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The paper presents a formal proof of a machine closed theorem of TLA+ in the theorem proving system Coq. A shallow embedding
scheme is employed for the proof which is independent of concrete syntax. Fundamental concepts need to state that the machine
closed theorems are addressed in the proof platform. A useful proof pattern of constructing a trace with desired properties is
devised. A number of Coq reusable libraries are established.

1. Introduction

TLA+ [1, 2] is a formal specification language for describing
and reasoning about distributed and concurrent systems. It
is based on mathematical logic, set theory, and linear time
temporal logic TLA [3]. TLA+ is widely used to write precise
and formal specifications of discrete systems. The notion of
machine closed plays an important role in the system spec-
ification. Generally speaking, a specification consists of two
parts: one is a safety part and the other is a liveness part.
The specification is called machine closed if the liveness
part does not constrain the safety part. In [1], it is said that
“we seldom want to write a specification that isn’t machine
closed. If we do write one, it’s usually by mistake.” Hence, we
need to check whether the specification is machine closed.
Fortunately, there is a well-known theorem, that is, machine
closed theorem [4], stating that all the TLA+ specifications are
machine closed. More precisely, a TLA+ specification which
consists of a transition system and a possibly countable infi-
nite fairness constraints is machine closed. Hence, in TLA+
there is no need to verify the specification to see whether it
is machine closed. In other words, TLA+ specifications are
constructed to be machine closed.

We are now working on formalizing a subset of TLA+ in
the theorem prover Coq. As an important part, we want to
have the machine closed theorem in our formalization.There
are mainly two ways to embed the theorem: one is to have it

as an axiom and the other is to state it as a theorem and prove
it. We think the second way is better. The reason is twofold:

(i) it needs to be very careful to introduce an axiom into
a proof system, since sometimes the introduction of a
new axiom may result in inconsistence;

(ii) it is worthwhile to have a formal proof of the theorem,
though it is well-known.The proof will help to under-
stand and check the previous formalizations (i.e., the
fundamental definitions needed to state the theorem)
and make the whole formalization more solid.

In this paper, we present a formal proof of a machine
closed theorem in the theorem prover Coq. In order to do so,
various fundamental definitions, such as traces, properties,
safety property, liveness property, safety closure, andmachine
closed are given. Based on these definitions, the theorem is
formally stated. The proof follows [4]. The key part of the
proof is to find a strategy which can generate a trace with
some desired properties. We designed a reusable proof pat-
tern to guide this process. Besides this proof, the pattern is
also used in provingwhether a property is a liveness property;
for example, both strong and weak fairness constraints are
proved to be liveness properties using this pattern.The whole
proof is done in a shallow-embedded manner, which makes
the formalization independent of any concrete syntaxes. In
other words, this work can be reused in other settings.
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The rest of the paper is organized as follows. In Section 2,
some preliminaries and a short introduction of TLA+ are
given. Section 3 presents the formalization of the machine
closed theorem in Coq. The detailed proof is described in
Section 4. Related work and concluding remarks are given in
Section 5.

2. Preliminaries

2.1. TLA+ Specifications. The TLA+ specification is a formula
of the form 𝐼𝑛𝑖𝑡 ∧ ◻[𝑁𝑒𝑥𝑡]V ∧ 𝐿, where V is a tuple usually
containing all state variables in 𝐼𝑛𝑖𝑡, 𝑁𝑒𝑥𝑡, and 𝐿 [4]. The
first conjunct 𝐼𝑛𝑖𝑡 describes the possible initial states of the
system. The second conjunct of the specification asserts that
every step (i.e., every pair of successive states in the system)
either satisfies 𝑁𝑒𝑥𝑡 or leaves the variables in V unchanged.
Allowing such stuttering steps is a key ingredient to obtain
compositionality of specifications. However, it also means
that executions that stutter infinitely are allowed by the spec-
ification. The third conjunct 𝐿 is a temporal formula stating
the liveness constraints of the specification, and particularly
it can be used to rule out infinite stuttering. The part 𝐼𝑛𝑖𝑡 ∧
◻[𝑁𝑒𝑥𝑡]V is known to be the safety part of the specification
while 𝐿 to be the liveness part. The machine closed theorem
states that (𝐼𝑛𝑖𝑡 ∧ ◻[𝑁𝑒𝑥𝑡]V, 𝐿) is machine closed.

2.2. Definitions. We fix the set of states as 𝑆𝑡. 𝑆𝑡∗ denotes the
set of finite sequences of states, and 𝑆𝑡𝜔 is the set of infinite
sequences of states. A sequence is also called a trace in this
paper. The 𝑖th state in trace 𝑡 is denoted by 𝑡

𝑖
. |𝑡| denotes the

length of 𝑡, if 𝑡 is finite.
A property is a set of infinite traces. Given a property𝑃, we

use 𝑡 ⊨ 𝑃, which means trace 𝑡 satisfies property 𝑃, to denote
𝑡 ∈ 𝑃. Given a finite trace 𝑡 ∈ 𝑆𝑡

∗, if ∃𝑡󸀠 ∈ 𝑆𝑡
𝜔
.𝑡 ∘ 𝑡
󸀠
⊨ 𝑃 (∘

is the traditional trace concatenation operator), then we say
𝑡 ⊨ 𝑃. 𝑡

[⋅⋅⋅𝑛]
and 𝑡
[𝑛⋅⋅⋅ ]

denote the prefix (𝑡
0
⋅ ⋅ ⋅ 𝑡
𝑛
) and suffix

(𝑡
𝑛
𝑡
𝑛+1

⋅ ⋅ ⋅ ) of 𝑡, respectively. Following [5], a property 𝑃 is a
safety property, if ∀𝑡 ∈ 𝑆𝑡𝜔.𝑃𝑡 ↔ ∀𝑖.∃𝑡

󸀠
∈ 𝑆𝑡
𝜔
.𝑡
[⋅⋅⋅𝑖]

∘ 𝑡
󸀠
⊨ 𝑃. A

property𝑃 is a liveness property, if∀𝑡 ∈ 𝑆𝑡∗.∃𝑡󸀠 ∈ 𝑆𝑡𝜔.𝑡∘𝑡󸀠 ⊨ 𝑃.
An action 𝑎 is a predicate over two states. Action 𝑎 is a

subaction of action 𝑎󸀠 if ∀𝑠 𝑠󸀠.𝑎 𝑠 𝑠󸀠 → 𝑎
󸀠
𝑠 𝑠
󸀠.

