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We introduced a relatively new operator called the triple Laplace transform.We presented some properties and theorems about the
relatively new operator. We examine the triple Laplace transform of some function of three variables. We make use of the operator
to solve some kind of third-order differential equation called “Mboctara equations.”

1. Introduction

The topic of partial differential equations is one of the most
important subjects in mathematics and other sciences. The
behaviour of the solution very much depends essentially
on the classification of PDEs therefore the problem of
classification for partial differential equations is very natural
and well known since the classification governs the sufficient
number and the type of the conditions in order to determine
whether the problem is well posed and has a unique solution.
The Laplace transform has been intensively used to solve
nonlinear and linear equations [1–7]. The Laplace transform
is used frequently in engineering and physics; the output of a
linear time invariant system can be calculated by convolving
its unit impulse response with the input signal. Performing
this calculation in Laplace space turns the convolution into
a multiplication; the latter is easier to solve because of its
algebraic form. The Laplace transform can also be used
to solve differential equations and is used extensively in
electrical engineering [1–7]. The Laplace transform reduces
a linear differential equation to an algebraic equation, which
can then be solved by the formal rules of algebra.The original
differential equation can then be solved by applying the
inverse Laplace transform. The English electrical engineer
Oliver Heaviside first proposed a similar scheme, although
without using the Laplace transform, and the resulting oper-
ational calculus is credited as theHeaviside calculus. Recently
Kılıçman et al. [8–11] extended the Laplace transform to

the concept of double Laplace transform. This new operator
has been intensively used to solve some kind of differential
equation [11] and fractional differential equations. The aim
of this work is to extend the Laplace transform to the triple
Laplace transform. We will start with the definition of the
triple Laplace transform.

2. Definitions and Theorems

Definition 1. Let 𝑓 be a continuous function of three vari-
ables; then, the triple Laplace transformof𝑓(𝑥, 𝑦, 𝑡) is defined
by

𝐿
𝑥,𝑦,𝑡

[𝑓 (𝑥, 𝑦, 𝑡)]

= 𝐹 (𝑝, 𝑠, 𝑘) ∭
∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡,

(1)

where, 𝑥, 𝑦, 𝑡 > 0 and 𝑝, 𝑠, 𝑘 are Laplace variables, and

𝑓 (𝑥, 𝑦, 𝑡)

=
1

2𝜋𝑖
∫
𝛼+𝑖∞

𝛼−𝑖∞

𝑒𝑝𝑥

× [
1

2𝜋𝑖
∫
𝛽+𝑖∞

𝛽−𝑖∞

𝑒𝑠𝑦
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× [
1

2𝜋𝑖
∫
𝜇+𝑖∞

𝜇−𝑖∞

𝑒𝑘𝑡

× 𝐹(𝑝, 𝑠, 𝑘) 𝑑𝑘] 𝑑𝑠] 𝑑𝑝

(2)

is the inverse triple Laplace transform.

Property 2. Assuming that the continuous function 𝑓(𝑥, 𝑦, 𝑡)
is triple Laplace transformable, then,

𝐿
𝑡,𝑦,𝑥

[
𝜕3𝑓 (𝑥, 𝑦, 𝑡)

𝜕𝑥𝜕𝑦𝜕𝑡
]

= 𝑝𝑠𝑘𝐹 (𝑝, 𝑠, 𝑘) − 𝑝𝑠𝐹 (𝑝, 𝑠, 0) − 𝑝𝑠𝐹 (𝑝, 0, 𝑘)

+ 𝑝𝐹 (𝑝, 0, 0) − 𝑠𝑘𝐹 (0, 𝑠, 𝑘) + 𝑠𝐹 (0, 𝑠, 0)

+ 𝑘𝐹 (0, 0, 𝑘) − 𝐹 (0, 0, 0) ,

𝐿
𝑥,𝑥,𝑡

[
𝜕3𝑓 (𝑥, 𝑦, 𝑡)

𝜕𝑡𝜕𝑥2
]

= 𝑘𝑝2𝐹 (𝑝, 𝑦, 𝑘) − 𝑝𝑘𝐹 (0, 𝑦, 𝑘) −
𝜕𝐹 (0, 𝑦, 𝑘)

𝜕𝑥

− 𝑝2𝐹 (𝑝, 𝑦, 0) + 𝑝𝐹 (0, 𝑦, 0) +
𝜕𝐹 (0, 𝑦, 0)

𝜕𝑥
,

𝐿
𝑥𝑥𝑥

[
𝜕3𝑓 (𝑥, 𝑦, 𝑡)

𝜕𝑥3
]

= 𝑝3𝐹 (𝑝, 𝑦, 𝑡) − 𝑝2𝐹 (0, 𝑦, 𝑡)

− 𝑝
𝜕𝐹 (0, 𝑦, 𝑡)

𝜕𝑥
−

𝜕2𝐹 (0, 𝑦, 𝑡)

𝜕𝑥2
.

