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The aim of this paper is to introduce new concepts of 𝛼-𝜂-complete metric space and 𝛼-𝜂-continuous function and establish fixed
point results for modified 𝛼-𝜂-𝜓-rational contraction mappings in 𝛼-𝜂-complete metric spaces. As an application, we derive some
Suzuki type fixed point theorems and new fixed point theorems for𝜓-graphic-rational contractions. Moreover, some examples and
an application to integral equations are given here to illustrate the usability of the obtained results.

This paper is dedicated to Professor Miodrag Mateljević on the occasion of his 65th birthday

1. Preliminaries

We know by the Banach contraction principle [1], which is
a classical and powerful tool in nonlinear analysis, that a
self-mapping 𝑓 on a complete metric space (𝑋, 𝑑) such that
𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝑐 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, where 𝑐 ∈ [0, 1), has a
unique fixed point. Since then, the Banach contraction prin-
ciple has been generalized in several directions (see [2–26]
and references cited therein).

In 2008, Suzuki [21] proved the following result that is an
interesting generalization of the Banach contraction principle
which also characterizes the metric completeness.

Theorem 1. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a self-mapping on 𝑋. Define a nonincreasing function 𝜃 :

[0, 1) → (1/2, 1] by

𝜃 (𝑟) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1, 𝑖𝑓 0 ≤ 𝑟 ≤

(√5 − 1)

2

,

(1 − 𝑟) 𝑟
−2

, 𝑖𝑓

(√5 − 1)

2

< 𝑟 < 2
−1/2

,

(1 + 𝑟)
−1

, 𝑖𝑓 2
−1/2

≤ 𝑟 < 1.

(1)

Assume that there exists 𝑟 ∈ [0, 1) such that

𝜃 (𝑟) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦)

(2)

for all 𝑥, 𝑦 ∈ 𝑋. Then there exists a unique fixed point 𝑧 of 𝑇.
Moreover, lim

𝑛→+∞

𝑇
𝑛

𝑥 = 𝑧 for all 𝑥 ∈ 𝑋.

In 2012, Samet et al. [19] introduced the concepts of 𝛼-
𝜓-contractive and 𝛼-admissible mappings and established
various fixed point theorems for such mappings defined on
complete metric spaces. Afterwards Salimi et al. [16] and
Hussain et al. [7]modified the notions of𝛼-𝜓-contractive and
𝛼-admissible mappings and established fixed point theorems
which are proper generalizations of the recent results in [12,
19].

Definition 2 (see [19]). Let 𝑇 be a self-mapping on 𝑋 and let
𝛼 : 𝑋 × 𝑋 → [0, +∞) be a function. One says that 𝑇 is an
𝛼-admissible mapping if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1. (3)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 280817, 11 pages
http://dx.doi.org/10.1155/2014/280817

http://dx.doi.org/10.1155/2014/280817


2 Abstract and Applied Analysis

Definition 3 (see [16]). Let 𝑇 be a self-mapping on 𝑋 and let
𝛼, 𝜂 : 𝑋 ×𝑋 → [0, +∞) be two functions. One says that 𝑇 is
an 𝛼-admissible mapping with respect to 𝜂 if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 𝜂 (𝑥, 𝑦) 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 𝜂 (𝑇𝑥, 𝑇𝑦) .

(4)

Note that if we take 𝜂(𝑥, 𝑦) = 1, then this definition reduces
to Definition 2. Also, if we take 𝛼(𝑥, 𝑦) = 1, then we say that
𝑇 is an 𝜂-subadmissible mapping.

Here we introduce the notions of 𝛼-𝜂-complete metric
space and 𝛼-𝜂-continuous function and establish fixed point
results for modified 𝛼-𝜂-𝜓-rational contractions in 𝛼-𝜂-
complete metric spaces which are not necessarily complete.
As an application, we derive some Suzuki type fixed point the-
orems and new fixed point theorems for 𝜓-graphic-rational
contractions.Moreover, some examples and an application to
integral equations are given here to illustrate the usability of
the obtained results.

2. Main Results

First, we introduce the notions of 𝛼-𝜂-complete metric space
and 𝛼-𝜂-continuous function.

Definition 4. Let (𝑋, 𝑑) be a metric space and 𝛼, 𝜂 : 𝑋×𝑋 →

[0, +∞). The metric space 𝑋 is said to be 𝛼-𝜂-complete if
and only if every Cauchy sequence {𝑥

𝑛

} with 𝛼(𝑥
𝑛

, 𝑥
𝑛+1

) ≥

𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) for all 𝑛 ∈ N converges in 𝑋. One says 𝑋 is an 𝛼-
complete metric space when 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 and
one says (𝑋, 𝑑) is an 𝜂-complete metric space when 𝛼(𝑥, 𝑦) =

1 for all 𝑥, 𝑦 ∈ 𝑋.

Example 5. Let 𝑋 = (0,∞) and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| be a metric
function on 𝑋. Let 𝐴 be a closed subset of 𝑋. Define 𝛼, 𝜂 :

𝑋 × 𝑋 → [0, +∞) by

𝛼 (𝑥, 𝑦) = {

(𝑥 + 𝑦)
2

, if 𝑥, 𝑦 ∈ 𝐴,

0, otherwise,

𝜂 (𝑥, 𝑦) = 2𝑥𝑦.

(5)

Clearly, (𝑋, 𝑑) is not a complete metric space, but (𝑋, 𝑑) is
an 𝛼-𝜂-complete metric space. Indeed, if {𝑥

𝑛

} is a Cauchy
sequence in 𝑋 such that 𝛼(𝑥

𝑛

, 𝑥
𝑛+1

) ≥ 𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) for all
𝑛 ∈ N, then 𝑥

𝑛

∈ 𝐴 for all 𝑛 ∈ N. Now, since (𝐴, 𝑑) is a
complete metric space, then there exists 𝑥∗ ∈ 𝐴 such that
𝑥
𝑛

→ 𝑥
∗ as 𝑛 → ∞.

Remark 6. Let𝑇 : 𝑋 → 𝑋 be a self-mapping onmetric space
𝑋 and let𝑋 be an orbitally𝑇-complete. Define𝛼, 𝜂 : 𝑋×𝑋 →

[0, +∞) by

𝛼 (𝑥, 𝑦) = {

3, if 𝑥, 𝑦 ∈ 𝑂 (𝑤) ,

0, otherwise,

𝜂 (𝑥, 𝑦) = 1,

(6)

where𝑂(𝑤) is an orbit of a point𝑤 ∈ 𝑋.Then (𝑋, 𝑑) is an𝛼-𝜂-
complete metric space. Indeed, if {𝑥

𝑛

} be a Cauchy sequence,

where 𝛼(𝑥
𝑛

, 𝑥
𝑛+1

) ≥ 𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) for all 𝑛 ∈ N, then {𝑥
𝑛

} ⊆

𝑂(𝑤). Now, since 𝑋 is an orbitally 𝑇-complete metric space,
then {𝑥

𝑛

} converges in 𝑋. That is, (𝑋, 𝑑) is an 𝛼-𝜂-complete
metric space. Also, suppose that 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦); then 𝑥, 𝑦 ∈

𝑂(𝑤). Hence, 𝑇𝑥, 𝑇𝑦 ∈ 𝑂(𝑤). That is, 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 𝜂(𝑇𝑥, 𝑇𝑦).
Thus, 𝑇 is an 𝛼-admissible mapping with respect to 𝜂.

Definition 7. Let (𝑋, 𝑑) be a metric space. Let 𝛼, 𝜂 : 𝑋 ×𝑋 →

[0,∞) and 𝑇 : 𝑋 → 𝑋. One says 𝑇 is an 𝛼-𝜂-continuous
mapping on (𝑋, 𝑑), if for given 𝑥 ∈ 𝑋 and sequence {𝑥

𝑛

}with

𝑥
𝑛

󳨀→ 𝑥, as 𝑛 󳨀→ ∞,

𝛼 (𝑥
𝑛

, 𝑥
𝑛+1

) ≥ 𝜂 (𝑥
𝑛

, 𝑥
𝑛+1

) , ∀𝑛 ∈ N 󳨐⇒ 𝑇𝑥
𝑛

󳨀→ 𝑇𝑥.

