
Review Article
Survey of Direct Transcription for Low-Thrust Space Trajectory
Optimization with Applications

F. Topputo1 and C. Zhang2

1 Politecnico di Milano, 20156 Milan, Italy
2 Beijing University of Aeronautics and Astronautics, Beijing 100191, China

Correspondence should be addressed to F. Topputo; francesco.topputo@polimi.it

Received 20 February 2014; Accepted 16 May 2014; Published 24 June 2014

Academic Editor: Ryan Loxton

Copyright © 2014 F. Topputo and C. Zhang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Space trajectory design is usually addressed as an optimal control problem. Although it relies on the classic theory of optimal
control, this branch possesses some peculiarities that led to the development of ad hoc techniques, which can be grouped into two
categories: direct and indirect methods. This paper gives an overview of the principal techniques belonging to the direct methods.
The technique known as “direct transcription and collocation” is illustrated by considering Hermite-Simpson, high-order Gauss-
Lobatto, and pseudospectral methods. Practical examples are given, and several hints to improve efficiency and robustness are
implemented.

1. Introduction

In January 1959, the Soviet Union launched Luna 1, a lunar
probe that became the first spacecraft placed in heliocen-
tric orbit (http://en.wikipedia.org/wiki/Luna 1). This event
marked a new era for deep space exploration. In over half
a century, various probes visited the major planets of the
Solar System, and they provided a remarkable scientific
return. Nowadays, many space agencies have established
ambitious space programs, whose accomplishment stimu-
lated the development of new technologies.

Electric propulsion is one of those technologies that
improve the efficiency of space transport. Electric motors
have a specific impulse that is approximately ten times that of
the chemical engines, and therefore they allow a considerable
saving of propellant mass, which in turn makes it possible
to embark heavier instruments, so increasing the scientific
return of a mission. Electric propulsion also involves long
working hours, extended launch windows, and flexible and
precise control abilities. Electric propulsion has been used
in NASA’s Deep Space 1 in 1998 [1], in JAXA’s Hayabusa
in 2003 [2], and in ESA’s SMART-1 in 2003 [3]. Many

future space missions foresee the use of this technology. If
compared to that of the chemical engines, electric propulsion
produces low levels of thrust, which cannot be modelled as
producing instantaneous velocity changes [4].This is also the
case of solar sails, an emerging and prominent technology
demonstrated by the recent success of JAXA’s IKAROS [5]
and NASA’s NanoSail-D2 [6]. Solar sails are not propellant-
constrained, and the effect of the solar radiation pressure on
a large surface can be modelled as producing a low-thrust
acceleration [7, 8].The combination of low-thrust propulsion
with gravity assists is among the most promising techniques
for deep space explorations, which can be utilized to save fuel
and shorten the flight time [9–12].

Low-thrust space trajectories are studied as a special-
ization of the optimal control problem for continuous time
systems. Unfortunately, no analytic solutions exist for this
problem even under the simple two-body dynamics. Thus,
numerical methods must be used. Low-thrust trajectory
optimization involves determining the control law (thrust
magnitude and direction) and the associated transfer orbit
while minimizing a given performance index (propellant
mass or time-of-flight) and satisfying boundary conditions
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(departure and arrival orbits), midpoint conditions (at patch-
ing points), and path constraints (thrust saturation). In this
branch of optimal control, two main solution methods have
been devised. Within direct methods, the state and control
variables are discretized, and the optimal control problem
is converted into a nonlinear programming (NLP) problem
[13, 14]. This process is called direct transcription. Direct
methods are generally robust and can easily accommodate
path constraints, but they often require much computational
effort especially for multispiral trajectories. Indirect methods
rely on the calculus of variations.The necessary conditions of
optimality require the solution of a two-point boundary value
problem (TPBVP).Thismethod ensures rapid convergence of
good starting guesses, but most of the difficulties are related
to the small convergence radius, the high sensitivity to the
initial costates, and their lack of physical meaning.

This paper complements previous surveys on optimal
control of space trajectories [15–18] by focussing on direct
methods. In particular, the direct transcription and colloca-
tion is studied. The collocation schemes considered imple-
menting different integration methods (Hermite-Simpson,
high-order Gauss-Lobatto, and pseudospectral methods).
These techniques are implemented to solve practical exam-
ples, and the behavior of each method is assessed against
the implementation of several issues aimed at improving the
computational efficiency and the methods robustness.

The remainder of the paper is organized as follows.
In Section 2, the optimal control problem in space flight
mechanics is stated, and the NLP problem as well as the
direct transcription concept is recalled. In Section 3 direct
transcription and collocation is treated. Computational issues
are discussed in Section 4 and practical cases are solved in
Section 5. Concluding remarks are given in Section 6.

2. The Optimal Control Problem in Space
Flight Mechanics

Given a set of 𝑛 first-order differential equations

ẋ = f (x, u, 𝑡) , (1)

where x(𝑡) ∈ R𝑛 is a vector of state variables, u(𝑡) ∈

R𝑚 denotes vector of control variables, and 𝑡 represents
the independent time variable, 𝑡 ∈ [𝑡

𝑖
𝑡
𝑓
], the following

performance index has to be minimized

𝐽 = 𝜑 (x (𝑡
𝑓
) , 𝑡
𝑓
) + ∫

𝑡𝑓

𝑡𝑖

𝐿 (x, u, 𝑡) d𝑡, (2)

while satisfying 𝑞-dimensional final boundary conditions

𝜓 (x (𝑡
𝑓
) , u (𝑡

𝑓
) , 𝑡
𝑓
) = 0. (3)

The solution to this problem is derived by the calculus
of variations, which leads to the derivation of the Euler-
Lagrange equations. Let ^ be a 𝑞-dimensional constant vector
of multipliers of the final boundary constraints, and let 𝜆
be the 𝑛-dimensional variable vector of adjoint or costate

multipliers of the dynamics. The augmented performance
index is defined as

𝐽 = 𝜑 (x (𝑡
𝑓
) , 𝑡
𝑓
) + ^𝑇𝜓 (x (𝑡

𝑓
) , u (𝑡

𝑓
) , 𝑡
𝑓
)

+ ∫

𝑡𝑓

𝑡𝑖

[𝐿 (x, u, 𝑡) + 𝜆𝑇 (f (x, u, 𝑡) − ẋ)] d𝑡.
(4)

The augmented performance index (4) embeds the dynamics
(1) as well as the final boundary conditions (3). The problem
consists in deriving the necessary conditions for a stationary
point of 𝐽 [19]. This is achieved by imposing that its first
variation is zero, namely, 𝛿𝐽 = 0. In order to write the
necessary conditions in a compact form, it is convenient to
define the Hamiltonian

𝐻(x,𝜆, u, 𝑡) = 𝐿 (x, u, 𝑡) + 𝜆𝑇f (x, u, 𝑡) . (5)

Thenecessary conditions for optimality, also referred to as the
Euler-Lagrange equations [20, 21], are

