ P | 𝑎⩽ 𝛼 (𝑥) , 𝜃 (𝑥) ⩽ 𝑏, 𝛾 (𝑥) ⩽ 𝑐} ,

Q (𝛾, 𝛽, 𝜓, ℎ, 𝑑, 𝑐)={𝑥 ∈ P | ℎ⩽ 𝜓 (𝑥) , 𝛽 (𝑥) ⩽ 𝑑, 𝛾 (𝑥) ⩽ 𝑐} .

(46)

Theorem 17 (see [19]). Let P be a cone in a real Banach
space E. Suppose that 𝛼 and 𝜓 are nonnegative continuous
concave functionals onP and that 𝛾, 𝛽, and 𝜃 are nonnegative
continuous convex functionals onP such that, for some positive
numbers 𝑐 and 𝑀,

𝛼 (𝑥) ⩽ 𝛽 (𝑥) , ‖𝑥‖ ⩽ 𝑀𝛾 (𝑥) , (47)

for all 𝑥 ∈ P(𝛾, 𝑐). In addition, suppose that A : P(𝛾, 𝑐) 󳨃→

P(𝛾, 𝑐) is a completely continuous operator and that there exist
nonnegative real numbers ℎ, 𝑑, 𝑎, 𝑏 with 0 < 𝑑 < 𝑎 such that

(i) {𝑥 ∈ P(𝛾, 𝜃, 𝛼, 𝑎, 𝑏, 𝑐) | 𝛼(𝑥) > 𝑎} ̸= 0 and 𝛼(A𝑥) > 𝑎

for 𝑥 ∈ P(𝛾, 𝜃, 𝛼, 𝑎, 𝑏, 𝑐);
(ii) {𝑥 ∈ Q(𝛾, 𝛽, 𝜓, ℎ, 𝑑, 𝑐) | 𝛽(𝑥) < 𝑑} ̸= 0 and𝛽(A𝑥) < 𝑑

for 𝑥 ∈ Q(𝛾, 𝛽, 𝜓, ℎ, 𝑑, 𝑐);
(iii) 𝛼(A𝑥) > 𝑎 for 𝑥 ∈ P(𝛾, 𝛼, 𝑎, 𝑐) with 𝜃(A𝑥) > 𝑏;
(iv) 𝛽(A𝑥) < 𝑑 for 𝑥 ∈ Q(𝛾, 𝛽, 𝑑, 𝑐) with 𝜓(A𝑥) < ℎ.

Then the operator A admits at least three fixed points 𝑥
1
, 𝑥
2
,

and 𝑥
3

∈ P(𝛾, 𝑐) satisfying 𝛽(𝑥
1
) < 𝑑, 𝑎 < 𝛼(𝑥

2
), and 𝑑 <

𝛽(𝑥
3
) with 𝛼(𝑥

3
) < 𝑎, respectively.

With this theorem, we are now in a position to establish
the following result on the existence of at least three positive
solutions in BVP (2).

Theorem 18. Suppose that hypotheses (A1)-(A2) are all ful-
filled. Assume that there exist positive real numbers 𝑎, 𝑏, and
𝑐 such that

0 < 𝑎 < 𝑏 < 𝑐, 𝑎 < (1 − 𝑡
⋆
) 𝑏 < (1 − 𝑡

⋆
) (1 − 𝑡

⋆

) 𝑐,

𝑁𝑏 < 𝑀𝑐.

(48)

Furthermore, assume that 𝑓 satisfies the following conditions:
(H1) 𝑓(𝑡, 𝑢) < 𝑐/𝑁 for (𝑡, 𝑢) in [0, 1] × [0, (1/ (1 − 𝑡

⋆

))𝑐];

(H2) 𝑓(𝑡, 𝑢) > 𝑏/𝑀 for (𝑡, 𝑢) in [0, 𝑡
⋆

] × [𝑏, (1/ (1 − 𝑡
⋆

)
2

)𝑏];
(H3) 𝑓(𝑡, 𝑢) < 𝑎/𝐿

0
for (𝑡, 𝑢) in [0, 1] × [0, (1/ (1 − 𝑡

⋆
))𝑎].