(7)

Example 8. Let𝑋 = [0,∞) and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| be a metric
on𝑋. Assume that 𝑇 : 𝑋 → 𝑋 and 𝛼, 𝜂 : 𝑋 ×𝑋 → [0, +∞)

be defined by

𝑇𝑥 = {

𝑥
5

, if 𝑥 ∈ [0, 1] ,

sin𝜋𝑥 + 2, if (1,∞) ,

𝛼 (𝑥, 𝑦) = {

𝑥
2

+ 𝑦
2

+ 1, if 𝑥, 𝑦 ∈ [0, 1] ,

0, otherwise,

𝜂 (𝑥, 𝑦) = 𝑥
2

.

(8)

Clearly, 𝑇 is not continuous, but 𝑇 is 𝛼-𝜂-continuous on
(𝑋, 𝑑). Indeed, if 𝑥

𝑛

→ 𝑥 as 𝑛 → ∞ and 𝛼(𝑥
𝑛

, 𝑥
𝑛+1

) ≥ 𝜂(𝑥
𝑛

,

𝑥
𝑛+1

), then 𝑥
𝑛

∈ [0, 1] and so lim
𝑛→∞

𝑇𝑥
𝑛

= lim
𝑛→∞

𝑥
5

𝑛

=

𝑥
5

= 𝑇𝑥.

Remark 9. Define (𝑋, 𝑑) and 𝛼, 𝜂 : 𝑋 × 𝑋 → [0, +∞) as in
Remark 6. Let 𝑇 : 𝑋 → 𝑋 be a an orbitally continuous map
on (𝑋, 𝑑).Then𝑇 is𝛼-𝜂-continuous on (𝑋, 𝑑). Indeed if𝑥

𝑛

→

𝑥 as 𝑛 → ∞ and 𝛼(𝑥
𝑛

, 𝑥
𝑛+1

) ≥ 𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) for all 𝑛 ∈ N, so
𝑥
𝑛

∈ 𝑂(𝑤) for all 𝑛 ∈ N, then there exists sequence (𝑘
𝑖

)
𝑖∈N

of positive integer such that 𝑥
𝑛

= 𝑇
𝑘𝑖
𝑤 → 𝑥 as 𝑖 → ∞.

Now since 𝑇 is an orbitally continuous map on (𝑋, 𝑑), then
𝑇𝑥
𝑛

= 𝑇(𝑇
𝑘𝑖
𝑤) → 𝑇𝑥 as 𝑖 → ∞ as required.

A function 𝜓 : [0,∞) → [0,∞) is called Bianchini-
Grandolfi gauge function [13, 14, 27] if the following condi-
tions hold:

(i) 𝜓 is nondecreasing;

(ii) there exist 𝑘
0

∈ N and 𝑎 ∈ (0, 1) and a convergent
series of nonnegative terms ∑∞

𝑘=1

V
𝑘

such that

𝜓
𝑘+1

(𝑡) ≤ 𝑎𝜓
𝑘

(𝑡) + V
𝑘

, (9)

for 𝑘 ≥ 𝑘
0

and any 𝑡 ∈ R+.

In some sources, Bianchini-Grandolfi gauge function is
known as (𝑐)—comparison function (see e.g., [2]).We denote
by Ψ the family of Bianchini-Grandolfi gauge functions. The
following lemma illustrates the properties of these functions.
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Lemma 10 (see [2]). If 𝜓 ∈ Ψ, then the following hold:

(i) (𝜓𝑛(𝑡))
𝑛∈N converges to 0 as 𝑛 → ∞ for all 𝑡 ∈ R+;

(ii) 𝜓(𝑡) < 𝑡, for any 𝑡 ∈ (0,∞);
(iii) 𝜓 is continuous at 0;

(iv) the series ∑∞
𝑘=1

𝜓
𝑘

(𝑡) converges for any 𝑡 ∈ R+.

Definition 11. Let (𝑋, 𝑑) be a metric space and let 𝑇 be a self-
mapping on𝑋. Let

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)

1 + 𝑑 (𝑥, 𝑇𝑥)

,

𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑦, 𝑇𝑦)

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(10)

Then,

(a) we say 𝑇 is a modified 𝛼-𝜂-𝜓-rational contraction
mapping if

𝑥, 𝑦 ∈ 𝑋,

𝜂 (𝑥, 𝑇𝑥) ≤ 𝛼 (𝑥, 𝑦) 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) ,

(11)

where 𝜓 ∈ Ψ;
(b) we say 𝑇 is a modified 𝛼-𝜓-rational contraction

mapping if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) ,

(12)

where 𝜓 ∈ Ψ.

The following is our first main result of this section.

Theorem 12. Let (𝑋, 𝑑) be a metric space and let 𝑇 be a self-
mapping on 𝑋. Also, suppose that 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) are
two functions and 𝜓 ∈ Ψ. Assume that the following assertions
hold true:

(i) (𝑋, 𝑑) is an 𝛼-𝜂-complete metric space;
(ii) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;
(iii) 𝑇 is modified 𝛼-𝜂-𝜓-rational contraction mapping on

𝑋;
(iv) 𝑇 is an 𝛼-𝜂-continuous mapping on𝑋;
(v) there exists 𝑥

0

∈ 𝑋 such that 𝛼(𝑥
0

, 𝑇𝑥
0

) ≥ 𝜂(𝑥
0

, 𝑇𝑥
0

).

Then 𝑇 has a fixed point.

Proof. Let 𝑥
0

∈ 𝑋 be such that 𝛼(𝑥
0

, 𝑇𝑥
0

) ≥ 𝜂(𝑥
0

, 𝑇𝑥
0

).
Define a sequence {𝑥

𝑛

} in 𝑋 by 𝑥
𝑛

= 𝑇
𝑛

𝑥
0

= 𝑇𝑥
𝑛−1

for all
𝑛 ∈ N. If 𝑥

𝑛+1

= 𝑥
𝑛

for some 𝑛 ∈ N, then 𝑥 = 𝑥
𝑛

is a
fixed point for 𝑇 and the result is proved. Hence, we suppose
that 𝑥

𝑛+1

̸= 𝑥
𝑛

for all 𝑛 ∈ N. Since 𝑇 is 𝛼-admissible mapping
with respect to 𝜂 and 𝛼(𝑥

0

, 𝑇𝑥
0

) ≥ 𝜂(𝑥
0

, 𝑇𝑥
0

), we deduce

that 𝛼(𝑥
1

, 𝑥
2

) = 𝛼(𝑇𝑥
0

, 𝑇
2

𝑥
0

) ≥ 𝜂(𝑇𝑥
0

, 𝑇
2

𝑥
0

) = 𝜂(𝑥
1

, 𝑥
2

).
Continuing this process, we get

𝛼 (𝑥
𝑛

, 𝑥
𝑛+1

) ≥ 𝜂 (𝑥
𝑛

, 𝑥
𝑛+1

) = 𝜂 (𝑥
𝑛

, 𝑇𝑥
𝑛

) (13)

for all 𝑛 ∈ N ∪ {0}. Now, by (a) we get

𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

) = 𝑑 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛

) ≤ 𝜓 (𝑀(𝑥
𝑛−1

, 𝑥
𝑛

)) , (14)

where

𝑀(𝑥
𝑛−1

, 𝑥
𝑛

) = max{𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

) ,

𝑑 (𝑥
𝑛−1

, 𝑇𝑥
𝑛−1

)

1 + 𝑑 (𝑥
𝑛−1

, 𝑇𝑥
𝑛−1

)

,

𝑑 (𝑥
𝑛

, 𝑇𝑥
𝑛

)

1 + 𝑑 (𝑥
𝑛

, 𝑇𝑥
𝑛

)

