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Anew stationary 𝑞th-order integer-valuedmoving average processwith Poisson innovation is introduced based ondecision random
vector. Some statistical properties of the process are established. Estimators of the parameters of the process are obtained using the
method of moments. Some numerical results of the estimators are presented to assess the performance of moment estimators.

1. Introduction

In natural and social sciences, time series of correlated
counting are met very often. In particular, in economics
and medicine many interesting variables are nonnegative
count data, for example, the number of shareholders in large
Finnish and Swedish stocks, big numbers even for frequently
traded stocks, the number of arrivals per week to the emer-
gency service of the hospital, and monthly polio incidence
counts in Germany. Most of the research on count processes
assumes that the count data are independent and identically
distributed. However, in practice, observations may be auto-
correlated, and this may adversely affect the performance
of traditional model developed under the assumption of
independence. In recent years, count data time series models
have been devised to avoid making restrictive assumptions
on the distribution of the error term. Regression models for
time series count data have been proposed [1, 2]. On the other
hand, there have been attempts to develop suitable classes of
models that resemble the structure and properties of the usual
linear ARMA models. For instances, Al-Osh and Alzaid [3]
proposed an integer-valued moving average model (INMA)
for discrete data. An integer-valuedGARCHmodel was given
to study overdispersed counts [4]. Silva et al. [5] considered
the problem of forecasting in INAR(1) model. Random
coefficient INAR models were introduced by Zheng et al. [6,
7]. The signed thinning operator was developed by Kachour

and Truquet [8]. A new stationary first-order integer-valued
autoregressive process with geometric marginal distribution
based on the generalized binomial thinning was introduced
by Ristić et al. [9]. In this analysis of counts, the class of
integer-valued moving average models plays an important
role.

The nonnegative integer-valued moving average process
of the order 𝑞 (INMAR(𝑞)) was introduced by Al-Osh and
Alzaid [3]. The INMA(𝑞) process is defined by the recursion,

𝑋
𝑡
= 𝜃
1
∘
𝑡
𝜀
𝑡−1

+ ⋅ ⋅ ⋅ + 𝜃
𝑞
∘
𝑡
𝜀
𝑡−𝑞

+ 𝜀
𝑡
, (1)

where 𝜃
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𝑡−𝑘

𝑖=1
V
𝑖
and the {V

𝑖
} designated by counting

series is a sequence of i.i.d. Bernoulli random variables
with 𝐸(V

𝑖
) = 𝜃, independent of 𝜀

𝑡−𝑘
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𝜃
1
, . . . , 𝜃

𝑞
∈ (0, 1). The thinning operation “∘

𝑡
” indicates the

corresponding thinning is associated with time. The terms
𝜃
𝑖
∘
𝑡
𝜀
𝑡
and 𝜃

𝑗
∘
𝑡
𝜀
𝑡
are independent. The choice of appropri-

ate marginal distributions is still problematic for getting a
particular distribution of 𝑋

𝑡
. To overcome these difficulties,

Weiß [10] introduced combined INAR(𝑝) models by using
“decision” random variables. Ristić et al. [11] considered
piecewise functions for count data model. Therefore, we
adopt the similar approach to deal with the problem in
INMA(𝑞) models. In this paper, we propose a combined
INMA(𝑞) model by allowing the parameters value to vary
with “decision” random vector.
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The paper is organized as follows. In Section 2, we
specify the model and derive some statistical properties.
Section 3 concerns unknown parameter estimation by Yule-
Walker method. In Section 4, we conduct some Monte Carlo
simulations. Finally, Section 5 concludes.

2. Definition and Basic Properties of
the PCINMA(𝑞) Process

Definition 1 (PCINMA(𝑞) model). A stochastic process {𝑋
𝑡
}

is said to be the Poisson combined INMA(𝑞) process if it
satisfies the following recursive equations:

𝑋
𝑡
= 𝐷
𝑡,1

(𝜃∘
𝑡
𝜀
𝑡−1

) + ⋅ ⋅ ⋅ + 𝐷
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𝑡
𝜀
𝑡−𝑞

) + 𝜀
𝑡
, (2)

where {𝜀
𝑡
; 𝑡 ∈ Z} is a sequence of independent and identically

distributed Poisson random variables with parameter 𝜆 and
𝜃 ∈ (0, 1). {D

𝑡
; 𝑡 ∈ Z} is an i.i.d. process of “decision”

random vector D
𝑡

= (𝐷
𝑡,1

, . . . , 𝐷
𝑡,𝑞

) ∼ Mult(1; 𝜙
1
, . . . , 𝜙
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independent of {𝜀
𝑡
; 𝑡 ∈ Z}. Moreover, the counting series
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, 𝑘 = 1, . . . , 𝑞, are independent of {D
𝑡
} and 𝜀

𝑡
at time 𝑡.