Following [6], we have the definitions of safety closure
and machine closed. Given an arbitrary property 𝑃, its safety
closure 𝐶(𝑃) is defined as {𝑡 ∈ 𝑆𝑡

𝜔
| ∀𝑖.𝑡
[⋅⋅⋅𝑖]

⊨ 𝑃}. It can be
proved that𝐶(𝑃) is the smallest safety property containing 𝑃.

Definition. A pair of properties (𝑆, 𝐿) is said to be machine
closed if 𝐶(𝑆 ∩ 𝐿) = 𝑆 and 𝑆 is a safety property.

3. Formalization of Machine Closed Theorem

We work on the semantical level, in other words, we define
all the concepts described in Section 2.2 in a shallow embed-
ding manner. Throughout this section, we first describe the
notions informally then give the corresponding Coq scripts.

3.1. Help Definitions. In the following scripts, we first define
the set of state as 𝑆𝑡. A trace is a function of type 𝑛𝑎𝑡 →

𝑆𝑡 (There are other ways to define traces. E.g., [7] uses

coinductive data types to define infinite traces and [8] uses
coinductive data types to define both infinite and finite traces.
The reasons why we adapt the “function type” one is twofold:
(i) the “function type” trace is intuitive; (ii) we only consider
infinite traces, and we want to separate the finite traces and
infinite traces at the data type level. In the subsequent section,
finite traces are defined separately using inductive data type.).
So given a trace 𝑡 and a natural number 𝑖, (𝑡 𝑖) denotes the
𝑖th state of 𝑡 (count from 0). 𝑃𝑟𝑒𝑑𝑂𝑛1 and 𝑃𝑟𝑒𝑑𝑂𝑛2 are the
types of predicates over one state and two states, respectively.
𝑃𝑟𝑒𝑑𝑂𝑛1 is the state predicate type while 𝑃𝑟𝑒𝑑𝑂𝑛2 is the
action type. A property is a set of traces, whose type is
𝑇𝑟𝑎𝑐𝑒 → 𝑃𝑟𝑜𝑝. 𝑈𝑝𝑡𝑜𝑁 𝑡 𝑡

󸀠
𝑛 means traces 𝑡 and 𝑡

󸀠 are
identical up to index 𝑛. 𝑈𝑝𝑡𝑜𝑁 𝑒 𝑡

󸀠
𝑡 means traces 𝑡 and 𝑡

󸀠

are identical up to index (𝑛 − 1). 𝑂𝑓𝑓𝑠𝑒𝑡𝑡𝑛 returns 𝑡
[𝑛⋅⋅⋅ ]

.
𝑆𝑡𝑎𝑡𝑒1𝑡𝑜𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑆𝑡𝑎𝑡𝑒2𝑡𝑜𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, resp.) makes a trace
predicate(i.e., a property) from a one-state (two-state, resp.)
predicate. In order to make the representation more concise,
we define three coercions which implicitly changes a one-
state or a two-state predicate to properties, respectively.

Variable St: Set.

Definition Trace := nat -> St.

Definition PredOn1 := St -> Prop.

Definition PredOn2 := St -> St -> Prop.

Definition Property := Ensemble Trace.

Definition UptoN (t t’: Trace) (n:nat):
Prop :=

forall i, i <= n -> t i = t’ i.
Definition UptoN e (t t’: Trace)
(n:nat): Prop :=

forall i, i < n -> t i = t’ i.
Definition OffsetN (t:Trace) (n:nat):
Trace :=

fun i => t (n+i).

Definition State1toProperty (p:
PredOn1): Property :=

fun t => p (t 0).

Definition State2toProperty (p:
PredOn2): Property :=

fun t => p (t 0) (t 1).

Definition Actions := PredOn2.

Coercion State1toProperty: PredOn1 >->
Property.

Coercion State2toProperty: PredOn2 >->
Property.

Coercion Action2toProperty: Actions >->
Property.

In the following scripts, we have the traditional definitions of
“finally,” “always,” “infinite often,” “finally always,” “enabled,”
“strong fairness,” and “weak fairness.”
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Definition F (p: Property) (t:Trace):=

exists n, p (OffsetN t n).

Definition G (p: Property) (t:Trace):=

forall n, p (OffsetN t n).

Definition FG p := F (G p).

Definition GF p := G (F p).

Definition En (p2: PredOn2) (s: St) :=
exists s’, p2 s s’.
Definition SF Action (a: Actions):
Property :=

fun t => GF (En a) t -> GF a t.

Definition WF Action (a: Actions):
Property :=

fun t => FG (En a) t -> GF a t.

3.2. Safety, Liveness, and Machine Closed. In the definitions
of safety property, liveness property and safety closure, the
notions of “finite trace” and “concatenation of a finite trace
and an infinite trace” are used. Since we choose the function
type to present traces, it is not very convenient to express
finite traces. In order to avoid the notions of “finite trace” and
“concatenation,” we should change the definitions to their
equivalent counterparts which only involve infinite traces.

Safety Property. We change “∀𝑡 ∈ 𝑆𝜔.𝑃𝑡 ↔ ∀𝑖.∃𝑡
󸀠
∈ 𝑆
𝜔
.𝑡
[⋅⋅⋅𝑖]

∘

𝑡
󸀠
⊨ 𝑃” to its equivalent formula “∀𝑡 ∈ 𝑆

𝜔
.𝑃𝑡 ↔ ∀𝑖.∃𝑡

󸀠
∈

𝑆
𝜔
.(𝑈𝑝𝑡𝑜𝑁 𝑡 𝑡

󸀠
𝑖) ∧ 𝑡
󸀠
⊨ 𝑃.”

Definition IsSafetyProperty (p:
Property) :=

forall t, p t <-> (forall i, exists
t’, UptoN t t’ i /\ p t’).

Liveness Property. We change “∀𝑡 ∈ 𝑆
∗
.∃𝑡
󸀠
∈ 𝑆
𝜔
.𝑡 ∘ 𝑡
󸀠
⊨ 𝑃”

to “∀𝑡 ∈ 𝑆𝜔.∀𝑖.∃𝑡󸀠 ∈ 𝑆𝜔.𝑈𝑝𝑡𝑜𝑁 𝑒 𝑡 𝑡
󸀠
𝑖 ∧ 𝑡
󸀠
⊨ 𝑃” and have the

following definition:

Definition IsLivenessProperty (p:
Property) :=

forall t i, exists t’, UptoN e t t’
i /\ p t’.

