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A joint encryption and reversible data hiding (joint encryption-RDH) scheme is proposed in this paper. The cover image is
transformed to the frequency domain with integer discrete wavelet transform (integer DWT) for the encryption and data hiding.
Additional data is hidden into the permuted middle (LH, HL) and high (HH) frequency subbands of integer DWT coefficients
with a histogram modification based method. A combination of permutations both in the frequency domain and in the spatial
domain is imposed for the encryption. In the receiving end, the encrypted image with hidden data can be decrypted to the image
with hidden data, which is similar to the original image without hidden data, by only using the encryption key; if someone has
both the data hiding key and the encryption key, he can both extract the hidden data and reversibly recover the original image.
Experimental results demonstrate that, compared with existing joint encryption-RDH schemes, the proposed scheme has gained
larger embedding capacity, and the distribution of the encrypted image with data hidden has a random like behavior. It can also

achieve the lossless restoration of the cover image.

1. Introduction

Compared with traditional watermarking and data hiding
schemes, reversible data hiding schemes can be applied in a
larger field of secure communication and watermarking due
to its reversibility. Many reversible data hiding schemes have
been proposed in recent years, which can be classified into
three main catalogues: the first one is compression based
scheme [1], the second one is difference expansion based
scheme [2-5], and the third one is histogram modification
based scheme [6-10]. Reversible data hiding based on com-
pression makes use of the redundancy of cover images, so the
characters of the cover images limit the capacity and quality
of data hiding. Difference expansion based scheme was firstly
proposed by Tian [5], which hid one-bit data by extending
the difference between two neighbor pixels. Alattar [2-4]
improved the hiding capacity by extending #n — 1 pairs of nei-
ghbor pixels’ differences to hide n — 1 bitsdata. However, the
quality of the cover image drops quickly, while the hiding
capacity increases. Schemes based on histogram modification
cause less distortion to the cover image. However, the peak
points of the histogram limit the hiding capacity [11]. There

are two measures to increase the hiding capacity in histogram
modification based data hiding schemes: raising the peak
points” height or increasing the number of peak points. Many
schemes based on the two ways have been proposed. Lin et al.
[6] proposed a multilevel embedding strategy to increase the
number of peak points. Some schemes increased the height of
the peak points through generating the histogram of the
difference image. For example, Tsai et al. [8] constructed the
difference image by a prediction model that makes full use
of the similarity between neighbor pixels. Kim et al. [12] sam-
pled the original image to construct the difference images. A
predicted image based on the sampled images was con-
structed. Then the histograms of difference images between
the predicted image and these sampled images were gener-
ated for data hiding.

As is well known, encryption is an old and efficient
way in secure communication. If combined with encryption,
reversible data hiding will achieve greater security. Besides,
there are also scenarios that data hiding needs to be done in
the encrypted domain or combined with the encryption,
especially in the age of big data and cloud computing. A con-
tent owner does not trust the processing service provider, and
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the ability to manipulate the encrypted data while keeping
the plain content unrevealed is desired [13]. Suppose that
there are sensitive images uploaded to the cloud storage in the
encrypted form and some additional data needs to be hidden
into these images to mark their ownership. However, the data
hiding process has to be done in the encrypted domain
because the data administrator does not have the right and the
key to decrypt the image.

In the past few years, some schemes that combine encryp-
tion and data hiding have been proposed [13-18]. From the
data hider’s point of view, data can be hidden into the spatial
domain, the encrypted domain [13, 14, 16-18], or both of the
two domains [15]. Although high image quality after data
hiding has been achieved in [15], the scheme is not reversible.
Reversible data hiding schemes in encrypted images are
proposed in [13, 14]. In [14], an improved measurement of
smoothness is proposed to make full use of all the pixels in the
image, and a side match scheme is proposed to further
decrease the error rate of extracted bits, both of which have
improved the embedding capacity of the basic data hiding
scheme in the encrypted image proposed in [13]. In [16], a
reversible data hiding scheme in encrypted images by reserv-
ing room before encryption is proposed. The self-embedding
of LSB planes guarantees the reversibility of LSB substitution
embedding. However, the embedding capacity is limited by
the embedding capacity of the reversible data hiding scheme
in the selected area. In [17], some pixels are selected and esti-
mated before encryption, and additional data is embedded
into the estimated errors with a histogram modification
method. In the receiving end, one can either decrypt the
image with hidden data first or extract the hidden data first.
Scheme proposed in [18] separates the data extraction and the
recovery of original image. The image is encrypted with the
encryption key. Then the encrypted image is passed to the
data hider, and additional data is embedded into the
encrypted image with the data hiding key. In the receiving
end, the hidden data can be extracted with only the data hid-
ing key; and only similar (not reversible) image can be recov-
ered with the encryption key; both the hidden data can be
extracted and original image can be reversibly recovered with
both keys.