To our knowledge, few efforts have been devoted to studying
combined INMA models. In this paper, we aim to fill this
gap. Definition 1 shows that 𝑋

𝑡
is equal to 𝜃∘

𝑡
𝜀
𝑡−1

+ 𝜀
𝑡
with
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, . . .,
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).

The moments will be useful in obtaining the appropriate
estimating equations for parameter estimation.

Theorem 2. The numerical characteristics of {𝑋
𝑡
} are as

follows:
(i)

𝜇
𝑋

:= 𝐸 (𝑋
𝑡
) = 𝜆 (𝜃 + 1) , (3)
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(ii) Moreover,
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) 𝐸 (𝜃∘

𝑡
𝜀
𝑡−𝑗

)

+ cov (𝐷
𝑡,𝑖
, 𝐷
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2
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𝜆
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.
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Therefore,

Var (𝑋
𝑡
) = Var(

𝑞
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𝐷
𝑡,𝑗

(𝜃∘
𝑡
𝜀
𝑡−𝑗

+ 𝜀
𝑡
))

=

𝑞

∑

𝑗=1

(𝜙
𝑗
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𝑗
) (𝜃 + 1)

2
𝜆
2

+𝜙
𝑗
[𝜃 (1 − 𝜃) 𝜆 + (𝜃

2
+ 1) 𝜆

2
])

− 2∑

𝑖<𝑗

𝜙
𝑖
𝜙
𝑗
(𝜃 + 1)

2
𝜆
2

= (𝜃 + 1)
2
𝜆
2
(1 −

𝑞
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𝑗=1

𝜙
2

𝑗
)

+ [𝜃 (1 − 𝜃) 𝜆 + (𝜃
2
+ 1) 𝜆

2
]

− 2 (𝜃 + 1)
2
𝜆
2
∑

𝑖<𝑗

𝜙
𝑖
𝜙
𝑗

= 𝜃 (1 − 𝜃) 𝜆 + (𝜃
2
+ 1) 𝜆

2
.

(10)

(iii) For 1 ≤ 𝑘 ≤ 𝑞 − 1, the autocovariance function of 𝑋
𝑡

is

cov (𝑋
𝑡
, 𝑋
𝑡−𝑘

)

= cov(

𝑞

∑

𝑖=1

𝐷
𝑡,𝑖

(𝜃∘
𝑡
𝜀
𝑡−𝑖

+ 𝜀
𝑡
) ,

𝑞

∑

𝑗=1

𝐷
𝑡−𝑘,𝑗

(𝜃∘
𝑡−𝑘

𝜀
𝑡−𝑘−𝑗

+ 𝜀
𝑡−𝑘

))

= cov(𝐷
𝑡,𝑘

(𝜃∘
𝑡
𝜀
𝑡−𝑘

+ 𝜀
𝑡
) ,

𝑞

∑

𝑗=1

𝐷
𝑡−𝑘,𝑗

(𝜃∘
𝑡−𝑘

𝜀
𝑡−𝑘−𝑗

+ 𝜀
𝑡−𝑘

))

+

𝑞

∑

𝑗=𝑘+1

cov (𝐷
𝑡,𝑗

(𝜃∘
𝑡−𝑗

𝜀
𝑡−𝑗

+ 𝜀
𝑡
) ,

𝐷
𝑡−𝑘,𝑗−𝑘

(𝜃∘
𝑡−𝑘

𝜀
𝑡−𝑘−(𝑗−𝑘)

+ 𝜀
𝑡−𝑘

))

=

𝑞

∑

𝑗=1

cov (𝐷
𝑡,𝑘

(𝜃∘
𝑡
𝜀
𝑡−𝑘

) , 𝐷
𝑡−𝑘,𝑗

𝜀
𝑡−𝑘

)

+

𝑞

∑

𝑗=𝑘+1

cov (𝐷
𝑡,𝑗

(𝜃∘
𝑡−𝑗

𝜀
𝑡−𝑗

) , 𝐷
𝑡−𝑘,𝑗−𝑘

(𝜃∘
𝑡−𝑘

𝜀
𝑡−𝑗

))

=

𝑞

∑

𝑗=1

cov (𝜃∘
𝑡
𝜀
𝑡−𝑘

, 𝜀
𝑡−𝑘

) 𝐸 (𝐷
𝑡,𝑘

) 𝐸 (𝐷
𝑡−𝑘,𝑗

)

