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This paper is concerned with the 𝐻
∞
filtering problem for a class of discretetime genetic regulatory networks with random delay

and external disturbance. The aim is to design 𝐻
∞

filter to estimate the true concentrations of mRNAs and proteins based on
available measurement data. By introducing an appropriate Lyapunov function, a sufficient condition is derived in terms of linear
matrix inequalities (LMIs)whichmakes the filtering error system stochastically stablewith a prescribed𝐻

∞
disturbance attenuation

level. The filter gains are given by solving the LMIs. Finally, an illustrative example is given to demonstrate the effectiveness of the
proposed approach; that is, our approach is available for a smaller𝐻

∞
disturbance attenuation level than one in (Liu et al., 2012).

1. Introduction

Genetic regulatory networks (GRNs) are collections of DNA
segments in a cell which interact with each other indirectly
through their mRNAs, protein expression products, and
other substances. Understanding the nature and functions
of various GRNs is very interesting and crucially important
for the treatment of many diseases such as cancers [1, 2].
Therefore, in the past decade, the study onGRNs has been put
more emphasis by the researchers at interdisciplinary field.
Mathematical modeling of GRNs provides a powerful tool
for studying gene regulation processes. In general, genetic
network models can be classified into two types, that is,
the discrete model [3, 4] and the continuous model [5–8].
Usually, a continuous model is described by a (functional)
differential equation. Due to slow biochemical reactions
such as gene transcription and translation, time delays can
play an important role in GRNs, which results that the
(functional) differential equation model has been one of the
most fashionable GRN models, and a lot of research on
analysis and synthesis ofGRNs have been recently done based
on (functional) differential equation models (see, e.g., [9–
15]).

The concentrations of gene products, such as mRNAs
and proteins, are described as system states in a (functional)

differential equation model. In practice, biologists hope to
gain actual concentrations of gene products in GRNs. How-
ever, due to model errors, external perturbation, time delays,
and parameters jump, the steady-state values of GRNs can
hardly be obtained. In order to obtain the steady-state values
through available measurement data, the design of filter and
estimator for (functional) differential equation models of
GRNs has been investigated by some scholars (see, e.g., [16–
23]). However, due to the requirement for implementing and
application of GRNs for computer-based simulation, it is
of vital importance to design filter or estimator for delayed
discrete-time GRNs (i.e., discretized (functional) differential
equation models of GRNs) in today’s digital world, although
there are, to the best author’s knowledge, only three results
reported at present [24–26]. Zhang et al. [25] is concerned
with the set-values filtering for a class of discrete-time
GRNs with time-varying parameters, constant time-delay,
and bounded external noise. For a class of discrete-time
GRNs with random delays described by a Markov chain,
Liu et al. [26] designed a filter ensuring that the filtering
error system is stochastically stable and has a prescribed𝐻

∞

performance. By utilizing the Lyapunov stability theory and
stochastic analysis technique, Wang et al. [24] investigated
the existing conditions and explicit expressions of 𝐻

∞
state

estimators for a class of stochastic discrete-time GRNs with
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probabilistic measurement delays described by Bernoulli
distributed white sequences. These conditions are given in
terms of LMIs and are dependent on the lower and upper
bounds of the time-varying delays.

It should also be emphasized that for delayed discrete-
time GRNs, the stability problem (as the most important
properties for any dynamics systems) [27–29], 𝐻

∞
sta-

bilization problem [30], and passivity problem [31] have
been exploited. On the other hand, researchers have been
paying attention to the problems of analysis and synthesis for
Markovian jump system [32–36] and the filtering problems
for some nonlinear systems [37–41].

Motivated by the above discussion, in this paper, we
will deal with the 𝐻

∞
filtering problem for a class of

discrete-time GRNs with random delay which is described
by a Markovian chain. By constructing a novel Lyapunov
function different from one in [26], a sufficient LMI con-
dition is first established to ensure the existence of the
desired filter. The condition is dependent on the transition
probability matrix of the random delay. Then, the explicit
expression of the desired filter is shown to ensure the
resulting filtering error system to be stochastically stable
and have a prescribed 𝐻

∞
disturbance attenuation level.

Moreover, an optimization problem with LMIs constraints
is established to design an 𝐻

∞
filter which ensures an opti-

mal 𝐻
∞

disturbance attenuation level. Finally, a numerical
example is given to show the effectiveness of the proposed
approach.

2. Problem Formulation

Consider the following discrete-time GRN with random
delays, 𝑛mRNAs, and 𝑛 proteins [27, 28]:

𝑀
𝑖
(𝑘 + 1) = 𝑒

−𝑎𝑖ℎ

𝑀
𝑖
(𝑘) + 𝜙

𝑖
(ℎ)

×
[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑃
𝑗
(𝑘 − 𝑑 (𝑘))) + 𝑉

𝑖

]

]

,

𝑃
𝑖
(𝑘 + 1) = 𝑒

−𝑐𝑖ℎ

𝑃
𝑖
(𝑘) + 𝜑

𝑖
(ℎ) 𝑑
𝑖
𝑀
𝑖
(𝑘 − 𝑑 (𝑘)) ,

𝑖 = 1, 2, . . . , 𝑛,

(1)

where𝑀
𝑖
(𝑘) and 𝑃

𝑖
(𝑘), respectively, are the concentrations of

mRNA and protein of the 𝑖th gene; 𝜙
𝑖
(ℎ) = (1 − 𝑒

−𝑎𝑖ℎ

)/𝑎
𝑖
> 0

and 𝜑
𝑖
(ℎ) = (1 − 𝑒

−𝑐𝑖ℎ

)/𝑐
𝑖
> 0, where ℎ is a given positive real

number standing for the uniformdiscretionary step size; 𝑑(𝑘)
denotes the random time delay of mRNAs and proteins, and
is assumed to be a Markovian chain with state space N :=

{1, 2, . . . , 𝑑}, and 𝑑 is a fixed positive integer; 𝑎
𝑖
> 0 and 𝑐

𝑖
> 0

are the degradation rates of mRNA and protein, respectively;
𝑑
𝑖
is the translation rate;𝑉

𝑖
= ∑
𝑗∈𝐼𝑖

V
𝑖𝑗
, where V

𝑖𝑗
is a bounded

constant denoting the dimensionless transcriptional rate of

gene 𝑗 to 𝑖, and 𝐼
𝑖
is the set of all the repressors of 𝑖th gene;

𝑏
𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) are the coupling coefficients satisfying

𝑏
𝑖𝑗
=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

V
𝑖𝑗,

if transcription factor 𝑗 is
an activator of gene 𝑖,

0, if there is no link from
link node 𝑗 to 𝑖,

−V
𝑖𝑗,

if transcription factor 𝑗 is
a repressor of gene 𝑖;

(2)

the nonlinear function 𝑓
𝑗
(𝑗 = 1, 2, . . . , 𝑛) denotes the

feedback regulation of protein in process of transcription.
In general, 𝑓

𝑗
is a monotonic function in Hill form; namely,

𝑓
𝑗
(𝑠) = 𝑠

ℎ𝑗
/(1 + 𝑠

ℎ𝑗
) (𝑗 = 1, 2, . . . , 𝑛), where ℎ

𝑗
is the Hill

coefficient. Denote by 𝜋 := [𝜋
𝑖𝑗
]
𝑛×𝑛

the transition probability
matrix of 𝑑(𝑘), where 𝜋

𝑖𝑗
= Prob{𝑑(𝑘 + 1) = 𝑗 | 𝑑(𝑘) = 𝑖}.