Different from all the joint encryption and data hiding
schemes mentioned above, a joint encryption and reversible
data hiding scheme based on integer DWT and Arnold map
permutation is proposed. Not in the spatial domain, the data
hiding is imposed in the integer DWT domain, which is
more secure compared with those schemes in the spatial
domain. The cover image is firstly transformed to the fre-
quency domain with discrete integer wavelet transform (inte-
ger DWT). Then coefficients of the four subbands are permu-
tated with Arnold map transform, respectively, for the first
time. After that, additional data is embedded into the per-
muted middle (LH, HL) and high (HH) frequency subbands
through a histogram modification based method. Finally,
inverse integer DW'T is imposed to get the primary encrypted
image with hidden data. Another Arnold permutation based
on sampling, which is related to the permutation in the
frequency domain, is imposed on the primary encrypted
image with hidden data in the spatial domain. In the receiving
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end, one can decrypt the image to get the image with
hidden data, which is similar to the original image without
hidden data, by only using the encryption key that includes
permutation times of the twice permutations. If someone has
both the encryption key and the data hiding key, he can both
extract the hidden data and reversibly recover the original
image. Note that the processing procedures in the sending
end and in the receiving end described here are asymmetric,
which can achieve many applications, such as scenarios
mentioned above.

2. Preliminaries

2.1. Integer DWT. To achieve the reversible data hiding, rev-
ersible lifting integer DW'T is applied. Integer DWT is imple-
mented with the addition and subtraction of integers. Sup-
pose that I(x, ), 1 < x < M, 1 < y < N, is the pixel of the
image size of M x N; then 2D integer DWT is conducted as
follows.

(A) Row Transformation

(1) Let f1 = I(2%i—-1,:)and f2 = I(2 % i,:),i =
1,2,...,M/2, which are odd rows and even rows of
I, respectively.

(2) Acquire the high frequency coeflicients by calculating
the difference of the two: h_r(i,:) = f1(i,:) — f2(,).

(3) Acquire the low frequency coefficients by calculating
the average of the two: [_r(i,:) = f2(i,:) +floor(h(i, :)).

(4) Then coefhicients after 1D transformation are C_row =
[l_r; hr].

(B) Column Transformation

(1) Let f1 = I(;,2 *i—1)and f2 = C_row(;,2 * i),
i =1,2,...,N/2, which are odd columns and even
columns of C_row, respectively.

(2) Acquire the high frequency coeflicients by calculating
the difference of the two: h_c(:,i) = f1(:,i) — f2(:,9).

(3) Acquire the low frequency coefficients by calculating
the average of the two: [_c(:, i) = f2(:, i) +floor(h(:, i)).

(4) Finally, the coefficients of 2D integer DWT are C =
[l-c h].

2.2. Reversible Data Hiding and Data Extraction Based on
Histogram Expansion. Nietal. [19] firstly proposed reversible
data hiding based on histogram modification. It generates the
histogram of an image; then a pair of peak point and zero
point is found out in the histogram, and the histogram bet-
ween peak point and zero point is shifted to the zero point
side to produce the gap for data hiding. Very little distortion
will be caused by such schemes, and Ni et al. [19] have pointed
out that the peak signal-to-noise ratio (PSNR) between the
original image and the image with hidden data is above 48. As
mentioned in the beginning part of the paper, the drawback is
the rare capacity of data hiding. A novel histogram modifi-
cation based reversible data hiding scheme in integer DWT
domain, which increases the capacity of data hiding greatly,
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FIGURE 1: An example of histogram modification (HH subband of integer DWT of Lena).

is described here. Histograms of middle and high frequency
subbands of integer DWT of images are Laplacian like dis-
tribution. Thus, they are suitable for histogram modification
based data hiding method. Histograms are shifted to generate
the gap for data hiding. A demo of histogram modification
based data hiding method, which embeds data into the HH
subbands of Lena image, is presented in Figure 1.