,

𝑑 (𝑥
𝑛−1

, 𝑇𝑥
𝑛

) + 𝑑 (𝑥
𝑛

, 𝑇𝑥
𝑛−1

)

2

}

= max{𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

) ,

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

)

1 + 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

)

,

𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

)

1 + 𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

)

,

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

)

2

}

≤ max{𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

) , 𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

) ,

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

) + 𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

)

2

}

= max {𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

) , 𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

)}

(15)

and so, 𝑀(𝑥
𝑛−1

, 𝑥
𝑛

) ≤ max{𝑑(𝑥
𝑛−1

, 𝑥
𝑛

), 𝑑(𝑥
𝑛

, 𝑥
𝑛+1

)}. Now
since 𝜓 is nondecreasing, so from (14), we have

𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

) ≤ 𝜓 (max {𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

) , 𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

)}) . (16)

Now, if max{𝑑(𝑥
𝑛−1

, 𝑥
𝑛

), 𝑑(𝑥
𝑛

, 𝑥
𝑛+1

)} = 𝑑(𝑥
𝑛

, 𝑥
𝑛+1

) for some
𝑛 ∈ N, then

𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

) ≤ 𝜓 (max {𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

) , 𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

)})

= 𝜓 (𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

)) < 𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

)

(17)

which is a contradiction. Hence, for all 𝑛 ∈ N we have

𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

) ≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

)) . (18)

By induction, we have

𝑑 (𝑥
𝑛

, 𝑥
𝑛+1

) ≤ 𝜓
𝑛

(𝑑 (𝑥
0

, 𝑥
1

)) . (19)

Fix 𝜖 > 0; there exists𝑁 ∈ N such that

∑

𝑛≥𝑁

𝜓
𝑛

(𝑑 (𝑥
0

, 𝑥
1

)) < 𝜖. (20)

Let 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛 ≥ 𝑁. Then by triangular inequality
we get

𝑑 (𝑥
𝑛

, 𝑥
𝑚

) ≤

𝑚−1

∑

𝑘=𝑛

𝑑 (𝑥
𝑘

, 𝑥
𝑘+1

) ≤ ∑

𝑛≥𝑁

𝜓
𝑛

(𝑑 (𝑥
0

, 𝑥
1

)) < 𝜖.

(21)
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Consequently lim
𝑚,𝑛,→+∞

𝑑(𝑥
𝑛

, 𝑥
𝑚

) = 0. Hence {𝑥
𝑛

} is a
Cauchy sequence. On the other hand from (13) we know that
𝛼(𝑥
𝑛

, 𝑥
𝑛+1

) ≥ 𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) for all 𝑛 ∈ N. Now since 𝑋 is an 𝛼-
𝜂-complete metric space, there is 𝑧 ∈ 𝑋 such that 𝑥

𝑛

→ 𝑧

as 𝑛 → ∞. Also, since 𝑇 is an 𝛼-𝜂-continuous mapping,
so 𝑥
𝑛+1

= 𝑇𝑥
𝑛

→ 𝑇𝑧 as 𝑛 → ∞. That is, 𝑧 = 𝑇𝑧 as
required.

Example 13. Let𝑋 = (−∞, −2)∪[−1, 1]∪(2, +∞). We endow
𝑋 with the metric

𝑑 (𝑥, 𝑦) = {

max {|𝑥| , 󵄨󵄨󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
} , if 𝑥 ̸= 𝑦,

0, 𝑥 = 𝑦.

(22)

Define 𝑇 : 𝑋 → 𝑋, 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞), and 𝜓 : [0,

∞) → [0,∞) by

𝑇𝑥 =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

√2𝑥
2

− 1, if 𝑥 ∈ (−∞, −3] ,

𝑥
3

− 1, if 𝑥 ∈ (−3, −2) ,

1

4

𝑥
2

, if 𝑥 ∈ [−1, 0] ,

1

4

𝑥, if 𝑥 ∈ (0, 1] ,

5 + sin𝜋𝑥, if 𝑥 ∈ (2, 4) ,

3𝑥
3

+ ln𝑥 + 1, if 𝑥 ∈ [4,∞) ,

𝛼 (𝑥, 𝑦) = {

𝑥
2

+ 𝑦
2

+ 1, if 𝑥, 𝑦 ∈ [−1, 1] ,

𝑥
2

, otherwise,

𝜂 (𝑥, 𝑦) = 𝑥
2

+ 𝑦
2

,

𝜓 (𝑡) =

1

2

𝑡.

(23)

Clearly, (𝑋, 𝑑) is not a complete metric space. However, it
is an 𝛼-𝜂-complete metric space. In fact, if {𝑥

𝑛

} is a Cauchy
sequence such that 𝛼(𝑥

𝑛

, 𝑥
𝑛+1

) ≥ 𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) for all 𝑛 ∈ N,
then {𝑥

𝑛

} ⊆ [−1, 1] for all 𝑛 ∈ N. Now, since ([−1, 1], 𝑑) is
a complete metric space, then the sequence {𝑥

𝑛

} converges
in [−1, 1] ⊆ 𝑋. Let 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦); then 𝑥, 𝑦 ∈ [−1, 1].
On the other hand, 𝑇𝑤 ∈ [−1, 1] for all 𝑤 ∈ [−1, 1]. Then,
𝛼(𝑇𝑥, 𝑇𝑦) ≥ 𝜂(𝑇𝑥, 𝑇𝑦). That is, 𝑇 is an 𝛼-admissible mapping
with respect to 𝜂. Let {𝑥

𝑛

} be a sequence, such that 𝑥
𝑛

→ 𝑥

as 𝑛 → ∞ and 𝛼(𝑥
𝑛+1

, 𝑥
𝑛

) ≥ 𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) for all 𝑛 ∈ N.
Then, {𝑥

𝑛

} ⊆ [−1, 1] for all 𝑛 ∈ N. So, {𝑇𝑥
𝑛

} ⊆ [−1, 1]

(since 𝑇𝑤 ∈ [−1, 1] for all 𝑤 ∈ [−1, 1]). Now, since 𝑇 is
continuous on [−1, 1]. Then, 𝑇𝑥

𝑛

→ 𝑇𝑥 as 𝑛 → ∞. That is,
𝑇 is an𝛼-𝜂-continuousmapping. Clearly,𝛼(0, 𝑇0) ≥ 𝜂(0, 𝑇0).
Let 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑇𝑥). Now, if 𝑥 ∉ [−1, 1] or 𝑦 ∉ [−1, 1],
then 𝑥

2

≥ 𝑥
2

+ 𝑦
2

+ 1 which implies 𝑦2 + 1 ≤ 0 which is
a contradiction. Then, 𝑥, 𝑦 ∈ [−1, 1]. Now we consider the
following cases:

(i) let 𝑥, 𝑦 ∈ [−1, 0) with 𝑥 ̸= 𝑦; then,

𝑑 (𝑇𝑥, 𝑇𝑦) =

1

4

max {𝑥2, 𝑦2}

≤

1

2

max {|𝑥| , 󵄨󵄨󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
} = 𝜓 (𝑑 (𝑥, 𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦)) ;

(24)

(ii) let 𝑥, 𝑦 ∈ (0, 1] with 𝑥 ̸= 𝑦; then

𝑑 (𝑇𝑥, 𝑇𝑦) =

1

4

max {|𝑥| , 󵄨󵄨󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
}

≤

1

2

max {|𝑥| , 󵄨󵄨󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
} = 𝜓 (𝑑 (𝑥, 𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦)) ;

(25)

(iii) let 𝑥 ∈ (−1, 0) and 𝑦 ∈ (0, 1); then

𝑑 (𝑇𝑥, 𝑇𝑦) =

1

4

max {𝑥2, 𝑦}

≤

1

2

max {|𝑥| , 󵄨󵄨󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
} = 𝜓 (𝑑 (𝑥, 𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦))

(26)

(iv) let 𝑥 = 𝑦 ∈ [−1, 0), 𝑥 = 𝑦 ∈ (0, 1] or let 𝑥 = −1, 𝑦 = 1;
then, 𝑇𝑥 = 𝑇𝑦. That is,

𝑑 (𝑇𝑥, 𝑇𝑦) = 0 ≤ 𝜓 (𝑀(𝑥, 𝑦)) . (27)

Thus 𝑇 is a modified 𝛼-𝜂-𝜓-rational contraction mapping.
Hence all conditions of Theorem 12 are satisfied and 𝑇 has
a fixed point. Here, 𝑥 = 0 is fixed point of 𝑇.