ẋ = 𝐻
𝜆
,

̇𝜆 = −𝐻
𝑥
, 0 = 𝐻

𝑢
, (6)

where the subscript denotes partial derivation. The first of
(6) is equivalent to (1), the second describes the dynamics
of the costates, and the third is an algebraic equation for the
control functions. This differential-algebraic system must be
solved together with the final boundary conditions (3) and
the following transversality conditions:

𝜆 (𝑡
𝑓
) = [𝜑x + ^

𝑇

𝜓x]
𝑡=𝑡𝑓

. (7)

With x(𝑡
𝑖
) = x

𝑖
given, the problem represents a two-point

boundary value problem. The last of (6) is an application
of the Pontryagin maximum principle [22]. A more general
expression is in fact

u = argmin
u∈𝑈

𝐻(x,𝜆, u, 𝑡) , (8)

where 𝑈 defines the domain of feasible controls. The max-
imum principle states that the control variables must be
chosen to optimize the Hamiltonian at every instant of time:
the solution of the optimal control problem is an extremum
for 𝐻. In essence, the maximum principle is a constrained
optimization problem in the function u(𝑡) at all values of 𝑡.

2.1. The Optimal Trajectory Design Problem. An optimal
trajectory design problem is a specialization of the classical
optimal control problem above. In space flightmechanics, the
equations of motion have the following form [16]:

ẋ = { ̇rk̇} = {
k

g (r) + 𝑎
𝑐
û} . (9)

In (9), r and k are the spacecraft position and velocity vectors,
respectively, g(r) is the gravitational vector field, 𝑎

𝑐
is the

thrust acceleration magnitude, and û is the thrust direction
unit vector. The control variables are 𝑎

𝑐
and û. The control

acceleration magnitude is upper bounded for technological
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reasons; that is, 0 ≤ 𝑎
𝑐
≤ 𝑎

max
𝑐

. To minimize the total velocity
change, and therefore the propellant mass, the objective
function (2) is such that 𝐿 = 𝑎

𝑐
, 𝜑 = 0. The Hamiltonian

(5) is, therefore,

𝐻 = 𝑎
𝑐
+ 𝜆
𝑟
⋅ k + 𝜆V ⋅ [g (r) + 𝑎𝑐û]

= 𝑎
𝑐
[1 + 𝜆V ⋅ û] + 𝜆𝑟 ⋅ k + 𝜆V ⋅ g (r) ,

(10)

where 𝜆
𝑟
and 𝜆V are the costate vectors associated to the

position and velocity vectors, respectively. As 𝑎
𝑐
is bounded,

the last of (6) cannot be applied, and (8) has to be used
instead. Since the Hamiltonian has to be minimized at any
time, the following observations can be made.

(1) The thrust unit vector ûhas to be parallel and opposite
to 𝜆V. That is, û = −𝛼𝜆V with 𝛼 > 0; this explains why
𝜆V is also referred to as the primer vector.

(2) The thrust magnitude 𝑎
𝑐
has to be chosen according

to the sign of the switching function:

𝑆 = 1 + 𝜆V ⋅ û. (11)

In particular, 𝑎
𝑐
= 𝑎

max
𝑐

when 𝑆 < 0 and 𝑎
𝑐
= 0 when

𝑆 > 0. This makes the function 𝑎
𝑐
(𝑡) have a bang-bang

structure; that is, it is piece-wise discontinuous and it
is either zero or maximum. This property is of great
importance to evaluate the optimal control profile a
posteriori.

The necessary conditions only guarantee that the optimal
trajectory is an extremum for theHamiltonian.Thus, to assess
the optimality of the solutions, one is supposed to check the
second-order conditions. However, due to the nature of the
space trajectory problem, there is no upper bound to the
propellant that can be consumed in one trajectory, so one
may be confident that a solution that satisfies the necessary
conditions is a local minimum and not a local maximum [16].

In trajectory optimization problems, the initial state, x(𝑡
𝑖
),

is generally given. If the initial costate, 𝜆(𝑡
𝑖
), was given as

well, the optimal solution could be obtained by integrating
the Euler-Lagrange equations with an implicit “bang-bang”
thrusting structure [23]. Thus, the low-thrust optimal trajec-
tory design can be converted into a TPBVP, which consists in
finding the unknown initial costate vector.This is the essence
of indirect methods. Another philosophy consists instead in
translating the continuous optimal control problem into a
NLP problem and solving for a finite set of variables [15,
24–27]. This procedure is the direct transcription and the
approach is said direct method.

2.1.1. The General Optimal Trajectory Design Problem. It is
convenient to state the optimal trajectory design problem in a
more general fashion, which copes with the direct approach.
The dynamics are let to incorporate a number of constant
parameters p; that is,

ẋ = f (x (𝑡) , u (𝑡) , p, 𝑡) , (12)

and initial and final conditions can be defined within some
prescribed lower and upper bounds

𝜓
𝑖,𝑙
≤ 𝜓
𝑖
(x (𝑡
𝑖
) , u (𝑡

𝑖
) , p, 𝑡
𝑖
) ≤ 𝜓
𝑖,𝑢
,

𝜓
𝑓,𝑙
≤ 𝜓
𝑓
(x (𝑡
𝑓
) , u (𝑡

𝑓
) , p, 𝑡

𝑓
) ≤ 𝜓

𝑓,𝑢
.

(13)

In addition, the solution can be subject to path constraints of
the form

g
𝑙
≤ g (x (𝑡) , u (𝑡) , p, 𝑡) ≤ g

𝑢
, (14)

as well as simple bounds on the state variables

x
𝑙
≤ x (𝑡) ≤ x

𝑢
, (15)

and on the control variables

u
𝑙
≤ u (𝑡) ≤ u

𝑢
. (16)

The basic problem is to determine the control vectors u(𝑡) to
minimize the performance index

𝐽 = 𝜙 (x (𝑡
𝑓
) , 𝑡
𝑓
) , (17)

which is written in the Mayer form [15].