2.2.1. Reversible Data Embedding. The generated histogram
of subband HH is depicted in Figure 1(b). Then the histogram
is shifted to both sides by an embedding strength T (Fig-
ure 1(c)). At last, data is embedded by expanding histogram
between T and —T, and the histogram after embedding is as
Figure 1(d).

The histograms of LH, HL, and HH subbands are gener-
ated and data is embedded into the coefficients by histogram
modification. For every coefficient C of LH, HL, and HH
subbands, given an embedding strength parameter g,

(1) if C > g, then C is shifted to C + g;
(2) else if C < —g, then C is shifted to C — g + 1;

(3) else C « 2xC+ B, and B is the data to be embedded.

2.2.2. Data Extraction and Reversible Recovery of Matrix
before Embedding. Generate the histograms of middle and
high frequency subbands and shift these histograms to extract
the hidden data, and the original coefficient matrices are
reversibly recovered through the following steps. For every
coefficient C of LH, HL, and HH subbands, given an embed-
ding strength parameter g,

(1) if C > 2 x g, then C is shifted to C — g;
(2) elseif C < =2 x g + 1, then Cis shifted to C + g — 1;

(3) else C « floor(C/2), and data is extracted: B = mod
(C,2).



Now, every coeflicient C of subbands LH, HL, and HH is
reversibly recovered and the extracted B is the data embedded
before.

2.3. Arnold Permutation [20]. Russian mathematician Vladi-
mir I. Arnold discovered Arnold’s cat map using an image
of cat. An image, not necessarily a cat, of course, can be
transformed to a random noise like image by rearranging the
position of original pixels. However, if iterated for moderate
times (denoted by permutation periods as presented in
Table 1), the original image will reappear. The permutation
periods differ as the sizes of images differ. The permutation
periods of images with different sizes of the traditional
Arnold permutation are presented in Table 1.

Let I(x, y) be the pixel of an image matrix with size NxNj;
then [} ] represents the position of the pixel. The Arnold

[ x+y

43y ]modn,

transform I' can be explained as T'[ 7]
where mod is the modulo-operation.
To better explain the theory, the transform can be decom-

posed into three elemental steps: in the x-direction: [} ] —
[*}” ], in the y-direction: [} ] — [, ], and in the modulo-

operation: [ ] — [} ] mod n.

2.4. Permutation in the Frequency Domain and Sample Per-
mutation in the Spatial Domain. Through permutation in the
frequency domain, nice encryption results will be achieved. A
novel encryption scheme based on the cooperation of permu-
tation in the frequency domain and sample permutation in
the spatial domain is proposed to accommodate the joint
encryption-RDH scheme in this paper. It is found out
through experiments that the proposed permutation in the
integer DWT domain can achieve the same results as the
proposed sample permutation scheme in the spatial domain.
Such features are applied in the design of joint encryption-
RDH scheme. Suppose that there is an image matrix M with
size N x N, and the permutation in the integer DWT domain
and sample permutation in the spatial domain are described,
respectively, in the followings.

(A) Permutation in the Integer DW'T Domain

(1) Decompose the original image matrix M with integer
DWT to obtain the four subbands (1 low frequency
subband LL, 2 middle frequency subbands LH and
HL, and 1 high frequency subband HH) as depicted in
Figure 1(a).

(2) Permute the four subbands after integer DWT with
Arnold map permutation that is presented in Sec-
tion 2.1, and the different permutation times are P1_T,
P2_T, P3_T, and P4_T, respectively:

LL' = Arnold (LL, P1.T),
LH' = Arnold (LH, P2.T),

1)
HL' = Arnold (HL, P3.T),

HH' = Arnold (HH, P4.T).
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(3) Impose invers integer DWT on the coefficients after
permutation to get the encrypted matrix M’.