By taking 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 in Theorem 12, we
obtain the following corollary.

Corollary 14. Let (𝑋, 𝑑) be a metric space and let 𝑇 be a self-
mapping on 𝑋. Also, suppose that 𝛼 : 𝑋 × 𝑋 → [0,∞) is a
function and 𝜓 ∈ Ψ. Assume that the following assertions hold
true:

(i) (𝑋, 𝑑) is an 𝛼-complete metric space;
(ii) 𝑇 is an 𝛼-admissible mapping;
(iii) 𝑇 is a modified 𝛼-𝜓-rational contraction on 𝑋;
(iv) 𝑇 is an 𝛼-continuous mapping on 𝑋;
(v) there exists 𝑥

0

∈ 𝑋 such that 𝛼(𝑥
0

, 𝑇𝑥
0

) ≥ 1.

Then 𝑇 has a fixed point.

Theorem 15. Let (𝑋, 𝑑) be a metric space and let 𝑇 be a self-
mapping on 𝑋. Also, suppose that 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) are
two functions and 𝜓 ∈ Ψ. Assume that the following assertions
hold true:

(i) (𝑋, 𝑑) is an 𝛼-𝜂-complete metric space;
(ii) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;
(iii) 𝑇 is a modified 𝛼-𝜂-𝜓-rational contraction on𝑋;
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(iv) there exists 𝑥
0

∈ 𝑋 such that 𝛼(𝑥
0

, 𝑇𝑥
0

) ≥ 𝜂(𝑥
0

, 𝑇𝑥
0

);
(v) if {𝑥

𝑛

} is a sequence in 𝑋 such that 𝛼(𝑥
𝑛

, 𝑥
𝑛+1

) ≥

𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) with 𝑥
𝑛

→ 𝑥 as 𝑛 → ∞, then either

𝜂 (𝑇𝑥
𝑛

, 𝑇
2

𝑥
𝑛

) ≤ 𝛼 (𝑇𝑥
𝑛

, 𝑥)

𝑜𝑟 𝜂 (𝑇
2

𝑥
𝑛

, 𝑇
3

𝑥
𝑛

) ≤ 𝛼 (𝑇
2

𝑥
𝑛

, 𝑥)

(28)

holds for all 𝑛 ∈ N.
Then 𝑇 has a fixed point.

Proof. Let 𝑥
0

∈ 𝑋 be such that 𝛼(𝑥
0

, 𝑇𝑥
0

) ≥ 𝜂(𝑥
0

, 𝑇𝑥
0

).
Define a sequence {𝑥

𝑛

} in𝑋 by 𝑥
𝑛

= 𝑇
𝑛

𝑥
0

= 𝑇𝑥
𝑛−1

for all 𝑛 ∈

N. Now as in the proof of Theorem 12 we have 𝛼(𝑥
𝑛+1

, 𝑥
𝑛

) ≥

𝜂(𝑥
𝑛+1

, 𝑥
𝑛

) for all 𝑛 ∈ N and there exists 𝑧 ∈ 𝑋 such that
𝑥
𝑛

→ 𝑧 as 𝑛 → ∞. Let 𝑑(𝑧, 𝑇𝑧) ̸= 0. From (v) either

𝜂 (𝑇𝑥
𝑛−1

, 𝑇
2

𝑥
𝑛−1

) ≤ 𝛼 (𝑇𝑥
𝑛−1

, 𝑧)

or 𝜂 (𝑇2𝑥
𝑛−1

, 𝑇
3

𝑥
𝑛−1

) ≤ 𝛼 (𝑇
2

𝑥
𝑛−1

, 𝑧)

(29)

holds for all 𝑛 ∈ N. Then,

𝜂 (𝑥
𝑛

, 𝑥
𝑛+1

) ≤ 𝛼 (𝑥
𝑛

, 𝑧)

or 𝜂 (𝑥
𝑛+1

, 𝑥
𝑛+2

) ≤ 𝛼 (𝑥
𝑛+1

, 𝑧)

(30)

holds for all 𝑛 ∈ N. Let 𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) ≤ 𝛼(𝑥
𝑛

, 𝑧) hold for all
𝑛 ∈ N. Now from (a) we get

𝑑 (𝑥
𝑛𝑘+1

, 𝑇𝑧)

= 𝑑 (𝑇𝑥
𝑛𝑘
, 𝑇𝑧)

≤ 𝜓(max{𝑑 (𝑥
𝑛𝑘
, 𝑧) ,

𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥
𝑛𝑘
)

1 + 𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥
𝑛𝑘
)

,

𝑑 (𝑧, 𝑇𝑧)

1 + 𝑑 (𝑧, 𝑇𝑧)

,

𝑑 (𝑥
𝑛𝑘
, 𝑇𝑧) + 𝑑 (𝑧, 𝑇𝑥

𝑛𝑘
)

2

})

= 𝜓(max{𝑑 (𝑥
𝑛𝑘
, 𝑧) ,

𝑑 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

)

1 + 𝑑 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

)

,

𝑑 (𝑧, 𝑇𝑧)

1 + 𝑑 (𝑧, 𝑇𝑧)

,

𝑑 (𝑥
𝑛𝑘
, 𝑇𝑧) + 𝑑 (𝑧, 𝑥

𝑛𝑘+1
)

2

})

< max{𝑑 (𝑥
𝑛𝑘
, 𝑧) ,

𝑑 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

)

1 + 𝑑 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

)

,

𝑑 (𝑧, 𝑇𝑧)

1 + 𝑑 (𝑧, 𝑇𝑧)

,

𝑑 (𝑥
𝑛𝑘
, 𝑇𝑧) + 𝑑 (𝑧, 𝑥

𝑛𝑘+1
)

2

} .

(31)

By taking limit as 𝑘 → ∞ in the above inequality we get

𝑑 (𝑧, 𝑇𝑧) ≤ max{ 𝑑 (𝑧, 𝑇𝑧)

1 + 𝑑 (𝑧, 𝑇𝑧)

,

𝑑 (𝑧, 𝑇𝑧)

2

} < 𝑑 (𝑧, 𝑇𝑧)

(32)

which is a contradiction. Hence, 𝑑(𝑧, 𝑇𝑧) = 0 implies 𝑧 =

𝑇𝑧. By the similar method we can show that 𝑧 = 𝑇𝑧 if
𝜂(𝑥
𝑛+1

, 𝑥
𝑛+2

) ≤ 𝛼(𝑥
𝑛+1

, 𝑧) holds for all 𝑛 ∈ N.

Example 16. Let 𝑋 = (0, +∞). We endow 𝑋 with usual met-
ric. Define 𝑇 : 𝑋 → 𝑋, 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞), and 𝜓 : [0,

∞) → [0,∞) by

𝑇𝑥 =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

√𝑥
2

+ 1

sin𝑥 + cos𝑥 + 3

, if 𝑥 ∈ (0, 1) ,

1

16

𝑥
2

+ 1, if 𝑥 ∈ [1, 2] ,

𝑥
3

+ 1

√𝑥
2

+ 1

, if 𝑥 ∈ (2,∞) ,

𝛼 (𝑥, 𝑦) =

{
{

{
{

{

1

2

, if 𝑥, 𝑦 ∈ [1, 2] ,

0, otherwise,

𝜂 (𝑥, 𝑦) =

1

4

, 𝜓 (𝑡) =

1

4

𝑡.