2.2. The Nonlinear Programming Problem. Essentially, any
numerical method for solving the trajectory optimization
problem incorporates some type of Newton method to
solve for a finite set of unknowns. In Section 3 it is shown
how an optimal control problem can be transformed into
a NLP problem [16, 27]. A NLP problem is a decisional
problem concerning a scalar objective function and a vector
of constraints. As opposite to the optimal control problem,
no dynamics is involved in a NLP problem. Suppose that the
𝑛 variables xmust be chosen to solve

minx 𝐹 (x) , (18)

subject to the𝑚 equality constraints

c (x) = 0, (19)

where𝑚 ≤ 𝑛. The Lagrangian of this problem is

𝐿 (x,𝜆) = 𝐹 (x) − 𝜆𝑇c (x) , (20)

which is a scalar function of the 𝑛 variables x and the 𝑚
Lagrange multipliers 𝜆. The necessary conditions for a point
(x∗,𝜆∗) to be a constrained optimum require solving the
following system:

∇
𝑥
𝐿 (x,𝜆) = g (x) − G𝑇 (x)𝜆 = 0,

∇
𝜆
𝐿 (x,𝜆) = − c (x) = 0,

(21)

where g = ∇
𝑥
𝐹 and G are the gradient of the objective

function and the Jacobian of the equality constraint vector,
respectively. The system (21) can be solved via a Newton
method to find the (𝑛+𝑚) variables (x∗,𝜆∗). Given a generic
initial guess (x,𝜆), its corrections (Δx, Δ𝜆) to construct the



4 Abstract and Applied Analysis

new solution (x + Δx,𝜆 + Δ𝜆) are given by solving the linear
system

[
H
𝐿
−G𝑇

G 0

] {

Δx
Δ𝜆
} = {

−g
−c} , (22)

also referred to as Karush-Kuhn-Tucker (KKT) system. In
(22),H

𝐿
is the Hessian of (20) in 𝑥; namely,

H
𝐿
= ∇
2

𝑥
𝐹 −

𝑚

∑

𝑖=1

𝜆
𝑖
∇
2

𝑥
𝑐
𝑖
. (23)

It is important to observe that an equivalent way to define the
search direction Δx is to minimize the quadratic form

1

2

Δx𝑇H
𝐿
Δx + g𝑇Δx (24)

subject to the linear constraints

GΔx = −c. (25)

This is the reason why this problem is also referred to as a
quadratic programming (QP) problem.

TheNLP problem formulated above can be generalized to
the case that occur when inequality constraints are imposed;
the𝑚 constraints are of the form

c (x) ≥ 0. (26)

Constraints that are strictly satisfied, that is, those for which
𝑐
𝑖
(x) > 0, are called inactive; the remaining active set of

constraints are on their bounds; that is, 𝑐
𝑗
(x) = 0. If the

active set of constraints is known, the inactive constraints are
ignored and the problem is simply solved using the method
for an equality constrained problem discussed above.

In summary, the general NLP problem requires finding
the 𝑛 vectors to solve

minx 𝐹 (x) , (27)

subject to the𝑚 constraints

c
𝐿
≤ c (x) ≤ c

𝑈
, (28)

and bounds

x
𝐿
≤ x ≤ x

𝑈
. (29)

In this formulation equality constraints can be imposed by
setting 𝑐

𝑗,𝐿
= 𝑐
𝑗,𝑈

.

2.3. Direct Transcription. With a direct approach, the solu-
tion to the optimal control problem is strictly connected
to the numerical integration of the differential equations.
The core of this method consists in the way the dynamics
are handled; the set of differential equations governing the
motion of a spacecraft can be transcribed into a finite set of
equality constraints. If these are respected, then the original
optimal trajectory design problem is solved within the degree
of accuracy of the numerical scheme used [16, 18, 27–30].

In problem (12)–(17), the time domain can be uniformly
discretized as

𝑡
𝑖
= 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑁
= 𝑡
𝑓
, (30)

where the time labels are referred to as mesh points or nodes;
𝑡
𝑖
and 𝑡
𝑓
are the initial and final time, respectively, and ℎ =

(𝑡
𝑁
− 𝑡
1
)/(𝑁 − 1) is the fixed step size of the discretization (a

nonuniform time discretization is also possible). The states
and the controls can be discretized over the mesh (30) by
defining x

𝑘
= x(𝑡

𝑘
) and u

𝑘
= u(𝑡

𝑘
). The discretized states

and the controls are now ready to be treated as a set of NLP
variables. The whole variable vector of the problem is

y = {x
1
, u
1
, . . . , x

𝑁
, u
𝑁
}
𝑇

. (31)

The differential equations are replaced by a finite set of defects
constraints derived by the numerical integration scheme. For
instance, if a forward Euler scheme is used, the defects are of
the form

𝜁
𝑘
≡ x
𝑘+1
− x
𝑘
− ℎf
𝑘
, (32)

where f
𝑘
= f(x
𝑘
, u
𝑘
, p, 𝑡
𝑘
). As a result of the transcription, the

optimal control constraints (13)-(14) are replaced by the NLP
constraints

c
𝐿
≤ c (y) ≤ c

𝑈
, (33)

where

c (y) ≡ {𝜁
1
, 𝜁
2
, . . . , 𝜁

𝑁−1
,𝜓
1
,𝜓
𝑁
, g
1
, g
2
, . . . , g

𝑁
}
𝑇

, (34)

with 𝜓
1
= 𝜓
𝑖
, 𝜓
𝑁
= 𝜓
𝑓
, and

c
𝐿
≡ {0, . . . , 0, g

1,𝐿
, . . . , g

𝑁,𝐿
}
𝑇

,

c
𝑈
≡ {0, . . . , 0, g

1,𝑈
, . . . , g

𝑁,𝑈
}
𝑇

.

(35)

The first 𝑛(𝑁−1) equality constraints in (34) require that
the defect vectors 𝜁

𝑘
, 𝑘 = 1, . . . , 𝑁 − 1, are zero, thereby

they satisfy the differential equations (12) within the accuracy
of the numerical integration. The boundary conditions (13)
are enforced directly by the equality constraints on 𝜓

1
and

𝜓
𝑁
, and the nonlinear path constraints (14) are imposed at

the grid points. In a similar fashion the objective function,
either in the form (2) or (17), can be written in terms of y;
namely, 𝐹 = 𝐹(y). The optimal trajectory design problem is
so translated into the forms (27)–(29) and it can be solved as
a standard NLP problem through (18)–(23).

In this derivation, the simple forward Euler scheme is
used. More accurate methods are likely to be used for prac-
tical applications. This is done to keep 𝑁 within reasonable
values, avoiding out-of-memory problems. The integration
schemes influence the robustness of the method and the
solution accuracy. In Section 3, several implicit quadrature
methods are shown.
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ẋcΔ = − f(xc, uc) = 0

ẋcxk

xk+1

Figure 1: Hermite-Simpson collocation method.

3. Direct Transcription and Collocation

Collocation is used to transcribe differential dynamic con-
straints into a set of algebraic constraints. The basic idea is to
choose a polynomial up to a certain degree with a number
of points in the time domain (collocation points), and to
enforce the polynomials to satisfy the equations of motion
at the collocation points. The peculiarity of each collocation
method relies on the way the state and control variables are
discretized and how the dynamic constraints are satisfied [17].