(B) Sample Permutation in the Spatial Domain

(1) Sample matrix M into four submatrices:
Saml=M1:2:N-1,1:2:N-1),

Sam2=M2:2:N,1:2: N-1),

(2)
Sam3=M(1:2:N-1,2:2:N),

Sam4=M2:2:N—-1,2:2:N).

(2) Permute the four sampled submatrices with Arnold
map with different permutation times S1.T, S2_T,
S3_T,and S4_T

Sam1’ = Arnold (Sam1,S1.T),

Sam2’ = Arnold (Sam2, S2.T),
3)
Sam3’ = Arnold (Sam3, S3.T),

Sam4’ = Arnold (Sam4, $4.T).

(3) Compose the permuted sampled submatrix to get the
encrypted matrix M’

M (1:2:N-1,1:2:N-1)=Saml’,

M (2:2:N,1:2:N-1) = Sam2’,
(4)
M (1:2:N-1,2:2:N)=Sam3’,

M (2:2:N-1,2:2:N) = Sam4’.

If the permutation times are equal to the corresponding
permutation times in the two permutation schemes, which
mean that P1.T = S1.T, P2.T = S2.T, P3.T = S3_.T, and
P4_T = $4_T, the encryption results are equivalent.

3. Proposed Scheme

Different from existing joint encryption-RDH schemes [13-
18], which are based on the spatial domain, the proposed
scheme is based on the integer DWT domain. The detailed
joint encryption-RDH scheme is presented in this section.
The scheme is composed of two parts. One part is data hiding
and image encryption, as presented in Figure 2; the other part
is data extraction and original image recovery, which is pre-
sented in Figure 3. Note that the two parts are not symmetric.
The encryption is achieved with permutation before data
hiding and after data hiding in Figure 2, while the data extrac-
tion is after decryption in Figure 3. The asymmetric design
can be applied in such a scenario. When someone only has the
encryption key, he can decrypt the image and get the
decrypted image with hidden information, which is very sim-
ilar to the original image. The decrypted image can be utilized
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TABLE 1: Arnold permutation periods of images with different sizes.
Image size 512 x 512 256 x 256 128 x 128 64 x 64 32x32 16 x 16 8x8 4x4
Period 384 192 96 48 24 12 6 3
| o
Permutation on
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FIGURE 2: Data hiding and image encryption.
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FIGURE 3: Data extraction and image recovery.

in a variety of applications. However, he cannot get rid of the
hidden data, which may work as the watermark for the
copyright or authentication.

In the sending end, the data hiding and image encryption
process are achieved alternately. Original image I is firstly
decomposed with the integer DWT proposed in Section 2.1.
Then, the Arnold permutation is imposed on the four
subbands for the first time encryption. Data is embedded into
the permuted middle and high frequency subbands with a
reversible data hiding scheme based on histogram modifica-
tion. After that inverse integer DWT is imposed to acquire the
primary permuted image with hidden data I'. Finally, a
sample-permutation scheme is imposed on I' to get the final
encrypted image with hidden data I". Because the reversible
data hiding is based on histogram modification, overflow/
underflow is hard to avoid. Therefore, a location map for
recording the positions and values of the underflow and over-
flow pixels in the spatial domain is constructed. The location
map is compressed and encrypted as the key for data extrac-
tion. The flow chart is presented in Figure 2.

In the receiving end, there are two cases. One is simple
decryption, and the other one is data extraction and original
image recovery. In the former case, the image with hidden
data that is similar to the original image I is decrypted. In the
latter case, the hidden data is extracted and the original image
I is reversibly recovered. The received encrypted image with
hidden data I" is firstly revised according to the location map.
Then it is decrypted into the image with hidden data. Note
that, the encryption based on the two permutations in the
sending end can be decrypted by one permutation based on
the sample-permutation method. The permutation based on
sample permutation in the spatial domain can achieve the

same results as the permutation in the integer DWT domain
as presented in Section 2.4. Besides, the data hiding scheme
based on histogram modification in the integer DWT domain
can be implemented either before or after the permutation in
the integer DWT domain. Both of the features guarantee the
asymmetric decryption and data extraction. The total per-
mutation times are calculated according to the Arnold per-
mutation periods of image with different sizes (Table 1), the
permutation time P_T in the integer DWT domain per-
mutation, and the permutation time S_T' of the sample
permutation in the spatial domain. Through the delicate
design of the two permutations, decryption can be done with-
out integer DWT and inverse integer DWT. Although addi-
tional data is hidden in the permutated integer DW'T domain,
the proposed histogram modification based data hiding
scheme in the integer DWT domain guarantees the integrity
of the hidden data and the reversibility of the original cover
image. The flow chart is presented in Figure 3.