Let us rewrite GRN (1) as the following compact matrix
form:

𝑀(𝑘 + 1) = 𝐴𝑀(𝑘) + 𝐵𝑓 (𝑃 (𝑘 − 𝑑 (𝑘))) + 𝑉,

𝑃 (𝑘 + 1) = 𝐶𝑃 (𝑘) + 𝐷𝑀(𝑘 − 𝑑 (𝑘)) ,

(3)

where

𝑀(𝑘) = [𝑀
1
(𝑘) 𝑀

2
(𝑘) ⋅ ⋅ ⋅ 𝑀

𝑛
(𝑘)]

𝑇

,

𝑃 (𝑘) = [𝑃
1
(𝑘) 𝑃

2
(𝑘) ⋅ ⋅ ⋅ 𝑃

𝑛
(𝑘)]

𝑇

,

𝑓 (𝑃 (𝑘 − 𝑑 (𝑘)))

=[𝑓
1
(𝑃
1
(𝑘−𝑑(𝑘))) 𝑓

2
(𝑃
2
(𝑘−𝑑(𝑘))) ⋅ ⋅ ⋅ 𝑓

𝑛
(𝑃
𝑛
(𝑘−𝑑(𝑘)))]

𝑇

,

𝑉 = [𝜙
1
(ℎ)𝑉
1
𝜙
2
(ℎ)𝑉
2
⋅ ⋅ ⋅ 𝜙
𝑛
(ℎ)𝑉
𝑛
]

𝑇

,

𝐴 = diag (𝑒−𝑎1ℎ, 𝑒−𝑎2ℎ, . . . , 𝑒−𝑎𝑛ℎ) ,

𝐶 = diag (𝑒−𝑐1ℎ, 𝑒−𝑐2ℎ, . . . , 𝑒−𝑐𝑛ℎ) ,

𝐷 = diag (𝜑
1
(ℎ) 𝑑
1
, 𝜑
2
(ℎ) 𝑑
2
, . . . , 𝜑

𝑛
(ℎ) 𝑑
𝑛
) ,

𝐵 = [𝜙
𝑖
(ℎ)𝑏
𝑖𝑗
]
𝑛×𝑛

(𝑖 = 1, 2, . . . , 𝑛) .

(4)

Let (𝑀∗, 𝑃∗) be an equilibrium point of GRN (3), where
𝑀
∗

= [𝑀
∗

1
⋅ ⋅ ⋅ 𝑀

∗

𝑛
]

𝑇 and 𝑃∗ = [𝑃∗
1
⋅ ⋅ ⋅ 𝑃
∗

𝑛
]

𝑇; that is,

𝑀
∗

= 𝐴𝑀
∗

+ 𝐵𝑓 (𝑃
∗

) + 𝑉, 𝑃
∗

= 𝐶𝑃
∗

+ 𝐷𝑀
∗

. (5)

To simplify the analysis, one can transform the equilibrium
point to the origin by the relation 𝑥

𝑚
(𝑘) = 𝑀(𝑘) − 𝑀

∗ and
𝑥
𝑝
(𝑘) = 𝑃(𝑘) − 𝑃

∗. Then the transformed system is changed
as follows:

𝑥
𝑚
(𝑘 + 1) = 𝐴𝑥

𝑚
(𝑘) + 𝐵𝑔 (𝑥

𝑝
(𝑘 − 𝑑 (𝑘))) ,

𝑥
𝑝
(𝑘 + 1) = 𝐶𝑥

𝑝
(𝑘) + 𝐷𝑥

𝑚
(𝑘 − 𝑑 (𝑘)) ,

(6)

where 𝑔(𝑥
𝑝
(𝑘)) = 𝑓(𝑥

𝑝
(𝑘) + 𝑃

∗

) − 𝑓(𝑃
∗

). For every 𝑖 =
1, 2, . . . , 𝑛, since 𝑓

𝑖
is a monotonic function in Hill form, one
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can easily obtain that 𝑔
𝑖
is a monotonically increasing func-

tion with saturation and satisfies the following inequality:

𝑔
𝑖
(0) = 0, 0 ≤

𝑔
𝑖
(𝑠
1
) − 𝑔
𝑖
(𝑠
2
)

𝑠
1
− 𝑠
2

≤ 𝑙
𝑖
, ∀𝑠

1
, 𝑠
2
∈ 𝑅, 𝑠

1
̸= 𝑠
2
,

(7)

where 𝑙
𝑖
is a given constant.

When we take extracellular perturbations into account,
a class of stochastic discrete-time GRN model with random
delays is represented as follows:

𝑥
𝑚
(𝑘 + 1) = 𝐴𝑥

𝑚
(𝑘) + 𝐵𝑔 (𝑥

𝑝
(𝑘 − 𝑑 (𝑘))) + 𝐸

1
𝑤 (𝑘) ,

𝑥
𝑝
(𝑘 + 1) = 𝐶𝑥

𝑝
(𝑘) + 𝐷𝑥

𝑚
(𝑘 − 𝑑 (𝑘)) + 𝐹

1
V (𝑘) ,

𝑦
𝑚
(𝑘) = 𝐶

1
𝑥
𝑚
(𝑘) + 𝐸

2
𝑤 (𝑘) ,

𝑦
𝑝
(𝑘) = 𝐶

2
𝑥
𝑝
(𝑘) + 𝐹

2
V (𝑘) ,

𝑧
𝑚
(𝑘) = 𝐺

1
𝑥
𝑚
(𝑘) ,

𝑧
𝑝
(𝑘) = 𝐺

2
𝑥
𝑝
(𝑘) ,

𝑥
𝑚
(𝑘) = 𝜃

𝑚
(𝑘) , 𝑥

𝑝
(𝑘) = 𝜃

𝑝
(𝑘) ,

𝑘 = −𝑑, −𝑑 + 1, . . . , 0,

(8)

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐶
1
, 𝐶
2
, 𝐸
1
, 𝐸
2
, 𝐹
1
, 𝐹
2
, 𝐺
1
, and 𝐺

2

are constant matrices of appropriate dimension; 𝑦
𝑚
(𝑘) :=

[𝑦
𝑚1
(𝑘) ⋅ ⋅ ⋅ 𝑦

𝑚𝑛
(𝑘)]

𝑇 and 𝑦
𝑝
(𝑘) := [𝑦

𝑝1
(𝑘) ⋅ ⋅ ⋅ 𝑦

𝑝𝑛
(𝑘)]

𝑇

denote the expression levels of mRNA and protein, respec-
tively; 𝑧

𝑚
(𝑘) := [𝑧

𝑚1
(𝑘) ⋅ ⋅ ⋅ 𝑧

𝑚𝑙
(𝑘)]

𝑇 and 𝑧
𝑝
(𝑘) :=

[𝑧
𝑝1
(𝑘) ⋅ ⋅ ⋅ 𝑧

𝑝𝑙
(𝑘)]

𝑇 are the estimated signals; both𝑤(𝑘) and
V(𝑘) are exogenous disturbance signals; and 𝜃

𝑚
(𝑘) and 𝜃

𝑝
(𝑘)

are the initial conditions of 𝑥
𝑚
(𝑘) and 𝑥

𝑝
(𝑘), respectively.

