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We consider system of integral equations related to the weighted Hardy-Littlewood-Sobolev (HLS) inequality in a half space. By
the Pohozaev type identity in integral form, we present a Liouville type theorem when the system is in both supercritical and
subcritical cases under some integrability conditions. Ruling out these nonexistence results, we also discuss the positive solutions
of the integral system in critical case. By the method of moving planes, we show that a pair of positive solutions to such system is
rotationally symmetric about 𝑥

𝑛
-axis, which is much more general than the main result of Zhuo and Li, 2011.

1. Introduction

In [1], Jin and Li studied the weighted HLS system of nonlin-
ear equations in 𝑅𝑛:

𝑢 (𝑥) =

1

|𝑥|
𝛼
∫

𝑅
𝑛

1
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󵄨
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𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝜆

V𝑞 (𝑦)
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󵄨

𝛽

𝑑𝑦,

V (𝑥) =
1

|𝑥|
𝛽

∫

𝑅
𝑛

1

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝜆

𝑢
𝑝

(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼
𝑑𝑦,

(1)

where 0 < 𝜆 < 𝑛 and 1/(𝑝 + 1) + 1/(𝑞 + 1) = (𝜆 + 𝛼 + 𝛽)/𝑛.
By the method of moving planes in integral forms they

derived symmetry and monotonicity of positive solutions of
(1) under some integrability conditions.

Theorem 1 (see [1]). Let the pair (𝑢, V) be a positive solution
of system (1) with 𝑢 ∈ 𝐿

𝑝+1

(𝑅
𝑛

), V ∈ 𝐿
𝑞+1

(𝑅
𝑛

) and 𝑝, 𝑞 ≥ 1,
𝑝𝑞 ̸= 1, and 𝛼, 𝛽 ≥ 0. Then 𝑢 and V are radially symmetric and
decreasing about some point 𝑥

0
.

Jin and Li [2] and Chen et al. [3] also discussed the regu-
larity of solutions to (1).

Let 𝑅𝑛
+
be the upper half Euclidean space

𝑅
𝑛

+
= {𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) ∈ 𝑅
𝑛

| 𝑥
𝑛
> 0} . (2)

In this paper, we want to consider the similar integral system
in the half space 𝑅𝑛

+
as (1). More precisely, we discuss the fol-

lowing weighted HLS type system of nonlinear equations in
𝑅
𝑛

+
:

𝑢 (𝑥) =

1

|𝑥|
𝛼
∫

𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾)

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦,

V (𝑥) =
1

|𝑥|
𝛽

∫

𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾)

𝑢
𝑝

(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼
𝑑𝑦,

(3)

where 𝑢, V ≥ 0, 0 < 𝑝, 𝑞 < ∞, 0 < 𝛾 < 𝑛, 𝛼 + 𝛽 ≥ 0,
𝛼/𝑛 < 1/(𝑝 + 1) < (𝑛 − 𝛾 + 𝛼)/𝑛, and

𝐺 (𝑥, 𝑦, 𝛾) =

1

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾
−

1

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾
; (4)

here 𝑥∗ is the reflection point of 𝑥 about the plane 𝜕𝑅𝑛
+
.

Similar to some integral systems or PDEs systems, the
integral system (3) is usually divided into three cases accord-
ing to the value of exponents (𝑝, 𝑞). We say that system (3) is
in critical case when the pair (𝑝, 𝑞) satisfies the relation

1

𝑝 + 1

+

1

𝑞 + 1

=

𝑛 − 𝛾 + 𝛼 + 𝛽

𝑛

. (5)
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It is in supercritical case when “<” holds; and in subcritical
case when “>” holds; that is

1

𝑝 + 1

+

1

𝑞 + 1

>

𝑛 − 𝛾 + 𝛼 + 𝛽

𝑛

. (6)

In the special case, where 𝛼 = 0 and 𝛽 = 0, system (3) reduces
to

𝑢 (𝑥) = ∫

𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾) V𝑞 (𝑦) 𝑑𝑦,

V (𝑥) = ∫
𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾) 𝑢
𝑝

(𝑦) 𝑑𝑦,

(7)

and system (7) is closely related to the following system of
PDEs with Navier boundary conditions:

(−Δ)
𝛾/2

𝑢 = V𝑞, in 𝑅𝑛
+
;

(−Δ)
𝛾/2V = 𝑢𝑝, in 𝑅𝑛

+
;

(−Δ)
𝑘

𝑢 = 0 on 𝜕𝑅
𝑛

+
;

(−Δ)
𝑘V = 0, on 𝜕𝑅

𝑛

+
;

𝑘 = 0, 1, . . . ,

𝛾

2

− 1.