3.1. Hermite-Simpson Method. A basic form of colloca-
tion is the Hermite-Simpson method [24], illustrated in
Figure 1. For each of the segments [𝑡

𝑘
, 𝑡
𝑘+1
], the two

end points, denoted as “nodes” (blue dots), represent the
corresponding state and control NLP variables; that is,
[𝑥
𝑘
, 𝑢
𝑘
, 𝑥
𝑘+1
, 𝑢
𝑘+1
] (scalar states and controls are used from

now on to ease the notation). The dynamics are used to
provide time derivative values at the two nodes, so the
four pieces of information [𝑥

𝑘
, 𝑥
𝑘+1
, 𝑓(𝑥
𝑘
, 𝑢
𝑘
), 𝑓(𝑥

𝑘+1
, 𝑢
𝑘+1
)]

can be used to construct a third-order Hermite interpolate
polynomial. This interpolate polynomial cannot satisfy the
equations of motion at any time within [𝑡

𝑘
, 𝑡
𝑘+1
], because

it does that only at the nodes. Let [𝑥
𝑐
, 𝑢
𝑐
] be the state and

control at 𝑡
𝑐
, the middle point of [𝑡

𝑘
, 𝑡
𝑘+1
]; this is called

“collocation point” (red diamond). Enforcing Δ = 𝑥̇
𝑐
−

𝑓(𝑥
𝑐
, 𝑢
𝑐
) = 0 makes it possible to have a polynomial that

not only satisfies the dynamics at the two nodes but also does
that at the collocation point. If a large number of intervals are
used, the state motion approaches the real dynamics within
the whole time domain.

The detailed procedure can be derived as follows [16].
Let the state function 𝑥(𝑡) be represented on each segment
[𝑡
𝑘
, 𝑡
𝑘+1
] through a cubic polynomial of the form

𝑥 (𝑡) = 𝑎
0
+ 𝑎
1
𝑡 + 𝑎
2
𝑡
2

+ 𝑎
3
𝑡
3

, (36)

which yields

𝑥̇ (𝑡) = 𝑎
1
+ 2𝑎
2
𝑡 + 3𝑎

3
𝑡
2

, (37)

where [𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
] are the coefficients of the polynomial.

In order to simplify the argument, the time domain is

transformed such that 𝑡 ∈ [0, ℎ] (ℎ is the time interval of
the segment). Let 𝑥(0) = 𝑥

𝑘
, 𝑥(ℎ) = 𝑥

𝑘+1
, 𝑥̇(0) = 𝑥̇

𝑘
, and

𝑥̇(ℎ) = 𝑥̇
𝑘+1

. Evaluating (36)-(37) at 𝑡 = 0 and 𝑡 = ℎ yields

[

[

[

[

𝑥 (0)

𝑥̇ (0)

𝑥 (ℎ)

𝑥̇ (ℎ)

]

]

]

]

=

[

[

[

[

1 0 0 0

0 1 0 0

1 ℎ ℎ
2

ℎ
3

0 1 2ℎ 3ℎ
2

]

]

]

]

[

[

[

[

𝑎
0

𝑎
1

𝑎
2

𝑎
3

]

]

]

]

, (38)

which allows us to compute the four coefficients of interpolate
polynomial

[

[

[

[

𝑎
0

𝑎
1

𝑎
2

𝑎
3

]

]

]

]

=

[

[

[

[

[

[

[

[

1 0 0 0

0 1 0 0

−

3

ℎ
2
−

2

ℎ

3

ℎ
2
−

1

ℎ

2

ℎ
3

1

ℎ
2
−

2

ℎ
3

1

ℎ
2

]

]

]

]

]

]

]

]

[

[

[

[

𝑥 (0)

𝑥̇ (0)

𝑥 (ℎ)

𝑥̇ (ℎ)

]

]

]

]

. (39)

Substituting [𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
] into (36)-(37) allows us to compute

the collocation point as

𝑥
𝑐
= 𝑥(

ℎ

2

)

=

1

2

(𝑥
𝑘
+ 𝑥
𝑘+1
) +

ℎ

8

[𝑓 (𝑥
𝑘
, 𝑢
𝑘
) − 𝑓 (𝑥

𝑘+1
, 𝑢
𝑘+1
)] ,

(40)

as well as its time derivative

𝑥̇
𝑐
= 𝑥̇ (

ℎ

2

)

= −

3

2ℎ

(𝑥
𝑘
− 𝑥
𝑘+1
) −

1

4

[𝑓 (𝑥
𝑘
, 𝑢
𝑘
) + 𝑓 (𝑥

𝑘+1
, 𝑢
𝑘+1
)] .

(41)

The control variable at the collocation point can be computed
by simple linear interpolation; that is,

𝑢
𝑐
=

𝑢
𝑘
+ 𝑢
𝑘+1

2

. (42)

The difference between the interpolated and calculated
derivatives at the collocation point defines the integration
defect
Δ = 𝑥̇

𝑐
− 𝑓 (𝑥

𝑐
, 𝑢
𝑐
)

= −

3

2ℎ

(𝑥
𝑘
− 𝑥
𝑘+1
) −

1

4

[𝑓 (𝑥
𝑘
, 𝑢
𝑘
) + 𝑓 (𝑥

𝑘+1
, 𝑢
𝑘+1
)]

− 𝑓 (𝑥
𝑐
, 𝑢
𝑐
)

= 𝑥
𝑘
− 𝑥
𝑘+1

+

ℎ

6

[𝑓 (𝑥
𝑘
, 𝑢
𝑘
) + 4𝑓 (𝑥

𝑐
, 𝑢
𝑐
) + 𝑓 (𝑥

𝑘+1
, 𝑢
𝑘+1
)] .

(43)

The NLP solver will select [𝑥
𝑘
, 𝑢
𝑘
, 𝑥
𝑘+1
, 𝑢
𝑘+1
] to drive Δ

to zero and in this way the interpolating polynomial will
approximate the true dynamics within the accuracy of the
numerical integration. Note that the last row of (43) is actu-
ally an implicit Hermite integration. Thus, if the collocation
constraints are satisfied, the system is said to be “implicitly”
integrated.
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3.2. High Order Gauss-Lobatto Method. In the Hermite-
Simpson method, only two nodes are used to construct
a third-order polynomial. As a general rule of thumb,
a lower number of segments can be handled if higher
order integration is performed. Herman and Conway [28]
demonstrated that higher order Gauss-Lobatto methods
are more robust and more efficient than the lower-order
Hermite-Simpson scheme. Figure 2 illustrates the collocation
constraints of fifth-order Gauss-Lobatto method. Similar to
Hermite-Simpson method, in each segment, six pieces of
information of nodes are used to construct a fifth-order Her-
mite polynomial to approximate the state time history. Then
the resulting interpolation polynomial is used to evaluate the
states at the remaining two collocation points.