In complex GRNs, only the partial information of the
network components can be usually obtained. Therefore, in
order to obtain the states of GRNs, we need to estimate them
via available measurements [42]. The full order linear filter
which need to be designed as the following form:

𝑥
𝑚
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑚
(𝑘) + 𝐵

𝑓
𝑦
𝑚
(𝑘) ,

𝑥
𝑝
(𝑘 + 1) = 𝐶

𝑓
𝑥
𝑝
(𝑘) + 𝐷

𝑓
𝑦
𝑝
(𝑘) ,

𝑧̂
𝑚
(𝑘) = 𝐺

1𝑓
𝑥
𝑚
(𝑘) + 𝐻

1𝑓
𝑦
𝑚
(𝑘) ,

𝑧̂
𝑝
(𝑘) = 𝐺

2𝑓
𝑥
𝑝
(𝑘) + 𝐻

2𝑓
𝑦
𝑝
(𝑘) ,

(9)

where 𝑥
𝑚
(𝑘), 𝑥

𝑝
(𝑘), 𝑧̂

𝑚
(𝑘), and 𝑧̂

𝑝
(𝑘) are the estimates of

𝑥
𝑚
(𝑘),𝑥
𝑝
(𝑘), 𝑧
𝑚
(𝑘), and 𝑧

𝑝
(𝑘), respectively;𝐴

𝑓
,𝐵
𝑓
,𝐶
𝑓
,𝐷
𝑓
∈

𝑅
𝑛×𝑛 and 𝐺

1𝑓
, 𝐺
2𝑓
, 𝐻
1𝑓
, 𝐻
2𝑓
∈ 𝑅
𝑙×𝑛 are filter parametric

matrices to be determined.
Set

𝑥
𝑚
(𝑘) = [

𝑥
𝑚
(𝑘)

𝑥
𝑚
(𝑘)
] , 𝑥

𝑝
(𝑘) = [

𝑥
𝑝
(𝑘)

𝑥
𝑝
(𝑘)
] ,

𝑒
𝑚
(𝑘) = 𝑧

𝑚
(𝑘) − 𝑧̂

𝑚
(𝑘) , 𝑒

𝑝
(𝑘) = 𝑧

𝑝
(𝑘) − 𝑧̂

𝑝
(𝑘) .

(10)

Then the filtering error system can be expressed as

𝑥
𝑚
(𝑘 + 1) = 𝐴𝑥

𝑚
(𝑘) + 𝐵𝑔 (𝑍

1
𝑥
𝑝
(𝑘 − 𝑑 (𝑘))) + 𝐸𝑤 (𝑘) ,

𝑥
𝑝
(𝑘 + 1) = 𝐶𝑥

𝑝
(𝑘) + 𝐷𝑍

1
𝑥
𝑚
(𝑘 − 𝑑 (𝑘)) + 𝐹V (𝑘) ,

𝑒
𝑚
(𝑘) = 𝐺

1𝑓
𝑥
𝑚
(𝑘) + 𝐻

1𝑓
𝑤 (𝑘) ,

𝑒
𝑝
(𝑘) = 𝐺

2𝑓
𝑥
𝑝
(𝑘) + 𝐻

2𝑓
V (𝑘) ,

𝑥
𝑚
(𝑘) =

̃
𝜃
𝑚
(𝑘) , 𝑥

𝑝
(𝑘) =

̃
𝜃
𝑝
(𝑘) ,

𝑘 = −𝑑, −𝑑 + 1, . . . , 0,

(11)

where

̃
𝜃
𝑚
(𝑘) = [

𝜃
𝑚
(𝑘)

0
] ,

̃
𝜃
𝑝
(𝑘) = [

𝜃
𝑝
(𝑘)

0

] ,

𝐴 = [

𝐴 0

𝐵
𝑓
𝐶
1
𝐴
𝑓

] , 𝐵 = [

𝐵

0
] , 𝐶 = [

𝐶 0

𝐷
𝑓
𝐶
2
𝐶
𝑓

] ,

𝐷 = [

𝐷

0
] , 𝐸 = [

𝐸
1

𝐵
𝑓
𝐸
2

] , 𝐹 = [

𝐹
1

𝐷
𝑓
𝐹
2

] ,

𝐺
1𝑓
= [𝐺
1
− 𝐻
1𝑓
𝐶
1
−𝐺
1𝑓
] ,

𝐺
2𝑓
= [𝐺
2
− 𝐻
2𝑓
𝐶
2
−𝐺
2𝑓
] , 𝐻

1𝑓
= −𝐻
1𝑓
𝐸
2
,

𝐻
2𝑓
= −𝐻
2𝑓
𝐹
2
, 𝑍

1
= [𝐼 0] .

(12)

For convenience, for a nonnegative integer 𝑘 we define

Θ
𝑘
= {𝑥
𝑚
(𝑘) , 𝑥

𝑚
(𝑘 − 1) , . . . , 𝑥

𝑚
(𝑘 − 𝑑) ,

𝑥
𝑝
(𝑘) , 𝑥

𝑝
(𝑘 − 1) , . . . , 𝑥

𝑝
(𝑘 − 𝑑)} .

(13)

Definition 1 (see [26]). Thedelay𝑑(𝑘) is said to be the random
delay described by a Markovian chain if it is bound by 1 ≤
𝑑(𝑘) ≤ 𝑑, and {𝑑(𝑘) ∈ N, 𝑘 = 0, 1, 2, . . .} is a Markovian
chain with state spaceN and transition probability matrix 𝜋.

Definition 2 (see [26]). When 𝑤(𝑘) = 0 and V(𝑘) = 0, the
filtering error system (11) is said to be stochastically stable, if

∞

∑

𝑘=0

𝐸 {
󵄩
󵄩
󵄩
󵄩
𝑥
𝑚
(𝑘)
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑝
(𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩

2

| Θ
0
, 𝑑 (0)} < ∞ (14)

for every initial condition Θ
0
and initial mode 𝑑(0), where

𝐸{⋅} represents the mathematical expectation operator.

Definition 3. For a given constant 𝛾 > 0, the filtering
error system (11) is said to be stochastically stable with 𝐻

∞

disturbance attenuation level 𝛾 if it is stochastically stablewith
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𝑤(𝑘) = 0 and V(𝑘) = 0, and under the zero initial conditions
it satisfies the following inequality:

∞

∑

𝑘=0

𝐸{[

𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

𝑇

[

𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
] | Θ
0
, 𝑑 (0)}

< 𝛾
2

∞

∑

𝑘=0

[

𝑤(𝑘)

V(𝑘)]
𝑇

[

𝑤 (𝑘)

V (𝑘)]

(15)

for all nonzero𝑤(𝑘), V(𝑘) ∈ 𝑙
2
[0, +∞), and initial mode 𝑑(0).

The objective of this paper is to design a filter of form (9)
such that the filtering error system (11) is stochastically stable
with 𝐻

∞
disturbance attenuation level 𝛾. In order to realize

the aim, we first introduce the following lemma.

Lemma 4 (see [43]). For symmetric matrices 𝑃 > 0 and 𝑄 >
0, the matrix inequality

[
−𝑃
−1

𝐴

∗ −𝑄

] < 0 (16)

holds, if and only if there is a matrix 𝑅 such that

[
𝑃 − 𝑅 − 𝑅

𝑇

𝑅
𝑇

𝐴

∗ −𝑄

] < 0. (17)

3. Stability Analysis and𝐻
∞

Filter Design

The stability analysis for the filtering error system (11) with
𝑤(𝑘) = 0 and V(𝑘) = 0 is presented by the following theorem.