(8)

In particular, when 𝛾 is an even number, the authors ([4])
proved the equivalence between the two systems (7) and (8)
under some mild growth condition.

Symmetry of solutions to integral system (8) was estab-
lished by Zhuo and Li [5]. They proved that in critical case
1/(𝑝 + 1) + 1/(𝑞 + 1) = (𝑛 − 𝛼)/𝑛, any pair of positive
solutions of (7) with 𝑢 ∈ 𝐿

𝑝+1

(𝑅
𝑛

+
) and V ∈ 𝐿

𝑞+1

(𝑅
𝑛

+
) is

rotationally symmetric about some line parallel to 𝑥
𝑛
-axis.

Under the same integrability conditions, in [6], we obtained
the nonexistence of positive solutions of (7).

The general case is that, for𝛼 ̸= 0 and𝛽 ̸= 0 in (3), there are
few results concerning symmetry and nonexistence for this
doubled weighted system. In this paper, by the Pohozaev type
identity in integral form, we present a Liouville type theorem
when the system (3) is in both supercritical and subcritical
cases under some integrability conditions. Based on these
nonexistence results, we discuss the positive solutions of (3)
in critical case. By themethod ofmoving planes, we show that
a pair of positive solutions to such system is rotationally sym-
metric about 𝑥

𝑛
-axis. To carry on the moving of planes, we

explore global features of the integral equations and estimate
certain integral norms. This is the essence of the method of
moving planes in integral forms. The readers who are inter-
ested in the integral system and the applications of this
method may consult [7–10] and the references therein.

The paper is organized as follows.
In Section 2, by the Pohozaev type identity in integral

forms, we prove the following nonexistence results.

Theorem 2. Suppose that (𝑢(𝑥), V(𝑥)) ∈ 𝐶1(𝑅𝑛) are nonnega-
tive solutions of (3) with 𝑢 ∈ 𝐿𝑝+1(𝑅𝑛

+
), V ∈ 𝐿𝑞+1(𝑅𝑛

+
).

(i) If 𝑝 and 𝑞 are both supercritical, that is,

1

𝑝 + 1

<

𝑛 − 𝛾

2𝑛

+

𝛼

𝑛

,

1

𝑞 + 1

<

𝑛 − 𝛾

2𝑛

+

𝛽

𝑛

, (9)

or

(ii) if 𝑝 and 𝑞 are both subcritical, that is,

1

𝑝 + 1

∈ (

𝑛 − 𝛾

2𝑛

+

𝛼

𝑛

,

𝑛 − 𝛾 + 𝛼

𝑛

) ,

1

𝑞 + 1

∈ (

𝑛 − 𝛾

2𝑛

+

𝛽

𝑛

,

𝑛 − 𝛾 + 𝛽

𝑛

) ,

(10)

then 𝑢 ≡ 0 and V ≡ 0.

Based on these results and ruling out caseswhere there are
no solutions, we are only interested in critical case (5). In Sec-
tion 3, bymeans ofmethod ofmoving planes in integral form,
we establish rotational symmetry of solutions of (3) in critical
case (5) as follows.

Theorem 3. Assume that 𝑢 ∈ 𝐿𝑝+1(𝑅𝑛
+
), V ∈ 𝐿𝑞+1(𝑅𝑛

+
) and 𝑝, 𝑞

satisfy (5). If (𝑢, V) is a pair of positive solutions of (3), then
(𝑢, V) is rotationally symmetric about 𝑥

𝑛
-axis.

Remark 4. When 𝛼 = 𝛽 = 0, Theorem 3 is coincident with
the result in [5].

2. Proof of Theorem 2

In this section we will prove the nonexistence of positive
solutions to the weighted HLS type system (3). These nonex-
istence results, known as Liouville type theorems, are useful
in deriving existence, a priori estimate, regularity, and asymp-
totic analysis of solutions.

A celebrated result of S. I. Pohozaev is known as the
Pohozaev identity. This classical result has many conse-
quences, the most immediate one being the nonexistence of
nontrivial bounded solutions to PDE. Here we apply the
Pohozaev type identity in integral forms to the integral system
(3) (see in [9, 11]).

For any 𝜌 ̸= 0, there holds

𝑢 (𝜌𝑥) =

1

󵄨
󵄨
󵄨
󵄨
𝜌𝑥
󵄨
󵄨
󵄨
󵄨

𝛼
∫

𝑅
𝑛

+

(

1

󵄨
󵄨
󵄨
󵄨
𝜌𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾
−

1

󵄨
󵄨
󵄨
󵄨
𝜌𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾
)

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦.