3.1. Data Hiding and Image Encryption

(1) Decompose the original image I (with size N x N)
with integer DWT (proposed in Section 2.1) to obtain
the four subbands (one low frequency subband LL,
two middle frequency subbands LH and HL, and
one high frequency subband HH) as depicted in
Figure 1(a).

(2) Permute the four subbands (LL, LH, HL, and HH)
with Arnold map permutation (proposed in



Section 2.3) synchronously. Note that, the per-
mutation times are the same, denoted by P_T":

LL = Arnold (LL, P_T), LH = Arnold (LH, P_T),

HL = Arnold (HL, P_T), HH = Arnold (HH, P_T).

©)

(3) Embed the preprocessed data into the middle and
high frequency subbands (LH, HL, and HH) with his-
togram modification based method (proposed in
Section 2.2.1).

(4) Impose invers integer DWT on the coefficients after
permutation and data hiding to get the primary per-
muted image with hidden data, denoted by I'.

(5) Sample I to four subimages:
Saml=I'"(1:2:N-1,1:2:N-1),
Sam2=1'(2:2:N,1:2:N-1),
Sam3=I1'(1:2:N-1,2:2:N),
Sam4=1'(2:2:N-1,2:2:N).
(6) Permute the four sampled submatrices with Arnold

map with different permutation times S1.T, S2_T,
S3.T,and S4_T

Sam1’ = Arnold (Sam1, S1.T),

Sam?2’ = Arnold (Sam2,82.T),
(7)
Sam3’ = Arnold (Sam3, $3.T),

Sam4’ = Arnold (Sam4, $4.T)..

(7) Compose the permuted sampled submatrix to get the
postprocessed matrix I":

I"1:2:N-1,1:2:N-1) = Saml/,

I"(2:2:N,1:2: N-1) = Sam2/,
1 ! (8)
I'(1:2:N-1,2:2:N)=Sam3,

I"(2:2:N-1,2:2:N) = Sam4’.

(8) Construct the location map L of overflow and under
flow pixels according to I", and for those few over-
flow/underflow pixels, change their values with ran-
dom integer value in the range of (0,255).

These permutation times are encoded and encrypted as
the encryption key. The location map and embedding
strength parameters are compressed and encrypted as the
data hiding key.
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3.2. Data Extraction and Original Image Recovery

(1) Revise the received image matrix according to loca-
tion map to get image I".

(2) Sample image I"" with size N x N into four submatri-
ces:

Samlr=1"(1:2:N-1,1:2:N-1),

Sam2r=1"(2:2:N,1:2:N-1),

)
am3_r = 1:2: N-1,2:2: N
Sam3r=1"(1:2:N-1,2:2:N)

Sam4r=1"(2:2:N-1,2:2:N).

(3) Permute the four sampled submatrices with Arnold
map with different permutation times S1.T", S2_T",
S3.T', and S4_T', respectively:

Saml_r' = Arnold (Saer,SLT') ,

Sam2_r’ = Arnold (Sam2, SZ,T') ,
(10)
Sam3_r' = Arnold (Sam,r, S3,T’) R

Sam4_r' = Arnold (Sam4,r, S4,T') ,

where S1.T' = T-P_T-S1.T,S2.T' = T-P_T-S2.T,
S3.T' =T-P.T-S3.T,andS4.T' =T-P.T-S4.T.
T is the permutation period of the sample images, and
for the sample images with size 256 x 256, T = 192,
just as presented in Table 1.

(4) Compose the permuted sampled submatrix to get the
similar image with hidden data M _s:

Ms(1:2:N-1,1:2:N—-1) = Saml_r,

Ms(2:2:N,1:2:N-1)=Sam2.r,
(1)
M.s(1:2:N-1,2:2:N) = Sam3.r,

Ms(2:2:N-1,2:2:N)=Sam4_r.