+

𝑞

∑

𝑗=𝑘+1

cov (𝜃∘
𝑡−𝑗

𝜀
𝑡−𝑗

, 𝜃∘
𝑡−𝑘

𝜀
𝑡−𝑗

) 𝐸 (𝐷
𝑡,𝑗

) 𝐸 (𝐷
𝑡−𝑘,𝑗−𝑘

)

=

𝑞

∑

𝑗=1

𝜃Var (𝜀
𝑡−𝑘

) 𝜙
𝑘
𝜙
𝑗
+

𝑞

∑

𝑗=𝑘+1

𝜃
2 Var (𝜀

𝑡−𝑗
) 𝜙
𝑗
𝜙
𝑗−𝑘

= 𝜃𝜆
2
𝜙
𝑘
+ 𝜃
2
𝜆
2

𝑞

∑

𝑗=𝑘+1

𝜙
𝑗
𝜙
𝑗−𝑘

.

(11)

If 𝑘 = 𝑞, by using a similar approach, we get cov(𝑋
𝑡
,

𝑋
𝑡−𝑞

) = 𝜃𝜆
2
𝜙
𝑞
. For 𝑘 ≥ 𝑞 + 1, all the terms, 𝜃∘

𝑡
𝜀
𝑡−1

, . . . ,

𝜃∘
𝑡
𝜀
𝑡−𝑞

, 𝜀
𝑡
, 𝜃∘
𝑡−𝑘

𝜀
𝑡−𝑘−1

, . . . , 𝜃∘
𝑡−𝑘

𝜀
𝑡−𝑘−𝑞

and 𝜀
𝑡−𝑘

involved in 𝑋
𝑡

and 𝑋
𝑡−𝑘

, are mutually independent. Therefore, the autoco-
variance function of 𝑋

𝑡
is equal to zero for 𝑘 ≥ 𝑞 + 1.

Theorem 3. Let 𝑋
𝑡
be the process defined by the equation in

(2). Then

(i) {𝑋
𝑡
} is a covariance stationary process;

(ii) 𝐸(𝑋
𝑘

𝑡
) ≤ 𝐶 < ∞, 𝑘 = 1, 2, 3, 4, for some constant 𝐶 >

0.

Proof. (i) The first conclusion is immediate from the defini-
tion of covariance stationary process.

(ii) For 𝑘 = 1, it is straightforward.
For 𝑘 = 2, it follows that

𝐸 (𝑋
2

𝑡
) ≤ max {𝐸 (𝐷

𝑡,1
(𝜃∘
𝑡
𝜀
𝑡−1

+ 𝜀
𝑡
))
2

, . . . ,

𝐸 (𝐷
𝑡,𝑞

(𝜃∘
𝑡
𝜀
𝑡−𝑞

+ 𝜀
𝑡
))
2

} .

(12)

Note that, for 𝑗 = 1, 2, . . . , 𝑞,

𝐸 (𝐷
𝑡,𝑗

(𝜃∘
𝑡
𝜀
𝑡−𝑗

+ 𝜀
𝑡
))
2

= 𝐸 (𝐷
𝑡,𝑗

)
2

𝐸 (𝜃∘
𝑡
𝜀
𝑡−𝑗

+ 𝜀
𝑡
)
2

= 𝐸 (𝐷
𝑡,𝑗

)
2

(𝐸 (𝜃∘
𝑡
𝜀
𝑡−𝑗

)
2

+ 𝐸 (𝜀
𝑡
)
2

+ 2𝐸 [(𝜃∘
𝑡
𝜀
𝑡−𝑗

) 𝜀
𝑡
])

= 𝜙
𝑗
(1 − 𝜙

𝑗
)

⋅ [𝜃
2
(𝜆 + 𝜆

2
) + 𝜃 (1 − 𝜃) 𝜆 + (𝜆 + 𝜆

2
) + 2𝜃𝜆

2
]

= 𝜙
𝑗
(1 − 𝜙

𝑗
) (𝜃 + 1) 𝜆 [(𝜃 + 1) 𝜆 + 1] .

(13)

Then we have

𝐸 (𝑋
2

𝑡
) ≤

1

4
(𝜃 + 1) 𝜆 [(𝜃 + 1) 𝜆 + 1] < ∞. (14)

Similarly, for 𝑘 = 3,

𝐸 (𝑋
3

𝑡
) ≤ max {𝐸 (𝐷

𝑡,1
(𝜃∘
𝑡
𝜀
𝑡−1

+ 𝜀
𝑡
))
3

, . . . ,

𝐸 (𝐷
𝑡,𝑞

(𝜃∘
𝑡
𝜀
𝑡−𝑞

+ 𝜀
𝑡
))
3

} .