(11)

By an elementary calculation,

𝑑 (
󵄨
󵄨
󵄨
󵄨
𝜌𝑥
󵄨
󵄨
󵄨
󵄨

−𝛼

)

𝑑𝜌

= −

𝛼

2

󵄨
󵄨
󵄨
󵄨
𝜌𝑥
󵄨
󵄨
󵄨
󵄨

−𝛼−2

⋅ (2𝜌𝑥 ⋅ 𝑥)

= (−𝛼𝜌)
󵄨
󵄨
󵄨
󵄨
𝜌𝑥
󵄨
󵄨
󵄨
󵄨

−𝛼−2

|𝑥|
2

.
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𝑑 (
󵄨
󵄨
󵄨
󵄨
𝜌𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾−𝑛

)

𝑑𝜌

=

𝛾 − 𝑛

2

󵄨
󵄨
󵄨
󵄨
𝜌𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾−𝑛−2

×

𝑑

𝑑𝜌

[(𝜌𝑥
1
− 𝑦
1
)
2

+ ⋅ ⋅ ⋅ + (𝜌𝑥
𝑛
− 𝑦
𝑛
)
2

]

= (𝛾 − 𝑛)
󵄨
󵄨
󵄨
󵄨
𝜌𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾−𝑛−2

𝑥 ⋅ (𝜌𝑥 − 𝑦) ,

𝑑 (
󵄨
󵄨
󵄨
󵄨
𝜌𝑥
∗

− 𝑦
󵄨
󵄨
󵄨
󵄨

𝛾−𝑛

)

𝑑𝜌

=

𝛾 − 𝑛

2

󵄨
󵄨
󵄨
󵄨
𝜌𝑥
∗

− 𝑦
󵄨
󵄨
󵄨
󵄨

𝛾−𝑛−2

×

𝑑

𝑑𝜌

[(𝜌𝑥
1
− 𝑦
1
)
2

+ ⋅ ⋅ ⋅ + (𝜌𝑥
𝑛−1

− 𝑦
𝑛−1
)
2

+(−𝜌𝑥
𝑛
− 𝑦
𝑛
)
2

]

= (𝛾 − 𝑛)
󵄨
󵄨
󵄨
󵄨
𝜌𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾−𝑛−2

𝑥
∗

⋅ (𝜌𝑥
∗

− 𝑦) .

(12)

Noting 𝑢 ∈ 𝐶1(𝑅𝑛), differentiating both sides of (11) with
respect to 𝜌 and letting 𝜌 = 1, we have

𝑥 ⋅ ∇𝑢 (𝑥) = (−𝛼) 𝑢 (𝑥)

+ (𝛾 − 𝑛)

1

|𝑥|
𝛼
∫

𝑅
𝑛

+

[

𝑥 ⋅ (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2

−

𝑥
∗

⋅ (𝑥
∗

− 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦.

(13)

Let 𝐵+
𝑟
(0) = 𝐵

𝑟
(0)∩𝑅

𝑛

+
be the upper half ball in the half space

in 𝑅𝑛
+
. Multiplying left side of (13) by 𝑢𝑝(𝑥) and integrating

on 𝐵+
𝑟
yields

∫

𝐵
+

𝑟

𝑢
𝑝

(𝑥) (𝑥 ⋅ ∇𝑢 (𝑥)) 𝑑𝑥

=

1

𝑝 + 1

∫

𝐵
+

𝑟

𝑥 ⋅ ∇ (𝑢
𝑝+1

(𝑥)) 𝑑𝑥

=

1

𝑝 + 1

∫

𝜕𝐵
+

𝑟

𝑟𝑢
𝑝+1

(𝑥) 𝑑𝜎 −

𝑛

𝑝 + 1

∫

𝐵
+

𝑟

𝑢
𝑝+1

(𝑥) 𝑑𝑥.

(14)

Similarly, we also have

∫

𝐵
+

𝑟

V𝑞 (𝑥) (𝑥 ⋅ ∇V (𝑥)) 𝑑𝑥

=

1

𝑞 + 1

∫

𝜕𝐵
+

𝑟

𝑟V𝑞+1 (𝑥) 𝑑𝜎 −
𝑛

𝑞 + 1

∫

𝐵
+

𝑟

V𝑞+1 (𝑥) 𝑑𝑥.
(15)

Since

∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥 < ∞, ∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥 < ∞. (16)

Thus, there exists a sequence {𝑟
𝑚
} such that

𝑟
𝑚
∫

𝜕𝐵
+

𝑟𝑚

𝑢
𝑝+1

(𝑥) 𝑑𝜎 󳨀→ 0,

∫

𝜕𝐵
+

𝑟𝑚

𝑟
𝑚
V𝑞+1 (𝑥) 𝑑𝜎 󳨀→ 0,

𝑟
𝑚
󳨀→ ∞.