In the fifth-order method, the collocation points are [28]

𝑥
1
=

1

686

{(39√21 + 231) 𝑥
𝑘
+ 224𝑥

𝑐

+ (−39√21 + 231) 𝑥
𝑘+1

+ ℎ [(3√21 + 21) 𝑓
𝑘
− 16√21𝑓

𝑐

+(3√21 − 21) 𝑓
𝑘+1
]} ,

𝑥
2
=

1

686

{(−39√21 + 231) 𝑥
𝑘
+ 224𝑥

𝑐

+ (39√21 + 231) 𝑥
𝑘+1

+ ℎ [(−3√21 + 21) 𝑓
𝑘
+ 16√21𝑓

𝑐

+(−3√21 − 21) 𝑓
𝑘+1
]} ,

(44)

and the two collocation constraints defects to zero are

Δ
1
=

1

360

{(32√21 + 180) 𝑥
𝑘
− 64√21𝑥

𝑐

+ (32√21 − 180) 𝑥
𝑘+1

+ ℎ [(9 + √21)𝑓
𝑘
+ 98𝑓

1
+ 64𝑓

𝑐

+ (9 − √21)𝑓
𝑘+1
]} ,

Δ
2
=

1

360

{(−32√21 + 180) 𝑥
𝑘
+ 64√21𝑥

𝑐

+ (−32√21 − 180) 𝑥
𝑘+1

+ ℎ [(9 − √21)𝑓
𝑘
+ 98𝑓

2
+ 64𝑓

𝑐

+ (9 + √21)𝑓
𝑘+1
]} .

(45)

A detailed derivation of the formulas above is required
when the argument is extended to arbitrary higher orders. In
[31], an alternative framework for unifying arbitrary higher-
order methods is presented. In this approach, the Legendre-
Gauss-Lobatto (LGL) discrete points 𝜉

𝑗
are used to improve

both interpolating precision and quadrature performance.
Figure 3 graphically illustrates the location of three, five, and

ti tf

tk tct1 t2 tk+1

f(x1, u1)
f(x2, u2)

xc

xk
x2

x1
xk+1

Δ2 = − f(x2, u2) = 0ẋ2

Δ1 = − f(x1, u1) = 0ẋ1

Figure 2: Fifth-order Gauss-Lobatto constraint formulation.
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Figure 3: Three, five, and seven Legendre-Gauss-Lobatto points.

seven LGL points. Table 1 lists the corresponding position of
these LGL points (the time interval is [−1, 1]).

With reference to Figure 3, the blue points are the generic
nodes, which are defined by

𝜏
𝑗
= 𝜉
2𝑗−1
, 𝑗 = 1, . . . ,

(𝑛 + 1)

2

, (46)

while the red diamonds are the generic collocation points,
denoted as

𝜁
𝑗
= 𝜉
2𝑗
, 𝑗 = 1, . . . ,

(𝑛 − 1)

2

, (47)

such that there is one collocation point between every two
adjacent nodes [31]. The nodes are used for constructing the
interpolation polynomial, while the collocation points are
used to formulate the defect constraints (it is noted that nodes
and collocation points should not overlap in Gauss-Lobatto
method). With three points, the Gauss-Lobatto method
degenerates to theHermite-Simpsonmethod.The state in the
𝑖th subinterval is approximated by the 𝑛th degree Hermite
interpolating polynomial

𝑥 (𝜏) ≃ 𝑎
0
+ 𝑎
1
𝜏 + 𝑎
2
𝜏
2

+ 𝑎
3
𝜏
3

+ ⋅ ⋅ ⋅ + 𝑎
𝑛
𝜏
𝑛

,

𝜏 ∈ [−1, 1] ,

(48)
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Table 1: Locations three, five, and seven Legendre-Gauss-Lobatto
points.

Number of points Location

3 0
±1

5
0

±√
3

7

±1

7

0

±

√495 − 66√15

33

±

√495 + 66√15

33

±1

where the coefficients of Hermite interpolating polynomial
a = [𝑎

0
, 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
]
𝑇 are determined by using the values of

the states and vector field at the points 𝜏
𝑗
; that is,

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 𝜏
1

1
𝜏
2

1
⋅ ⋅ ⋅ 𝜏

𝑛−1

1
𝜏
𝑛

1

1 𝜏
1

2
𝜏
2

2
⋅ ⋅ ⋅ 𝜏

𝑛−1

2
𝜏
𝑛

2

...
...

...
...

...
...

1 𝜏
1

(𝑛+1)/2
𝜏
2

(𝑛+1)/2
⋅ ⋅ ⋅ 𝜏

𝑛−1

(𝑛+1)/2
𝜏
𝑛

(𝑛+1)/2

0 1 2𝜏
1

1
⋅ ⋅ ⋅ (𝑛 − 1) 𝜏

𝑛−2

1
𝑛𝜏
𝑛−1

1

...
...

...
...

...
...

0 1 2𝜏
1

(𝑛+1)/2
⋅ ⋅ ⋅ (𝑛 − 1) 𝜏

𝑛−2

(𝑛+1)/2
𝑛𝜏
𝑛−1

(𝑛+1)/2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

×

[

[

[

[

[

[

[

[

[

𝑎
0

𝑎
1

𝑎
2

...
𝑎
𝑛−1

𝑎
𝑛

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑥 (𝜏
1
)

𝑥 (𝜏
2
)

...
𝑥 (𝜏
(𝑛+1)/2

)

ℎ

2

𝑓 (𝜏
1
)

...
ℎ

2

𝑓 (𝜏
(𝑛+1)/2

)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(49)

Let (49) be written as Aa = b. The term A depends
only on the number and location of node points, whereas
b is a concatenated vector of state and vector field values.
Thus, given a vector of states, the coefficients of the Hermite
interpolation in the 𝑖th subinterval, a, can be found by a =

[A]−1b. The values of the states located at collocation points
are then

x (𝜁
𝑗
) =

[

[

[

[

[

[

[

1 𝜁
1

𝜁
2

1
⋅ ⋅ ⋅ 𝜁

𝑛

1

1 𝜁
2

𝜁
2

2
⋅ ⋅ ⋅ 𝜁

𝑛

2

...
...

... ⋅ ⋅ ⋅

...

1 𝜁
(𝑛−1)/2

𝜁
2

(𝑛−1)/2
⋅ ⋅ ⋅ 𝜁
𝑛

(𝑛−1)/2

]

]

]

]

]

]

]

[A]−1b

= Φb, 𝑗 = 1, 2, . . . ,

(𝑛 − 1)

2

.

(50)

The derivatives of the Hermite interpolating polynomial
located at the collocation points are given by

ẋ (𝜁
𝑗
) =

[

[

[

[

[

[

[

0 1 2𝜁
1

⋅ ⋅ ⋅ 𝑛𝜁
𝑛−1

1

0 1 2𝜁
2

⋅ ⋅ ⋅ 𝑛𝜁
𝑛−1

2

...
...

... ⋅ ⋅ ⋅

...

0 1 2𝜁
(𝑛−1)/2

⋅ ⋅ ⋅ 𝑛𝜁
𝑛−1

(𝑛−1)/2

]

]

]

]

]

]

]

[A]−1b

= Φ
󸀠b, 𝑗 = 1, 2, . . . ,

(𝑛 − 1)

2

.