(15)
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Note that, for 𝑗 = 1, 2, . . . , 𝑞,

𝐸 (𝐷
𝑡,𝑗

(𝜃∘
𝑡
𝜀
𝑡−𝑗

+ 𝜀
𝑡
))
3

= 𝐸 (𝐷
𝑡,𝑗

)
3

𝐸 (𝜃∘
𝑡
𝜀
𝑡−𝑗

+ 𝜀
𝑡
)
3

= 𝐸 (𝐷
𝑡,𝑗

)
3

(𝐸 (𝜃∘
𝑡
𝜀
𝑡−𝑗

)
3

+ 𝐸 (𝜀
𝑡
)
3

+ 3𝐸 [(𝜃∘
𝑡
𝜀
𝑡−𝑗

)
2

𝜀
𝑡
] + 𝐸 [(𝜃∘

𝑡
𝜀
𝑡−𝑗

) 𝜀
2

𝑡
])

= 𝜙
3

𝑗
[𝜃
3
𝜏 + 3𝜃

2
(1 − 𝜃) (𝜆 + 𝜆

2
)

+ (𝜃 − 3𝜃
2
(1 − 𝜃) − 𝜃

3
) 𝜆]

+ 𝜙
3

𝑗
𝜏 + 3𝜙

3

𝑗
{[𝜃
2
(𝜆 + 𝜆

2
) + 𝜃 (1 − 𝜃) 𝜆] 𝜆}

+ 3𝜙
3

𝑗
𝜃𝜆 (𝜆 + 𝜆

2
)

= 𝜙
3

𝑗
{𝜃𝜆 [𝜃

2
(𝜏 − 1 − 3𝜆) + 3𝜆 (1 + 𝜆) 𝜃 + 3𝜆

2
+ 6𝜆 + 1]

+ 𝜏} ,

(16)

where 𝜏 := 𝜆
3
+ 3𝜆
2
+ 𝜆. Let 𝜙3max = max(𝜙3

1
, . . . , 𝜙

3

𝑞
). Then

𝐸 (𝑋
3

𝑡
)

≤ 𝜙
3

max {𝜃𝜆 [𝜃
2
(𝜏 − 1 − 3𝜆) + 3𝜆 (1 + 𝜆) 𝜃 + 3𝜆

2

+ 6𝜆 + 1] + 𝜏} < ∞.

(17)

After some tedious calculations, we also can show the result
holds for 𝑘 = 4. We skip the details. Next, we will present
ergodic theorem for stationary process {𝑋

𝑡
}. There are a

variety of ergodic theorems, differing in their assumptions
and in the modes of convergence. Here the convergence is in
mean square. The next two lemmas will be useful in proving
the ergodicity of the samplemean and sample autocovariance
function of {𝑋

𝑡
}.

Lemma 4. If {𝑍
𝑡
} is stationary with mean 𝜇

𝑍
and autocovari-

ance function 𝛾
𝑍
(⋅), then as 𝑇 → ∞, Var(𝑍

𝑇
) = 𝐸(𝑍

𝑇
−

𝜇
𝑍
)
2

→ 0, if 𝛾
𝑍
(𝑇) → 0, where 𝑍

𝑇
:= (1/𝑇)∑

𝑇

𝑡=1
𝑋
𝑡
.

Proof. See Theorem 7.1.1 in Brockwell and Davis [13].

Lemma 5. Suppose {𝑍
𝑡
} is a covariance stationary process

having covariance function 𝛾
𝑍
(V) := 𝐸(𝑍

𝑡+V𝑍𝑡) and a mean of
zero. If lim

𝑇→∞
(1/𝑇)∑

𝑇

𝑙=1
[𝐸(𝑍
𝑡
𝑍
𝑡+V𝑍𝑡+𝑙𝑍𝑡+𝑙+V) − 𝛾

2

𝑍
(V)] =

0. Then, for any fixed V = 0, 1, 2, . . .,

lim
𝑇→∞

1

𝑇

𝑇

∑

𝑙=1

𝐸 [𝛾
𝑍
(V) − 𝛾

2

𝑍
(V)]
2

= 0, (18)

where 𝛾
𝑍
(V) is the sample covariance function 𝛾

𝑍
(V) :=

(1/𝑇)∑
𝑇−V
𝑡=1

𝑍
𝑡+V𝑍𝑡.

Proof. See Theorem 5.2 in Karlin and Taylor [12].