(17)

Let 𝑟
𝑚
→ ∞; by (14), (15), and (17), we have

∫

𝑅
𝑛

+

𝑢
𝑝

(𝑥) (𝑥 ⋅ ∇𝑢 (𝑥)) 𝑑𝑥 + ∫

𝑅
𝑛

+

V𝑞 (𝑥) (𝑥 ⋅ ∇V (𝑥)) 𝑑𝑥

= −

𝑛

𝑝 + 1

∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥 −

𝑛

𝑞 + 1

∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥 < ∞.

(18)

On the other hand,

∫

𝑅
𝑛

+

𝑢
𝑝

(𝑥) (𝑥 ⋅ ∇𝑢 (𝑥)) 𝑑𝑥

= (𝛾 − 𝑛)∫∫

𝑅
𝑛

+

[

𝑥 ⋅ (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑥
∗

⋅ (𝑥
∗

− 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝

(𝑥) V𝑞 (𝑦)

|𝑥|
𝛼󵄨󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑥 𝑑𝑦

+ (−𝛼)∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥

=

𝛾 − 𝑛

2

∫∫

𝑅
𝑛

+

[

𝑥 ⋅ (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑥
∗

⋅ (𝑥
∗

− 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝

(𝑥) V𝑞 (𝑦)

|𝑥|
𝛼󵄨󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑥 𝑑𝑦

+

𝛾 − 𝑛

2

∫∫

𝑅
𝑛

+

[

𝑦 ⋅ (𝑦 − 𝑥)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑦
∗

⋅ (𝑦
∗

− 𝑥)

󵄨
󵄨
󵄨
󵄨
𝑦
∗
− 𝑥

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝

(𝑦) V𝑞 (𝑥)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼

|𝑥|
𝛽

𝑑𝑥 𝑑𝑦

+ (−𝛼)∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥.

(19)

There also holds

∫

𝑅
𝑛

+

V𝑞 (𝑥) (𝑥 ⋅ ∇V (𝑥)) 𝑑𝑥

= (𝛾 − 𝑛)∫∫

𝑅
𝑛

+

[

𝑥 ⋅ (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑥
∗

⋅ (𝑥
∗

− 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝

(𝑦) V𝑞 (𝑥)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼

|𝑥|
𝛽

𝑑𝑥 𝑑𝑦

+ (−𝛽)∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥
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=

𝛾 − 𝑛

2

∫∫

𝑅
𝑛

+

[

𝑥 ⋅ (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑥
∗

⋅ (𝑥
∗

− 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥
∗
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝

(𝑦) V𝑞 (𝑥)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼

|𝑥|
𝛽

+

𝛾 − 𝑛

2

∫∫

𝑅
𝑛

+

[

𝑦 ⋅ (𝑦 − 𝑥)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
−

𝑦
∗

⋅ (𝑦
∗

− 𝑥)

󵄨
󵄨
󵄨
󵄨
𝑦
∗
− 𝑥

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾+2
]

×

𝑢
𝑝

(𝑥) V𝑞 (𝑦)

|𝑥|
𝛼󵄨󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑥 𝑑𝑦

+ (−𝛽)∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥.

(20)
Using

𝑥 ⋅ (𝑥 − 𝑦) + 𝑦 ⋅ (𝑦 − 𝑥) =
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2

,

𝑥
∗

⋅ (𝑥
∗

− 𝑦) + 𝑦
∗

⋅ (𝑦
∗

− 𝑥) =
󵄨
󵄨
󵄨
󵄨
𝑥
∗

− 𝑦
󵄨
󵄨
󵄨
󵄨

2

.

(21)

Combining the fact |𝑥∗−𝑦| = |𝑦∗−𝑥|, (19), and (20), we have

∫

𝑅
𝑛

+

𝑢
𝑝

(𝑥) (𝑥 ⋅ ∇𝑢 (𝑥)) 𝑑𝑥 + ∫

𝑅
𝑛

+

V𝑞 (𝑥) (𝑥 ⋅ ∇V (𝑥)) 𝑑𝑥

= (

𝛾 − 𝑛

2

− 𝛼)∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥

+ (

𝛾 − 𝑛

2

− 𝛽)∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥.