Safety Closure. “{𝑡 ∈ 𝑆
𝜔
| ∀𝑖.𝑡
[⋅⋅⋅𝑖]

⊨ 𝑃}” is changed to “{𝑡 ∈
𝑆
𝜔
| ∀𝑖.∃𝑡

󸀠
.𝑈𝑝𝑡𝑜𝑁 𝑡 𝑡

󸀠
𝑖 ∧ 𝑡
󸀠
⊨ 𝑃}”.

Definition SafetyClosure (p: Property):
Property :=

fun t => forall i, exists t’, UptoN t
t’ i /\ p t’.

We use the notation mechanism of Coq to make the
representations more succinct. 𝑝 [/\] 𝑞 denotes that the
intersection of properties 𝑝 and 𝑞. 𝑝 [<=] 𝑞 expresses the fact
that property 𝑝 is a subset of property 𝑞. 𝑝 [=] 𝑞 describes

the fact that property 𝑝 is equal to property 𝑞. [𝐶]𝑝 is
the safety closure of 𝑝. [𝑆?] is a shorthand of predicate
𝐼𝑠𝑆𝑎𝑓𝑒𝑡𝑦𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 while [𝐿?] is a shorthand of predicate
𝐼𝑠𝐿𝑖V𝑒𝑛𝑒𝑠𝑠𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦.

Machine Closed. It is defined as

Definition MachineClosed (s
p:Property): Prop :=

[C] (s [/\] p) [=] s /\ [S?] s.

3.3. Transition System. As described in Section 2.1, the
specification of a system is of form 𝐼𝑛𝑖𝑡∧◻[𝑁𝑒𝑥𝑡]V∧𝐿. Guided
by this form, a transition system is parameterized by

(1) the set 𝑆𝑡 of states,
Variable St: Set.

(2) predicates 𝐼𝑛𝑖𝑡 of type 𝑃𝑟𝑒𝑑𝑂𝑛1𝑆𝑡 and 𝑁𝑒𝑥𝑡 of type
𝑃𝑟𝑒𝑑𝑂𝑛2𝑆𝑡 characterizing the initial states and next-
state relation, respectively, where we require that
(Parameter is a synonym of Variable in Coq.):
every state has a successor according to𝑁𝑒𝑥𝑡; in other
words,𝑁𝑒𝑥𝑡 is total.
Parameter Init: PredOn1 St.

Parameter Next: PredOn2 St.

Hypothesis next input enabled: forall
s, exists s’, Next s s’.

(3) two sets of indexes: 𝐼 and 𝐽. 𝐼 ∪ 𝐽 is finite or countable
infinite and each 𝑘 ∈ 𝐼 ∪ 𝐽, action 𝑎

𝑘
is a subaction

of 𝑁𝑒𝑥𝑡. Each 𝑖 ∈ 𝐼 (𝑗 ∈ 𝐽, resp.), action 𝑎
𝑖
(𝑎
𝑗
,

resp.) is associated with a strong (weak, resp.) fairness
constraint.
Parameter Acts S: nat -> Actions St.

Parameter Acts W: nat -> Actions St.

Definition Acts SF := fun n =>
SF Action (Acts S n).

Definition Acts WF := fun n =>
WF Action (Acts W n).

Hypothesis Acts subaction of Next SF:

forall i s s’, (Acts S i) s s’ ->
Next s s’.

Hypothesis Acts subaction of Next WF:

forall i s s’, (Acts W i) s s’ ->
Next s s’.

In the scripts, we use a function of type 𝑛𝑎𝑡 →

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑆𝑡 to represent the set of actions. Note that
the cases where the set of actions is finite or countable
infinite are covered by the definitions of 𝐴𝑐𝑡𝑠 𝑆 and
𝐴𝑐𝑡𝑠 𝑊. The essential point is that both 𝐴𝑐𝑡𝑠 𝑆 and
𝐴𝑐𝑡𝑠 𝑊 are of type 𝑛𝑎𝑡 → 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑆𝑡. Suppose the
set of 𝐼 is finite, say its cardinality is 𝑁, we can build
𝐴𝑐𝑡𝑠 𝑆 as follows: for each 𝑖 < 𝑁, map 𝐴𝑐𝑡𝑠 𝑆 𝑖 to the
(𝑖 + 1)th action in 𝐼; for each 𝑖 ≥ 𝑁, map 𝐴𝑐𝑡𝑠 𝑆 𝑖 to
(𝑓𝑢𝑛 𝑠 𝑠

󸀠
⇒ 𝐹𝑎𝑙𝑠𝑒). If the set of 𝐼 is countable infinite,

then for each 𝑖 ∈ N, map𝐴𝑐𝑡𝑠 𝑆 𝑖 to the (𝑖+1)th action.
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Based on the above definitions, we can build the safety
part 𝑠𝑝 and the liveness part 𝑙𝑝 for the transition system:

(i) 𝑠𝑝: all traces allowed by 𝐼𝑛𝑖𝑡 and𝑁𝑒𝑥𝑡.
Definition sp :=

fun (t:Trace ) => Init (t 0)/\
forall n, Next (t n)(t (S n)).

(ii) 𝑙𝑝: all traces allowed by the set of fairness constraints.
Definition lp: Property :=

fun t => forall n, Acts SF n t /\
Acts WF n t.

Finally, we get the theorem to prove

Theorem machine closed:

MachineClosed sp lp.

4. Proof of Machine Closed Theorem

The proof follows the proof of Proposition 4 in [4].
Given a specification of a transition system, 𝐼𝑛𝑖𝑡∧◻𝑁𝑒𝑥𝑡∧

𝐿 where 𝐿 = ∀𝑖 ∈ 𝐼.𝑊𝐹(𝑎
𝑖
) ∧ ∀𝑗 ∈ 𝐽.𝑆𝐹(𝑎

𝑗
), ∀𝑖 ∈ 𝐼.𝑎

𝑖
is

a subaction of 𝑁𝑒𝑥𝑡, ∀𝑗 ∈ 𝐽.𝑎
𝑗
is a subaction of 𝑁𝑒𝑥𝑡 and

𝐼 ∪ 𝐽 is finite or countable infinite, we need to prove that
(𝐼𝑛𝑖𝑡 ∧ ◻𝑁𝑒𝑥𝑡, 𝐿) is machine closed. Based on the discussion
in Section 3.3, here we prove a more general case where both
𝐼 and 𝐽 are countable infinite. Hence, we can take 𝐼 and 𝐽 to
be N.