Lemma 6. Let process 𝑌
𝑡
:= 𝑋
𝑡
− 𝜇
𝑋
be a transformation of

𝑋
𝑡
; then the following results hold:

(i) {𝑌
𝑡
} is a covariance stationary process with zero mean;

(ii) 𝛾
𝑌
(𝑘) := cov(𝑌

𝑡
, 𝑌
𝑡−𝑘

) = 𝛾
𝑋
(𝑘), 𝑘 = 1, 2, 3, . . .;

(iii) 𝐸(𝑌
𝑘

𝑡
) ≤ 𝐶

∗
< ∞, 𝑘 = 1, 2, 3, 4, for some constant

𝐶
∗

> 0;
(iv) {𝑌

𝑡
} is ergodic in autocovariance function.

Proof. The only part of this lemma that is not obvious is part
(iv). The proof of properties (iv) is as follows.

To prove that {𝑌
𝑡
} is ergodic in autocovariance function,

it suffices to show that

lim
𝑇→∞

1

𝑇

𝑇

∑

𝑙=1

[𝐸 (𝑌
𝑡
𝑌
𝑡+V𝑌𝑡+𝑙𝑌𝑡+𝑙+V) − 𝛾

2

𝑌
(V)] = 0 (19)

according to Lemma 5. Thus, we will discuss two cases. For
simplicity in notation, we define 𝑐

2
:= 𝐸(𝑌

2

𝑡
), 𝑐
3

:= 𝐸(𝑌
3

𝑡
),

𝑐
4
:= 𝐸(𝑌

4

𝑡
), and 𝑅

𝑌
(V) := 𝐸(𝑌

𝑡
𝑌
𝑡+V).

Case 1. For V = 0, 𝐸(𝑌
𝑡
𝑌
𝑡+V𝑌𝑡+𝑙𝑌𝑡+𝑙+V) = 𝐸(𝑌

2

𝑡
𝑌
2

𝑡+𝑙
), 𝛾2
𝑌
(V) =

𝛾
2

𝑋
(V) = 𝜎

2

𝑋
.

If 1 ≤ 𝑙 ≤ 𝑞, using the Schwarz inequality, we get

𝐸 (𝑌
2

𝑡
𝑌
2

𝑡+𝑙
) ≤ √𝐸 (

󵄨󵄨󵄨󵄨𝑌
2

𝑡

󵄨󵄨󵄨󵄨
2

) 𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑌2
𝑡+𝑙

󵄨󵄨󵄨󵄨󵄨

2

) = 𝑐
4
≤ 𝐶
∗
. (20)

If 𝑙 ≥ 𝑞 + 1, note that 𝑌
𝑡+𝑙

and 𝑌
𝑡
are irrelevant, and then

𝐸 (𝑌
2

𝑡
𝑌
2

𝑡+𝑙
) = 𝐸 (𝑌

2

𝑡
) 𝐸 (𝑌

2

𝑡+𝑙
) = 𝑐
2

2
= 𝛾
2

𝑋
(V) . (21)

Therefore, (1/𝑇)∑
𝑇

𝑙=1
[𝐸(𝑌
𝑡
𝑌
𝑡+V𝑌𝑡+𝑙𝑌𝑡+𝑙+V) − 𝛾

2

𝑌
(V)] ≤

(1/𝑇)[2(𝑐
4
− 𝜎
2

𝑋
)] → 0, for 𝑇 → ∞.

Case 2. For V ≥ 1, 𝑅2
𝑌
(V) = [𝐸(𝑌

𝑡
𝑌
𝑡+V)]
2
= 𝛾
2

𝑋
(V).

If 1 ≤ 𝑙 ≤ 𝑞 + V, using Schwarz inequality twice,

𝐸 (𝑌
𝑡
𝑌
𝑡+V𝑌𝑡+𝑙𝑌𝑡+𝑙+V)

≤ √𝐸 (
󵄨󵄨󵄨󵄨𝑌𝑡𝑌𝑡+V

󵄨󵄨󵄨󵄨
2

) 𝐸 (
󵄨󵄨󵄨󵄨𝑌𝑡+𝑙𝑌𝑡+𝑙+V

󵄨󵄨󵄨󵄨
2

)

≤
1/4
√𝐸 (𝑌4

𝑡
) 𝐸 (𝑌4

𝑡+V) 𝐸 (𝑌4
𝑡+𝑙

) 𝐸 (𝑌4
𝑡+𝑙+V) = 𝑐

4
.