Theorem 5. The filtering error system (11) with 𝑤(𝑘) = 0 and
V(𝑘) = 0 is stochastically stable, if there exist matrices 𝜍 :=
diag(𝜍

1
, 𝜍
2
, . . . , 𝜍

𝑛
) > 0, 𝜇 := diag(𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑛
) > 0, 𝑃𝑇

𝑖
(𝑟) =

𝑃
𝑖
(𝑟) > 0(𝑖 = 1, 2, . . . , 6; 𝑟 = 1, 2, . . . , 𝑑), and 𝑃𝑇

𝑗
= 𝑃
𝑗
> 0 (𝑗 =

2, 3, 5, 6) such that the following matrix inequalities (18) and
(19) hold for all 𝑟 ∈N:

Ω := Ω̃ + Ω̂ < 0, (18)

𝑃
𝑗
(𝑟) < 𝑃

𝑗
, 𝑗 = 2, 3, 5, 6, (19)

where

Ω̂ = Λ
𝑇

1
𝑃
1
(𝑟) Λ
1
+ Λ
𝑇

2
(𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2

𝑃
3
)Λ
2

+ Λ
𝑇

3
𝑃
4
(𝑟) Λ
3
,

Λ
1
= [𝐴 0 0 𝐵 0 0] ,

Λ
2
= [𝐴 − 𝐼 0 0 𝐵 0 0] ,

Λ
3
= [0 𝐶 𝐷𝑍

1
0 0 0] ,

Ω̃ =

[

[

[

[

[

[

[

[

Ω
11

0 Ω
13

0 0 0

∗ −𝑃
4
(𝑟) 0 0 −𝑍

𝑇

1
𝜍𝐿 −𝑍

𝑇

1
𝐶
𝑇

𝜇𝐿

∗ ∗ Ω
33

0 0 −𝑍
𝑇

1
𝐷
𝑇

𝜇𝐿

∗ ∗ ∗ Ω
44

Ω
45

0

∗ ∗ ∗ ∗ Ω
55

Ω
56

∗ ∗ ∗ ∗ ∗ Ω
66

]

]

]

]

]

]

]

]

,

Ω
11
= (𝑑 − 1) 𝑃

2
+ 𝑃
2
(𝑟) − 𝑃

1
(𝑟) − Ω

13
,

Ω
13
=

1

𝑟

𝑃
3
(𝑟) +

1

𝑟

𝑃
3
, Ω

33
= −𝑃
2
(𝑟) − Ω

13
,

Ω
44
= −𝑃
5
(𝑟) − Ω

45
, Ω

45
=

1

𝑟

𝑃
6
(𝑟) +

1

𝑟

𝑃
6
,

Ω
55
= (𝑑 − 1) 𝑃

5
+ 𝑃
5
(𝑟) − Ω

56
− Ω
45
− 𝜍,

Ω
56
= −𝑑𝑃

6
(𝑟) −

(𝑑
2

+ 𝑑)𝑃
6

2

, Ω
66
= −Ω
56
− 𝜇,

𝐿 = diag(−𝑙1
2

, −

𝑙
2

2

, . . . , −

𝑙
𝑛

2

) ,

𝑃
𝑖
(𝑟) =

𝑑

∑

𝑠=1

𝜋
𝑟𝑠
𝑃
𝑖
(𝑠) , 𝑖 = 1, 2, . . . , 6.

(20)

Proof. Choose an appropriate Lyapunov function 𝑉(Θ
𝑘
,

𝑘, 𝑑(𝑘)) for the filtering error system (11) with 𝑤(𝑘) = 0 and
V(𝑘) = 0 as follows:

𝑉 (Θ
𝑘
, 𝑘, 𝑑 (𝑘)) =

3

∑

𝑖=1

(𝑉
𝑚,𝑖
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) + 𝑉

𝑝,𝑖
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)))

(21)

with
𝑉
𝑚,1
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) = 𝑥

𝑇

𝑚
(𝑘) 𝑃
1
(𝑑 (𝑘)) 𝑥

𝑚
(𝑘) ,

𝑉
𝑝,1
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) = 𝑥

𝑇

𝑝
(𝑘) 𝑃
4
(𝑑 (𝑘)) 𝑥

𝑝
(𝑘) ,

𝑉
𝑚,2
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) =

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑑 (𝑘)) 𝑥

𝑚
(𝑖)

+

−1

∑

𝑗=−𝑑+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
𝑥
𝑚
(𝑖) ,

𝑉
𝑝,2
(Θ
𝑘
, 𝑘, 𝑑 (𝑘))

=

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑑 (𝑘)) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

+

−1

∑

𝑗=−𝑑+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
𝑔 (𝑍
1
𝑥
𝑝
(𝑖)) ,

𝑉
𝑚,3
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) =

−1

∑

𝑗=−𝑑(𝑘)

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
(𝑑 (𝑘)) 𝜂 (𝑖)

+

−1

∑

𝑗=−𝑑

−1

∑

𝑙=𝑗

𝑘−1

∑

𝑖=𝑘+𝑙

𝜂
𝑇

(𝑖) 𝑃
3
𝜂 (𝑖) ,
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𝑉
𝑝,3
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) =

−1

∑

𝑗=−𝑑(𝑘)

𝑘−1

∑

𝑖=𝑘+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
(𝑑 (𝑘)) 𝜁 (𝑖)

+

−1

∑

𝑗=−𝑑

−1

∑

𝑙=𝑗

𝑘−1

∑

𝑖=𝑘+𝑙

𝜁
𝑇

(𝑖) 𝑃
6
𝜁 (𝑖) ,

(22)

where 𝜂(𝑘) = 𝑥
𝑚
(𝑘 + 1) − 𝑥

𝑚
(𝑘) and 𝜁(𝑘) = 𝑔(𝑍

1
𝑥
𝑝
(𝑘 + 1)) −

𝑔(𝑍
1
𝑥
𝑝
(𝑘)). By taking the forward difference of the function

𝑉
𝑚,1
(Θ
𝑘
, 𝑘, 𝑑(𝑘)) along with the solution of system (11), one

can obtain that

𝐸 {𝑉
𝑚,1
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑚,1
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠
𝑥
𝑇

𝑚
(𝑘 + 1) 𝑃

1
(𝑠) 𝑥
𝑚
(𝑘 + 1) − 𝑥

𝑇

𝑚
(𝑘) 𝑃
1
(𝑟) 𝑥
𝑚
(𝑘)

= 𝑥
𝑇

𝑚
(𝑘 + 1) 𝑃

1
(𝑟) 𝑥
𝑚
(𝑘 + 1) − 𝑥

𝑇

𝑚
(𝑘) 𝑃
1
(𝑟) 𝑥
𝑚
(𝑘) .