(22)

By (18) and (22), we have

(

𝛾 − 𝑛

2

− 𝛼 +

𝑛

𝑝 + 1

)∫

𝑅
𝑛

+

𝑢
𝑝+1

(𝑥) 𝑑𝑥

+ (

𝛾 − 𝑛

2

− 𝛽 +

𝑛

𝑞 + 1

)∫

𝑅
𝑛

+

V𝑞+1 (𝑥) 𝑑𝑥 = 0.

(23)

Hence, if
𝛾 − 𝑛

2

− 𝛼 +

𝑛

𝑝 + 1

> 0,

𝛾 − 𝑛

2

− 𝛽 +

𝑛

𝑞 + 1

> 0 (24)

or
𝛾 − 𝑛

2

− 𝛼 +

𝑛

𝑝 + 1

< 0,

𝛾 − 𝑛

2

− 𝛽 +

𝑛

𝑞 + 1

< 0, (25)

hold, it follows that 𝑢 ≡ 0 and V ≡ 0.
This completes the proof of Theorem 2.

Remark 5. In [11], the authors consider anotherweightedHLS
type integral system

𝑢 (𝑥) = ∫

𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

−𝑠V𝑞 (𝑦) 𝑑𝑦,

V (𝑥) = ∫
𝑅
𝑛

+

𝐺 (𝑥, 𝑦, 𝛾)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

−𝑡

𝑢
𝑝

(𝑦) 𝑑𝑦,

∀𝑥 ∈ 𝑅
𝑛

+

(26)

and showed the Liouville type theorem as follows.

Theorem 6 (see [11]). Suppose that 𝑢(𝑥), V(𝑥) ∈ 𝐶
1

(𝑅
𝑛

) are
positive solutions of (26)when𝑝 and 𝑞 are both subcritical; that
is 1/(𝑝+1) > (𝑛−𝛾)/2(𝑛− 𝑡) and 1/(𝑞+ 1) > (𝑛−𝛾)/2(𝑛− 𝑠).
If ∫
𝑅
𝑛

+

(𝑢
𝑝+1

/|𝑥|
𝑡

)𝑑𝑥 < ∞, ∫
𝑅
𝑛

+

(V𝑞+1/|𝑥|𝑠)𝑑𝑥 < ∞ and 𝛾−𝑠 > 1,
𝛾 − 𝑡 > 1, then 𝑢 ≡ 0 and V ≡ 0.

When 𝑠 = 𝑡 = 0 in system (26) or 𝛼 = 𝛽 = 0 in system
(3), the two systems reduce to the simple integral system (7).
In this special case, we can find that Theorem 6 is coincident
with case (ii) in Theorem 2.

3. Proof of Theorem 3

In this section, we will consider rotational symmetry of
weighted HLS type system (3) in critical case (5).

Firstly, we need the following weighted HLS inequality.

Lemma 7 (see [12]). Let 1 < 𝑙, 𝑚 < ∞, 0 < 𝛾 < 𝑛, 𝜏 + 𝛽 ≥ 0,
1/𝑙+1/𝑚+(𝛾+𝜏+𝛽)/𝑛 = 2, and 1−1/𝑚−𝛾/𝑛 < 𝜏/𝑛 < 1−1/𝑚.
Then

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫∫

𝑅
𝑛

𝑓 (𝑥) 𝑔 (𝑦)

|𝑥|
𝜏󵄨󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑥 𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝑚

󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝑙
. (27)

One can also write the weighted HLS inequality in another
form. Let

𝑇𝑔 (𝑥) = ∫

𝑅
𝑛

𝑔 (𝑦)

|𝑥|
𝜏󵄨󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝛾󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦. (28)

Then

󵄩
󵄩
󵄩
󵄩
𝑇𝑔 (𝑥)

󵄩
󵄩
󵄩
󵄩𝐿
𝜇 = Sup

‖𝑓‖
𝑚
=1

< 𝑇𝑔 (𝑥) , 𝑓 (𝑥) >≤
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝐿
𝑙 , (29)

where 1/𝑙 + (𝛾 + 𝜏 + 𝛽)/𝑛 = 1 + 1/𝜇, 1/𝜇 + 1/𝑚 = 1.

For a given real number 𝜆, define

Σ
𝜆
= {𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑅
𝑛

+
| 𝑥
1
< 𝜆} ,

𝑇
𝜆
= {𝑥 ∈ 𝑅

𝑛

+
| 𝑥
1
= 𝜆} .