(22)

If 𝑙 ≥ 𝑞 + V + 1, note that 𝑋
𝑡
𝑋
𝑡+V与𝑋

𝑡+𝑙
𝑋
𝑡+𝑙+V uncorrelation;

thus, we have

𝐸 (𝑌
𝑡
𝑌
𝑡+V𝑌𝑡+𝑙𝑌𝑡+𝑙+V) = 𝐸 (𝑋

𝑡
𝑋
𝑡+V) 𝐸 (𝑌

𝑡+𝑙
𝑌
𝑡+𝑙+V) = 𝑅

2

𝑌
(V) .
(23)

Then (1/𝑇)∑
𝑇

𝑙=1
[𝐸(𝑌
𝑡
𝑌
𝑡+V𝑌𝑡+𝑙𝑌𝑡+𝑙+V) − 𝛾

2

𝑌
(V)] ≤ (1/𝑇){(2 +

V)[𝑐
4
− 𝑅
2

𝑌
(V)]} → 0, for 𝑇 → ∞.

This proves Lemma 6.

Theorem 7. Let {𝑋
𝑡
} be a PCINMA(𝑞) process according to

Definition 1. Then, the stochastic process {𝑋
𝑡
} is ergodic in the

mean and autocovariance function.
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Proof. For notational simplicity, we define 𝑋
𝑇
(𝑘) :=

(1/𝑇)∑
𝑇−𝑘

𝑡=1
𝑋
𝑡+𝑘

, 𝛾
𝑌
(𝑘) := (1/𝑇)∑

𝑇−𝑘

𝑡=1
𝑌
𝑡+𝑘

𝑌
𝑡
, and 𝛾

𝑋
(𝑘) :=

(1/𝑇)∑
𝑇−𝑘

𝑡=1
(𝑋
𝑡+𝑘

− 𝑋
𝑇
)(𝑋
𝑡
− 𝑋
𝑇
). And we assume here that

the sample consists of 𝑇 + 𝑘 observations on 𝑋.
(i) Note that 𝛾

𝑋
(𝑘) → 0, for 𝑘 → ∞. From the result of

Lemma 4, we obtain Var(𝑋
𝑇
) = 𝐸(𝑋

𝑇
− 𝜇
𝑋
)
2

→ 0.
Then 𝑋

𝑇
converges in probability to 𝜇

𝑋
. Therefore, the

process {𝑋
𝑡
} is ergodic in the mean.

Next, we prove that the {𝑋
𝑡
} is ergodic for secondmoment

by induction.
(ii) First we prove 𝑋

𝑇
(𝑘)
𝑃

󳨀→ 𝜇
𝑋
. Suppose 𝜀

1
> 0 is given:

𝑃 (
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑇
(𝑘) − 𝜇

𝑋

󵄨󵄨󵄨󵄨󵄨
≥ 𝜀
1
)

≤ 𝑃(
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑇
(𝑘) − 𝑋

󵄨󵄨󵄨󵄨󵄨
≥

𝜀
1

2
)

+ 𝑃(
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑇
− 𝜇
𝑋

󵄨󵄨󵄨󵄨󵄨
≥

𝜀
1

2
)

= 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇

𝑘

∑

𝑡=1

𝑋
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥
𝜀
1

2
) + 𝑃(

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑇
− 𝜇
𝑋

󵄨󵄨󵄨󵄨󵄨
≥

𝜀
1

2
)

≤

𝑘

∑

𝑡=1

𝑃(
1

𝑇

󵄨󵄨󵄨󵄨𝑋𝑡
󵄨󵄨󵄨󵄨 ≥

𝜀
1

2
) + 𝑃(

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑇
− 𝜇
𝑋

󵄨󵄨󵄨󵄨󵄨
≥

𝜀
1

2
) .

(24)

Using the Markov inequality, ∑
𝑘

𝑡=1
𝑃((1/𝑇)|𝑋

𝑡
| ≥ 𝜀

1
/2) ≤

∑
𝑘

𝑡=1
(𝐸(𝑋
𝑡
)/(1/2)𝑇𝜀

1
) → 0, for 𝑇 → ∞.

Since {𝑋
𝑡
} is ergodic in the mean, thus 𝑃(|𝑋

𝑇
− 𝜇
𝑋
| ≥

𝜀
1
/2) → 0, for 𝑇 → ∞.
Therefore, 𝑋

𝑇
(𝑘)
𝑃

󳨀→ 𝜇
𝑋
, for 𝑇 → ∞.