(23)

Additionally, it can be verified that

𝐸 {𝑉
𝑚,2
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑚,2
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

𝑘

∑

𝑖=𝑘+1−𝑠

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑠) 𝑥
𝑚
(𝑖)

−

𝑘−1

∑

𝑖=𝑘−𝑟

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑖)

+

−1

∑

𝑗=−𝑑+1

𝑘

∑

𝑖=𝑘+1+𝑗

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
𝑥
𝑚
(𝑖)

−

−1

∑

𝑗=−𝑑+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
𝑥
𝑚
(𝑖)

= 𝑥
𝑇

𝑚
(𝑘) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑘) − 𝑥

𝑇

𝑚
(𝑘 − 𝑟) 𝑃

2
(𝑟) 𝑥
𝑚
(𝑘 − 𝑟)

+

𝑘−1

∑

𝑖=𝑘+1−𝑠

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑖) −

𝑘−1

∑

𝑖=𝑘+1−𝑟

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑖)

+

−1

∑

𝑗=−𝑑+1

𝑥
𝑇

𝑚
(𝑘) 𝑃
2
𝑥
𝑚
(𝑘) −

𝑘−1

∑

𝑗=𝑘+1−𝑑

𝑥
𝑇

𝑚
(𝑗) 𝑃
2
𝑥
𝑚
(𝑗)

≤ 𝑥
𝑇

𝑚
(𝑘) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑘) − 𝑥

𝑇

𝑚
(𝑘 − 𝑟) 𝑃

2
(𝑟) 𝑥
𝑚
(𝑘 − 𝑟)

+ (𝑑 − 1) 𝑥
𝑇

𝑚
(𝑘) 𝑃
2
𝑥
𝑚
(𝑘)

+

𝑘−1

∑

𝑖=𝑘+1−𝑑

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑖) −

𝑘−1

∑

𝑖=𝑘+1−𝑑

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
𝑥
𝑚
(𝑖)

≤ 𝑥
𝑇

𝑚
(𝑘) [(𝑑 − 1) 𝑃

2
+ 𝑃
2
(𝑟)] 𝑥

𝑇

𝑚
(𝑘)

− 𝑥
𝑇

𝑚
(𝑘 − 𝑟) 𝑃

2
(𝑟) 𝑥
𝑇

𝑚
(𝑘 − 𝑟) ,

𝐸 {𝑉
𝑚,3
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑚,3
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

−1

∑

𝑗=−𝑠

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
(𝑠) 𝜂 (𝑖)

−

−1

∑

𝑗=−𝑟

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
(𝑟) 𝜂 (𝑖)

+

−1

∑

𝑗=−𝑑

−1

∑

𝑙=𝑗

[

𝑘

∑

𝑖=𝑘+1+𝑙

𝜂
𝑇

(𝑖) 𝑃
3
𝜂 (𝑖) −

𝑘−1

∑

𝑖=𝑘+𝑙

𝜂
𝑇

(𝑖) 𝑃
3
𝜂 (𝑖)]

≤

−1

∑

𝑗=−𝑑

𝜂
𝑇

(𝑘) 𝑃
3
(𝑟) 𝜂 (𝑘) −

−1

∑

𝑗=−𝑟

𝜂
𝑇

(𝑘 + 𝑗) 𝑃
3
(𝑟) 𝜂 (𝑘 + 𝑗)

+

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
(𝑟) 𝜂 (𝑖) +

𝑑
2

+ 𝑑

2

𝜂
𝑇

(𝑘) 𝑃
3
𝜂 (𝑘)

−

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
𝜂 (𝑖) −

−1

∑

𝑗=−𝑑

𝜂
𝑇

(𝑘 + 𝑗) 𝑃
3
𝜂 (𝑘 + 𝑗)

≤ 𝜂
𝑇

(𝑘) [𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2

𝑃
3
] 𝜂 (𝑘)

−

−1

∑

𝑗=−𝑟

𝜂
𝑇

(𝑘 + 𝑗)

1

𝑟

𝑃
3
(𝑟)

−1

∑

𝑗=−𝑟

𝜂 (𝑘 + 𝑗)

+

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
(𝑟) 𝜂 (𝑖) −

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
𝜂 (𝑖)

−

−1

∑

𝑗=−𝑟

𝜂
𝑇

(𝑘 + 𝑗)

1

𝑟

𝑃
3

−1

∑

𝑗=−𝑟

𝜂 (𝑘 + 𝑗)

≤ 𝜂
𝑇

(𝑘) [𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2

𝑃
3
] 𝜂 (𝑘)

−

−1

∑

𝑗=−𝑟

𝜂
𝑇

(𝑘 + 𝑗)

1

𝑟

(𝑃
3
(𝑟) + 𝑃

3
)

−1

∑

𝑗=−𝑟

𝜂 (𝑘 + 𝑗) .

(24)

Similarly, the following inequalities (25) can be derived:

𝐸 {𝑉
𝑝,1
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑝,1
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠
𝑥
𝑇

𝑝
(𝑘 + 1) 𝑃

4
(𝑠) 𝑥
𝑝
(𝑘 + 1) − 𝑥

𝑇

𝑝
(𝑘) 𝑃
4
(𝑟) 𝑥
𝑝
(𝑘)

= 𝑥
𝑇

𝑝
(𝑘 + 1) 𝑃

4
(𝑟) 𝑥
𝑝
(𝑘 + 1) − 𝑥

𝑇

𝑝
(𝑘) 𝑃
4
(𝑟) 𝑥
𝑝
(𝑘) ,
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𝐸 {𝑉
𝑝,2
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑝,2
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

𝑘

∑

𝑖=𝑘+1−𝑠

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑠) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

−

𝑘−1

∑

𝑖=𝑘−𝑟

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

+

−1

∑

𝑗=−𝑑+1

𝑘

∑

𝑖=𝑘+1+𝑗

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
𝑔 (𝑍
1
𝑥
𝑝
(𝑖))

−

−1

∑

𝑗=−𝑑+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
𝑔 (𝑍
1
𝑥
𝑝
(𝑖))

= 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) 𝑃

5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑘))

− 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘 − 𝑟)) 𝑃

5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑘 − 𝑟))

+

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

𝑘−1

∑

𝑖=𝑘+1−𝑠

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑠) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

−

𝑘−1

∑

𝑖=𝑘+1−𝑟

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

+

−1

∑

𝑗=−𝑑+1

[𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) 𝑃

5
𝑔 (𝑍
1
𝑥
𝑝
(𝑘))

−𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘 + 𝑗)) 𝑃

5
𝑔 (𝑍
1
𝑥
𝑝
(𝑘 + 𝑗))]

≤ 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) [(𝑑 − 1) 𝑃

5
+ 𝑃
5
(𝑟)] 𝑔 (𝑍

1
𝑥
𝑝
(𝑘))

− 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘 − 𝑟)) 𝑃

5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑘 − 𝑟))

+

𝑘−1

∑

𝑖=𝑘+1−𝑑

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

−

𝑘−1

∑

𝑖=𝑘+1−𝑑

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
𝑔 (𝑍
1
𝑥
𝑝
(𝑖))

≤ 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) [(𝑑 − 1) 𝑃

5
+ 𝑃
5
(𝑟)] 𝑔 (𝑍

1
𝑥
𝑝
(𝑘))

− 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘 − 𝑟)) 𝑃

5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑘 − 𝑟)) ,

𝐸 {𝑉
𝑝,3
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑝,3
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

−1

∑

𝑗=−𝑠

𝑘

∑

𝑖=𝑘+1+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
(𝑠) 𝜁 (𝑖)

−

−1

∑

𝑗=−𝑟

𝑘−1

∑

𝑖=𝑘+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
(𝑟) 𝜁 (𝑖)

+

−1

∑

𝑗=−𝑑

−1

∑

𝑙=𝑗

[

𝑘

∑

𝑖=𝑘+1+𝑙

𝜁
𝑇

(𝑖) 𝑃
6
𝜁 (𝑖) −

𝑘−1

∑

𝑖=𝑘+𝑙

𝜁
𝑇

(𝑖) 𝑃
6
𝜁 (𝑖)]

≤

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

−1

∑

𝑗=−𝑑

𝜁
𝑇

(𝑘) 𝑃
6
(𝑠) 𝜁 (𝑘)

−

−1

∑

𝑗=−𝑟

𝜁
𝑇

(𝑘 + 𝑗) 𝑃
6
(𝑟) 𝜁 (𝑘 + 𝑗)

+

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
(𝑠) 𝜁 (𝑖)

−

−1

∑

𝑗=−𝑟

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
(𝑟) 𝜁 (𝑖) +

𝑑
2

+ 𝑑

2

𝜁
𝑇

(𝑘) 𝑃
6
𝜁 (𝑘)

−

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
𝜁 (𝑖) −

−1

∑

𝑗=−𝑑

𝜁
𝑇

(𝑘 + 𝑗) 𝑃
6
𝜁 (𝑘 + 𝑗)

≤ 𝜁
𝑇

(𝑘)Ω
56
𝜁 (𝑘) −

−1

∑

𝑗=−𝑟

𝜁
𝑇

(𝑘 + 𝑗)Ω
45

−1

∑

𝑗=−𝑟

𝜁 (𝑘 + 𝑗) .