Until now, the decryption process has been com-
pleted, and the similar image with hidden data is M _s.
The hidden data can be extracted and the original
image I can be reversibly recovered through the
following steps.

(5) Impose integer DWT on image M_s to get the four
subbands LL, LH, HL, and HH.

(6) Generate the histograms of the middle (LH, HL) and
high (HH) frequency subbands and shift these his-
tograms to extract the hidden data and reversibly
recover the original subbands. The detailed steps are
depicted in Section 2.2.2.
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(b)

FIGURE 4: Images before and after disposing.

(7) Impose inverse integer DWT with the coefficients of
the subbands after histogram shifting to recover the
original image.

4. Experimental Results and Analysis

To testify the efficiency and validity of the proposed scheme,
images (with size 512 x 512) from Miscellaneous gray level
images [21] and USC-SIPI image database [22] are selected for
the experiments. Random binary bits are embedded into
these images as the hidden data. All of these experiments are
performed on the MATLAB 2012a platform running on a
personal computer with CPU of AMD Phenom (tm) I1X4 810
Processor at 2.6 GHz, memory of 4 GB, and operating system
of Windows 7 x64 Ultimate Edition.

In Figure 4, standard image “Lena” is adopted to demon-
strate the feasibility of the proposed scheme. The subfigure (a)
is the original Lena, (b) is encrypted image with embedding
rate 0.0827 bpp, (¢) is decrypted image with data embedded
(PSNR =50.7279), and (d) is the reversibly recovered image.

The hiding capacity with different embedding strength
parameters, the corresponding PSNRs after data hiding, and
the overhead data needed to dispose for the reversible
recovery of the original image are presented in Tables 2 and
3.

Asisseenin the tables, the embedding strength parameter
qis1,2,4,8,16,and 32, respectively. The embedding rates (ER)
increase as the embedding strength parameters increase. In
Table 2, images from USC-SIPI image database are tested. In
Table 3, images from Miscellaneous gray level images are
tested. It is easily seen that the overhead data for reversible
recovery of the original image is rare and even zero for most
of the test images. However, it is necessary especially when
multilevel embedding is utilized. If the location map is trans-
ferred as a part of the payload, the pure embedding rates
(PER) that exclude the overhead are also given in the
table.

As can be seen in Tables 2 and 3, the embedding rates
increase as the embedding strength parameter g increases.
However, more overhead information is generated in accom-
pany with the increase of embedding rate and the embedding
strength parameter gq. More distortion will be caused by the

greater amount of data hiding. Different images have different
sensitivity to the embedding strength parameter g. Smooth
images, such as “Airplane,” “Lena,” and “Boat,” are less sensi-
tive to the parameter g than those complex images, such as
“Baboon” and “Peppers” That is because the histogram shift-
ing based data hiding scheme imposed in the integer DWT
domain depends largely on the similarity of adjacent pixels
in the images.

Given the fix embedding rate, the plots between PSNR
and embedding rate with different embedding strength para-
meters after decryption are demonstrated in Figure 5. The
test images are selected from Miscellaneous gray level images
database. The embedding strength of subfigure (a) is g = 32,
() g=16()q=8(d)g=4(q=2ad®q=1
respectively.

The security of the proposed scheme is testified. As is
known, there are similarities between adjacent pixels in nat-
ural images. One of the important things for the encryption
of image is to destroy the correlation between two adjacent
pixels. It can be calculated by the following formulas:

1 N
E(X) = Nin,
i=1

1Y 2
D@:N;m—mm,
(12)
LN
cov(x, y) = NZE (x-Ex)(y-E(»)))
i=1

cov(x, y)
,

- D (x)\/D(y).

We randomly select 4096 pairs of two adjacent horizontal
pixels, two adjacent vertical pixels, and two adjacent diago-
nally pixels in “Lena” image, respectively, for the demonstra-
tion. Figure 6 presents the correlation of adjacent pixels of
image “Lena” before encryption and after encryption. The
detail coefficients r,,, of selected images from Miscellaneous
gray level images are presented in Table 4.