(51)

In this form the matrices Φ and Φ󸀠 are constants, thus a
system of (𝑛 − 1)/2 constraints per interval is obtained as
follows:

Δ
𝑖
= ẋ (𝜁

𝑗
) −

ℎ

2

𝑓 (x (𝜁
𝑗
) , u (𝜁

𝑗
))

= Φ
󸀠b − ℎ

2

𝑓 (Φb, u (𝜁
𝑗
)) ,

(52)

and the analytic Jacobian for the defect constraints can be
derived by chain rule as

𝜕Δ
𝑖

𝜕[x (𝜏
𝑗
) , u (𝜏

𝑗
)]
𝑖

= Φ
󸀠

𝜕b
𝜕[x (𝜏

𝑗
) , u (𝜏

𝑗
)]
𝑖

−

ℎ

2

[

[

𝜕𝑓 (x (𝜁
𝑗
) , u (𝜁

𝑗
))

𝜕x (𝜁
𝑗
)

Φ
𝜕b

𝜕[x (𝜏
𝑗
) , u (𝜏

𝑗
)]
𝑖

+

𝜕𝑓 (x (𝜁
𝑗
) , u (𝜁

𝑗
))

𝜕u (𝜁
𝑗
)

𝜕u (𝜁
𝑗
)

𝜕[x (𝜏
𝑗
) , u (𝜏

𝑗
)]
𝑖

]

]

.

(53)
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NLP variables

Defect
constraints

Initial and final
boundary

constraints

ith interval [x, u]i tf

Figure 4: Jacobian structure for third-orderGauss-Lobattomethod.

Δ = p󳰀 − f[x, u]

x1

x2
x3

x4

x5
x6

x7

t1 t2 t3 t4 t5 t6 t7

tfti

Figure 5: Formulation of the collocation constraints in the pseu-
dospectral method.

If the final transfer time 𝑡
𝑓
is a variable, within each segment,

the analytic Jacobian of 𝑡
𝑓
is written as

𝜕Δ
𝑖

𝜕𝑡
𝑓

= Φ
󸀠
𝜕b
𝜕ℎ

𝜕ℎ

𝜕𝑡
𝑓

− [

1

2

𝜕ℎ

𝜕𝑡
𝑓

𝑓 (x (𝜁
𝑗
) , u (𝜁

𝑗
))

+

ℎ

2

𝜕𝑓 (x (𝜁
𝑗
) , u (𝜁

𝑗
))

𝜕x (𝜁
𝑗
)

Φ
𝜕b
𝜕ℎ

𝜕ℎ

𝜕𝑡
𝑓

] .

(54)

A graphical illustration of the Jacobian structure with free
final time 𝑡

𝑓
is given in Figure 4. It can be seen that each

segment has the same Jacobian module; thus (53)-(54) can
be calculated offline and stored before solving the NLP. In
this way, the computational time can be considerably reduced
compared to the use of finite difference approximation.

3.3. Pseudospectral Method. Recently, new direct methods
have been applied to low-thrust trajectory optimization,
the most popular one being the pseudospectral scheme
[32–35]. The major difference between Gauss-Lobatto and
pseudospectral collocation schemes is the way in which
the interpolation polynomial is constructed and the defect
constraints are defined. When the pseudospectral method

0 0.2 0.4 0.6 0.8 1

Equidistant
LG points

LGR points
LGL points

−1 −0.8 −0.6 −0.4 −0.2

Figure 6: Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR),
and Legendre-Gauss-Lobatto (LGL) with five points.

Table 2: Position of equidistant, LG, LGR, and LGL with five points
within [−1, 1].

Case Type 𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

1 Equidistant −1 −0.5 0 0.5 1
2 LG points −0.906 −0.538 0 0.538 0.906
3 LGR points −1 −0.720 −0.167 0.446 0.886
4 LGL points −1 −0.654 0 0.655 1

is employed, a global Lagrange interpolation polynomial is
constructed to approximate the state profile. The polynomial
is then differentiated and evaluated at all the nodes to com-
pute interpolated derivative values of the states, and equations
of motion are used to provide physical time derivatives. The
differences between the two sets of time derivatives form the
defects. The formulation of defect constraints is sketched in
Figure 5.

The defect constraints of the pseudospectral method can
be derived as follows. The state curve 𝑝(𝑡) is approximated
by using values of 𝑥 at the discrete time points 𝑡

𝑖
and the

corresponding Lagrange interpolating polynomials𝐿
𝑖
(𝑡), (𝑖 =

1, . . . , 𝑛)

𝑝 (𝑡) =

𝑛

∑

𝑖=1

𝐿
𝑖
(𝑡) 𝑥 (𝑡

𝑖
) , (55)

where 𝐿
𝑖
(𝑡) (𝑖 = 1, . . . , 𝑛) are defined as

𝐿
𝑖
(𝑡) =

𝑛

∏

𝑗=1,𝑗 ̸= 𝑖

𝑡 − 𝑡
𝑗

𝑡
𝑖
− 𝑡
𝑗

. (56)

Then, the derivative of 𝑝(𝑡) is given:

𝑝
󸀠

(𝑡) =

𝑛

∑

𝑖=1

𝐿
󸀠

𝑖
(𝑡) 𝑥 (𝑡

𝑖
) . (57)

The time derivative of the polynomial can be expressed in
compact form through

p󸀠 = Dx, (58)
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Figure 7: Piecewise-constant control approximation with equidis-
tant knot points.

where D is differentiation matrix. This only depends on the
chosen node spacing, so it can be calculated offline and
stored. Then the defect constraints can be written as

Δ = p󸀠 − f (x, u) = Dx − f (x, u) . (59)

A variety of pseudospectral schemes emerged and the major
differences are the way in which the nodes are selected. The
most general form is Legendre-Gauss-Lobatto discretization
[36], but Legendre-Gauss [34, 37] and Legendre-Gauss-
Radau [35] are also commonly used. Figure 6 illustrates three
different kinds of Gauss points. Table 2 lists the position of
equidistant points with three kinds of Gaussian points. We
can see that LGpoints are located on the open interval (−1, 1),
in contrast, LGR points are located on half-open interval
[−1, 1), and LGL points are located on closed interval [−1, 1].

The main characteristic of the Gauss-Lobatto method
is the combination of reasonable accuracy with highly
sparse constraint Jacobians andHessians.The pseudospectral
method has a more elegant form of Jacobian and it offers
spectral accuracy for smooth problems, but the constraint
Jacobian is much denser. So there is a balance between accu-
racy and efficiency. In general, the Gauss-Lobattomethod use
a limited number of nodes per segment (𝑛 < 4) with many
segments, while pseudospectralmethods usemany nodes per
segment (𝑛 > 10) with a limited number of segments.

3.4. Control Parameterization Method. The control parame-
terization method is a further direct transcription technique
for solving optimal control problems [38–40]. In thismethod,
only the controls are discretized and represented by a linear
combination of basis functions. This approximation scheme
yields a suboptimal control for the original problem. The
optimal control problem is converted to an approximate non-
linear optimization problem with a finite number of decision
variables, which can be solved by nonlinear programming
techniques.The advantage of piecewise-constant approxima-
tion scheme is due to its simplicity and convergence [41].