The whole proof is divided into two steps. First, we prove
that a stronger version of the specification, in which all the
weak fairness constraints are changed to their strong fairness
counterparts, is machine closed. Second, we prove the origi-
nal specification is machine closed.

4.1. The Stronger Specification. To build a stronger specifica-
tion, first we need a mapping 𝑓 : 𝑛𝑎𝑡 → 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑆𝑡, which
has the property that 𝑟𝑎𝑛(𝐴𝑐𝑡𝑠 𝑆) ∪ 𝑟𝑎𝑛(𝐴𝑐𝑡𝑠 𝑊) = 𝑟𝑎𝑛(𝑓),
where 𝑟𝑎𝑛 ∙ is the range of function ∙. Informally speaking,
through𝑓we can get all the actions used in the original speci-
fication. In the following scripts, 𝑒V𝑒𝑛 𝑜𝑑𝑑 𝑑𝑒𝑐 is deployed to
test whether a natural number is even and𝑑𝑖V2 𝑛 returns 𝑛/2.

Definition f (n:nat): Actions St :=

match (even odd dec n) with

| left => Acts S (div2 n)

| right => Acts W (div2 n)

end.

Thenwe can build the stronger specification that is equivalent
to the original one except for

(i) the fairness constraint 𝑙𝑝 is replaced by 𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟.
As we can see in the following scripts, each action is
associated with a strong fairness constraint. It differs
from the original one in which some actions are
associated with weak fairness constraints, while the
other with strong fairness constraints.

Definition lp stronger := fun t =>
forall n, SF Action (f n) t.

(ii) Based on assumptions 𝐴𝑐𝑡𝑠 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝑒𝑥𝑡 𝑆𝐹

and 𝐴𝑐𝑡𝑠 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝑒𝑥𝑡 𝑊𝐹, the following the-
orem is proved:
Theorem Acts subaction of Next:

forall i s s’, (f i) s s’ ->
Next s s’.

Since all the actions are indexed by a natural number and
accessible through the number using 𝑓, in the sequel, we will
use a natural number to represent the action: phrase “action
𝑖” is equivalent to “action 𝑓(𝑖).”

The intermediate theorem about the stronger specifica-
tion is

Theorem sp lp stronger machine closed:

MachineClosed sp lp stronger.

Following the definition of machine closed, we need to
prove

(1) 𝑠𝑝 is a safety property;
(2) 𝐶(𝑠𝑝 ∩ 𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟) = 𝑠𝑝. There are two directions:

(1.1) 𝐶(𝑠𝑝 ∩ 𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟) ⊆ 𝑠𝑝;
(2.2) 𝑠𝑝 ⊆ 𝐶(𝑠𝑝 ∩ 𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟).

The set of all runs of the transition system is a safety
property. 𝐼𝑛𝑖𝑡 ∧ ◻[𝑁𝑒𝑥𝑡], which is equal to 𝑠𝑝, defines a
transition system. Hence, condition (1) is proved. Condition
(2.1) can be proved from the fact that 𝑠𝑝 ∩ 𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟 ⊆ 𝑠𝑝

and the following theorem:

Theorem SafetyClosureSmallest:

forall p p’, p[<=]p’ -> [S?] p’ ->
([C] p) [<=] p’.

In order to prove condition (2.2), based on the definition of
safety closure, it is sufficient to prove that for each 𝑡 ∈ 𝑠𝑝 and
𝑛 ∈ N, 𝑡

[⋅⋅⋅𝑛]
can be extended to an infinite trace 𝑡󸀠 such that

𝑡
󸀠
∈ 𝑠𝑝 ∧ 𝑡

󸀠
∈ 𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟. As described in [4], given 𝑡

[⋅⋅⋅𝑛]

we need to construct a trace-generate strategy 𝑔 which can
generate a trace 𝑡󸀠 and 𝑡󸀠 have properties: 𝑡󸀠

[⋅⋅⋅𝑛]
= 𝑡
[⋅⋅⋅𝑛]

∧ 𝑡
󸀠
∈

𝑠𝑝 ∧ 𝑡
󸀠
∈ 𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟.

4.1.1. Trace-Generate Strategy. Roughly speaking, a trace-
generate strategy is of type 𝑆∗ → 𝑆, which takes a finite trace
as input and returns a state. In other words, a trace-generate
strategy defines a scheduling policy which returns a next state
based on the state sequence the system already produced.
We first define the finite trace data type 𝐹𝑖𝑛𝑖𝑡𝑒𝑇𝑟𝑎𝑐𝑒 (list is
a predefined type in Coq: Inductive list (A: Type): Type :=
nil: list A—cons: A → list A → list A. The concatenation of
an element 𝑎 of type𝐴 and a list 𝑙 of type 𝑙𝑖𝑠𝑡 𝐴 is denoted by
𝑎 :: 𝑙.).

Definition FiniteTrace := list St.
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There are two ways to obtain a strategy function: (1) define
it as a function of type 𝐹𝑖𝑛𝑖𝑡𝑒𝑇𝑟𝑎𝑐𝑒 → 𝑆𝑡 directly; (2) first
define a relation of type 𝐹𝑖𝑛𝑖𝑡𝑒𝑇𝑟𝑎𝑐𝑒 → 𝑆𝑡 → 𝑃𝑟𝑜𝑝 and
then derive a function of type 𝐹𝑖𝑛𝑖𝑡𝑒𝑇𝑟𝑎𝑐𝑒 → 𝑆𝑡 from
the relation using the classical choice axiom. In our case, we
choose the second way, since we only care about the relation.
And furthermore defining a relation is easier than defining a
function: a function is difficult to define if the computation
is complex. In our case, we essentially defined a scheduling
policy, which is complex.

In order to use the classic choice axiom, the relation 𝑔

should be total; that is, for each finite trace 𝑡 there exists a
state 𝑠 such that 𝑔 𝑡 𝑠. We only consider this kind of strategy
relations. The set of all valid strategy relations is captured by
𝑉𝐺𝑒𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦.