(3)

3. Uniqueness and Existence of the Triple
Laplace Transform

In this section, we will study the uniqueness and existence
of triple Laplace transform. First of all, let 𝑓(𝑥, 𝑦, 𝑡) be
a continuous function on the interval [0,∞) which is of
exponential order, that is, for some 𝑎, 𝑏, 𝑐 ∈ 𝑅. Consider

sup
𝑥,𝑦,𝑡>0



𝑓 (𝑥, 𝑦, 𝑡)

exp [𝑎𝑥 + 𝑏𝑦 + 𝑐𝑡]


< 0. (4)

Under the previous condition, the triple Laplace transform,

𝐹 (𝑝, 𝑠, 𝑘) = ∭
∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡,

(5)

exists for all 𝑝 > 𝑎, 𝑠 > 𝑏, and 𝑘 > 𝑐 and is in actuality
infinitely differentiable with respect to 𝑝 > 𝑎, 𝑠 > 𝑏 and 𝑘 > 𝑐.
All functions in this study are assumed to be of exponential
order. The following theorem shows that 𝑓(𝑥, 𝑦, 𝑡) can be
uniquely obtained from 𝐹(𝑝, 𝑠, 𝑡).

Theorem 3. Let 𝑓(𝑥, 𝑦, 𝑡) and 𝑔(𝑥, 𝑦, 𝑡) be continuous func-
tions defined for 𝑥, 𝑦, 𝑡 ≥ 0 and having Laplace transforms,
𝐹(𝑝, 𝑠, 𝑘) and 𝐺(𝑝, 𝑠, 𝑘), respectively. If 𝐹(𝑝, 𝑠, 𝑘) = 𝐺(𝑝, 𝑠, 𝑘),
then 𝑓(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 𝑡).

Proof. From the definition of the inverse Laplace transform, if
𝛼, 𝛽, and 𝜇 are sufficiently large, then the integral expression,
by

𝑓 (𝑥, 𝑦, 𝑡)

=
1

2𝜋𝑖
∫
𝛼+𝑖∞

𝛼−𝑖∞

𝑒𝑝𝑥

× [
1

2𝜋𝑖
∫
𝛽+𝑖∞

𝛽−𝑖∞

𝑒𝑠𝑦

× [
1

2𝜋𝑖
∫
𝜇+𝑖∞

𝜇−𝑖∞

𝑒𝑘𝑡

× 𝐹(𝑝, 𝑠, 𝑘) 𝑑𝑘] 𝑑𝑠] 𝑑𝑝,

(6)

for the triple inverse Laplace transform, can be used to obtain

𝑓 (𝑥, 𝑦, 𝑡)

=
1

2𝜋𝑖
∫
𝛼+𝑖∞

𝛼−𝑖∞

𝑒𝑝𝑥

× [
1

2𝜋𝑖
∫
𝛽+𝑖∞

𝛽−𝑖∞

𝑒𝑠𝑦

× [
1

2𝜋𝑖
∫
𝜇+𝑖∞

𝜇−𝑖∞

𝑒𝑘𝑡

× 𝐹(𝑝, 𝑠, 𝑘) 𝑑𝑘] 𝑑𝑠] 𝑑𝑝.

(7)

By hypothesis, we have that 𝐹(𝑝, 𝑠, 𝑘) = 𝐺(𝑝, 𝑠, 𝑘). then
replacing this in the previous expression, we have the follow-
ing:

𝑓 (𝑥, 𝑦, 𝑡)

=
1

2𝜋𝑖
∫
𝛼+𝑖∞

𝛼−𝑖∞

𝑒𝑝𝑥

× [
1

2𝜋𝑖
∫
𝛽+𝑖∞

𝛽−𝑖∞

𝑒𝑠𝑦

× [
1

2𝜋𝑖
∫
𝜇+𝑖∞

𝜇−𝑖∞

𝑒𝑘𝑡

× 𝐺(𝑝, 𝑠, 𝑘) 𝑑𝑘] 𝑑𝑠] 𝑑𝑝,

(8)
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which boil down to
𝑓 (𝑥, 𝑦, 𝑡)

=
1

2𝜋𝑖
∫
𝛼+𝑖∞

𝛼−𝑖∞

𝑒𝑝𝑥

× [
1

2𝜋𝑖
∫
𝛽+𝑖∞

𝛽−𝑖∞

𝑒𝑠𝑦

× [
1

2𝜋𝑖
∫
𝜇+𝑖∞

𝜇−𝑖∞

𝑒𝑘𝑡

× 𝐺(𝑝, 𝑠, 𝑘) 𝑑𝑘] 𝑑𝑠] 𝑑𝑝,

= 𝑔 (𝑥, 𝑦, 𝑡) ,

(9)

and this proves the uniqueness of the triple Laplace trans-
form.

Theorem 4. If, at the point (𝑝, 𝑠, 𝑘), the integrals

𝐹
1

(𝑝, 𝑠, 𝑘) = ∭
∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓
1

(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡

𝐹
2

(𝑝, 𝑠, 𝑘) = ∭
∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓
2

(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡

(10)

are convergent and in addition if

𝐹
3

(𝑝, 𝑠, 𝑘) = ∭
∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓
3

(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡

(11)

is absolutely convergent, then, the following expression:

𝐹 (𝑝, 𝑠, 𝑘) = 𝐹
1

(𝑝, 𝑠, 𝑘) 𝐹
2

(𝑝, 𝑠, 𝑘) 𝐹
3

(𝑝, 𝑠, 𝑘) (12)

is the Laplace transform of the function

𝑓 (𝑥, 𝑦, 𝑡)

= ∫
𝑡

0

∫
𝑦

0

∫
𝑥

0

𝑓
3

(𝑥 − (𝑥
1

+ 𝜌) , 𝑦 − (𝑦
1

+ 𝜎) ,

𝑡 − (𝑡
1

+ 𝜏)) 𝑓
2

(𝑥
1

− 𝜌, 𝑦
1

− 𝜎, 𝑡
1

− 𝜏)

× 𝑓
1

(𝜌, 𝜎, 𝜏) 𝑑𝜌 𝑑𝜎 𝑑𝜏,

(13)

and the integral

𝐹 (𝑝, 𝑠, 𝑘) = ∭
∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡

(14)

is convergent at the point (𝑝, 𝑠, 𝑘); for the readers who are
interested, they can see the proof in [11, 12].