(30)

Let 𝑥𝜆 = (2𝜆 − 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑥
𝑛
) be the reflection of the

point 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) about the plane 𝑇

𝜆
. Set

𝑢
𝜆
(𝑥) = 𝑢 (𝑥

𝜆

) , V
𝜆
(𝑥) = V (𝑥𝜆) . (31)

Lemma 8 (see [8, 13]). For 𝑥, 𝑦 ∈ Σ
𝜆
, 𝑥 ̸= 𝑦, one has

𝐺 (𝑥, 𝑦, 𝛾) ≥ 𝐺 (𝑥
𝜆

, 𝑦, 𝛾) . (32)
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Lemma 9. Let (𝑢, V) be any pair of positive solutions of (3) in
critical case (5); for any 𝑥 ∈ Σ

𝜆
and |𝑥| > |𝑥𝜆|, one has

𝑢 (𝑥) − 𝑢
𝜆
(𝑥)

≤

1

|𝑥|
𝛼
∫

Σ
𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆

, 𝑦, 𝛾)]

V𝑞 (𝑦) − V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦,

V (𝑥) − V
𝜆
(𝑥)

≤

1

|𝑥|
𝛽

∫

Σ
𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆

, 𝑦, 𝛾)]

𝑢
𝑝

(𝑦) − 𝑢
𝑝

𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼
𝑑𝑦.

(33)

Proof. Through the calculation, we have

𝑢 (𝑥) =

1

|𝑥|
𝛼
∫

Σ
𝜆

𝐺 (𝑥, 𝑦, 𝛾)

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦

+

1

|𝑥|
𝛼
∫

Σ
𝜆

𝐺(𝑥
𝜆

, 𝑦, 𝛾)

V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
𝜆
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦,

𝑢
𝜆
(𝑥) =

1

󵄨
󵄨
󵄨
󵄨
𝑥
𝜆
󵄨
󵄨
󵄨
󵄨

𝛼
∫

Σ
𝜆

𝐺(𝑥
𝜆

, 𝑦, 𝛾)

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦

+

1

󵄨
󵄨
󵄨
󵄨
𝑥
𝜆
󵄨
󵄨
󵄨
󵄨

𝛼
∫

Σ
𝜆

𝐺 (𝑥, 𝑦, 𝛾)

𝑢
𝑝

𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
𝜆
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦.

(34)

By the assumption |𝑥| > |𝑥𝜆|, we have

𝑢 (𝑥) − 𝑢
𝜆
(𝑥)

≤

1

|𝑥|
𝛼
∫

Σ
𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆

, 𝑦, 𝛾)]

× (

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

−

V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
𝜆
󵄨
󵄨
󵄨
󵄨

𝛽

)𝑑𝑦

≤

1

|𝑥|
𝛼
∫

Σ
𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆

, 𝑦, 𝛾)]

V𝑞 (𝑦) − V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦.

(35)

Similarly, we have

V (𝑥) − V
𝜆
(𝑥)

≤

1

|𝑥|
𝛽

∫

Σ
𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆

, 𝑦, 𝛾)]

×

𝑢
𝑝

(𝑦) − 𝑢
𝑝

𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛼
𝑑𝑦.

(36)

Proof of Theorem 3. Step 1. We will show that for sufficiently
negative 𝜆,

𝑢
𝜆
(𝑥) ≥ 𝑢 (𝑥) , V

𝜆
(𝑥) ≥ V (𝑥) , a.e. ∀𝑥 ∈ Σ

𝜆
. (37)

Define

Σ
𝑢

𝜆
= {𝑥 ∈ Σ

𝜆
, 𝑢 (𝑥) > 𝑢

𝜆
(𝑥)} ,

Σ
V
𝜆
= {𝑥 ∈ Σ

𝜆
, V (𝑥) > V

𝜆
(𝑥)} .

(38)

Weprove that, for sufficiently negative𝜆, bothΣ𝑢
𝜆
andΣV

𝜆
must

be empty and thus (37) holds.
In fact, by Lemma9 and themean value theorem,we have,

for 𝑥 ∈ Σ𝑢
𝜆
,

0 < 𝑢 (𝑥) − 𝑢
𝜆
(𝑥)

≤

1

|𝑥|
𝛼
∫

Σ
𝜆

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆

, 𝑦, 𝛾)]

V𝑞 (𝑦) − V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦

≤ ∫

Σ
V
𝜆

1

|𝑥|
𝛼
[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥

𝜆

, 𝑦, 𝛾)]

V𝑞 (𝑦) − V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦

≤

1

|𝑥|
𝛼
∫

Σ
V
𝜆

𝐺 (𝑥, 𝑦, 𝛾)