Definition GenStrategy := FiniteTrace
-> St -> Prop.

Definition GenStrategyF := FiniteTrace
-> St.

Definition VGenStrategy :=

{g:GenStrategy | (forall f, exists
s:St, g f s) } .

A trace 𝑡 can be derived based on a valid strategy relation V𝑠𝑟.
The main derivation steps are as follows:

(1) a strategy function 𝑓 is derived from V𝑠𝑟 using the
choice axiom;

(2) given a strategy function 𝑓 and a natural number
𝑛, prefix 𝑡

[⋅⋅⋅𝑛]
is calculated recursively by 𝐺𝑆𝐹 𝑡𝑜

𝐹𝑖𝑛𝑖𝑡𝑒𝑇𝑟𝑎𝑐𝑒;

Fixpoint GSF to FiniteTrace
(sf:GenStrategyF)(n:nat) {struct n }

: FiniteTrace :=

match n with

| 0 => sf nil :: nil

| S n’ => let t’ := GSF to FiniteTrace
sf n’ in

sf t’ :: t’
end.

(3) the prefix is always not nil, which means we can
always get the last state 𝑡

𝑛
that is the 𝑛th state in 𝑡.

(𝑚𝑦ℎ𝑒𝑎𝑑 of type ∀𝑙 : 𝐹𝑖𝑛𝑖𝑡𝑒𝑇𝑟𝑎𝑐𝑒.𝑙 ̸= 𝑛𝑖𝑙 → 𝑆𝑡

returns the head of a finite trace. It requires a proof
that the input finite trace is not nil. This fact is pro-
vided by theorem 𝐺𝑆𝐹 𝑡𝑜 𝐹𝑖𝑛𝑖𝑡𝑒𝑇𝑟𝑎𝑐𝑒 𝑛𝑜𝑡𝑛𝑖𝑙.)
Definition GSF to Trace (g:
GenStrategyF): Trace :=

fun n => myhead (GSF to FiniteTrace
g n)

(GSF to FiniteTrace notnil g n).

Finally we get theorem 𝐺𝑒𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑡𝑜 𝑇𝑟𝑎𝑐𝑒, through
which we can derive a trace 𝑡 based on a valid strategy 𝑔 and
𝑡 fulfils our constraints that (𝑛𝑖𝑙, 𝑡

0
) and (𝑡

[⋅⋅⋅𝑖]
, 𝑡
𝑖+1
) (for all

𝑖 ∈ N) satisfies the strategy relation. 𝐺𝑒𝑡𝐺 is used to get the
𝐺𝑒𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 part from a 𝑉𝐺𝑒𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 and 𝐺𝑒𝑡𝑃𝑟𝑒𝑓𝑖𝑥𝑁 is
used to get the first 𝑛 states from a 𝑇𝑟𝑎𝑐𝑒.

Theorem GenStrategy to Trace:

forall g: VGenStrategy, exists
t:Trace,

forall n, (GetG g) (GetPrefixN t n)
(t n).

4.1.2. Design a Trace-Generate Strategy. Recall that we need
to prove condition (2.2) in the previous subsection: given a
trace 𝑡 ∈ 𝑠𝑝 and a position 𝑛, a trace 𝑡󸀠 should be constructed
such that three properties (a) 𝑡󸀠

[⋅⋅⋅𝑛]
= 𝑡
[⋅⋅⋅𝑛]

, (b) 𝑡󸀠 ∈ 𝑠𝑝 and
(c) 𝑡󸀠 ∈ 𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟 are hold. To achieve the goal, firstly, we
need to design a trace-generate strategy relation (the relation
is designed with the three properties under consideration);
secondly, we need to prove the relation is valid; at last, we
need to prove the generated trace conforms to the properties.
We fix 𝑡, 𝑛, 𝑓𝑡, and 𝑠 in the sequel.

Define the Relation. The design principles of the relation are
as follows:

(1) at any point, the set of schedulable actions should be
finite and all actions in the set is enabled;

(2) at any point, if the schedulable action set is not empty,
the action that has not been executed for the longest
time is scheduled to execute. In event of ties, the
action withminimal index is chosen. Principle 1 is the
key to this principle, since if the schedulable action set
is infinite, there may exist an action which is infinitely
enabled but not infinitely executed;

(3) at any point, if the schedulable actions set is empty,
then pick𝑁𝑒𝑥𝑡 to execute since𝑁𝑒𝑥𝑡 is total;

(4) 𝑡
[⋅⋅⋅𝑛]

should be a prefix of the generated trace.

The strategy is defined as:

Definition MC strategy (t:Trace )
(n:nat) :=

fun (ft:FiniteTrace St)(s:St) =>

match ft with

| nil => s = t 0

| cons s’ tl =>

(0<length ft<=n /\t (length ft)=s)
\/

(n<length ft /\ (forall i,∼

MC Enabled ft s’ i)/\Next s’ s)

\/(n<length ft /\exists i,
MC Enabled ft s’ i /\
MC theMin ft s’ i /\ (Acts i) s’ s)

end.
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Intuitively “(𝑀𝐶 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑡 𝑛)𝑓𝑡 𝑠” has the following
implicit meanings:

(i) 𝑓𝑡 is the finite trace that the system has already
produced;

(ii) if (𝑀𝐶 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑡 𝑛) 𝑓𝑡 𝑠 holds, then 𝑠 is the next state
the system will generate.

Depend on the length of 𝑓𝑡, there are 4 cases of how the
strategy generates a next state: (a) 𝑓𝑡 is nil; (b) |𝑓𝑡| ≤ 𝑛; (c)
|𝑓𝑡| > 𝑛 and all the actions are not enabled; (d) |𝑓𝑡| > 𝑛 and
there is an enabled action.