Obviously, the similarities have been thoroughly des-
troyed after encryption. Through the delicate design of the
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TaBLE 2: Embedding rate and PSNR of different images (USC-SIPI).

Images qg=1 q=2 q=4 q=38 q=16 q=232
ER 0.1206 0.3101 0.5044 0.6311 0.6971 0.7317
Airplane PSNR 50.6962 46.8158 42.4294 38.5350 35.0636 32.1368
Overhead 0 0 0 0 0 0
PER 0.1206 0.3101 0.5044 0.6311 0.6971 0.7317
ER 0.0251 0.0756 0.1707 0.3210 0.4960 0.6421
Baboon PSNR 50.5884 46.0507 40.1912 34.7103 30.0639 26.4296
Overhead 14 26 53 118 231 405
PER 0.0250 0.0755 0.1705 0.3205 0.4951 0.6406
ER 0.0656 0.1882 0.3602 0.5124 0.6113 0.6887
Barbara PSNR 50.5979 46.3715 41.2511 36.5779 32.3365 28.7201
Overhead 0 0 0 0 0 23
PER 0.0656 0.1882 0.3602 0.5124 0.6113 0.6886
ER 0.0545 0.1577 0.3223 0.5162 0.6665 0.7287
Boat PSNR 50.5664 46.3085 41.0439 36.5185 33.1225 30.7374
Overhead 3 10 19 38 109 296
PER 0.0545 0.1576 0.3223 0.5161 0.6661 0.7276
ER 0.0827 0.2241 0.4310 0.6119 0.7032 0.7391
Lena PSNR 50.7257 46.5336 41.7441 37.8559 31.8851 32.7387
Overhead 0 0 0 0 0 5
PER 0.0827 0.2241 0.4310 0.6119 0.7032 0.7390
ER 0.0632 0.1844 0.3743 0.5716 0.6961 0.7385
Peppers PSNR 50.6754 46.4399 41.4909 37.5625 34.7859 32.8502
Overhead 1 5 27 79 213 526
PER 0.6632 0.1843 0.3472 0.5713 0.6953 0.7365

TaBLE 3: Embedding rate and PSNR of different images (Miscellaneous gray level images).

Images qg=1 q=2 q=4 q=238 q=16 q=32
ER 0.1227 0.3110 0.5071 0.6342 0.6988 0.7325
Airplane PSNR 50.6757 46.8180 42.4507 38.5947 35.1570 32.2588
Overhead 0 0 0 0 0 0
PER 0.1227 0.3110 0.5071 0.6342 0.6988 0.7325
ER 0.0252 0.0754 0.1702 0.3211 0.4961 0.6421
Baboon PSNR 50.5954 46.0404 40.1840 34.7072 30.0631 26.4306
Overhead 19 36 65 138 237 433
PER 0.0251 0.0753 0.1700 0.3206 0.4953 0.6405
ER 0.0604 0.1704 0.3350 0.4932 0.6047 0.6852
Barbara PSNR 50.6255 46.3325 41.0880 36.3009 32.0515 28.5263
Overhead 0 0 0 0 19 219
PER 0.0604 0.1704 0.3350 0.4932 0.6046 0.6484
ER 0.0857 0.2367 0.4296 0.5819 0.6791 0.7295
Boat PSNR 50.6239 46.5614 41.8009 37.5187 33.8471 31.0650
Overhead 1 1 1 1 2 38
PER 0.0857 0.2367 0.4296 0.5819 0.6791 0.7294
ER 0.0837 0.2239 0.4304 0.6117 0.7031 0.7390
Lena PSNR 50.7225 46.5535 41.7346 37.8432 34.8781 32.7376
Overhead 0 0 0 0 0 5
PER 0.0837 0.2239 0.4304 0.6117 0.7031 0.7390
ER 0.0673 0.1924 0.3838 0.5833 0.6995 0.7379
Peppers PSNR 50.6647 46.4457 41.5086 37.5847 34.8350 32.8801
Overhead 30 92 183 545 1119 1826

PER 0.0672 0.1921 0.3810 0.5812 0.6952 0.7371
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FIGURE 5: Embedding rate and PSNR of different images with different embedding strength parameter.
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TaBLE 4: Coefficients of different images.