Theorem 5. A function 𝑓(𝑥, 𝑦, 𝑡) which is continuous on
[0, ∞) and satisfies the growth condition (4) can be recovered
from only 𝐹(𝑝, 𝑠, 𝑘) as

𝑓 (𝑥, 𝑦, 𝑡) = lim
𝑛
1
→∞

𝑛
2
→∞

𝑛
3
→∞

(−1)𝑛1+𝑛2+𝑛3

𝑛
1
!𝑛
2
!𝑛
3
!

(
𝑛
1

𝑥
)
𝑛
1
+1

(
𝑛
2

𝑦
)
𝑛
2
+1

× (
𝑛
3

𝑡
)
𝑛
3
+1

Χ𝑛1+𝑛2+𝑛3 [
𝑛
1

𝑥
,
𝑛
2

𝑦
,
𝑛
3

𝑡
] .

(15)

Evidently, the main difficulty in using Theorem 5 for com-
puting the inverse Laplace transform is the repeated symbolic
differentiation of 𝐹(𝑝, 𝑠, 𝑘).

Let us see how Theorem 5 can be applicable. Let us
consider the following functions:

𝑓 (𝑥, 𝑦, 𝑡) = exp [−𝑎𝑥 − 𝑏𝑦 − 𝑐𝑡] . (16)

Naturally the triple Laplace transform of the previous func-
tion is given later as

𝐹 (𝑝, 𝑠, 𝑘) =
1

(𝑝 − 𝑎) (𝑠 − 𝑏) (𝑘 − 𝑐)
. (17)

Nowapplying the high-ordermixedderivative to the previous
expression, we obtain the following:

𝜕𝑛1+𝑛2+𝑛3 [𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛1𝜕𝑠𝑛2𝜕𝑘𝑛3
= 𝑛
1
!𝑛
2
!𝑛
3
!(−1)
𝑛
1
+𝑛
2
+𝑛
3

× (𝑎+𝑃)
−1−𝑛
1(𝑠+𝑏)

−1−𝑛
2(𝑐+𝑘)

−1−𝑛
3 .

(18)

ApplyingTheorem 5 in the previous expression, we obtain the
following result:

𝑓 (𝑥, 𝑦, 𝑡) = lim
𝑛
1
→∞

𝑛
2
→∞

𝑛
3
→∞

𝑛
1

1+𝑛
1𝑛
2

1+𝑛
2𝑛
3

1+𝑛
3

𝑥𝑛1+1𝑦𝑛2+1𝑡𝑛3+1
(𝑎 +

𝑛
1

𝑥
)
−𝑛
1
−1

× (𝑏 +
𝑛
2

𝑦
)
−𝑛
2
−1

(𝑐 +
𝑛
3

𝑡
)
−𝑛
3
−1

.

(19)

Making a change of variable in the previous expression, we
obtain the following simplified result:

𝑓 (𝑥, 𝑦, 𝑡) = lim
𝑛
1
→∞

𝑛
2
→∞

𝑛
3
→∞

(1 +
𝑎𝑛
1

𝑥
)
−𝑛
1
−1

(1 +
𝑏𝑛
2

𝑦
)
−𝑛
2
−1

× (1 +
𝑐𝑛
3

𝑡
)
−𝑛
3
−1

.

(20)

Using together, the application of logarithm and the
L’Hôpital’s rule on the previous expression, we arrive at the
following result:

ln (𝑓 (𝑥, 𝑦, 𝑡)) = −𝑎𝑥 − 𝑏𝑦 − 𝑐𝑡 ⇒ 𝑓 (𝑥, 𝑦, 𝑡)

= exp [−𝑎𝑥 − 𝑏𝑦 − 𝑐𝑡] .
(21)
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4. Some Properties of Triple
Laplace Transform

In this section, we present some properties of the triple
Laplace transform. Note that these properties follow from
those of the double Laplace transform introduced by
Kılıçman and Eltayeb [8].The properties of the triple Laplace
transform will enable us to find further transform pairs
{𝑓(𝑥, 𝑦, 𝑡), 𝐹(𝑝, 𝑠, 𝑘)}:

(i) 𝐹 (𝑝 + 𝑎, 𝑠 + 𝑏, 𝑘 + 𝑑)

= 𝐿
𝑥,𝑦,𝑡

[𝑒−𝑎𝑥−𝑦𝑏−𝑐𝑡𝑓 (𝑥, 𝑦, 𝑡)] (𝑝, 𝑠, 𝑘) .
(22)

We will present the proof

𝐿
𝑥,𝑦,𝑡

[𝑒−𝑎𝑥−𝑦𝑏−𝑐𝑡𝑓 (𝑥, 𝑦, 𝑡)] (𝑝, 𝑠, 𝑘)

= ∭
∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦] exp [−𝑘𝑡] exp [−𝑎𝑥]

× exp [−𝑏𝑦] exp [−𝑐𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡,

∫
∞

0

exp [−𝑝𝑥] exp [−𝑎𝑥]

× (∬
∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡] exp [−𝑏𝑦]

× exp [−𝑐𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑡 𝑑𝑦) 𝑑𝑡.