𝑀𝐶 𝑡ℎ𝑒𝑀𝑖𝑛𝑓𝑡 𝑠
󸀠
𝑖 denotes that the action 𝑖 has the

properties mentioned in the second principle. In order to
define 𝑀𝐶 𝑡ℎ𝑒𝑀𝑖𝑛, there are several concepts that need
to be represented: (a) given a finite trace and an action,
the number of steps that the action continuously has not
been executed up to now (𝑛𝑠𝑡𝑒𝑝𝑠); (b) notion of the largest
number of nonexecuted steps (𝑀𝐶 𝑡ℎ𝑒𝐿𝑜𝑛𝑔𝑒𝑠𝑡𝐸𝑛𝑎𝑏𝑙𝑒𝑑); (c)
the smallest index with the largest nonexecuted number
𝑀𝐶 𝑡ℎ𝑒𝑀𝑖𝑛. Given a finite trace 𝑓𝑡, a nat 𝑖, and an action
predicate 𝑎,𝑁𝑜𝐸𝑥𝑒𝑂𝑓𝐴𝑐𝑡𝑖𝑜𝑛𝑈𝑝𝑇𝑜 𝑓𝑡 𝑖 𝑎 returns the number
of executable actions of 𝑓𝑡.

Fixpoint nsteps (ft:FiniteTrace St)
(i:nat)

(a: Actions St) { struct ft } : nat :=

if lt le dec i (length ft) then

match ft with

| nil => 0

| hd :: nil => 0

| hd :: (hd’ :: ) as tail =>

if action dec a hd’ hd then 0

else S (NoExeOfActionUpTo tail
i a)

end

else 0.

Definition MC theLongestEnabled (ft:
FiniteTrace ) s idx :=

MC Enabled s idx /\

(forall idx’, MC Enabled s idx’ ->
nsteps ft idx’(f idx’)<=nsteps ft
idx(f idx).

Definition MC theMin (ft: FiniteTrace
) s idx :=

MC theLongestEnabled ft s idx /\

(forall idx’, MC theLongestEnabled
ft s idx’->idx <= idx’).

𝑛𝑠𝑡𝑒𝑝𝑠 needs more descriptions. For its arguments, 𝑓𝑡 is
the finite trace, 𝑖 is the index of the action and 𝑎 is the action.
𝑙𝑡 𝑙𝑒 𝑑𝑒𝑐 returns 𝑡𝑟𝑢𝑒 if and only if its first argument is less
than the second argument. The first if-statement is the key

to make the schedulable action set finite, but it does so in
an implicit way, which will be explained in section “Prove
the Properties.” 𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑐 𝑎 ℎ𝑑󸀠 ℎ𝑑 returns 𝑡𝑟𝑢𝑒 if and only if
𝑎 ℎ𝑑 ℎ𝑑

󸀠 holds.

Useful Theorems. In the sequent proofs, we want to choose
an element with a specific property from a set, for example,
the minimal or the maximal element from a set according to
some order.We use theorems to do so and these theorems are
of a similar pattern: given a set, if the set is not empty, then
there exists an element in the set with some specific proper-
ties.

(i) Get the Minimal Element. The following theorem
states that given a set 𝑃, if 𝑃 is not empty and 𝑅 is
a well-founded order, then there exists a minimal ele-
ment in 𝑃 according to order 𝑅.
Theorem ExistTheMin general:

forall (A:Set)(R: A -> A -> Prop)
(P: Ensemble A),

well founded R ->(∼ Empty set P)
->

(exists n, In P n /\ (forall i,
In P i ->∼ R i n)).

(ii) Get the Maximal Element. The following theorem
expresses that given a set 𝑃 of natural numbers, if
there exists a natural number 𝑚𝑎𝑥 which is larger
than all the elements in𝑃, then there exists a maximal
element in 𝑃.
Theorem ExistTheMax nat:

(∼ Empty set P) ->

(exists max, (forall n, In P
n -> n <= max)) ->

exists m, In P m /\ forall n,
In P n -> n <= m.

These theorems can be thought as a kind of element
choosers, which can be used to pick up a specific ele-
ment from a set. Combining these choosers with
proper initializations of the set predicates (i.e., 𝑃 in
the theorem), we can obtain some useful complex
choosers, such as the one choosing the smallest index
among the indexes whose associated actions have not
been executed for the longest time.

(iii) The following theorem represents that given𝑃, a finite
set of natural numbers, and 𝐹, a relation over two nat-
ural numbers, if 𝐹 is total on 𝑃 (i.e., for each element
in 𝑃 there exists a number 𝐹-related to it), and 𝐹 is
transitive over the second parameter (i.e., for each
element in 𝑃, if a number is 𝐹-related to the element
then any number larger than the number is also 𝐹-
related to the element) then there exists an𝑚 such that
𝑚 is 𝐹-related to each element in 𝑃.
Theorem PFiniteExistsAMax:

forall (P: Ensemble nat)
(F: nat->nat->Prop),
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Finite P->(forall i, In P i ->
exists xi, F i xi) ->

(forall i xi xi’, In P i->F i
xi->xi<=xi’->F i xi’) ->

exists m, forall i, In P i ->
F i m.

Prove the Validity. The validity of 𝑀𝐶 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 is demon-
strated by the following theorem:

Theorem MC strategy Valid:

forall t n f, exists s:St, MC strategy
t n f s.

The theorem is proved by case analysis, which corresponds
to the four cases of 𝑀𝐶 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦. For the first 3 cases, they
are not hard to prove. For the last case, we need to prove the
following theorem:

Theorem MC theMin Valid:

forall ft s, (exists i, MC Enabled
ft s i) ->

exists idx, MC theMin ft s idx.

This theorem is proved based on the theorems described in
the previous subsection.

Prove the Properties. At this point, we have a valid trace-
generate relation, based onwhichwe obtain a generated trace.
We need to prove that the generated trace conforms to the
three properties.

Recall that 𝑡󸀠 is the generated trace. Property (a) (i.e.,
𝑡
󸀠

[⋅⋅⋅𝑛]
= 𝑡
[⋅⋅⋅𝑛]

) is ensured by the first and second cases of
𝑀𝐶 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦: if𝑓𝑡 is nil, then the next state is 𝑡

0
; else if |𝑓𝑡| ≤

𝑛, then the next state is 𝑡
|𝑓𝑡|

. Property (b) is proved based on
the facts that: (1) 𝑡 ∈ 𝑠𝑝; (2) case 3 generates a next state based
on𝑁𝑒𝑥𝑡; (3) case 4 generates a state based on an action which
is a subaction of𝑁𝑒𝑥𝑡.The last property (c) expresses that for
each action if it is infinitely enabled in trace 𝑡󸀠, then it is also
infinitely executed. We prove this by contradiction:

(1) if there is an action that is infinitely enabled but
finitely executed, then there is a set of actions that are
infinitely enabled but only finitely executed;

(2) properly pick an action 𝑎 from the set and a position
𝑛 such that 𝑎 is not executed in the suffix 𝑡󸀠

[𝑛⋅⋅⋅ ]
;

(3) pick a position 𝑚 > 𝑛 such that at 𝑚 the next action
chosen to execute by the scheduler is 𝑎, which con-
flicts with step 2.