Coefficients Plain image Cypher image
Horizontal Vertical Diagonal Horizontal Vertical Diagonal
Airplane 0.9728 0.9648 0.9416 —-0.0092 0.0008 —0.0054
Baboon 0.8407 0.7500 0.7160 0.0437 0.0101 0.0162
Barbara 0.9076 0.9648 0.8898 -0.0142 -0.0078 —-0.0222
Boat 0.9531 0.9827 0.9405 0.0320 -0.0088 -0.0090
Lena 0.9711 0.9851 0.9598 —-0.0022 —-0.0204 0.0215
Peppers 0.9779 0.9777 0.9665 -0.0400 0.00474 —0.0183
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FIGURE 7: Comparisons of embedding rate and PSNR with existing schemes.

permutation in both transformed domain and spatial dom-
ain, the simple Arnold permutation can achieve nice encryp-
tion results. Besides, the encryption scheme proposed in this
paper is efficient and timesaving due to the permutation only
scheme. The stream cipher based encryption [13-15, 18] is
more time-consuming because the encryptions are achieved
by the bitwise exclusive OR operation or even the RC4 and
AES encryption. Simulation results show that, for the images
with size 512 x 512, the average time for image encryption
and data hiding is 4.3012 s and the average time for decryption
and data extraction is 4.0013 s using the proposed scheme.
If the same amount of data is embedded in the images with
size 512 x 512, the average encryption and data hiding time
is more than 8.0332s, and the average decryption and data
extraction time is more than 7.8231s for the encryption
scheme with bitwise exclusive OR operation with hyper-
chaotic system.

The joint-RDH scheme proposed in [15] is applied in the
medical images. It is not reversible. The joint-RDH scheme
proposed in [14] increased the embedding capacity of the
scheme proposed in [13]. However, their embedding capacity
is rather low when the reversibility is achieved due to the
design of the data hiding. At least a 8 x 8 block is needed for

TaBLE 5: Embedding rate comparison with existing schemes.

ER (bpp) Baboon Lena Lake Man Splash
Reference [14]  0.0013 0.0069  0.0025 0.0024  0.0156
Reference [13]  0.0010 0.0039  0.0025  0.0025  0.0039
Proposed 0.6405 0.7390  0.6381  0.6659  0.7123

embedding one-bit information in their experiments. There-
fore, the embedding rate is no more than 1/(8 x 8) according
to their experiments. Detailed comparisons of the embedding
rate are presented in Table 5. Comparisons of the plot between
PSNR and embedding rate with scheme proposed in [17] and
in [18] are presented in Figure 7.

Obviously, the proposed scheme has been achieved better
performances compared with exiting schemes. The reason
why the PSNRs are higher at the same embedding rate is that,
in the proposed scheme, data is hidden in the transformed
domain through the difference histogram modification
method. Such reversible data hiding schemes can achieve
lager embedding capacity while keeping low distortion to the
cover image. The encryption is achieved through the corpora-
tion of permutation in the integer DWT domain and in the
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spatial domain. Moreover, the permutation in the integer
DWT domain will not affect the data hiding. Due to the
design of the existing joint encryption-RDH schemes [13, 14,
17, 18], a group of pixels is operated only for one bit data
hiding. Their embedding rates are rather low as can be seen in
Table 5 and Figure 7. The proposed scheme can provide a
much larger embedding capacity.

5. Conclusion

A joint encryption-RDH scheme based on integer DWT and
Arnold permutation is proposed. Data is hidden in the integer
DWT domain with histogram modification based method,
which guarantees the high embedding capacity and safety
of data hiding. Although data is embedded in the DWT
domain, reversible recovery of original images has been
achieved through the integer transform. Different from those
traditional encryption schemes such as bitwise XOR with
random streams, AES, RC4, and so forth, the encryption
scheme designed in this paper is based on Arnold permu-
tation and thus is less time consuming and more efficient.
Besides, permutation will not change the value of matrix, and
thus data embedded will not be lost during the decryption
process. Sufficient experiments demonstrate the efficiency
and validity of the proposed scheme. Adaptive embedding
can be adopted for better results. Multilevel integer DWT can
be adopted for an even higher embedding capacity.
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