Then BVP (2) admits at least three positive solutions 𝑢
1
(𝑡),

𝑢
2
(𝑡), and 𝑢

3
(𝑡), defined on [0, 1], satisfying, respectively,

max
𝑡∈[𝑡⋆ ,1]

𝑢
1

(𝑡) < 𝑎, 𝑏 < min
𝑡∈[0,𝑡⋆]

𝑢
2

(𝑡) ,

𝑎 < max
𝑡∈[𝑡⋆ ,1]

𝑢
3

(𝑡) 𝑤𝑖𝑡ℎ min
𝑡∈[0,𝑡⋆]

𝑢
3

(𝑡) < 𝑏.

(49)
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Proof. Let the coneP and the operatorA be defined by (28)
and (30), respectively. Define, respectively, the nonnegative
continuous concave functionals on theP as follows:

𝛾 (𝑢) = 𝜃 (𝑢) = max
𝑡∈[𝑡
⋆
,1]

𝑢 (𝑡) = 𝑢 (𝑡
⋆

) ,

𝛼 (𝑢) = min
𝑡∈[0,𝑡⋆]

𝑢 (𝑡) = 𝑢 (𝑡
⋆
) ,

𝛽 (𝑢) = max
𝑡∈[𝑡⋆ ,1]

𝑢 (𝑡) = 𝑢 (𝑡
⋆
) ,

𝜓 (𝑢) = min
𝑡∈[0,𝑡

⋆
]

𝑢 (𝑡) = 𝑢 (𝑡
⋆

) .

(50)

It is obvious that 𝛼(𝑢) = 𝛽(𝑢) for 𝑢 in P. Moreover, from
Lemma 12, it follows that

‖𝑢‖ ⩽
1

1 − 𝑡⋆
𝛾 (𝑢) , (51)

for each 𝑢 inP.
Next, we intend to verify that all the conditions in

Theorem 17 hold with respect to the operator A. We first
claim that the operatorA : P(𝛾, 𝑐) 󳨃→ P(𝛾, 𝑐) is completely
continuous. By Lemma 13, we only need to show that A𝑢 ⊂

P(𝛾, 𝑐) for each 𝑢 in P(𝛾, 𝑐). To this end, let 𝑢 ∈ P(𝛾, 𝑐).
Then, 𝛾(𝑢) = max

𝑡∈[𝑡
⋆
,1]

𝑢(𝑡) = 𝑢(𝑡
⋆

) ⩽ 𝑐, which, combined
with (51), implies that 0 ⩽ 𝑢(𝑡) ⩽ (1/ (1 − 𝑡

⋆

))𝑐 for 𝑡 in [0, 1]

and 𝑢 in P. Thus, it follows from assumption (H1) that, for
𝑡 ∈ [0, 1], 𝑓(𝑡, 𝑢(𝑡)) < 𝑐/𝑁, fromwhichwe have the following
estimations:

󵄩󵄩󵄩󵄩𝛾 (A𝑢)
󵄩󵄩󵄩󵄩 = [A𝑢] (𝑡

⋆

) ⩽ [A𝑢] (0)

= ∫

1

0

𝐺 (0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

= ∫

1

0

𝐺
1

(0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

1

0

𝐺
2

(0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

<
𝑐

𝑁
[∫

1

0

1

Γ (𝜌)
(1 − 𝑠)

𝜌−1

𝑑𝑠

+ ∫

1

0

1

Γ (𝜌 − 1)
𝑝 (1 − 𝑠)

𝜌−2

𝑑𝑠]

=
𝑐

𝑁
⋅

1 + 𝑝𝜌

Γ (𝜌 + 1)
= 𝑐.

(52)

Hence we obtain the desired result. Now, it remains to verify
that conditions (i)–(iv) in Theorem 17 are satisfied.