In order to make a concise representation, we have the
following definitions:

Definition NotAfter t a n :=

forall i, n<=i -> ∼a t[i] t[S i].

Definition InfEn t a :=

GF (En a) t.

For the second step, corresponding to 𝑀𝐶 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦, we
choose action 𝑖𝑑𝑥 and 𝑛 such that (𝑛, 𝑖𝑑𝑥) is the smallest
element in {(𝑛, 𝑖𝑑𝑥) | 𝑖𝑑𝑥 <= 𝑛 + 1 ∧ 𝐼𝑛𝑓𝐸𝑛 𝑡

󸀠
(𝑓 𝑖) ∧

𝑁𝑜𝑡𝐴𝑓𝑡𝑒𝑟 𝑡
󸀠
(𝑓 𝑖) 𝑛} (the order between two pairs𝑝

1
= (𝑎
1
, 𝑏
1
)

and 𝑝
2
= (𝑎
2
, 𝑏
2
) is the classical lexicographic order: 𝑝

1
<

𝑝
2
≜ 𝑎
1
< 𝑎
2
∨(𝑎
1
= 𝑎
2
∧𝑏
1
< 𝑏
2
)), that is, the smallest 𝑖𝑑𝑥with

the smallest 𝑛.The first conjunct is used to ensure that we only
consider the actions whose indexes are less than the length
of 𝑓𝑡. This constraint corresponds to the first if-statement in
𝑛𝑠𝑡𝑒𝑝𝑠.The second conjunct guarantees that there always is an
arbitrary large position at which the action is enabled. It can
be proved that the set is not empty based on the assumption
in step 1. Again, there is a chooser theorem for this operation.

Intuitively there is some point after 𝑛 where action 𝑖𝑑𝑥 is
the next action to execute, because it has not been executed
since 𝑛 and its index is the smallest. Nowwe need to find such
a point𝑚 at which:

(1) for each action 𝑖𝑑𝑥󸀠 ≤ 𝑛, one of the following cases
holds:

(a) if 𝑖𝑑𝑥󸀠 is infinitely enabled and infinitely exe-
cuted, then 𝑛𝑠𝑡𝑒𝑝𝑠 𝑡

[⋅⋅⋅𝑚]
𝑖𝑑𝑥
󸀠
< 𝑛𝑠𝑡𝑒𝑝𝑠 𝑡

[⋅⋅⋅𝑚]
𝑖𝑑𝑥;

(b) if 𝑖𝑑𝑥󸀠 is infinitely enabled but finitely executed,
then
(i) if action 𝑖𝑑𝑥󸀠 is executed at least once after

𝑛, then 𝑛𝑠𝑡𝑒𝑝𝑠 𝑡
[⋅⋅⋅𝑚]

𝑖𝑑x’ < 𝑛𝑠𝑡𝑒𝑝𝑠 𝑡
[⋅⋅⋅𝑚]

𝑖𝑑𝑥;
(ii) if action 𝑖𝑑𝑥󸀠 is not executed after 𝑛, then

𝑛𝑠𝑡𝑒𝑝𝑠 𝑡
[⋅⋅⋅𝑚]

𝑖𝑑𝑥
󸀠
≤ 𝑛𝑠𝑡𝑒𝑝𝑠 𝑡

[⋅⋅⋅𝑚]
𝑖𝑑𝑥;

(c) if 𝑖𝑑𝑥󸀠 is finitely enabled, then 𝑖𝑑𝑥
󸀠 is not

enabled at𝑚;

(2) for each action 𝑖𝑑𝑥
󸀠

> 𝑛, 𝑛𝑠𝑡𝑒𝑝𝑠 𝑡
[⋅⋅⋅𝑚]

𝑖𝑑𝑥
󸀠

≤

𝑛𝑠𝑡𝑒𝑝𝑠 𝑡
[⋅⋅⋅𝑚]

𝑖𝑑𝑥 and 𝑖𝑑𝑥 < 𝑖𝑑𝑥󸀠;
Suppose we find 𝑚 satisfying both conditions. The theo-

rem𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓𝑀 (we omit the preconditions, since they are
toomany) states that 𝑖𝑑𝑥 is the smallest indexwith the longest
nonexecute steps (i.e.,𝑀𝐶 𝑡ℎ𝑒𝑀𝑖𝑛 𝑡

󸀠
[⋅ ⋅ ⋅ 𝑚]𝑡

󸀠
[𝑚] 𝑖𝑑𝑥), hence

only the fourth case of𝑀𝐶 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 can be true. Based on the
uniqueness of𝑀𝐶 𝑡ℎ𝑒𝑀𝑖𝑛, we can infer that action 𝑖𝑑𝑥 is the
action the scheduler chooses to execute at𝑚.

Lemma PropertyOfM:

⋅ ⋅ ⋅ ->

MC theMin t’ [⋅ ⋅ ⋅ m] t’ [m] idx.

Theorem MC theMin Unique:

forall ft s i i’, MC theMin ft
s i -> MC theMin ft s i’ ->
i=i’.

In order to obtain such 𝑚, we first construct that 𝑚󸀠
s.t. condition (1) holds and then construct that 𝑚 s.t. both
conditions hold. We use theorem 𝑃𝐹𝑖𝑛𝑖𝑡𝑒𝐸𝑥𝑖𝑠𝑡𝑠𝐴𝑀𝑎𝑥 to get
𝑚
󸀠. In the theorem 𝑃 is the set of indexes less than (𝑛+1) and

𝐹 is defined as
Definition F := fun i xi =>

let inf en := (GF St (En St (Acts i))
t’) in
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let inf exe := (GF St (Acts i) t’) in

let tp := (GetPrefixN St t’ (S xi)) in

let a := Acts idx in

let a’ := Acts i in

n <= xi /\

((inf en /\ inf exe /\ nstep tp i a’ <
nstep tp idx a) \/

(inf en /\∼ inf exe /\

(((exists n, min n <= n /\ a’ (t’ n)
(t’ (S n)))/\

nstep tp i a’ < nstep tp idx a) \/

((forall n, min n <= n ->∼a’ (t’ n)
(t’ (S n)))/\

nstep tp i a’ <= nstep tp idx a)))
\/

(∼ inf en /\ (forall k, xi <= k -> ∼

En St a’ (t’ k)))).