V𝑞 (𝑦) − V𝑞
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦

≤

𝑞

|𝑥|
𝛼
∫

Σ
V
𝜆

1

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾
𝜓
𝑞−1

𝜆
(𝑦)

V (𝑦) − V
𝜆
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

𝑑𝑦

≤ 𝑞∫

Σ
V
𝜆

1

|𝑥|
𝛼󵄨󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛−𝛾󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

V𝑞−1 (𝑦) [V (𝑦) − V
𝜆
(𝑦)] 𝑑𝑦,

(39)

where 𝜓
𝜆
(𝑦) is valued between V(𝑦) and V

𝜆
(𝑦); therefore, on

Σ
V
𝜆
, we have

0 ≤ V
𝜆
(𝑦) ≤ 𝜓

𝜆
(𝑦) ≤ V (𝑦) . (40)

By Lemma 7 and the Hölder inequality, we have

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
V𝑞−1 (V

𝜆
− V)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑇
1 (Σ

V
𝜆
)

≤ 𝐶‖V‖𝑞−1
𝐿
𝑞+1

(Σ
V
𝜆
)

󵄩
󵄩
󵄩
󵄩
V
𝜆
− V󵄩󵄩󵄩

󵄩𝐿
𝑞+1
(Σ

V
𝜆
)
,

(41)

󵄩
󵄩
󵄩
󵄩
V
𝜆
− V󵄩󵄩󵄩

󵄩𝐿
𝑞+1
(Σ

V
𝜆
)
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑝−1

(𝑢
𝜆
− 𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑇
2 (Σ
𝑢

𝜆
)

≤ 𝐶‖𝑢‖
𝑝−1

𝐿
𝑝+1

(Σ
𝑢

𝜆
)

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)
,

(42)

where 𝑇
1
= 𝑛(𝑝 + 1)/(𝑛 + (𝛾 − 𝛼 − 𝛽)(𝑝 + 1)) and 𝑇

2
= 𝑛(𝑞 +

1)/(𝑛 + (𝛾 − 𝛼 − 𝛽)(𝑞 + 1)). It easy to show that 𝑇
1
, 𝑇
2
> 1.

Combining (41) and (42), we arrive

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)

≤ 𝐶‖V‖𝑞−1
𝐿
𝑞+1

(Σ
V
𝜆
)
‖𝑢‖
𝑝−1

𝐿
𝑝+1

(Σ
𝑢

𝜆
)

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)
.

(43)

The conditions 𝑢 ∈ 𝐿𝑝+1(𝑅𝑛
+
) and V ∈ 𝐿𝑞+1(𝑅𝑛

+
) make us able

to choose sufficiently negative 𝜆, so that

𝐶‖V‖𝑞−1
𝐿
𝑞+1

(Σ
V
𝜆
)
‖𝑢‖
𝑝−1

𝐿
𝑝+1

(Σ
𝑢

𝜆
)
≤

1

2

. (44)
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Now inequality (43) implies
󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)
= 0, (45)

and therefore Σ𝑢
𝜆
must be measure zero. Similarly, one can

show that ΣV
𝜆
is measure zero. Therefore (37) holds.

Step 2. Inequality (37) provides a starting point to move the
plane 𝑇

𝜆
= {𝑥 ∈ 𝑅

𝑛

+
| 𝑥
1
= 𝜆}. Now we start from the

neighborhood of 𝑥
1
= −∞ and move the plane to the right

as long as (37) holds to the limiting position. More precisely,
define

𝜆
0
= sup {𝜆 | 𝑢 (𝑥) ≤ 𝑢

𝜇
(𝑥) ,

V (𝑥) ≤ V
𝜇
(𝑥) , 𝜇 ≤ 𝜆, ∀𝑥 ∈ Σ

𝜇
} .

(46)

We will prove that 𝜆
0
= 0. On the contrary, we suppose 𝜆

0
<

0. We show that 𝑢(𝑥) and V(𝑥) are symmetric about the plane
𝑇
𝜆
0

; that is

𝑢
𝜆
0

(𝑥) ≡ 𝑢 (𝑥) , V
𝜆
0

(𝑥) ≡ V (𝑥) , a.e. ∀𝑥 ∈ Σ
𝜆
0

. (47)

Otherwise, on Σ
𝜆
0

,

𝑢 (𝑥) ≤ 𝑢
𝜆
0

(𝑥) , V (𝑥) ≤ V
𝜆
0

(𝑥) ,

but 𝑢 (𝑥) ̸≡ 𝑢
𝜆
0

(𝑥) or V (𝑥) ̸≡ V
𝜆
0

(𝑥) .