Now we prove the second result 𝛾
𝑋
(𝑘) − 𝛾

𝑋
(𝑘)
𝑃

󳨀→ 0.
Consider any 𝜀 > 0:

𝑃 (
󵄨󵄨󵄨󵄨𝛾𝑋 (𝑘) − 𝛾

𝑋
(𝑘)

󵄨󵄨󵄨󵄨 ≥ 𝜀)

= 𝑃 (
󵄨󵄨󵄨󵄨𝛾𝑋 (𝑘) − 𝛾

𝑌
(𝑘) + 𝛾

𝑌
(𝑘) − 𝛾

𝑋
(𝑘)

󵄨󵄨󵄨󵄨 ≥ 𝜀)

≤ 𝑃(
󵄨󵄨󵄨󵄨𝛾𝑋 (𝑘) − 𝛾

𝑌
(𝑘)

󵄨󵄨󵄨󵄨 ≥
𝜀

2
) + 𝑃(

󵄨󵄨󵄨󵄨𝛾𝑌 (𝑘) − 𝛾
𝑋

(𝑘)
󵄨󵄨󵄨󵄨 ≥

𝜀

2
) .

(25)

Note that

𝑃(
󵄨󵄨󵄨󵄨𝛾𝑋 (𝑘) − 𝛾

𝑌
(𝑘)

󵄨󵄨󵄨󵄨 ≥
𝜀

2
)

= 𝑃(
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑋
𝑇
(𝑘) + 𝑋

𝑇
) (𝑋
𝑇
− 𝜇
𝑋
) + (𝑋

2

𝑇
− 𝜇
2

𝑋
)
󵄨󵄨󵄨󵄨󵄨󵄨
≥

𝜀

2
)

≤ 𝑃(
󵄨󵄨󵄨󵄨󵄨
(𝑋
𝑇
(𝑘) + 𝑋

𝑇
) (𝑋
𝑇
− 𝜇
𝑋
)
󵄨󵄨󵄨󵄨󵄨
≥

𝜀

4
)

+ 𝑃(
󵄨󵄨󵄨󵄨󵄨󵄨
𝑋
2

𝑇
− 𝜇
2

𝑋

󵄨󵄨󵄨󵄨󵄨󵄨
≥

𝜀

4
) .

(26)

Since the sample mean 𝑋
𝑇
converges in probability to 𝜇

𝑋
,

according to Slutsky’s theorem, we get (𝑋
𝑇
(𝑘) + 𝑋

𝑇
)(𝑋
𝑇

−

𝜇
𝑋
)
𝑃

󳨀→ 0, 𝑋2
𝑇
− 𝜇
2

𝑋

𝑃

󳨀→ 0.

Then we have 𝑃(|𝛾
𝑋
(𝑘)−𝛾

𝑌
(𝑘)| ≥ 𝜀/2)

𝑃

󳨀→ 0, for 𝑇 → ∞.
From the (iv) of Lemma 6, we obtain

𝛾
𝑌
(𝑘) − 𝛾

𝑋
(𝑘) = 𝛾

𝑌
(𝑘) − 𝛾

𝑌
(𝑘)
𝑝

󳨀→ 0, for 𝑇 → ∞.

(27)

And consequently, 𝑃(|𝛾
𝑋
(𝑘) − 𝛾

𝑋
(𝑘)| ≥ 𝜀)

𝑃

󳨀→ 0, for 𝑇 → ∞.
This leads to the desired conclusion.

3. Estimation of the Unknown Parameters

In this section, we discuss approaches to the estimation of
the unknown parameters. And we assume we have 𝑇 obser-
vations, 𝑋

1
, . . . , 𝑋

𝑇
, from a Poisson combined INMA(𝑞)

process in which the order parameter 𝑞 is known. One of
the main interests in the literature of INMA process is to
estimate the unknown parameters. Using the sample covari-
ance function, we get the estimators of unknown parameters
(𝜙
1
, . . . , 𝜙

𝑞
, 𝜃, 𝜆) through solving the following equations:

𝛾 (0) − [𝜃 (1 − 𝜃) 𝜆 + (𝜃
2
+ 1) 𝜆

2
] = 0

𝛾 (1) − (𝜃𝜆
2
𝜙
1
+ 𝜃
2
𝜆
2

𝑞

∑

𝑗=2

𝜙
𝑗
𝜙
𝑗−1

) = 0

.

.

.

𝛾 (𝑞 − 1) − (𝜃𝜆
2
𝜙
𝑞−1

+ 𝜃
2
𝜆
2
𝜙
𝑞
𝜙
1
) = 0

𝛾 (𝑞) − 𝜃𝜆
2
𝜙
𝑞
= 0.

(28)

The idea behind these estimators is that of equating popu-
lation moments to sample moments and then solving for the
parameters in terms of the samplemoments.These estimators
are typically called the Yule-Walker estimators. As the 𝛾(𝑘)

consistently estimates the true autocovariance function 𝛾(𝑘)

[13], the Yule-Walker estimators are consistent. Following
Brockwell and Davis (2009) and Billingsley [14], it is easy to
show that under somemild moment conditions the marginal
mean estimator 𝑋

𝑇
is asymptotically normally distributed.