To solve optimal control problem using the control
parameterizationmethod, we approximate the control profile
u as (see Figure 7)

u (𝑡) ≈ u𝑝 (𝑡) = 𝜎𝑘, 𝑡 ∈ [𝜏
𝑘−1
, 𝜏
𝑘
) , 𝑘 = 1, . . . , 𝑝, (60)

where 𝑝 ≥ 1 is a given integer, 𝜏
𝑘
, 𝑘 = 0, . . . , 𝑝 are knot

points, and 𝜎𝑘 ∈ R𝑟, 𝑘 = 1, . . . , 𝑝 are vectors containing the
approximate control values. The knot points satisfy

0 = 𝜏
0
≤ 𝜏
1
≤ 𝜏
2
≤ ⋅ ⋅ ⋅ ≤ 𝜏

𝑝−1
≤ 𝜏
𝑝
= 𝑇. (61)

The approximate control u𝑝 can be written as

u𝑝 (𝑡) =
𝑝−1

∑

𝑘=1

𝜎
𝑘

𝜒
[𝜏𝑘−1,𝜏𝑘)

(𝑡) + 𝜎
𝑝

𝜒
[𝜏𝑝−1,𝜏𝑝)

(𝑡) , (62)

where for a given subinterval I ⊂ [0, 𝑇], the characteristic
function 𝜒I : R → R is defined by

𝜒I := {
1, if 𝑡 ∈ I,
0, otherwise.

(63)

Note that u𝑝 is a piecewise-constant function with potential
discontinuities at the points 𝑡 = 𝜏

𝑘
, 𝑘 = 1, . . . , 𝑝 − 1. These

points are called switching times. Reference [40] surveys the
key developments in the control parameterization.

4. Computational Issues

Solving optimal trajectory design problems with direct meth-
ods yields a large NLP problem. Some computational issues
should be implemented to improve efficiency and robustness.
Some of these issues are discussed in this section.

4.1. Scaling. An important issue that arises in the solution of
NLP is scaling. It is known that a poorly scaled problem can
lead to either extremely slow convergence or divergence [27].
When the relative size of variables or constraints in a problem
is vastly different, the variables should be transformed into a
relatively similar scale. In trajectory optimization problems
the scaling process can be implemented manually by intro-
ducing dimensionless distance unit 𝐿, time unit 𝑇, velocity
unit 𝑉, and mass unit𝑀.

4.2. Sparse Matrix. A sparse matrix is a matrix filled primar-
ily with zeros; the opposite is referred to as dense matrix.
One of the major advantages of using sparse matrix is that
finite memory can be saved. In the case of direct collocation
methods, it is well-known that the vast majority of the
Jacobian and Hessian matrix elements are zero. When a large
number of nodes are taken to have a smooth state and control
time histories, “out-of-memory” problems can be avoided by
using sparse matrices. Another advantage is that the com-
putational time is reduced because only nonzero elements
need to be manipulated. Some NLP solvers, such as SNOPT
[42] and IPOPT [43], take advantage of sparse techniques.
Furthermore IPOPT computes secondderivativeswith quasi-
Newton methods.

4.3. Differentiation. Directmethods use gradient-based tech-
niques for solving the NLP, which requires the gradient
information of the objective function and constraints with
respect to the NLP variables. It is known that providing the
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(d) Reintegrate dynamics with discrete control solution

Figure 8: Simulation results of Example 1, 100 points.

analytic derivative results in exact and fast optimization, but
sometimes it is impossible or time consuming to compute
derivatives analytically. Alternative methods are needed to
obtain the necessary gradients. Finite differences are imple-
mented to compute approximate derivatives. Forward and
central difference schemes are

𝑑𝑓

𝑑𝑥

≃

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)

ℎ

,

𝑑𝑓

𝑑𝑥

≃

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥 − ℎ)

2ℎ

,

(64)

where ℎ is a properly chosen perturbation, which should be
sufficiently small to provide a good approximation to the
derivatives but not too small to induce round-off errors.

5. Practical Examples

5.1. A Simple Optimal Control Problem. In this section, a
simple optimal control problem [44] is solved with Hermite-
Simpson method, and certain issues are set to speed-up the
computation time and improving accuracy. Consider the
problem of finding 𝑢(𝑡) with fixed initial and final time [0, 1]
to minimize the cost

𝐽 = 𝑥
2
(1) (65)

subject to system equations

𝑥̇
1
= 0.5𝑥

1
+ 𝑢,

𝑥̇
2
= 𝑢
2

+ 𝑥
1
𝑢 +

5

4

𝑥
2

1

(66)

and to the boundary conditions

𝑥
1
(0) = 1,

𝑥
2
(0) = 0

(67)

Table 3: Improvement with Jacobian and Hessian, 100 points.

Case Method Number of iterations CPU time
1 Finite differences (default) 116 17.21 s
2 Jacobian only 116 8.77 s
3 Jacobian and Hessian 12 0.38 s

with the following bound box of state and control variables

−10 ≤ 𝑥
1
(𝑡) ≤ 10,

−10 ≤ 𝑥
2
(𝑡) ≤ 10,

−10 ≤ 𝑢 (𝑡) ≤ 10.

(68)

The analytical solution of this problem is

𝑥
1𝑎
(𝑡) =

cosh (1 − 𝑡)
cosh (1)

,

𝑢
𝑎
(𝑡) =

− (tanh (1 − 𝑡) + 0.5) cosh (1 − 𝑡)
cosh (1)

.

(69)

This problem is solved by using Matlab’s “fmincon” with
“interior-point” algorithm [45]. The analytic solution and
final optimized results are plotted in Figures 8(a) and 8(b),
where the green line indicates analytic solutions (i.e., 𝑥

1𝑎

and 𝑢
𝑎
), and the discrete results obtained from NLP solver

are marked by blue asterisk and red cross, respectively.
Figure 8(c) shows the error of 𝑥

1
and 𝑢 in detail, it can

be seen that the error of 𝑥
1
is much lower than that of 𝑢

(10−10 for 𝑥
1
versus 10−5 for 𝑢). This is because the third-

order Hermite interpolation polynomial is implemented to
approximate the states, while linear interpolation is used to
represent the control curve. In order to check the control
accuracy, (66) are integrated from the initial condition with
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the discrete optimal solution 𝑢, and then the error of 𝑥
1
is

plotted in Figure 8(d). It can be found that the error of 𝑥
1
in

the whole time domain [0, 1] is below 10−5.
The “finite differences” method is the default option

to obtain the gradient information, however computational
efficiency can be remarkably improved by adding analytical
Jacobian andHessian.The comparison of these three different
cases is listed in Table 3. All of the three cases use 100 discrete
points. In case 1, the optimization takes 116 steps and is 17.21 s.
In case 2, adding Jacobian only does not reduce the number
of iterations but saves almost half of the CPU time (17.21 s
versus 8.77 s). In case 3, providing analytical Jacobin and
Hessian highly reduces both the number of iterations and the
computational time,which drops dramatically down to 0.38 s.