(33)

Note that (𝑋, 𝑑) is not a complete metric space. But it is an 𝛼-
𝜂-completemetric space. Indeed, if {𝑥

𝑛

} is a Cauchy sequence
such that 𝛼(𝑥

𝑛

, 𝑥
𝑛+1

) ≥ 𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) for all 𝑛 ∈ N, then {𝑥
𝑛

} ⊆

[1, 2] for all 𝑛 ∈ N. Now, since ([1, 2], 𝑑) is a complete metric
space, then the sequence {𝑥

𝑛

} converges in [1, 2] ⊆ 𝑋. Let
𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦); then 𝑥, 𝑦 ∈ [1, 2]. On the other hand, 𝑇𝑤 ∈

[1, 2] for all 𝑤 ∈ [1, 2]. Then, 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 𝜂(𝑇𝑥, 𝑇𝑦). That is,
𝑇 is an 𝛼-admissible mapping with respect to 𝜂. If {𝑥

𝑛

} is a
sequence in𝑋 such that 𝛼(𝑥

𝑛

, 𝑥
𝑛+1

) ≥ 𝜂(𝑥
𝑛

, 𝑥
𝑛+1

) with 𝑥
𝑛

→

𝑥 as 𝑛 → ∞. Then, 𝑇𝑥
𝑛

, 𝑇
2

𝑥
𝑛

, 𝑇
3

𝑥
𝑛

∈ [1, 2] for all 𝑛 ∈ N.
That is,

𝜂 (𝑇𝑥
𝑛

, 𝑇
2

𝑥
𝑛

) ≤ 𝛼 (𝑇𝑥
𝑛

, 𝑥) ,

𝜂 (𝑇
2

𝑥
𝑛

, 𝑇
3

𝑥
𝑛

) ≤ 𝛼 (𝑇
2

𝑥
𝑛

, 𝑥) ,

(34)

holds for all 𝑛 ∈ N. Clearly, 𝛼(0, 𝑇0) ≥ 𝜂(0, 𝑇0). Let, 𝛼(𝑥, 𝑦) ≥
𝜂(𝑥, 𝑇𝑥). Now, if 𝑥 ∉ [1, 2] or 𝑦 ∉ [1, 2], then 0 ≥ 1/4, which
is a contradiction. So, 𝑥, 𝑦 ∈ [1, 2]. Therefore,

𝑑 (𝑇𝑥, 𝑇𝑦) =

1

16

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
2

− 𝑦
2

󵄨
󵄨
󵄨
󵄨
󵄨

=

1

16

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥 + 𝑦

󵄨
󵄨
󵄨
󵄨
≤

1

4

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

=

1

4

𝑑 (𝑥, 𝑦) ≤

1

4

𝑀(𝑥, 𝑦) = 𝜓 (𝑀(𝑥, 𝑦)) .

(35)

Therefore 𝑇 is a modified 𝛼-𝜂-𝜓-rational contraction map-
ping. Hence all conditions of Theorem 15 hold and 𝑇 has a
fixed point. Here, 𝑥 = 8 − 2√14 is a fixed point of 𝑇.

If inTheorem 15 we take 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋, then
we obtain the following result.

Corollary 17. Let (𝑋, 𝑑) be a metric space and let 𝑇 be a self-
mapping on 𝑋. Also, suppose that 𝛼 : 𝑋 × 𝑋 → [0,∞) is a
function and 𝜓 ∈ Ψ. Assume that the following assertions hold
true:



6 Abstract and Applied Analysis

(i) (𝑋, 𝑑) is a 𝛼-complete metric space;
(ii) 𝑇 is an 𝛼-admissible mapping;
(iii) 𝑇 is a modified 𝛼-𝜓-rational contraction mapping on

𝑋;
(iv) there exists 𝑥

0

∈ 𝑋 such that 𝛼(𝑥
0

, 𝑇𝑥
0

) ≥ 1;
(v) if {𝑥

𝑛

} is a sequence in𝑋 such that 𝛼(𝑥
𝑛

, 𝑥
𝑛+1

) ≥ 1with
𝑥
𝑛

→ 𝑥 as 𝑛 → ∞, then either

𝛼 (𝑇𝑥
𝑛

, 𝑥) ≥ 1 𝑜𝑟 𝛼 (𝑇
2

𝑥
𝑛

, 𝑥) ≥ 1 (36)

holds for all 𝑛 ∈ N.

Then 𝑇 has a fixed point.

Corollary 18. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a continuous self-mapping on𝑋. Assume that𝑇 is amodified
rational contraction mapping, that is,

∀𝑥, 𝑦 ∈ 𝑋, 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) , (37)

where 𝜓 ∈ Ψ. Then 𝑇 has a fixed point.

Corollary 19. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a continuous self-mapping on𝑋. Assume that 𝑇 satisfies the
following rational inequality:

∀𝑥, 𝑦 ∈ 𝑋, 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑀(𝑥, 𝑦) , (38)

where 0 ≤ 𝑟 < 1 and

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)

1 + 𝑑 (𝑥, 𝑇𝑥)

,

𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑦, 𝑇𝑦)

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(39)

Then 𝑇 has a fixed point.

3. Consequences

3.1. Suzuki Type Fixed Point Results. From Theorem 12 we
deduce the following Suzuki type fixed point result.

Theorem 20. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a continuous self-mapping on 𝑋. Assume that there exists
𝑟 ∈ [0, 1) such that

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑀(𝑥, 𝑦)

(40)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)

1 + 𝑑 (𝑥, 𝑇𝑥)

,

𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑦, 𝑇𝑦)

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(41)

Then 𝑇 has a unique fixed point.

Proof. Define 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) and 𝜓 : [0,∞) →

[0,∞) by

𝛼 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) , 𝜂 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) , (42)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑟𝑡, where 0 ≤ 𝑟 < 1. Clearly,
𝜂(𝑥, 𝑦) ≤ 𝛼(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. That is, conditions (i)–(v)
of Theorem 12 hold true. Let 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦). Then, 𝑑(𝑥,
𝑇𝑥) ≤ 𝑑(𝑥, 𝑦). Now from (40) we have 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑀(𝑥,

𝑦) = 𝜓(𝑀(𝑥, 𝑦)). That is, 𝑇 is a modified 𝛼-𝜂-𝜓-rational
contractionmapping on𝑋.Then all conditions ofTheorem 12
hold and𝑇has a fixed point.Theuniqueness of the fixed point
follows easily from (40).

Corollary 21. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a continuous self-mapping on 𝑋. Assume that there exists
𝑟 ∈ [0, 1) such that

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦)

(43)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point.

Now, we prove the following Suzuki type fixed point
theorem without continuity of 𝑇.

Theorem 22. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a self-mapping on 𝑋. Define a nonincreasing function 𝜌 :

[0, 1) → (1/2, 1] by

𝜌 (𝑟) =

1

1 + 𝑟

. (44)

Assume that there exists 𝑟 ∈ [0, 1) such that

𝜌 (𝑟) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦)

(45)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point.