4. Monte Carlo Simulation Study

We provide some simulations results to show the empirical
performance of these estimators. Owing to the nonlinearity,
the estimator expressions of unknown parameters are quite
complicated.The aim of simulation study is to assess the finite
sample performances of the moments estimators. Consider
the following model:

𝑋
𝑡
= 𝐷
𝑡,1

(𝜃∘
𝑡
𝜀
𝑡−1

) + 𝐷
𝑡,2

(𝜃∘
𝑡
𝜀
𝑡−2

) + 𝐷
𝑡,3

(𝜃∘
𝑡
𝜀
𝑡−3

) + 𝜀
𝑡
,

(29)

where {𝜀
𝑡
} is a sequence of i.i.d. Poisson random variables

with parameter 𝜆 and 𝜃 ∈ (0, 1). The random vectors
(𝐷
𝑡,1

, 𝐷
𝑡,2

, 𝐷
𝑡,3

) are multinomial distribution with parame-
ters (1; 𝜙

1
, 𝜙
2
, 𝜙
3
), independent of {𝜀

𝑡
}. The parameters values

considered are
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Table 1: Sample mean and mean square error (in brackets) for
models A, B, and C.

Model Sample size
Parameter 50 100 400 700

A

𝜙1
0.0781 0.0873 0.0925 0.0953
(0.0316) (0.0084) (0.0047) (0.0017)

𝜙2
0.1658 0.1795 0.1867 0.1957
(0.0251) (0.0193) (0.0052) (0.0035)

𝜃
0.2433 0.2731 0.2875 0.2924
(0.0236) (0.0074) (0.0032) (0.0021)

𝜆
1.1372 1.1007 1.0285 1.0046
(0.1256) (0.0632) (0.0358) (0.0067)

B

𝜙1
0.2547 0.2871 0.2935 0.2977
(0.0412) (0.0136) (0.0087) (0.0032)

𝜙2
0.3468 0.3726 0.3891 0.3964
(0.0308) (0.0158) (0.0072) (0.0023)

𝜃
0.4625 0.4789 0.4836 0.4976
(0.0217) (0.0104) (0.0044) (0.0013)

𝜆
3.5672 3.1741 3.0522 3.0075
(0.3265) (0.2381) (0.0943) (0.0045)

C

𝜙1
0.5648 0.5783 0.5867 0.5973
(0.0213) (0.0151) (0.0078) (0.0024)

𝜙2
0.1732 0.1847 0.1907 0.1976
(0.0342) (0.0153) (0.0024) (0.0005)

𝜃
0.6347 0.6824 0.6947 0.6953
(0.0145) (0.0083) (0.0026) (0.0011)

𝜆
12.3627 10.6538 10.1486 10.0024
(1.0764) (0.3105) (0.0852) (0.0053)

(model A) (𝜙
1
, 𝜙
2
, 𝜙
3
) = (0.1, 0.2, 0.7), 𝜃 = 0.3, 𝜆 = 1,

(model B) (𝜙
1
, 𝜙
2
, 𝜙
3
) = (0.3, 0.4, 0.3), 𝜃 = 0.5, 𝜆 = 3,

(model C) (𝜙
1
, 𝜙
2
, 𝜙
3
) = (0.6, 0.2, 0.2), 𝜃 = 0.7, 𝜆 =

10.

The length of this discrete-valued time series 𝑇 is 50, 100,
400, and 700. For each realization of these estimators, 500
independent replicates were simulated.The numerical results
of the estimators for different true values of the parameters
(𝜙
1
, 𝜙
2
, 𝜙
3
), 𝜃, and 𝜆 are presented in Table 1.

All the biases of 𝜙
1
, 𝜙
2
, and 𝜃 are negative, whereas

the biases of 𝜆 are positive. It can be seen that as the
sample size increases, the estimates seem to converge to
the true parameter values. For example, when increasing
sample size 𝑇, the bias and MSE both converge to zero. The
reason might be that the Yule-Walker method is based on
sufficient statistics. On the other hand, the performances of
the estimators of 𝜆 are weaker than for the ones of 𝜙

1
and 𝜃.

5. Conclusion

In this paper, we introduce a class of self-exciting threshold
integer-valued moving average models driven by decision
random vector. Basic probabilistic and statistical proper-
ties of this class of models are discussed. Specifically, the
method of estimation under analysis is the Yule-Walker.

Their performance is compared through a simulation study.
Potential issues of future research include extending the
results for general INARMA(𝑝, 𝑞) models including an arbi-
trary distribution of binomial thinning parameter as well as
autoregressive and moving average parameters. This remains
a topic of future research.
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