(23)

Note that the integral inside the bracket satisfies the proper-
ties of the double Laplace transform and is given as [11]

(∬
∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡] exp [−𝑏𝑦] exp [−𝑐𝑡]

× 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑡 𝑑𝑦) = 𝐹 (𝑥, 𝑠 + 𝑏, 𝑘 + 𝑑) .

(24)

Thus

∫
∞

0

exp [−𝑝𝑥] exp [−𝑎𝑥] 𝐹 (𝑥, 𝑠 + 𝑏, 𝑘 + 𝑑) 𝑑𝑡

= 𝐹 (𝑝 + 𝑎, 𝑠 + 𝑏, 𝑘 + 𝑑) ,

(25)

and this completes the proof.
(ii) The following can also be observed:

1

𝛼𝛽𝛾
𝐹 (

𝑝

𝛼
,

𝑠

𝛽
,
𝑘

𝛾
) = 𝐿

𝑥,𝑦,𝑡
[𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡)] (𝑝, 𝑠, 𝑘) . (26)

We will present the proof

𝐿
𝑥,𝑦,𝑡

[𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡)] (𝑝, 𝑠, 𝑘)

= ∭
∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦] exp [−𝑘𝑡]

× 𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡,

∫
∞

0

exp [−𝑝𝑥] (∬
∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡]

× 𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡) 𝑑𝑦 𝑑𝑡) 𝑑𝑥.

(27)

Note that the double integral inside the bracket satisfies the
property of the double Laplace transform as [11]

(∬
∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡] 𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡) 𝑑𝑦 𝑑𝑡)

=
1

𝛽𝛾
𝐹 (𝛼𝑥,

𝑠

𝛽
,
𝑘

𝛾
) .

(28)

Thus

𝐿
𝑥,𝑦,𝑡

[𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡)] (𝑝, 𝑠, 𝑘)

= ∫
∞

0

exp [−𝑝𝑥]
1

𝛽𝛾
𝐹 (𝛼𝑥,

𝑠

𝛽
,
𝑘

𝛾
) 𝑑𝑥

=
1

𝛼𝛽𝛾
𝐹 (

𝑝

𝛼
,

𝑠

𝛽
,
𝑘

𝛾
) ,

(29)

and this completes the proof.
(iii) The following property can also be observed:

𝜕𝑛+𝑚+V [𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

= 𝐿
𝑥,𝑦,𝑡

[(−1)
𝑛+𝑚+V𝑥𝑛𝑦𝑚𝑡V𝑓 (𝑥, 𝑦, 𝑡)] (𝑝, 𝑠, 𝑘) .

(30)

We will present the proof

𝐹 (𝑝, 𝑠, 𝑘) = ∭
∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦] exp [−𝑘𝑡]

× 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡.

(31)

Then,

𝜕𝑛+𝑚+V [𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

=
𝜕𝑛+𝑚+V

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V
(∭
∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡) .

(32)

Now making use of the convergence properties of the
improper integral involved, we can interchange the opera-
tion of differentiation and integration and differentiate with
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respect to 𝑝, 𝑠, and 𝑘 under the integral sign. Thus, we arrive
at the following expression:

𝜕𝑛+𝑚+V [𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

=
𝜕𝑛

𝜕𝑝𝑛
∫
∞

0

exp [−𝑝𝑥]

× (
𝜕𝑚+V

𝜕𝑠𝑛𝜕𝑘V
∬
∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡]

× 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑡) 𝑑𝑥.

(33)

Note that the expression in the bracket satisfies the property
of the double Laplace transform as [11]

𝜕𝑚+V

𝜕𝑠𝑛𝜕𝑘V
∬
∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑡

= 𝐿
𝑦,𝑡

[(−1)
𝑚+V𝑦𝑚𝑡V𝑓 (𝑥, 𝑦, 𝑡)] (𝑠, 𝑘) .

(34)

Thus

𝜕𝑛+𝑚+V [𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

=
𝜕𝑛

𝜕𝑝𝑛
∫
∞

0

exp [−𝑝𝑥]

× (𝐿
𝑦,𝑡

[(−1)
𝑚+V𝑦𝑚𝑡V𝑓 (𝑥, 𝑦, 𝑡)] (𝑠, 𝑘)) 𝑑𝑥.

(35)

And finally, we obtain

𝜕𝑛+𝑚+V [𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

= 𝐿
𝑥,𝑦,𝑡

[(−1)
𝑛+𝑚+V𝑥𝑛𝑦𝑚𝑡V𝑓 (𝑥, 𝑦, 𝑡)] (𝑝, 𝑠, 𝑘) ,

(36)

and this completes the proof.
Now using the previous three properties, we will show the

proof of Theorem 5.

Proof of Theorem 5. Let us define the set of functions depend-
ing on parameters 𝑚, 𝑛, and V as

ℎ
𝑚,𝑛,V (𝑥, 𝑦, 𝑡) =

𝑚𝑚+1𝑛𝑛+1VV+1

𝑚!𝑛!V!
𝑥𝑚𝑦𝑛𝑡V𝑒−𝑚𝑥−𝑛𝑦−V𝑡. (37)

It worth noting that the previous function is a kind of three-
dimensional density of probability, and it therefore follows
that

∭
∞

0

ℎ
𝑚,𝑛,V (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡 = 1. (38)

In addition of this, we will have that

lim
𝑚→∞

𝑛→∞

V→∞

∭
∞

0

ℎ
𝑚,𝑛,V (𝑥, 𝑦, 𝑡) 𝜓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡 = 𝜓 (1, 1, 1) ,