Proof. Define 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) and 𝜓 : [0,∞) →

[0,∞) by

𝛼 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) , 𝜂 (𝑥, 𝑦) = 𝜌 (𝑟) 𝑑 (𝑥, 𝑦) (46)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑟𝑡, where 0 ≤ 𝑟 < 1. Now, since
𝜌(𝑟)𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, 𝜂(𝑥, 𝑦) ≤ 𝛼(𝑥, 𝑦) for
all 𝑥, 𝑦 ∈ 𝑋. That is, conditions (i)–(iv) of Theorem 15 hold
true. Let {𝑥

𝑛

} be a sequence with 𝑥
𝑛

→ 𝑥 as 𝑛 → ∞. Since
𝜌(𝑟)𝑑(𝑇𝑥

𝑛

, 𝑇
2

𝑥
𝑛

) ≤ 𝑑(𝑇𝑥
𝑛

, 𝑇
2

𝑥
𝑛

) for all 𝑛 ∈ N, then from
(45) we get

𝑑 (𝑇
2

𝑥
𝑛

, 𝑇
3

𝑥
𝑛

) ≤ 𝑟𝑑 (𝑇𝑥
𝑛

, 𝑇
2

𝑥
𝑛

) (47)

for all 𝑛 ∈ N.
Assume there exists 𝑛

0

∈ N such that

𝜂 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
) > 𝛼 (𝑇𝑥

𝑛0
, 𝑥) ,

𝜂 (𝑇
2

𝑥
𝑛0
, 𝑇
3

𝑥
𝑛0
) > 𝛼 (𝑇

2

𝑥
𝑛0
, 𝑥) ;

(48)
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then,

𝜌 (𝑟) 𝑑 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
) > 𝑑 (𝑇𝑥

𝑛0
, 𝑥) ,

𝜌 (𝑟) 𝑑 (𝑇
2

𝑥
𝑛0
, 𝑇
3

𝑥
𝑛0
) > 𝑑 (𝑇

2

𝑥
𝑛0
, 𝑥) ,

(49)

and so by (47) we have

𝑑 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
)

≤ 𝑑 (𝑇𝑥
𝑛0
, 𝑥) + 𝑑 (𝑇

2

𝑥
𝑛0
, 𝑥)

< 𝜌 (𝑟) 𝑑 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
) + 𝜌 (𝑟) 𝑑 (𝑇

2

𝑥
𝑛0
, 𝑇
3

𝑥
𝑛0
)

≤ 𝜌 (𝑟) 𝑑 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
) + 𝑟𝜌 (𝑟) 𝑑 (𝑇𝑥

𝑛0
, 𝑇
2

𝑥
𝑛0
)

= 𝜌 (𝑟) (1 + 𝑟) 𝑑 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
) = 𝑑 (𝑇𝑥

𝑛0
, 𝑇
2

𝑥
𝑛0
)

(50)

which is a contradiction. Hence, either

𝜂 (𝑇𝑥
𝑛

, 𝑇
2

𝑥
𝑛

) ≤ 𝛼 (𝑇𝑥
𝑛

, 𝑥)

or 𝜂 (𝑇2𝑥
𝑛

, 𝑇
3

𝑥
𝑛

) ≤ 𝛼 (𝑇
2

𝑥
𝑛

, 𝑥)

(51)

holds for all 𝑛 ∈ N. That is condition (v) ofTheorem 15 holds.
Let, 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦). So, 𝜌(𝑟)𝑑(𝑥, 𝑇𝑥) ≤ 𝑑(𝑥, 𝑦).

Then from (45) we get 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑(𝑥, 𝑦) ≤ 𝑟𝑀(𝑥, 𝑦) =

𝜓(𝑀(𝑥, 𝑦)). Hence, all conditions of Theorem 15 hold and 𝑇

has a fixed point. The uniqueness of the fixed point follows
easily from (45).

3.2. Fixed Point Results in Orbitally 𝑇-Complete Metric Spaces

Theorem 23. Let (𝑋, 𝑑) be a metric space and let 𝑇 : 𝑋 → 𝑋

be a self-mapping on𝑋. Suppose the following assertions hold:

(i) (𝑋, 𝑑) is an orbitally 𝑇-complete metric space;
(ii) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) (52)

holds for all 𝑥, 𝑦 ∈ 𝑂(𝑤) for some 𝑤 ∈ 𝑋, where

𝑀(𝑥, 𝑦)

= max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)

1 + 𝑑 (𝑥, 𝑇𝑥)

,

𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑦, 𝑇𝑦)

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} ;

(53)

(iii) if {𝑥
𝑛

} is a sequence such that {𝑥
𝑛

} ⊆ 𝑂(𝑤) with 𝑥
𝑛

→

𝑥 as 𝑛 → ∞, then 𝑥 ∈ 𝑂(𝑤).

Then 𝑇 has a fixed point.

Proof. Define 𝛼 : 𝑋 × 𝑋 → [0, +∞) as in Remark 6. From
Remark 6 we know that (𝑋, 𝑑) is an 𝛼-complete metric space
and𝑇 is an𝛼-admissiblemapping. Let𝛼(𝑥, 𝑦) ≥ 1; then𝑥, 𝑦 ∈

𝑂(𝑤). Then from (ii) we have

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) . (54)

That is,𝑇 is amodified𝛼-𝜓-rational contractionmapping. Let
{𝑥
𝑛

} be a sequence such that 𝛼(𝑥
𝑛

, 𝑥
𝑛+1

) ≥ 1 with 𝑥
𝑛

→ 𝑥 as
𝑛 → ∞. So, {𝑥

𝑛

} ⊆ 𝑂(𝑤). From (iii) we have 𝑥 ∈ 𝑂(𝑤). That
is,𝛼(𝑥

𝑛

, 𝑥) ≥ 1. Hence, all conditions of Corollary 17 hold and
𝑇 has a fixed point.

Corollary 24. Let (𝑋, 𝑑) be ametric space and let𝑇 : 𝑋 → 𝑋

be a self-mapping on𝑋. Suppose the following assertions hold:

(i) (𝑋, 𝑑) is an orbitally 𝑇-complete metric space;
(ii) there exists 𝑟 ∈ [0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑀(𝑥, 𝑦) (55)

holds for all 𝑥, 𝑦 ∈ 𝑂(𝑤) for some 𝑤 ∈ 𝑋, where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)

1 + 𝑑 (𝑥, 𝑇𝑥)

,

𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑦, 𝑇𝑦)

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} ;

(56)

(iii) if {𝑥
𝑛

} is a sequence such that {𝑥
𝑛

} ⊆ 𝑂(𝑤) with 𝑥
𝑛

→

𝑥 as 𝑛 → ∞, then 𝑥 ∈ 𝑂(𝑤).

Then 𝑇 has a fixed point.

3.3. Fixed Point Results for Graphic Contractions. Consistent
with Jachymski [11], let (𝑋, 𝑑) be a metric space and let Δ
denote the diagonal of the Cartesian product𝑋×𝑋. Consider
a directed graph 𝐺 such that the set 𝑉(𝐺) of its vertices
coincides with 𝑋, and the set 𝐸(𝐺) of its edges contains all
loops; that is, 𝐸(𝐺) ⊇ Δ. We assume that 𝐺 has no parallel
edges, so we can identify 𝐺 with the pair (𝑉(𝐺), 𝐸(𝐺)).
Moreover, we may treat 𝐺 as a weighted graph (see [11]) by
assigning to each edge the distance between its vertices. If 𝑥
and 𝑦 are vertices in a graph 𝐺, then a path in 𝐺 from 𝑥 to
𝑦 of length𝑁(𝑁 ∈ N) is a sequence {𝑥

𝑖

}
𝑁

𝑖=0

of𝑁 + 1 vertices
such that 𝑥

0

= 𝑥, 𝑥
𝑁

= 𝑦 and (𝑥
𝑛−1

, 𝑥
𝑛

) ∈ 𝐸(𝐺) for 𝑖 =

1, . . . , 𝑁. A graph 𝐺 is connected if there is a path between
any two vertices.𝐺 is weakly connected if𝐺 is connected (see
for details [3, 6, 10, 11]).

Recently, some results have appeared providing sufficient
conditions for a mapping to be a Picard operator if (𝑋, 𝑑) is
endowed with a graph. The first result in this direction was
given by Jachymski [11].

Definition 25 (see [11]). We say that a mapping 𝑇 : 𝑋 → 𝑋 is
a Banach 𝐺-contraction or simply 𝐺-contraction if 𝑇 pre-
serves edges of 𝐺; that is,

∀𝑥, 𝑦 ∈ 𝑋 ((𝑥, 𝑦) ∈ 𝐸 (𝐺) 󳨐⇒ (𝑇 (𝑥) , 𝑇 (𝑦)) ∈ 𝐸 (𝐺))

(57)

and 𝑇 decreases weights of edges of 𝐺 in the following way:

∃𝛼 ∈ (0, 1) , ∀𝑥, 𝑦 ∈ 𝑋

((𝑥, 𝑦) ∈ 𝐸 (𝐺) 󳨐⇒ 𝑑 (𝑇 (𝑥) , 𝑇 (𝑦)) ≤ 𝛼𝑑 (𝑥, 𝑦)) .