Since the constant function 𝑢 (𝑡) ≡ ((2 − 𝑡
⋆

) /2 (1 − 𝑡
⋆

))𝑏

belongs to the set

{𝑢 ∈ P(𝛾, 𝜃, 𝛼, 𝑏,
1

1 − 𝑡⋆
𝑏, 𝑐) | 𝛼 (𝑢) > 𝑏} , (53)

the set

{𝑢 ∈ P(𝛾, 𝜃, 𝛼, 𝑏,
1

1 − 𝑡⋆
𝑏, 𝑐) | 𝛼 (𝑢) > 𝑏} (54)

is not empty. Analogously, since

𝑢 (𝑡)

≡
1 + 𝑡
⋆

2
𝑎 ∈ {𝑢 ∈ Q (𝛾, 𝛽, 𝜓, (1 − 𝑡

⋆

) 𝑎, 𝑎, 𝑐) | 𝛽 (𝑢) < 𝑎} ,

(55)

the set

{𝑢 ∈ Q (𝛾, 𝛽, 𝜓, (1 − 𝑡
⋆

) 𝑎, 𝑎, 𝑐) | 𝛽 (𝑢) < 𝑎} , (56)

is nonempty
In addition, for 𝑢 in P(𝛾, 𝜃, 𝛼, 𝑏, (1/ (1 − 𝑡

⋆

))𝑏, 𝑐),
inequality (51) implies

𝑏 ⩽ min
𝑡∈[0,𝑡

⋆
]

𝑢 (𝑡) = 𝑢 (𝑡
⋆

) ⩽ 𝑢 (𝑡) ⩽
1

1 − 𝑡⋆
𝛾 (𝑢)

=
1

(1 − 𝑡⋆)
𝜃 (𝑢) ⩽

1

(1 − 𝑡⋆)
2
𝑏,

(57)

for each 𝑡 in [0, 𝑡
⋆

]. From assumption (H2), we thus obtain

𝑓 (𝑡, 𝑢 (𝑡)) >
𝑏

𝑀
for 𝑡 ∈ [0, 𝑡

⋆

] . (58)

Hence, it follows from (58) and Lemma 12 that
𝛼 (A𝑢) = [A𝑢] (𝑡

⋆
) ⩾ (1 − 𝑡

⋆
) [A] 𝑢 (0)

= (1 − 𝑡
⋆
) ∫

1

0

𝐺 (0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

>
𝑏

𝑀
⋅ (1 − 𝑡

⋆
) ∫

𝑡
⋆

0

𝐺
1

(0, 𝑠) 𝑑𝑠 = 𝑏.

(59)

Therefore condition (i) in Theorem 17 is satisfied.
We next claim that condition (ii) in Theorem 17 is

satisfied. To see this, letting 𝑢 ∈ Q(𝛾, 𝛽, 𝜓, (1−𝑡
⋆

)𝑎, 𝑎, 𝑐), then
we get

0 ⩽ 𝑢 (𝑡) ⩽
1

1 − 𝑡
⋆

𝑎, (60)

for each 𝑡 in [0, 1]. Thus assumption (H3) yields 𝑓(𝑡, 𝑢(𝑡)) <

𝑎/𝐿
0
. Furthermore, we have

𝛽 (A𝑢) = ∫

1

0

𝐺 (𝑡
⋆
, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

<
𝑎

𝐿
0

[∫

1

0

𝐺
1

(𝑠, 𝑠) 𝑑𝑠 − ∫

𝑡⋆

0

(𝑡
⋆

− 𝑠)
𝜌−1

Γ (𝜌)
𝑑𝑠

+ ∫

1

0

𝐺
2

(𝑡
⋆
, 𝑠) 𝑑𝑠]

<
𝑎

𝐿
0

[∫

1

0

(1 − 𝑠)
𝜌−1

Γ (𝜌)
𝑑𝑠 − ∫

𝑡⋆

0

(𝑡
⋆

− 𝑠)
𝜌−1

Γ (𝜌)
𝑑𝑠

+ ∫

1

0

𝑝 (𝑡
⋆

− 𝑠)
𝜌−2

Γ (𝜌 − 1)
𝑑𝑠]

=
𝑎

𝐿
0

⋅
1 + 𝑝𝜌 − 𝑡

𝜌

⋆

Γ (𝜌 + 1)
= 𝑎.

(61)
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Accordingly, the validity of condition (ii) in Theorem 17 is
verified.

Aside from conditions (i) and (ii), we are finally to verify
the validity of conditions (iii) and (iv). For this purpose,
on the one hand, consider 𝑢 ∈ P(𝛾, 𝛼, 𝑏, 𝑐) with 𝜃(A𝑢) >

(1/ (1 − 𝑡
⋆

))𝑏. Thus we have

𝛼 (A𝑢) = [A𝑢] (𝑡
⋆
) ⩾ [A𝑢] (𝑡

⋆

) = 𝜃 (A𝑢) >
1

1 − 𝑡⋆
𝑏 > 𝑏.