(39)

where 𝜓(𝑥, 𝑦, 𝑡) is any continuous function. Let Ψ(𝑝, 𝑠, 𝑘)
denote the triple Laplace transform of the continuous
function 𝜓(𝑥, 𝑦, 𝑡). However, if one defines the function
𝑀(𝑥, 𝑦, 𝑡) = 𝑓(𝑥𝛼, 𝑦𝛽, 𝑡𝛾), making use of the second pro-
perty established in (29), we arrive at the following:

1

𝛼𝛽𝛾
𝐹 (

𝑝

𝛼
,

𝑠

𝛽
,
𝑘

𝛾
) = 𝐿

𝑥,𝑦,𝑡
[𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡)] (𝑝, 𝑠, 𝑘) . (40)

Here if one applies the third property, in particular by rep-
lacing 𝑝 = 𝑚/𝑥, 𝑠 = 𝑛/𝑦, 𝑘 = V/𝑡 as follows:

𝐿
𝑥𝑦𝑡

(𝑀 (𝑥, 𝑦, 𝑡)) =
1

𝛼𝛽𝛾
𝐹 (

𝑝

𝛼
,

𝑠

𝛽
,
𝑘

𝛾
) , (41)

𝜕𝑛+𝑚+V [𝐿
𝑥𝑦𝑡

(𝑀 (𝑥, 𝑦, 𝑡))]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

=
𝜕𝑛+𝑚+V [(1/𝛼𝛽𝛾) 𝐹 (𝑝/𝛼, 𝑠/𝛽, 𝑘/𝛾)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

=
1

𝛼𝑚+1𝛽𝑛+1𝛾V+1

×
𝜕𝑛+𝑚+V [𝐹 (𝑝/𝛼, 𝑠/𝛽, 𝑘/𝛾)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V
.

(42)

Now let us put 𝜓(𝑥, 𝑦, 𝑡) = 𝑒−𝑝𝑥−𝑠𝑦−𝑘𝑡𝑀(𝑥, 𝑦, 𝑡). Now if we
make use of (38), we obtain the following

𝜓 (1, 1, 1) = 𝑒−𝑝−𝑠−𝑘𝑀 (1, 1, 1) = 𝑒−𝑝−𝑠−𝑘𝑓 (𝛼, 𝛽, 𝛾)

= lim
𝑚→∞

𝑛→∞

V→∞

𝑚𝑚+1𝑛𝑛+1VV+1

𝑚!𝑛!V!
∭
∞

0

𝑥𝑚𝑦𝑛𝑡V𝑒−𝑝𝑥−𝑠𝑦−𝑘𝑡

× 𝑒−𝑚𝑥−𝑛𝑦−V𝑡Ψ (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡

= lim
𝑚→∞

𝑛→∞

V→∞

𝑚𝑚+1𝑛𝑛+1VV+1

𝑚!𝑛!V!
𝐿
𝑥𝑦𝑡

[𝑥𝑚𝑦𝑛𝑡V𝑒−𝑚𝑥−𝑛𝑦−V𝑡Ψ (𝑥, 𝑦, 𝑡)] .

(43)

Now taking into account properties (i) and (ii), (42) together
with the function 𝑀(𝑥, 𝑦, 𝑡), we arrive at the following:

𝐿
𝑥𝑦𝑡

[𝑥𝑚𝑦𝑛𝑡V𝑒−𝑚𝑥−𝑛𝑦−V𝑡Ψ (𝑥, 𝑦, 𝑡)]

= (−1)
𝑚+𝑛+V

𝜕𝑛+𝑚+V [𝐿
𝑥𝑦𝑡

(𝑒−𝑚𝑥−𝑛𝑦−𝑘𝑡Ψ (𝑥, 𝑦, 𝑡)) (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

= (−1)
𝑚+𝑛+V 1

𝛼𝑚𝛽𝑛𝛾V

×
𝜕𝑛+𝑚+V [𝐿

𝑥𝑦𝑡
(Ψ (𝑥, 𝑦, 𝑡)) (𝑝 + 𝑚, 𝑠 + 𝑛, 𝑘 + V)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

= (−1)
𝑚+𝑛+V 1

𝛼𝑚𝛽𝑛𝛾V

×((𝜕𝑛+𝑚+V [𝐿
𝑥𝑦𝑡

(𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡))

×(
𝑝+𝑚

𝛼
,
𝑠+𝑛

𝛽
,
𝑘+V

𝛾
)]) (𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V)

−1

)
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= (−1)
𝑚+𝑛+V

×
1

𝛼𝑚𝛽𝑛𝛾V
𝜕𝑛+𝑚+V [𝐹 ((𝑝+𝑚) /𝛼, (𝑠+𝑛) /𝛽, (𝑘+V) /𝛾)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V
.

(44)

Now observe that from (44) with the fact that 𝑓(𝛼, 𝛽, 𝑡) =

𝜓(1, 1, 1)𝑒𝑝+𝑠+𝑘, we arrive at the following:

𝑓 (𝛼, 𝛽, 𝑡)

= 𝑒𝑝+𝑠+𝑘 lim
𝑚→∞

𝑛→∞

V→∞

𝑚𝑚+1𝑛𝑛+1VV+1

𝑚!𝑛!V!

× (
𝑚

𝛼
)
𝑚+1

(
𝑛

𝛽
)
𝑛+1

(
V

𝛾
)
V+1

×
𝜕𝑛+𝑚+V [𝐹 ((𝑝 + 𝑚) /𝛼, (𝑠 + 𝑛) /𝛽, (𝑘 + V) /𝛾)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V
.