(58)



8 Abstract and Applied Analysis

Definition 26 (see [11]). A mapping 𝑇 : 𝑋 → 𝑋 is called
𝐺-continuous, if given 𝑥 ∈ 𝑋 and sequence {𝑥

𝑛

}

𝑥
𝑛

󳨀→ 𝑥, as 𝑛 󳨀→ ∞,

(𝑥
𝑛

, 𝑥
𝑛+1

) ∈ 𝐸 (𝐺) , ∀𝑛 ∈ N implying 𝑇𝑥
𝑛

󳨀→ 𝑇𝑥.

(59)

Theorem 27. Let (𝑋, 𝑑) be a metric space endowed with a
graph 𝐺 and let 𝑇 be a self-mapping on 𝑋. Suppose that the
following assertions hold:

(i) for all 𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ 𝐸(𝐺) ⇒ (𝑇(𝑥), 𝑇(𝑦)) ∈

𝐸(𝐺);
(ii) there exists 𝑥

0

∈ 𝑋 such that (𝑥
0

, 𝑇𝑥
0

) ∈ 𝐸(𝐺);
(iii) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) (60)

for all (𝑥, 𝑦) ∈ 𝐸(𝐺), where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)

1 + 𝑑 (𝑥, 𝑇𝑥)

,

𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑦, 𝑇𝑦)

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} ;

(61)

(iv) 𝑇 is 𝐺-continuous;
(v) if {𝑥

𝑛

} is a Cauchy sequence in 𝑋 with (𝑥
𝑛

, 𝑥
𝑛+1

) ∈

𝐸(𝐺) for all 𝑛 ∈ N, then {𝑥
𝑛

} is convergent in𝑋.

Then 𝑇 has a fixed point.

Proof. Define 𝛼 : 𝑋
2

→ [0, +∞) by

𝛼 (𝑥, 𝑦) = {

1, if (𝑥, 𝑦) ∈ 𝐸 (𝐺) ,

0, otherwise.
(62)

At first we prove that 𝑇 is an 𝛼-admissible mapping. Let
𝛼(𝑥, 𝑦) ≥ 1; then (𝑥, 𝑦) ∈ 𝐸(𝐺). From (i), we have (𝑇𝑥, 𝑇𝑦) ∈
𝐸(𝐺). That is, 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. Thus 𝑇 is an 𝛼-admissible
mapping. Let 𝑇 be 𝐺-continuous on (𝑋, 𝑑). Then,

𝑥
𝑛

󳨀→ 𝑥, as 𝑛 󳨀→ ∞,

(𝑥
𝑛

, 𝑥
𝑛+1

) ∈ 𝐸 (𝐺) , ∀𝑛 ∈ N implying 𝑇𝑥
𝑛

󳨀→ 𝑇𝑥.

(63)

That is,

𝑥
𝑛

󳨀→ 𝑥, as 𝑛 󳨀→ ∞,

𝛼 (𝑥
𝑛

, 𝑥
𝑛+1

) ≥ 1, ∀𝑛 ∈ N implying 𝑇𝑥
𝑛

󳨀→ 𝑇𝑥

(64)

which implies that 𝑇 is 𝛼-continuous on (𝑋, 𝑑). From (ii)
there exists 𝑥

0

∈ 𝑋 such that (𝑥
0

, 𝑇𝑥
0

) ∈ 𝐸(𝐺). That is,
𝛼(𝑥
0

, 𝑇𝑥
0

) ≥ 1. Let 𝛼(𝑥, 𝑦) ≥ 1; then (𝑥, 𝑦) ∈ 𝐸(𝐺). Now,
from (iii) we have 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑀(𝑥, 𝑦)). That is,

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) . (65)

Condition (v) implies that (𝑋, 𝑑) is an 𝛼-complete metric
space. Hence, all conditions of Corollary 14 are satisfied and
𝑇 has a fixed point.

Theorem 28. Let (𝑋, 𝑑) be a complete metric space endowed
with a graph 𝐺 and let 𝑇 be a self-mapping on𝑋. Suppose that
the following assertions hold:

(i) for all 𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ 𝐸(𝐺) ⇒ (𝑇(𝑥), 𝑇(𝑦)) ∈

𝐸(𝐺);
(ii) there exists 𝑥

0

∈ 𝑋 such that (𝑥
0

, 𝑇𝑥
0

) ∈ 𝐸(𝐺);
(iii) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) (66)

for all (𝑥, 𝑦) ∈ 𝐸(𝐺), where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)

1 + 𝑑 (𝑥, 𝑇𝑥)

,

𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑦, 𝑇𝑦)

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} ;

(67)

(iv) 𝑇 is 𝐺-continuous.

Then 𝑇 has a fixed point.

As an application of Corollary 17, we obtain.

Theorem 29. Let (𝑋, 𝑑) be a metric space endowed with a
graph 𝐺 and let 𝑇 be a self-mapping on 𝑋. Suppose that the
following assertions hold:

(i) for all 𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ 𝐸(𝐺) ⇒ (𝑇(𝑥), 𝑇(𝑦)) ∈

𝐸(𝐺);
(ii) there exists 𝑥

0

∈ 𝑋 such that (𝑥
0

, 𝑇𝑥
0

) ∈ 𝐸(𝐺);
(iii) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) (68)

for all (𝑥, 𝑦) ∈ 𝐸(𝐺), where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)

1 + 𝑑 (𝑥, 𝑇𝑥)

,

𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑦, 𝑇𝑦)

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} ;

(69)

(iv) if {𝑥
𝑛

} is a sequence such that (𝑥
𝑛

, 𝑥
𝑛+1

) ∈ 𝐸(𝐺) with
𝑥
𝑛

→ 𝑥 as 𝑛 → ∞, then either

(𝑇𝑥
𝑛

, 𝑥) ∈ 𝐸 (𝐺) 𝑜𝑟 (𝑇
2

𝑥
𝑛

, 𝑥) ∈ 𝐸 (𝐺) (70)

holds for all 𝑛 ∈ N;
(v) if {𝑥

𝑛

} is a Cauchy sequence in 𝑋 with (𝑥
𝑛

, 𝑥
𝑛+1

) ∈

𝐸(𝐺) for all 𝑛 ∈ N, then either {𝑥
𝑛

} is convergent in
𝑋 or (𝑋, 𝑑) is a complete metric space.

Then 𝑇 has a fixed point.
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Let (𝑋, 𝑑, ⪯) be a partially ordered metric space. Define
the graph 𝐺 by

𝐸 (𝐺) := {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝑥 ⪯ 𝑦} . (71)

For this graph, condition (i) in Theorem 27 means that
𝑇 is nondecreasing with respect to this order [5]. From
Theorems 27–29 we derive the following important results in
partially ordered metric spaces.

Theorem 30. Let (𝑋, 𝑑, ⪯) be a partially ordered metric space
and let 𝑇 be a self-mapping on 𝑋. Suppose that the following
assertions hold:

(i) 𝑇 is nondecreasing map;
(ii) there exists 𝑥

0

∈ 𝑋 such that 𝑥
0

⪯ 𝑇𝑥
0

;
(iii) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) (72)

for all 𝑥 ⪯ 𝑦, where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)

1 + 𝑑 (𝑥, 𝑇𝑥)

,

𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑦, 𝑇𝑦)

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} ;

(73)

(iv) either for a given 𝑥 ∈ 𝑋 and sequence {𝑥
𝑛

}

𝑥
𝑛

󳨀→ 𝑥, 𝑎𝑠 𝑛 󳨀→ ∞,

𝑥
𝑛

⪯ 𝑥
𝑛+1

, ∀𝑛 ∈ N, 𝑜𝑛𝑒 ℎ𝑎𝑠 𝑇𝑥
𝑛

󳨀→ 𝑇𝑥

(74)

or 𝑇 is continuous;
(v) if {𝑥

𝑛

} is a Cauchy sequence in𝑋 with 𝑥
𝑛

⪯ 𝑥
𝑛+1

for all
𝑛 ∈ N, then either {𝑥

𝑛

} is convergent in𝑋 or (𝑋, 𝑑) is a
complete metric space.