The second conjunct consists of four disjuncts, each of which
corresponds to a sub condition in condition (1). The total
and transitive properties of 𝐹 are proved by case analysis.
By 𝑃𝐹𝑖𝑛𝑖𝑡𝑒𝐸𝑥𝑖𝑠𝑡𝑠𝐴𝑀𝑎𝑥 we obtain the 𝑚󸀠 which is 𝐹-related
to all the actions whose indexes are less than (𝑛 + 1). For
each index 𝑖 > 𝑛, by using theorem 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑙𝑒𝑠𝑠 we know
𝑛𝑠𝑡𝑒𝑝 𝑡

[⋅⋅⋅𝑚]
𝑖 (𝑓 𝑖) ≤ (𝑚 + 1 − 𝑖), and by theorem 𝑙𝑒𝑠𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟,

we know 𝑚 − 𝑛 ≤ 𝑛𝑠𝑡𝑒𝑝 𝑡
[⋅⋅⋅𝑚]

𝑖𝑑𝑥 (𝑓 𝑖𝑑𝑥); hence, we know𝑚

also holds for condition (2).Thus𝑚 is the position we want—
property (c) holds on trace 𝑡󸀠.

Lemma greater less:

forall ft i a, nstep ft i a <= length
ft - i.

Lemma less greater:

forall t idx a n, idx <=S n ->

(forall j, n<=j -> ∼a (t j)
(t (S j))) ->

forall k, n < k -> k-n<=nstep
(GetPrefixN St t (S k)) idx a.

Finally, we prove that the stronger specification is
machine closed.

4.2. The Original Specification. Based on theorem 𝑠𝑝

𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑙𝑜𝑠𝑒𝑑, we need to prove theorem
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑙𝑜𝑠𝑒𝑑. According to the definition of machine
closed, the proof is sketched as

(1) prove 𝑠𝑝 is a safety property;
(2) prove 𝐶(𝑠𝑝 ∩ 𝑙𝑝) = 𝑠𝑝. There are two directions:

(a) 𝐶(𝑠𝑝∩ 𝑙𝑝) ⊆ 𝑠𝑝. The proof is similar to the proof
of condition (2.1) in Section 4.1;

(b) 𝑠𝑝 ⊆ 𝐶(𝑠𝑝 ∩ 𝑙𝑝). Given 𝑡 and 𝑖, by theorem
𝑠𝑝 𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 we can get an
extended trace 𝑡

0
of 𝑡
[⋅⋅⋅𝑖]

such that 𝑡
0
∈ 𝑠𝑝 ∧ 𝑡

0
∈

𝑙𝑝 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟. Hence, the only subgoal needed to
solve is to prove that 𝑡

0
is also in 𝑙𝑝. It is sufficient

to prove that
(i) for each 𝑖 ∈ 𝐼, 𝑡

0
satisfies the strong fairness

constraint of action 𝑎
𝑖
—this holds, since

𝑡
0
satisfies the strong fairness constraint of

action 𝑎
𝑓(2∗𝑖)

which is equal to 𝑎
𝑖
.

(ii) for each 𝑖 ∈ 𝐽, 𝑡
0
satisfies the weak fairness

constraint of action 𝑎
𝑗
—this holds, since

𝑡
0
satisfies the strong fairness constraint

of action 𝑎
𝑓(2∗𝑗+1)

which is equal to 𝑎
𝑗

and the following theoremwhich expresses
that if a trace satisfies the strong fairness
constraint of an action it also satisfies the
weak fairness constraint of that action:
Theorem SF imp WF:
forall (a:Actions), SF Action
a [->] WF Action a.

5. Related Works and Concluding Remarks

The machine closed theorem is first proved in [4]. There is
already some work that embeds TLAi n a theorem prover
[9], but to our best knowledge, this is the first time that the
theorem is formally proved in a theorem prover. There are
several other works that concern the definitions of properties.
These works can be discussed in two steps. The first step is
how traces are represented. In [10], a function of type 𝑛𝑎𝑡 →
𝑆𝑡 is chosen, which is the same as our solution. In other
works, inductive and/or coinductive types are used [7, 8, 11].
In [12], the authors propose amore general solution, in which
they do not commit to a particular formalization of traces;
instead, they exploit the module system of Coq and only list
the interface of traces. The second step is how the safety and
liveness properties are defined. In [7], the safety property is
defined as a state invariant of a transition system and the
liveness property is not defined formally.

In this paper, we present a formal proof of the themachine
closed theorem in theorem prover Coq. Various fundamental
definitions, such as traces, properties, safety property, liveness
property, safety closure and machine closed, are given. Based
on these definitions, the theorem is formally stated and
proved. The main proof of machine closed theorem is done
using the section mechanism of Coq.This mechanismmakes
our formalization adaptable. It can be encapsulated into a
module or a record. In our case study, we used the module
type. The result module is general, since it is at the semantics
level (because we do the proof in a shallow embedding
manner) and thus is independent of any concrete syntax.This
work also results in several reusable Coq libraries. The Coq
scripts can be provided upon request.
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[8] Y. Bertot and P. Castéran, Interactive Theorem Proving and Pro-
gram Development, Coq’Art: The Calculus of Inductive Con-
structions, Springer, Berlin, Germany, 2004.

[9] S. Merz, “Yet another encoding of TLA in Isabelle,” Rapport
de Recherche, Institut für Informatik, TU München, Germany,
1997.

[10] O. Müller and T. Nipkow, “Combining model checking and
deduction for I/O-automata,” in Tools and Algorithms For the
Construction and Analysis of Systems, pp. 1–16, Springer, 1995.

[11] O. Müller and T. Nipkow, “Traces of I/O automata in
Isabelle/HOLCF,” in TAPSOFT’97: Theory and Practice of Soft-
ware Development, M. Bidoit and M. Dauchet, Eds., vol. 1214,
pp. 580–594, 1997.

[12] M. H. Tsai and B. Y. Wang, “Formalization of CTL∗ in calculus
of inductive constructions,” in ASIAN, pp. 316–330, 2006.