(45)

The previously mentioned is true for any 𝑝, 𝑠, 𝑘 in the
complete space, in particular, for 𝑝 = 0, 𝑠 = 0, 𝑘 = 0, and
in this case Theorem 5 is covered.

5. Application to Third-Order Partial
Differential Equation

In this section, we present the application of this operator
for solving some kind of third-order partial differential
equations.

Example 1. consider the following third-order partial differ-
ential equation:

𝜕
𝑥𝑦𝑡

𝑢 (𝑥, 𝑦, 𝑡) + 𝑢 (𝑥, 𝑦, 𝑡) = 0. (46)

The previous equation is called the Mboctara equation and is
subjected to the following boundaries and initial conditions:

𝑢 (𝑥, 𝑦, 0) = 𝑒𝑥+𝑦, 𝑢 (𝑥, 0, 𝑡) = 𝑒𝑥−𝑡,

𝑢 (0, 𝑦, 𝑡) = 𝑒𝑦−𝑡, 𝑢 (𝑥, 𝑦, 1) = 𝑒𝑥+𝑦−1.
(47)

Now applying the triple Laplace transform on both sides of
(46), we obtain the following:

𝑝𝑠𝑘𝑈 (𝑝, 𝑠, 𝑘) + 𝑈 (𝑝, 𝑠, 𝑘) = 𝐺 (𝑝, 𝑠, 𝑘) . (48)

Here
𝐺 (𝑝, 𝑠, 𝑘) = 𝑝𝑠𝑈 (𝑝, 𝑠, 0) + 𝑝𝑠𝑈 (𝑝, 0, 𝑘) − 𝑝𝑈 (𝑝, 0, 0)

+ 𝑠𝑘𝑈 (0, 𝑠, 𝑘) − 𝑠𝑈 (0, 𝑠, 0) − 𝑘𝑈 (0, 0, 𝑘)

+ 𝑈 (0, 0, 0) .

(49)

Factorising the right side of equation (49), we obtain the
following:

𝑈 (𝑝, 𝑠, 𝑘) =
𝐺 (𝑝, 𝑠, 𝑘)

1 + 𝑝𝑠𝑘
. (50)

Now applying the inverse triple Laplace transform on the
previous equation we obtain the following solution:

𝑢 (𝑥, 𝑦, 𝑡) = 𝐿−1
𝑥𝑦𝑡

[
𝐺 (𝑝, 𝑠, 𝑘)

1 + 𝑝𝑠𝑘
] = 𝑒𝑥+𝑦−𝑡. (51)

This is the exact solution for Mboctara equation.

Example 2. Let us consider the following nonhomogeneous
Mboctara equation

𝜕
𝑥𝑦𝑡

𝑢 (𝑥, 𝑦, 𝑡) + 𝑢 (𝑥, 𝑦, 𝑡) = −𝑒𝑥−2𝑦+𝑡 (52)

subjected to the following initial and boundaries conditions:

𝑢 (𝑥, 0, 0) = 𝑒𝑥, 𝜕
𝑡
𝑢 (𝑥, 0, 𝑡) = 𝑒𝑥+𝑡, 𝜕

𝑥
𝑢 (𝑥, 0, 𝑡) = 𝑒𝑥+𝑡,

𝑢 (0, 0, 0) = 1, 𝑢 (𝑥, 0.5, 𝑡) = 𝑒𝑥+𝑡−1.

(53)

Now applying the triple Laplace transform on both sides
of (52), we obtain the following:

𝑝𝑠𝑘𝑈 (𝑝, 𝑠, 𝑘) + 𝑈 (𝑝, 𝑠, 𝑘)

= 𝐺 (𝑝, 𝑠, 𝑘) −
1

(1 + 𝑝) (2 + 𝑠) (1 + 𝑘)
.

(54)

Factorising the right side of (54), we obtain the following:

𝑈 (𝑝, 𝑠, 𝑘) =
𝐺 (𝑝, 𝑠, 𝑘) − 1/ (1 + 𝑝) (2 + 𝑠) (1 + 𝑘)

1 + 𝑝𝑠𝑘
.

(55)

Now applying the inverse triple Laplace transform on the
previous equation, we obtain the following solution

𝑢 (𝑥, 𝑦, 𝑡) = 𝐿−1
𝑥𝑦𝑡

[
𝐺 (𝑝, 𝑠, 𝑘) − 1/ (1 + 𝑝) (2 + 𝑠) (1 + 𝑘)

1 + 𝑝𝑠𝑘
]

= 𝑒𝑥−2𝑦+𝑡.

(56)

This is the exact solution for nonhomogeneous Mboctara
equation.

Example 3. Let us consider the following nonhomogeneous
Mboctara equation

𝜕
𝑥𝑦𝑡

𝑢 (𝑥, 𝑦, 𝑡) + 𝑢 (𝑥, 𝑦, 𝑡) = cos (𝑥) cos (𝑦) cos (−𝑡)

− sin (𝑥) sin (𝑦) sin (−𝑡) ,

(57)

subjected to the following initial and boundaries conditions:

𝑢 (𝑥, 𝑦, 0) = cos (𝑥) cos (𝑦) ,

𝜕
𝑡
𝑢 (𝑥, 𝑦, 0) = 𝜕

𝑥
𝑢 (0, 𝑦, 𝑡) = 𝜕

𝑦
𝑢 (𝑥, 0, 𝑡) = 0,

𝑢 (𝑥,
𝜋

2
, 𝑡) = 𝑢 (𝑥, 𝑦,

𝜋

2
) = 𝑢 (

𝜋

2
, 𝑦, 𝑡) = 0.