(25)

In view of (7), we can conclude that

𝑔
𝑖
(𝑠) [𝑔
𝑖
(𝑠) − 𝑙

𝑖
𝑠] ≤ 0, ∀𝑠 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛. (26)

Then, it follows from (26) that

− 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) 𝜍𝑔 (𝑍

1
𝑥
𝑝
(𝑘)) − 2𝑥

𝑇

𝑝
(𝑘) 𝑍
𝑇

1
𝜍𝐿𝑔 (𝑍

1
𝑥
𝑝
(𝑘))

≥ 0,

− 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘 + 1)) 𝜇𝑔 (𝑍

1
𝑥
𝑝
(𝑘 + 1))

− 2𝑥
𝑇

𝑝
(𝑘 + 1) 𝑍

𝑇

1
𝜇𝐿𝑔 (𝑍

1
𝑥
𝑝
(𝑘 + 1)) ≥ 0.

(27)

Now, combining (23)–(25) and (27) results in

𝐸 {𝑉 (Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉 (Θ
𝑘
, 𝑘, 𝑟) ≤ 𝜉

𝑇

(𝑘)Ω𝜉 (𝑘) ,

(28)

where 𝜉𝑇(𝑘) = [𝑥
𝑇

𝑚
(𝑘) 𝑥
𝑇

𝑝
(𝑘) 𝑥
𝑇

𝑚
(𝑘 − 𝑟) 𝑔

𝑇

(𝑍
1
𝑥
𝑝
(𝑘 − 𝑟))

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) 𝑔

𝑇

(𝑍
1
𝑥
𝑝
(𝑘 + 1))], andΩ is defined as in (18).

Due to (18), formula (28) results in
𝐸 {𝑉 (Θ

𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

≤ 𝑉 (Θ
𝑘
, 𝑘, 𝑟) − 𝜆min {𝑥

𝑇

𝑚
(𝑘) 𝑥
𝑚
(𝑘) + 𝑥

𝑇

𝑝
(𝑘) 𝑥
𝑝
(𝑘)} ,

(29)

where 𝜆min denotes the minimal eigenvalue of −Ω. Since

𝐸 {𝐸 {𝑉 (Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘)} | Θ

0
, 𝑑 (0)}

= 𝐸 {𝑉 (Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

0
, 𝑑 (0)} ,

(30)

we obtain

𝐸 {
󵄩
󵄩
󵄩
󵄩
𝑥
𝑚
(𝑘)
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑝
(𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩

2

| Θ
0
, 𝑑 (0)} ≤ 𝜆

−1

min𝑉 (Θ0, 0, 𝑑 (0))

< ∞.

(31)
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by taking the conditional expectation 𝐸{⋅ | Θ
0
, 𝑑(0)} and

summing from 𝑘 = 0 to +∞ on both sides of (29). Con-
sequently, by Definition 2, one can conclude from the above
inequality that the filtering error system (11) is stochastically
stable, and the proof is thus completed.

Remark 6. It is worth noting that the 𝐻
∞

filtering problem
for (8) has been studied in [26], but the obtained results
in [26] are not dependent on the transition probability
matrix of the random delay described by a Markovian chain.
In order to reduce the conservatism and give the explicit
expression of the desired filter, in the above theorem we have
constituted intensive studying of the 𝐻

∞
filtering problem

for (8) and have investigated a result dependent on the
transition probability matrix of the random delay described
by a Markovian chain.

Remark 7. The novel Lyapunov functional in this paper is
selected to be of (21). Since in (21) we have not only chosen
the triple summation termbut also considered sufficiently the
information of the random delay described by a Markovian
chain, the conservatism might be reduced than one in [26],
which will be illustrated through a numerical example in
Section 4.

Theorem 5 does not give a design procedure for the
desired filter. Based on Theorem 5, the following theorem
offers an approach to design a 𝐻

∞
filter for GRN (8) such

that the filtering error system (11) is stochastically stable with
𝐻
∞

disturbance attenuation level 𝛾.

Theorem 8. For given a scalar 𝛾 > 0 and a positive integer 𝑑,
if for each 𝑟 ∈ N, there exist matrices 𝑃𝑇

𝑖
(𝑟) = 𝑃

𝑖
(𝑟) > 0 (𝑖 =

1, 2, . . . , 6), 𝑃𝑇
𝑗
= 𝑃
𝑗
> 0 (𝑗 = 2, 3, 5, 6),

𝑅
𝑘
:= [

𝑅
𝑘1
𝑅
𝑘2

𝑅
𝑘3
𝑅
𝑘2

]

𝑇

, det𝑅
𝑘2
̸= 0, 𝑘 = 1, 2, (32)

𝜍 := diag(𝜍
1
, 𝜍
2
, . . . , 𝜍

𝑛
) > 0, 𝜇 := diag(𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑛
) > 0, 𝐴

𝑓
,

𝐵
𝑓
, 𝐶
𝑓
, 𝐷
𝑓
, 𝐺
1𝑓
, 𝐻
1𝑓
, 𝐺
2𝑓
, and 𝐻

2𝑓
, such that the following

LMIs (34) and (35) hold, then the filtering error system (11) is
stochastically stable with 𝐻

∞
disturbance attenuation level 𝛾.

Moreover, the required filter is given by (9) with

𝐴
𝑓
= 𝑅
−1

12
𝐴
𝑓
, 𝐵

𝑓
= 𝑅
−1

12
𝐵
𝑓
,

𝐶
𝑓
= 𝑅
−1

22
𝐶
𝑓
, 𝐷

𝑓
= 𝑅
−1

22
𝐷
𝑓
,

(33)

Υ :=

[

[

[

[

[

[

[

[

Υ
11

0 0 0 0 Υ
16

∗ Υ
22

0 0 0 Υ
26

∗ ∗ Υ
33
0 0 Υ

36

∗ ∗ ∗ −𝐼 0 Υ
46

∗ ∗ ∗ ∗ −𝐼 Υ
56

∗ ∗ ∗ ∗ ∗ Υ
66

]

]

]

]

]

]

]

]

< 0, (34)