The structure of Jacobian is shown in Figure 9(a), where
the rows are constraints while the columns are NLP decision
variables. The diagonal elements are Jacobian of collocation
constraints and the last two lines are Jacobian of initial
boundary constraints. Figure 9(b) illustrates the structure
of Hessian, where both the row and the column represent
NLP decision variables. It can be seen that Hermite-Simpson
method has highly sparse Jacobian and Hessian structures.

Because only few elements in Figures 9(a) and 9(b)
are nonzero, sparse matrices can be used. In Figure 8, the
accuracy of state and control solution is not so good. A
finer mesh with 5000 points is used with “interior-point”
method and matrix sparsity, which is impossible with other
fmincon algorithms (that use dense matrixes). The results
are illustrated in Figure 10. Compared to Figure 8, it is noted
that the error of 𝑢 reduces to around 10−8. In order to
check the accuracy of control solution, the dynamics are
reintegrated with the initial condition and optimal control
history; the maximal error on 𝑥

1
drops down to 10−8

(see Figure 10(d)). A parametric analysis has been carried
out with variable grid points. The outcome is reported in
Table 4.

5.2. Planar Low-Thrust Orbit Transfer. For a transfer trajec-
tory to be determined, using Cartesian coordinates is the
simplest but most disadvantageous choice; this is because
a lot of discrete points will be used to catch the rapidly
changing position and velocity variables. On the contrary,
slowly changing state variables make the NLP problem both
efficient and robust. Polar coordinates are then used for the
planar two-body dynamics; that is,

̇𝑟 = V
𝑟
,

̇
𝜃 =

V
𝑡

𝑟

,

V̇
𝑟
=

V2
𝑡

𝑟

−

𝜇

𝑟
2
+ 𝑢 sin𝜙,

V̇
𝑡
= −

V
𝑟
V
𝑡

𝑟

+ 𝑢 cos𝜙.

(70)

Table 4: Comparison of different grid points.

Case Points Number of
iterations CPU time Maximum error

of 𝑢
1 100 12 0.38 s 1.07𝑒 − 5

2 200 12 0.74 s 2.65𝑒 − 6

3 500 10 1.82 s 4.24𝑒 − 7

4 1000 13 4.64 s 1.06𝑒 − 7

5 2000 17 15.55 s 2.82𝑒 − 8

6 5000 15 65.04 s 9.16𝑒 − 9

In (70), 𝑟 is the spacecraft radius, 𝜃 is phase angle, V
𝑟
and V
𝑡

are the radial and transversal velocities, respectively, 𝜇 is the
gravitational constant, 𝑢 is the propulsive acceleration, and 𝜙
is thrust angle (see Figure 11).The initial boundary conditions
set the spacecraft in its initial circular orbit at 𝑡

𝑖
:

𝑟 (𝑡
𝑖
) = 1,

𝜃 (𝑡
𝑖
) = 0,

V
𝑟
(𝑡
𝑖
) = 0,

V
𝑡
(𝑡
𝑖
) = 1,

(71)

while the final boundary conditions place the spacecraft into
a target circular orbit at 𝑡

𝑓
:

𝑟 (𝑡
𝑓
) = 4,

V
𝑟
(𝑡
𝑓
) = 0,

V
𝑡
(𝑡
𝑓
) = 0.5.

(72)

The nondimensional 𝜇 and maximum thrust acceleration
𝑢max are

𝜇 = 1,

𝑢max = 0.01.
(73)

In the following, the high efficient NLP solver IPOPT [43] is
used for large-scale nonlinear optimization.

5.2.1. Time-Optimal Problem. Thegoal of time-optimal prob-
lem is to find the functions 𝑢(𝑡) and 𝜙(𝑡) that minimize the
performance index

𝐽 = 𝑡
𝑓

(74)

under the dynamic constraints and the boundary conditions
above.This problem is solvedwith𝑁 = 400 uniformly spaced
points with Hermite-Simpson method. (That is, 2401 NLP
variables: the states and the controls at the nodes plus the
final time.) Figure 12 shows the transfer trajectory; the cyan
dashed line is the initial guess (although the convergence
basin of direct methods is larger than that of indirect meth-
ods, a good initial guess is essential; in time-optimal problem,
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Figure 9: Jacobian and Hessian structures.
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(d) Reintegrate dynamics with discrete control solution

Figure 10: Simulation results of Example 1, 5000 points.

tangential thrust can be used as a simple but suitable approach
to guess an initial solution), the thin blue line denotes the
final transfer orbit, and the thick red line shows the thrust
arc. Figure 13 shows the time history of state variables. The
final transfer time is 55.5. Figure 14 shows the profile of the
optimal control variables 𝑢, 𝜙; it can be seen that the engine
is on duty along the entire orbit, to shorten the transfer time.

5.2.2. Fuel-Optimal Problem. In the fuel-optimal problem,
the functions 𝑢(𝑡) and 𝜙(𝑡) are sought to minimize the
performance index

𝐽 = ∫

𝑡𝑓

𝑡𝑖

𝑢 d𝑡. (75)

Figure 15 illustrates the optimal transfer trajectory. This
solution has been obtained with 𝑁 = 800 mesh points
(i.e., 4801 NLP variables). In this problem, tangential thrust
with magnitude of 0.5𝑢max is used to produce the initial
guess (cyan dashed line in Figure 15). It can be seen that the
thruster is on duty across the periapsis; the only maneuver
performed at the apoapsis injects the spacecraft into a nearly
circular orbit to acquire the final orbit. The final time of
flight is 122.3. Figure 16 illustrates the time history of the state
variables, whereas Figure 17 illustrates the time history of
control variables. A bang-bang structure is found, indicating
the optimality of the solution found.

6. Conclusions

In this survey, some issues related to the direct transcrip-
tion and collocation for optimal low-thrust space trajectory
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Figure 14: Time history of control variables.
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Figure 15: Optimal transfer orbit of fuel-optimal problem.
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Figure 17: Time history of control variables.

design are discussed. The principles of direct transcription
and collocation are given, and emphasis is put on high-
order numerical integration. Hermite-Simpson, high-order
Gauss-Lobatto, and the pseudospectral schemes are intro-
duced. For the Gauss-Lobatto method, a scheme to handle
arbitrary order is given, together with the procedure to
derive analytical gradients. The pseudospectral method has
an impressive convergence rate; however, it is more suitable
for smooth problems. A simple example (two states, one
control) has been solved with the Hermite-Simpson method.
This example shows outstanding efficiency when analytical
gradient is provided. A second example consists in low-
thrust transfers in the two-body model. From this example
it can be concluded that compared with pseudospectral
method, the Gauss-Lobatto method is more suitable for
fuel-optimal problems with discontinued control structures.
In both examples, effort is put to give insights on the
computational issues for a practical implementation of the
method. However, if a long duration problem is encountered
(with increasing number of on/off structures) or a spacecraft
equipped with very small thrust engines is dealt with (large
number of spirals), the NLP solver becomes ill-conditioned.
In these cases, indirect approach with homotopic or hybrid
methods could be more suitable.
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