(58)
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Table 1: Table of triple Laplace transform for some function of three variables.

Functions𝑓(𝑥, 𝑦, 𝑡) Triple laplace transform 𝐹(𝑝, 𝑠, 𝑘)

𝑎𝑏𝑐
𝑎𝑏𝑐

𝑝𝑠𝑘

𝑥𝑦𝑡
1

𝑝2𝑠2𝑘2

𝑥𝑛𝑦𝑚𝑡V, 𝑛, 𝑚, V are natural numbers 𝑘−1−V𝑠−1−𝑚𝑝−𝑛−1Γ (1 + 𝑛) Γ (1 + 𝑚) Γ (1 + V)

𝑥𝑛𝑦𝑚𝑡V𝑒−𝑎𝑥−𝑏𝑦−𝑐𝑡 (𝑘 + 𝑐)−1−V(𝑠 + 𝑏)−1−𝑚(𝑝 + 𝑎)
−𝑛−1

Γ (1 + 𝑛) Γ (1 + 𝑚) Γ (1 + V)

𝑒−𝑎𝑥−𝑏𝑦−𝑐𝑡
1

(𝑎 + 𝑝) (𝑏 + 𝑠) (𝑐 + 𝑘)

cos(𝑥) cos(𝑦) cos(𝑡)
𝑘𝑠𝑝

(1 + 𝑝2) (1 + 𝑠2) (1 + 𝑘2)

sin(𝑥) sin(𝑦) sin(𝑡)
1

(1 + 𝑝2) (1 + 𝑠2) (1 + 𝑘2)

sin (𝑥 + 𝑦 + 𝑡)
−1 + 𝑝𝑠 + 𝑘 (𝑝 + 𝑠)

(1 + 𝑝2) (1 + 𝑠2) (1 + 𝑘2)

cos(𝑥 + 𝑦 + 𝑡) −
𝑘 + 𝑝 + 𝑠 − 𝑘𝑝𝑠

(1 + 𝑝2) (1 + 𝑠2) (1 + 𝑘2)

√𝑥𝑦𝑡
𝜋√𝜋

83√𝑘𝑠𝑝

𝑒𝑎𝑥+𝑦𝑏+𝑐𝑡 sinh(𝑎𝑥)sinh(𝑏𝑦) sinh(𝑐𝑡)
(𝑏) (𝑐) (𝑎)

(−2𝑎𝑝 + 𝑝2) (−2𝑏𝑠 + 𝑠2) (−2𝑐𝑘 + 𝑘2)

𝑒𝑎𝑥+𝑦𝑏+𝑐𝑡 cosh(𝑎𝑥) cosh(𝑏𝑦) cosh(𝑐𝑡)
(𝑏 − 𝑠) (𝑐 − 𝑘) (𝑎 − 𝑝)

(−2𝑎𝑝 + 𝑝2) (−2𝑏𝑠 + 𝑠2) (−2𝑐𝑘 + 𝑘2)

Erf [
𝑎

2√𝑥
]Erf[

𝑏

2√𝑦
]Erf [

𝑐

2√𝑡
]

𝑒−
√𝑐
2
𝑘−√𝑏
2
𝑠

𝑘𝑝𝑠
(−1 + 𝑒−

√𝑐
2
𝑘) (1 − 𝑒−

√𝑎
2
𝑝) (−1 + 𝑒−

√𝑏
2
𝑠)

sin(𝑎𝑥)

𝑥

sin(𝑏𝑦)

𝑦

sin(𝑐𝑡)

𝑡
arctan(

√𝑎2

𝑝
) arctan(

√𝑏2

𝑠
) arctan(

√𝑐2

𝑘
)

cos(𝑎𝑥)

𝑥𝑛
cos(𝑏𝑦)

𝑦𝑚
cos(𝑐𝑡)

𝑡V

𝑘−1+V(1 +
𝑏2

𝑠2
)

1/2(−1+𝑚)

𝑠−1+𝑚 cos [𝑐𝑡] cos((−1 + 𝑚) arctan[
√𝑏2

𝑠
]) Γ (1 − 𝑚) Γ (1 − V)

× (1 +
𝑎2

𝑝2
)

1/2(−1+𝑛)

𝑝−1+𝑛 cos((𝑛 − 1) arctan(
|𝑎|

𝑝
)) Γ (1 − 𝑛)

sin(𝑎𝑥)

𝑥𝑛
sin(𝑏𝑦)

𝑦𝑚
sin(𝑐𝑡)

𝑡V

𝑘−1+V (1 +
𝑏2

𝑠2
)

1/2(−1+𝑚)

𝑠−1+𝑚Γ (1 − 𝑚) Γ (1 − V) (1 +
𝑎2

𝑝2
)

1/2(−1+𝑛)

× 𝑝−1+𝑛Γ (1 − 𝑛) sign (𝑎) sin ((𝑛 − 1) arctan(
|𝑎|

𝑝
)) Γ (1 − 𝑛)

𝐽
𝑛

(𝑥) 𝐽
𝑛

(𝑦) 𝐽
𝑛
(𝑡)

8−𝑛(𝑘𝑠𝑝)
−1−𝑛Hypergeometric2𝐹1 (

1 + 𝑛

2
,

2 + 𝑛

2
, −

1

𝑘2
)

Hypergeometric2𝐹1 (
1 + 𝑛

2
,

2 + 𝑛

2
, −

1

𝑠2
)