𝑃
𝑗
(𝑟) < 𝑃

𝑗
, 𝑗 = 2, 3, 5, 6, (35)

where

Υ
11
= 𝑃
1
(𝑟) − 𝑅

1
− 𝑅
𝑇

1
,

Υ
22
= 𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2

𝑃
3
− 𝑅
1
− 𝑅
𝑇

1
,

Υ
33
= 𝑃
4
(𝑟) − 𝑅

2
− 𝑅
𝑇

2
,

𝑃
𝑖
(𝑟) =

𝑑

∑

𝑠=1

𝜋
𝑟𝑠
𝑃
𝑖
(𝑠) , 𝑖 = 1, 2, . . . , 6,

Υ
16
= 𝑅
𝑇

1
Ψ
1
+ (𝑍
1
+ 𝑍
2
)
𝑇

(𝐵
𝑓
Ψ
2
+ 𝐴
𝑓
Ψ
3
) ,

Υ
26
= 𝑅
𝑇

1
Ψ
4
+ (𝑍
1
+ 𝑍
2
)
𝑇

(𝐵
𝑓
Ψ
2
+ 𝐴
𝑓
Ψ
3
) ,

Υ
36
= 𝑅
𝑇

2
Ψ
5
+ (𝑍
1
+ 𝑍
2
)
𝑇

(𝐷
𝑓
Ψ
6
+ 𝐶
𝑓
Ψ
7
) ,

𝑍
1
= [𝐼 0] , 𝑍

2
= [0 𝐼] ,

Ψ
1
= [

𝐴𝑍
1
0 0 𝐵 0 0 𝐸

1
0

0 0 0 0 0 0 0 0
] ,

Ψ
2
= [𝐶
1
𝑍
1
0 0 0 0 0 𝐸

2
0] ,

Ψ
3
= [𝑍
2
0 0 0 0 0 0 0] ,

Ψ
4
= [

(𝐴 − 𝐼)𝑍
1
0 0 𝐵 0 0 𝐸

1
0

−𝑍
2

0 0 0 0 0 0 0
] ,

Ψ
5
= [

0 𝐶𝑍
1
𝐷𝑍
1
0 0 0 0 𝐹

1

0 0 0 0 0 0 0 0
] ,

Ψ
6
= [0 𝐶

2
𝑍
1
0 0 0 0 0 𝐹

2
] ,

Ψ
7
= [0 𝑍

2
0 0 0 0 0 0] ,

Υ
46
= [𝐺
1𝑓
0 0 0 0 0 𝐻

1𝑓
0] ,

Υ
56
= [0 𝐺

2𝑓
0 0 0 0 0 𝐻

2𝑓
] ,

Υ
66
=
[

[

Ω̃ 0 Φ
2

∗ −𝛾
2

𝐼 0

∗ ∗ −𝛾
2

𝐼

]

]

,

Φ
2
= [0 0 0 0 0 −𝐹

𝑇

1
𝜇𝐿]

𝑇

,

(36)

and 𝐿, 𝐺
1𝑓
, 𝐺
2𝑓
,𝐻
1𝑓
, and𝐻

2𝑓
are defined as previously.

Proof. 𝐴
𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, and 𝐷

𝑓
are defined as in (33). Then it is

easy to verify that Υ
16
= 𝑅
𝑇

1
Λ
1
, Υ
26
= 𝑅
𝑇

1
Λ
2
, and Υ

36
= 𝑅
𝑇

2
Λ
3
,

where

Λ
1
= [Λ
1
𝐸 0] , Λ

2
= [Λ
2
𝐸 0] ,

Λ
3
= [Λ
3
0 𝐹] ,

(37)

and Λ
1
, Λ
2
, Λ
3
, 𝐸, and 𝐹 are defined as previously. This,

together with (34) and Lemma 4, implies that
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[

[

[

[

[

[

[

[

[

[

[

−𝑃

−1

1
(𝑟) 0 0 0 0 Λ

1

∗ −(𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2

𝑃
3
)

−1

0 0 0 Λ
2

∗ ∗ −𝑃

−1

4
(𝑟) 0 0 Λ

3

∗ ∗ ∗ −𝐼 0 Υ
46

∗ ∗ ∗ ∗ −𝐼 Υ
56

∗ ∗ ∗ ∗ ∗ Υ
66

]

]

]

]

]

]

]

]

]

]

]

< 0. (38)

Due to the Schur complement lemma, inequality (38) is equal
to

Φ + Φ < 0, (39)

where

Φ =
[

[

0 0 0

0 −𝛾
2

𝐼 0

0 0 −𝛾
2

𝐼

]

]

+ Υ
𝑇

46
Υ
46
+ Υ
𝑇

56
Υ
56
,

Φ =
[

[

Ω̃ 0 Φ
2

0 0 0

Φ
𝑇

2
0 0

]

]

+ Λ

𝑇

1
𝑃
1
(𝑟) Λ
1

+ Λ

𝑇

2
(𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2

𝑃
3
)Λ
2
+ Λ

𝑇

3
𝑃
4
(𝑟) Λ
3
.

(40)

Thus

Λ := Υ
66
+ Λ

𝑇

1
𝑃
1
(𝑟) Λ
1
+ Λ

𝑇

2
(𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2

𝑃
3
)Λ
2

+ Λ

𝑇

3
𝑃
4
(𝑟) Λ
3
< 0.

(41)

Noting thatΩ is a submatrix ofΛ, we can conclude thatΩ < 0.
By Theorem 5, the filtering error system (11) with 𝑤(𝑘) = 0
and V(𝑘) = 0 is stochastically stable.

Choose the same Lyapunov function as in (21) for the
filtering error system (11) and employ the similar approach
in the proof of Theorem 5, one has

Δ𝑉
𝑘
:= 𝐸 {𝑉 (Θ

𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉 (Θ
𝑘
, 𝑘, 𝑟)

≤ 𝐸 {𝛿
𝑇

(𝑘)Φ𝛿 (𝑘)} ,

(42)

where 𝛿(𝑘) = [𝜉𝑇(𝑘) 𝑤𝑇(𝑘) V𝑇(𝑘)]
𝑇

, and 𝜉(𝑘) is defined as
previously. To deal with the 𝐻

∞
performance, the following

performance function is considered

𝐽
𝐾
:=

𝐾

∑

𝑘=0

𝐸{[

𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

𝑇

[

𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

−𝛾
2

[

𝑤(𝑘)

V(𝑘)]
𝑇

[

𝑤 (𝑘)

V (𝑘)] | Θ0, 𝑑 (0)} .

(43)

Due to the zero initial condition and

𝐸 {𝐸 {𝑉 (Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘)} | Θ

0
, 𝑑 (0)}

= 𝐸 {𝑉 (Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

0
, 𝑑 (0)} ,

(44)

it is easy to see from (39) and (42) that

𝐽
𝐾
=

𝐾

∑

𝑘=0

𝐸{[

𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

𝑇

[

𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

−𝛾
2

[

𝑤(𝑘)

V(𝑘)]
𝑇

[

𝑤 (𝑘)

V (𝑘)] + Δ𝑉𝑘 | Θ0, 𝑑 (0)}

−

𝐾

∑

𝑘=0

𝐸 {Δ𝑉
𝑘
| Θ
0
, 𝑑 (0)}

=

𝐾

∑

𝑘=0

𝐸{[

𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

𝑇

[

𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

−𝛾
2

[

𝑤 (𝑘)

V (𝑘)]
𝑇

[

𝑤 (𝑘)

V (𝑘)] + Δ𝑉𝑘 | Θ0, 𝑑 (0)}

− 𝐸 {𝑉 (Θ
𝐾+1
, 𝐾 + 1, 𝑑 (𝐾 + 1)) | Θ

0
, 𝑑 (0)}

+ 𝑉 (Θ
0
, 0, 𝑑 (0))

≤

𝐾

∑

𝑘=0

𝐸 {𝑒
𝑇

𝑚
(𝑘) 𝑒
𝑚
(𝑘) + 𝑒

𝑇

𝑝
(𝑘) 𝑒
𝑝
(𝑘) − 𝛾

2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

−𝛾
2V𝑇 (𝑘) V (𝑘) + Δ𝑉

𝑘
| Θ
0
, 𝑑 (0)}

≤

𝐾

∑

𝑘=0

𝐸 {𝛿
𝑇

(𝑘) (Φ + Φ) 𝛿 (𝑘) | Θ
0
, 𝑑 (0)} < 0.