(48)

We show that the plane can be moved further to the right.
More precisely, there exists an 𝜖 > 0 such that, for ∀𝜆 ∈

[𝜆
𝑜
, 𝜆
𝑜
+ 𝜖),

𝑢 (𝑥) ≤ 𝑢
𝜆
(𝑥) , V (𝑥) ≤ V

𝜆
(𝑥) , a.e. ∀ 𝑥 ∈ Σ

𝜆
. (49)

Without loss of generality, we assume

V (𝑥) ̸≡ V
𝜆
0

(𝑥) , on Σ
𝜆
0

. (50)

by Lemma 9, we have in fact 𝑢(𝑥) < 𝑢
𝜆
0

(𝑥) in the interior of
Σ
𝜆
0

. Let

Σ
𝑢

𝜆
0

= {𝑥 ∈ Σ
𝜆
0

| 𝑢 (𝑥) ≥ 𝑢
𝜆
0

(𝑥)} ,

Σ
V
𝜆
0

= {𝑥 ∈ Σ
𝜆
0

| V (𝑥) ≥ V
𝜆
0

(𝑥)} .

(51)

Then obviously Σ𝑢
𝜆
0

has measure zero and lim
𝜆→𝜆

0

Σ
𝑢

𝜆
⊂ Σ
𝑢

𝜆
0

.
The same argument above is also true for the other solution V
of (3). From (41) and (42), we deduce

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)

≤ 𝐶‖V‖𝑞−1
𝐿
𝑞+1

(Σ
V
𝜆
)
‖𝑢‖
𝑝−1

𝐿
𝑝+1

(Σ
𝑢

𝜆
)

󵄩
󵄩
󵄩
󵄩
𝑢
𝜆
− 𝑢

󵄩
󵄩
󵄩
󵄩𝐿
𝑝+1
(Σ
𝑢

𝜆
)
.

(52)

Again the conditions that 𝑢 ∈ 𝐿
𝑝+1

(𝑅
𝑛

+
) and V ∈ 𝐿

𝑞+1

(𝑅
𝑛

+
)

ensure that one can choose 𝜖 sufficiently small, so that, for all
𝜆 in [𝜆

𝑜
, 𝜆
𝑜
+ 𝜖),

𝐶‖V‖𝑞−1
𝐿
𝑞+1

(Σ
V
𝜆
)
‖𝑢‖
𝑝−1

𝐿
𝑝+1

(Σ
𝑢

𝜆
)
≤

1

2

. (53)

The method to verify this inequality is standard and the
proofs of the rest are similar to the proof in paper [6, 11, 14].

Now by (52) and (53), we have ‖𝑢
𝜆
− 𝑢‖
𝐿
𝑝
(Σ
𝑢

𝜆
)
= 0, and

therefore Σ𝑢
𝜆
must be measure zero. Similarly, ΣV

𝜆
must also be

measure zero. Hence, for these values of 𝜆 > 𝜆
𝑜
, we have

𝑢
𝜆
(𝑥) ≥ 𝑢 (𝑥) , V

𝜆
(𝑥) ≥ V (𝑥) , a.e. ∀𝑥 ∈ Σ

𝜆
0

.

(54)

This (47) must hold and therefore both 𝑢(𝑥) and V(𝑥) are
symmetric about the plane 𝑇

𝜆
0

.
Nowwe show that the plane cannot stop before hitting the

origin. Otherwise, assume that the plane stops at 𝑥
1
= 𝜆
0
< 0.

By the fact that |𝑦| > |𝑦𝜆0 |, we have

𝑢 (𝑥) − 𝑢
𝜆
0

(𝑥)

≤

1

|𝑥|
𝛼
∫

Σ
𝜆
0

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆
0

, 𝑦, 𝛾)]

× [

V𝑞 (𝑦)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

−

V𝑞
𝜆
0

(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
𝜆
0

󵄨
󵄨
󵄨
󵄨

𝛽

]𝑑𝑦

<

1

|𝑥|
𝛼
∫

Σ
𝜆
0

[𝐺 (𝑥, 𝑦, 𝛾) − 𝐺 (𝑥
𝜆
0

, 𝑦, 𝛾)]

× [

V𝑞 (𝑦) − V𝑞
𝜆
0

(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛽

]𝑑𝑦 = 0.

(55)

This contradicts with (47).
As the direction of 𝑥

1
can be chosen arbitrarily, we derive

that (𝑢(𝑥), V(𝑥)) is rotationally symmetric about 𝑥
𝑛
-axis.This

completes the proof of Theorem 3.
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