Then 𝑇 has a fixed point.

Corollary 31 (Ran and Reurings [15]). Let (𝑋, 𝑑, ⪯) be a
partially ordered complete metric space and let 𝑇 : 𝑋 → 𝑋 be
a continuous nondecreasing self-mapping such that 𝑥

0

⪯ 𝑇𝑥
0

for some 𝑥
0

∈ 𝑋. Assume that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦) (75)

holds for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 0 ≤ 𝑟 < 1. Then 𝑇 has
a fixed point.

Theorem 32. Let (𝑋, 𝑑, ⪯) be a partially ordered metric space
and let 𝑇 be a self-mapping on 𝑋. Suppose that the following
assertions hold:

(i) 𝑇 is nondecreasing map;
(ii) there exists 𝑥

0

∈ 𝑋 such that 𝑥
0

⪯ 𝑇𝑥
0

;

(iii) there exists 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) (76)

for all 𝑥 ⪯ 𝑦, where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)

1 + 𝑑 (𝑥, 𝑇𝑥)

,

𝑑 (𝑦, 𝑇𝑦)

1 + 𝑑 (𝑦, 𝑇𝑦)

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} ;

(77)

(iv) if {𝑥
𝑛

} is a sequence such that 𝑥
𝑛

⪯ 𝑥
𝑛+1

with 𝑥
𝑛

→ 𝑥

as 𝑛 → ∞, then either

𝑇𝑥
𝑛

⪯ 𝑥 𝑜𝑟 𝑇
2

𝑥
𝑛

⪯ 𝑥 (78)

holds for all 𝑛 ∈ N;

(v) if {𝑥
𝑛

} is a Cauchy sequence in𝑋 with 𝑥
𝑛

⪯ 𝑥
𝑛+1

for all
𝑛 ∈ N, then either {𝑥

𝑛

} is convergent in𝑋 or (𝑋, 𝑑) is a
complete metric space.

Then 𝑇 has a fixed point.

4. Application to Existence of Solutions of
Integral Equations

Fixed point theorems for monotone operators in ordered
metric spaces are widely investigated and have found various
applications in differential and integral equations (see [28–
30] and references therein). In this section, we apply our
result to the existence of a solution of an integral equation.
Let 𝑋 = 𝐶([0, 𝑇],R) be the set of real continuous functions
defined on [0, 𝑇] and let 𝑑 : 𝑋 × 𝑋 → R

+

be defined by

𝑑 (𝑥, 𝑦) =
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩∞

(79)

for all 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑑) is a complete metric space. Also,
assume this metric space endowed with a graph 𝐺.

Consider the integral equation as follows:

𝑥 (𝑡) = 𝑝 (𝑡) + ∫

𝑇

0

𝑆 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (80)

and let 𝐹 : 𝑋 → 𝑋 be defined by

𝐹 (𝑥) (𝑡) = 𝑝 (𝑡) + ∫

𝑇

0

𝑆 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠. (81)

We assume that

(A) 𝑓 : [0, 𝑇] ×R → R is continuous;

(B) 𝑝 : [0, 𝑇] → R is continuous;

(C) 𝑆 : [0, 𝑇] ×R → [0, +∞) is continuous;
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(D) there exists a 𝜓 ∈ Ψ such that for all 𝑠 ∈ [0, 𝑇]

∀𝑥, 𝑦 ∈ 𝑋 (𝑥, 𝑦) ∈ 𝐸 (𝐺) 󳨐⇒ (𝐹 (𝑥) , 𝐹 (𝑦)) ∈ 𝐸 (𝐺) ,

∀𝑥, 𝑦 ∈ 𝑋 (𝑥, 𝑦) ∈ 𝐸 (𝐺) 󳨐⇒ 0

≤ 𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

≤ 𝜓(max{
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

1 +
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

,

|𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))|

1 + |𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))|

,
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
,

1

2

[
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠) − 𝐹 (𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
] }) ;

(82)

(E) there exists 𝑥
0

∈ 𝑋 such that (𝑥
0

, 𝐹(𝑥
0

)) ∈ 𝐸(𝐺);

(F) if {𝑥
𝑛

} is a sequence such that (𝑥
𝑛

, 𝑥
𝑛+1

) ∈ 𝐸(𝐺) with
𝑥
𝑛

→ 𝑥 as 𝑛 → ∞, then either

(𝐹𝑥
𝑛

, 𝑥) ∈ 𝐸 (𝐺) 𝑜𝑟 (𝐹
2

𝑥
𝑛

, 𝑥) ∈ 𝐸 (𝐺) (83)

holds for all 𝑛 ∈ N;

(G) ∫𝑇
0

𝑆(𝑡, 𝑠)𝑑𝑠 ≤ 1 for all 𝑡.

Theorem 33. Under assumptions (A)–(G), the integral equa-
tion (80) has a solution in 𝑋 = 𝐶([0, 𝑇],R).

Proof. Consider the mapping 𝐹 : 𝑋 → 𝑋 defined by (81).
Let (𝑥, 𝑦) ∈ 𝐸(𝐺). Then from (D) we deduce

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥) (𝑡) − 𝐹 (𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

0

𝑆 (𝑡, 𝑠) [𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑇

0

𝑆 (𝑡, 𝑠)
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ ∫

𝑇

0

𝑆 (𝑡, 𝑠) 𝜓

× (max{ 󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨
,

|𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))|

1 + |𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))|

,

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨

1 +
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨

,

1

2

[
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠)−𝐹 (𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠)−𝐹 (𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
] }) 𝑑𝑠

≤ (∫

𝑇

0

𝑆 (𝑡, 𝑠) 𝑑𝑠)𝜓

× (max{ 󵄩
󵄩
󵄩
󵄩
𝑥 (𝑠) − 𝑦 (𝑠)

󵄩
󵄩
󵄩
󵄩
,

‖𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))‖

1 + ‖𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))‖

,

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩

1 +
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩

,

1

2

[
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠) − 𝐹 (𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩
] }) .

(84)

Then
󵄩
󵄩
󵄩
󵄩
𝐹𝑥 − 𝐹𝑦

󵄩
󵄩
󵄩
󵄩∞

≤ 𝜓(max{ 󵄩
󵄩
󵄩
󵄩
𝑥 (𝑠) − 𝑦 (𝑠)

󵄩
󵄩
󵄩
󵄩
,

‖𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))‖

1 + ‖𝑥 (𝑠) − 𝐹 (𝑥 (𝑠))‖

,

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩

1 +
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩

,

1

2

[
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑠) − 𝐹 (𝑦 (𝑠))

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠) − 𝐹 (𝑥 (𝑠))

󵄩
󵄩
󵄩
󵄩
] }) .

(85)

That is, (𝑥, 𝑦) ∈ 𝐸(𝐺) implies
󵄩
󵄩
󵄩
󵄩
𝐹𝑥 − 𝐹𝑦

󵄩
󵄩
󵄩
󵄩∞

≤ 𝜓(max{󵄩󵄩󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩∞

,

‖𝑥 − 𝐹(𝑥)‖
∞

1 + ‖𝑥 − 𝐹(𝑥)‖
∞

,

󵄩
󵄩
󵄩
󵄩
𝑦 − 𝐹(𝑦)

󵄩
󵄩
󵄩
󵄩∞

1 +
󵄩
󵄩
󵄩
󵄩
𝑦 − 𝐹(𝑦)

󵄩
󵄩
󵄩
󵄩∞

,

1

2

[
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝐹 (𝑦)

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝑦 − 𝐹 (𝑥)

󵄩
󵄩
󵄩
󵄩∞

] }) .

(86)

It easily shows that all the hypotheses of Theorem 29 are
satisfied and hence the mapping 𝐹 has a fixed point that is a
solution in𝑋 = 𝐶([0, 𝑇],R) of the integral equation (80).
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