(62)

On the other hand, consider 𝑢 ∈ Q(𝛾, 𝛽, 𝑎, 𝑐) with 𝜓(A𝑢) <

(1 − 𝑡
⋆

)𝑎. In such a case, we obtain

𝛽 (A𝑢) = [A𝑢] (𝑡
⋆
) ⩽

1 − 𝑡
⋆

1 − 𝑡⋆
[A𝑢] (𝑡

⋆

)

=
1 − 𝑡
⋆

1 − 𝑡⋆
𝜓 (A𝑢) < (1 − 𝑡

⋆
) 𝑎 < 𝑎.

(63)

Therefore both conditions (iii) and (iv) in Theorem 17 are
satisfied. Consequently, by virtue ofTheorem 17, BVP (2) has
at least three positive solutions defined on [0, 1] satisfying
max
𝑡∈[𝑡⋆ ,1]

𝑢
1
(𝑡) < 𝑎, 𝑏 < min

𝑡∈[0,𝑡⋆]
𝑢
2
(𝑡), and 𝑎 <

max
𝑡∈[𝑡⋆ ,1]

𝑢
3
(𝑡) with min

𝑡∈[0,𝑡⋆]
𝑢
3
(𝑡) < 𝑏.

5. An Illustrative Example

Consider BVP

𝐷
5/2

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢
󸀠

(0) = 𝑢
󸀠󸀠

(0) = 0, 𝑢 (1) + 𝑢
󸀠

(1) =
1

2
𝑢
󸀠

(
1

8
) ,

(64)

where

𝑓 (𝑡, 𝑢) =
Γ (𝜌 + 1)

𝜌 + 1
⋅

𝑐𝑢
2

2𝑐 + 𝑡 + 𝑢 + 𝑢2
, (65)

for (𝑡, 𝑢) in [0, 1] × [0, +∞). Here, 𝜌 = 5/2, and 𝑐 = 5 × 10
6

⋅

(𝜌 + 1)/Γ(𝜌 + 1).
We claim that the above BVP has at least three positive

solutions. To see this, letting 𝑡
⋆

= 1/4, 𝑡⋆ = 3/4, we have

𝑀 =
1

224
⋅

𝜌 + 1

Γ (𝜌 + 1)
, 𝑁=

𝜌 + 1

Γ (𝜌 + 1)
=

28

15√𝜋
≈ 0.5942,

𝐿
0

=
111

121
⋅

𝜌 + 1

Γ (𝜌 + 1)
.

(66)

Selecting 𝑎 = 1/10, 𝑏 = 10
3, and 𝑐 = 5 × 10

6

𝑁, then it is easy
to check that these parameters satisfy

0 < 𝑎 < (1 − 𝑡
⋆
) 𝑏 < (1 − 𝑡

⋆
) (1 − 𝑡

⋆

) 𝑐, 𝑁𝑏 < 𝑀𝑐.

(67)

Now, we can verify that conditions (H1)–(H3) inTheorem 17
are satisfied. Indeed, direct computations produce the follow-
ing estimations:

𝑓 (𝑡, 𝑢) <
Γ (𝜌 + 1)

𝜌 + 1
⋅ 𝑐 =

𝑐

𝑁
,

for (𝑡, 𝑢) in [0, 1] × [0, 4𝑐] ,

𝑓 (𝑡, 𝑢) ⩾
Γ (𝜌 + 1)

𝜌 + 1
⋅

𝑐𝑏
2

2𝑐 + 𝑡⋆ + 𝑏 + 𝑏2
>

𝑏

𝑀
,

for (𝑡, 𝑢) in [0, 𝑡
⋆

] × [𝑏, 16𝑏] ,

𝑓 (𝑡, 𝑢) ⩽
Γ (𝜌 + 1)

𝜌 + 1
⋅

1

2
⋅ (

4𝑎

3
)

2

<
𝑎

𝐿
0

,

for (𝑡, 𝑢) in [0, 1] × [0,
4

3
𝑎] .

(68)

Thus conditions (H1)–(H3) inTheorem 17 are satisfied for the
above specified functions and parameters. Therefore, in light
of Theorem 17, the assertion made above is verified.
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