[Hypergeometric2𝐹1 (
1 + 𝑛

2
,

2 + 𝑛

2
, −

1

𝑝2
)

𝐼
𝑛

(𝑥) 𝐼
𝑛

(𝑦) 𝐼
𝑛
(𝑡)

8−𝑛(𝑘𝑠𝑝)
−1−𝑛Hypergeometric2𝐹1 (

1 + 𝑛

2
,

2 + 𝑛

2
, 1 + 𝑛,

1

𝑘2
)

Hypergeometric2𝐹1 (
1 + 𝑛

2
,

2 + 𝑛

2
, 1 + 𝑛,

1

𝑠2
)

Hypergeometric2𝐹1 (
1 + 𝑛

2
,

2 + 𝑛

2
, 1 + 𝑛,

1

𝑝2
)
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Figure 1: Numerical simulation of the exact solutions of the Homogeneous and non-homogeneous Mboctara equations.

Now applying the triple Laplace transform on both sides of
(57), we obtain the following:

𝑝𝑠𝑘𝑈 (𝑝, 𝑠, 𝑘) + 𝑈 (𝑝, 𝑠, 𝑘)

= 𝐺 (𝑝, 𝑠, 𝑘) +
𝑘𝑠𝑝

(1 + 𝑝2) (1 + 𝑠2) (−1 + 𝑘2)

−
1

(1 + 𝑝2) (1 + 𝑠2) (−1 + 𝑘2)
.

(59)

Factorising the right side of (59), we obtain the following:

𝑈 (𝑝, 𝑠, 𝑘) =
𝐺 (𝑝, 𝑠, 𝑘)

1 + 𝑝𝑠𝑘
+

𝑘𝑠𝑝/ (1 + 𝑝2) (1 + 𝑠2) (−1 + 𝑘2 )

1 + 𝑝𝑠𝑘

−
1/ (1 + 𝑝2 ) (1 + 𝑠2 ) (−1 + 𝑘2)

1 + 𝑝𝑠𝑘
.

(60)
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Now applying the inverse triple Laplace transform on the
previous equation, we obtain the following solution:

𝑢 (𝑥, 𝑦, 𝑡)

= 𝐿−1
𝑥𝑦𝑡

[
𝐺 (𝑝, 𝑠, 𝑘)

1 + 𝑝𝑠𝑘
+

𝑘𝑠𝑝/ (1 + 𝑝2) (1 + 𝑠2) (−1 + 𝑘2)

1 + 𝑝𝑠𝑘

−
1/ (1 + 𝑝2 ) (1 + 𝑠2) (−1 + 𝑘2)

1 + 𝑝𝑠𝑘
]

= cos (𝑥) cos (𝑦) cos (−𝑡) .

(61)

This is the exact solution for nonhomogeneous Mboctara
equation.

Example 4. consider the following nonlinear nonhomoge-
neous with variable coefficient Mboctara equation:

𝑒𝑥+𝑦+𝑡𝜕
𝑥𝑦𝑡

𝑢 (𝑥, 𝑦, 𝑡) − 3𝑢2 (𝑥, 𝑦, 𝑡) + 𝑒𝑥+𝑦+𝑡𝑢 (𝑥, 𝑦, 𝑡)

= 𝑒2𝑥+2𝑦+2𝑡,

𝑢
𝑥

(𝑥, 𝑦, 0) = 𝑒𝑥+𝑦, 𝑢 (0, 0, 0) = 1,

𝑢 (1, 0, 0) = 𝑒, 𝜕
𝑥𝑦𝑡

𝑢 (0, 0, 0) = 1.

(62)

Now applying the triple Laplace transform on both sides
of (62) and then using the properties of the triple Laplace
transform and after factorising as in the previous examples
and taking the inverse triple Laplace transform, we obtain
the following as an exact solution of this type of Mboctara
equation:

𝑢 (𝑥, 𝑦, 𝑡) = 𝑒𝑥+𝑦+𝑡. (63)

Thenumerical simulations of the exact solutions of theMboc-
tara equation are depicted in Figure 1(a) (4.1), Figure 1(b)
(4.6), Figure 1(c) (4.6) and Figure 1(d) (4.11), respectively.

6. Triple Laplace Transform of Some
Functions of Three Variables

In this section, we examine the triple Laplace transform of
some functions in Table 1:

𝐿
𝑥𝑦𝑡

(𝑌
𝑛

(𝑥) 𝑌
𝑛

(𝑦) 𝑌
𝑛

(𝑡))

= 8−𝑛(𝑘𝑠𝑝)
−1−𝑛

𝐶𝑠𝑐3 [𝑛𝜋]

× ( − (4𝑘2)
𝑛

Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 − 𝑛, −

1

𝑘2
)

+ cos (𝑛𝜋)Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 + 𝑛, −

1

𝑘2
))

× ( − (4𝑠2)
𝑛

Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 − 𝑛, −

1

𝑠2
)

+ cos (𝑛𝜋)Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 + 𝑛, −

1

𝑠2
))

× ( − (4𝑝2)
𝑛

Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 − 𝑛, −

1

𝑝2
)

+ cos (𝑛𝜋)Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 + 𝑛, −

1

𝑝2
)) .

(64)

7. Conclusion

This work presents the definition of the triple Laplace trans-
form. Some triple Laplace transform is presented in Table 1.
Some theorems and properties of this new relatively new
operator are presented. Applications of the new operator, for
solving some kind of third-order partial differential equations
calledMboctara equation, are presented.Numerical solutions
of the Mboctara equation are given.
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