(45)

Let 𝑘 → ∞; it is concluded from Definition 3 that the
filtering error system (11) is stochastically stable with 𝐻

∞

disturbance attenuation level 𝛾.
The proof is thus completed.

Remark 9. What can be seen from Theorem 8 is that the
scalar 𝛾 can be calculated as an optimization variable to
obtain theminimum𝐻

∞
disturbance attenuation level. To be

more specific, the minimal𝐻
∞
disturbance attenuation level
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can be obtained by solving the following convex optimization
problem:

min
s.t. (34)-(35)

𝛽, 𝛽 = 𝛾
2

. (46)

Note that if there exists a solution 𝛽∗ to the problem (46),
then the minimal𝐻

∞
disturbance attenuation level is√𝛽∗.

4. Illustrative Example

In this section we illustrate the effectiveness of the proposed
approach by testing the following numerical example which
has been used in [26].

Consider GRN (8) with the following parameters:

𝐴 =
[

[

0.3679 0 0

0 0.3679 0

0 0 0.3679

]

]

,

𝐵 =
[

[

0 0 −0.126

−0.126 0 0

0 −0.126 0

]

]

,

𝐸
1
=
[

[

0.3

0.5

0

]

]

, 𝐹
1
=
[

[

0.6

0.4

0.2

]

]

,

𝐶 =
[

[

0.3679 0 0

0 0.6065 0

0 0 0.3679

]

]

,

𝐷 =
[

[

0.6321 0 0

0 0.3935 0

0 0 0.6321

]

]

,

𝐸
2
=
[

[

0.5

0.4

0.2

]

]

, 𝐹
2
=
[

[

0.2

0.6

0.3

]

]

,

𝐺
2
= 𝐺
1
= 𝐶
2
= 𝐶
1
=
[

[

0.3 0 0

0 0.2 0

0 0 0.3

]

]

.

(47)

The regulation function is taken as 𝑔
𝑖
(𝑥) = 𝑥

2

/(1 + 𝑥
2

) (𝑖 =

1, 2, 3). It is easy to know that the derivative of 𝑔
𝑖
(𝑥) is less

than 𝑙 = 0.65, which shows 𝐿 = diag(−0.325, −0.325, −0.325).
Suppose the bound of the time delay is 𝑑 = 3: then 𝑑(𝑘) ∈
N = {1, 2, 3}. The transition probability matrix Π is given by

Π =
[

[

0.3 0.5 0.2

0.4 0.3 0.3

0.2 0.5 0.3

]

]

. (48)

By solving the optimization problem (46), it can be obtained
that the optimal disturbance attenuation level 𝛾∗ is 0.2289,

which is better than one (i.e., 1.5046) in [26]. And the
corresponding filter gain matrices are as follows:

𝐴
𝑓
=
[

[

0.3033 0.0362 −0.0085

−0.1172 0.0675 0.0442

−0.0196 −0.0232 0.3032

]

]

,

𝐵
𝑓
=
[

[

−1.3657 1.0166 −0.1168

0.2405 −1.8421 −0.0969

0.0521 0.4326 −1.7666

]

]

,

𝐶
𝑓
=
[

[

0.0604 −0.0945 −0.0015

−0.2121 0.4325 0.0640

−0.1054 0.1555 0.1184

]

]

,

𝐷
𝑓
=
[

[

0.4505 −2.1899 −0.2779

0.0936 −1.8583 0.3270

−0.4267 1.2589 −2.8255

]

]

,

𝐺
1𝑓
=
[

[

−0.0965 −0.1809 0.0340

−0.0772 −0.1447 0.0272

−0.0386 −0.0724 0.0136

]

]

,

𝐺
2𝑓
=
[

[

0.0413 −0.0725 −0.0097

0.1240 −0.2175 −0.0292

0.0620 −0.1087 −0.0146

]

]

,

𝐻
1𝑓
=
[

[

0.6784 −0.9047 0.1134

−0.2573 0.2762 0.0907

−0.1286 −0.3619 1.0454

]

]

,

𝐻
2𝑓
=
[

[

1.1304 −0.3575 −0.0320

0.3912 −0.0724 −0.0960

0.1956 −0.5362 0.9520

]

]

.

(49)

In the following simulation setup, the noise signal is
chosen as

𝑤 (𝑘) = V (𝑘) = {
sin (0.3𝑘) , 𝑘 ≤ 20,
0, 𝑘 > 20.

(50)

Let the filtering error system run by random sequence
𝑑(𝑘), the trajectories and their estimations of themRNAs and
proteins are shown in Figures 1 and 2, where the solid line
and dotted line describe the state trajectories and estimations
of mRNAs and proteins, respectively. The filtering errors are
shown in Figures 3 and 4. It can be seen from Figures 3 and
4 that the filtering error converges to zero in the absence of
disturbances.

Next, we illustrate the 𝐻
∞

performance of the filtering
error system (11). By direct computation, we have

60

∑

𝑘=0

[

𝑤(𝑘)

V(𝑘)]
𝑇

[

𝑤 (𝑘)

V (𝑘)] = 20.9454. (51)

For values of 1000 random sequences of 𝑑(𝑘), we obtain
by MATLAB that the maximum of ∑60

𝑘=0
[
𝑒𝑚(𝑘)

𝑒𝑝(𝑘)
]

𝑇

[
𝑒𝑚(𝑘)

𝑒𝑝(𝑘)
] is
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Figure 1: Trajectories and estimations of mRNAs.
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Figure 2: Trajectories and estimations of proteins.

0.1647, and hence the maximum disturbance attenuation
level is

√

√

√

√

∑
60

𝑘=0
[
𝑒
𝑚
(𝑘)

𝑒𝑝(𝑘)

]

𝑇

[
𝑒
𝑚
(𝑘)

𝑒𝑝(𝑘)

]

∑
60

𝑘=0
[
𝑤(𝑘)

V(𝑘)
]

𝑇

[
𝑤 (𝑘)

V(𝑘)
]

= √
0.1647

20.9454

= 0.0887 < 𝛾
∗

.

(52)

This verifies that the 𝐻
∞

disturbance attenuation level is
below the given upper bound.
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Figure 3: Estimation error of mRNAs.
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Figure 4: Estimation error of proteins.

5. Conclusion

In this paper, we investigate the filtering problem on a class
of discrete-time GRNs with random delays. The filtering
error system is established as a Markovian switched system
and the random delay is described as a Markovian chain.
By introducing an appropriate Lyapunov function, sufficient
conditions for concerned problems are derived in terms
of LMIs. The designed filter guarantees that the filtering
error system is stochastically stable with 𝐻

∞
disturbance

attenuation level. Finally, the effectiveness and performance
of the obtained results are demonstrated by a numerical
example.
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