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The long time behavior of solutions of the nonautonomous three-components reversible Gray-Scott system defined on the entire
spaceR𝑛 is studied when the external forcing terms are unbounded in a phase space.The existence of a pullback global attractor for
the equation is established in [𝐿

2

(R𝑛

)]
3 and [𝐻

1

(R𝑛

)]
3, respectively. The pullback asymptotic compactness of solutions is proved

by using uniform estimates on the tails of solutions on unbounded domains.

1. Introduction

In this paper, we consider the dynamical behavior of
the nonautonomous three-components reversible Gray-Scott
system

𝜕𝑢

𝜕𝑡
= 𝑑

1
Δ𝑢 − (𝐹 + 𝑘) 𝑢 + 𝑢

2V − 𝐺𝑢
3

+ 𝑁𝑤 + 𝑓
1
(𝑡, 𝑥) ,

𝜕V

𝜕𝑡
= 𝑑

2
ΔV − 𝐹V − 𝑢

2V + 𝐺𝑢
3

+ 𝑓
2
(𝑡, 𝑥) ,

𝜕𝑤

𝜕𝑡
= 𝑑

3
Δ𝑤 − (𝐹 + 𝑁)𝑤 + 𝑘𝑢 + 𝑓

3
(𝑡, 𝑥) ,

(1)

on [𝜏,∞) × O with initial data

𝑢 (𝜏, 𝑥) = 𝑢
0
(𝑥) , V (𝜏, 𝑥) = V

0
(𝑥) ,

𝑤 (𝜏, 𝑥) = 𝑤
0
(𝑥) on O,

(2)

where O = R𝑛

× R𝑛

× R𝑛; all the parameters are arbitrarily
given positive constants; 𝑓

𝑖
(𝑥, 𝑡) for 𝑡 ∈ R and 𝑥 ∈ R𝑛 is

an external forcing term which is locally square integrable in
time. That is, 𝑓

𝑖
∈ 𝐿

2

loc(R, 𝐿
2

(R𝑛

)), 𝑖 = 1, 2, 3.
Historically, when 𝑤 = 0, 𝐺 = 0, and the external

forces 𝑓
1

= 𝑓
3

= 0, 𝑓
2

= 𝐹, system (1) reduces to the
two-component Gray-Scott system which signified one of
the Brussell school led by the renowned physical chemist

and Nobel Prize laureate (1977), Ilya Prigogine, which orig-
inated from describing an isothermal, cubic autocatalytic,
continuously fed, and diffusive reactions of two chemicals
(see, e.g., [1, 2]). The three-component reversible Gray-Scott
model was firstly introduced by Mahara et al., which is based
on the scheme of two reversible chemical or biochemical
reactions [3]. Then in [4], You takes some nondimensional
transformations, and the three-component reversible system
is reduced to the system (1) without external forces. In [4],
You considers the existence of global attractor for the system
with Neumann boundary condition on a bounded domain
of space dimension 𝑛 ≤ 3 by the method of the rescaling and
grouping estimation. Formore recent dynamical behaviors of
the nonautonomous three-component reversible Gray-Scott
system, we can refer to [5, 6] for the existence of random
attractors of the stochastic cases on bounded and unbounded
domains and [7] for the existence of uniform attractor of the
deterministic case on a bounded domain.

As pointed in [8], we can discuss the same or similar
coupled reaction-diffusion systems on a higher dimensional
domain with the space dimension 𝑛 > 3 and on an
unbounded domain, to work with various different phase
spaces. Here, we intend to investigate the dynamical behavior
of the nonautonomous three-component reversible Gray-
Scott system on unbounded domains. It is worth mentioning
that the Sobolev embeddings are not compact on domains of
infinite volume. This introduces a major obstacle for proving
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the existence of attractors for PDEs on unbounded domains.
For some deterministic equations, the difficulty caused by
the unboundedness of domains can be overcome by the
energy equation approach which is developed by Ball in [9]
and used by many authors (see, e.g., [10, 11]). In this paper,
we will use the uniform estimates on the tails of solutions
to circumvent the difficulty caused by the unboundedness
of the domain. This idea was developed in [12] to prove
the asymptotic compactness of solutions for autonomous
parabolic equations on R𝑛 and later extended to stochastic
equations in, for example, [6, 13–15]. Here, we will use
the method of tail estimates to investigate the asymptotic
behavior of system (1) with initial data (2). We first establish
the pullback asymptotic compactness of solutions of system
(1) and prove the existence of a pullback global attractor in
H. Then we extend this result and show the existence of a
pullback global attractor in E.

The paper is organized as follows. In the next section,
we recall the fundamental concepts and results for pull-
back attractors for nonautonomous dynamical systems. In
Section 3, we define a cocycle for the nonautonomous three-
component reversible Gray-Scott system on R𝑛. Section 4 is
devoted to deriving the uniform estimates of solutions for
large space and time variables. In the last section, we prove
the existence of a pullback global attractor for the equation in
H and E.

The following notations will be used throughout the
paper.We denote by ‖ ⋅‖ and (⋅, ⋅) the norm and inner product
in 𝐿

2

(R𝑛

) or H = [𝐿
2

(R𝑛

)]
3 and use ‖ ⋅ ‖

6
, ‖ ⋅ ‖

4
to denote

the norm in 𝐿
6

(R𝑛

) or V = [𝐿
6

(R𝑛

)]
3, 𝐿4(R𝑛

) or U =

[𝐿
4

(R𝑛

)]
3; V 󸀠, U the dual of V ,U; E = [𝐻

1

(R𝑛

)]
3. The letters

𝑀 is a generic positive constant which may change its value
from line to line or even in the same line.

2. Preliminaries

In this section, we recall some basic concepts related to
pullback attractors for nonautonomous dynamical systems. It
is worth noticing that these concepts are quite similar to those
of random attractors for stochastic systems. We can refer to
[16–19] for more details.

Let Ω be a nonempty set and 𝑋 a metric space with
distance 𝑑(⋅, ⋅).

Definition 1. A family of mappings {𝜃
𝑡
}
𝑡∈R from Ω to itself is

called a family of shift operators on Ω if {𝜃
𝑡
}
𝑡∈R satisfies the

group properties:

(i) 𝜃
0
𝜔 = 𝜔, for all 𝜔 ∈ Ω,

(ii) 𝜃
𝑡
(𝜃

𝜏
𝜔) = 𝜃

𝑡+𝜏
𝜔, for all 𝜔 ∈ Ω and 𝑡, 𝜏 ∈ R.

Definition 2. Let {𝜃
𝑡
}
𝑡∈R be a family of shift operators on Ω.

Then a continuous 𝜃-cocycle 𝜙 on𝑋 is a mapping

𝜙 : R
+

× Ω × 𝑋 󳨀→ 𝑋, (𝑡, 𝜔, 𝑥) 󳨃󳨀→ 𝜙 (𝑡, 𝜔, 𝑥) , (3)

which satisfies, for all 𝜔 ∈ Ω and 𝑡, 𝜏 ∈ R, the following:

(i) 𝜙(0, 𝜔, ⋅) is the identity on𝑋,

(ii) 𝜙(𝑡 + 𝜏, 𝜔, ⋅) = 𝜙(𝑡, 𝜃
𝜏
𝜔, ⋅) ∘ 𝜙(𝜏, 𝜔, ⋅),

(iii) 𝜙(𝑡, 𝜔, ⋅) : 𝑋 → 𝑋 is continuous.

Hereafter, we always assume that 𝜙 is a continuous 𝜃-
cocycle on 𝑋 and D is a collection of families of subsets of
𝑋:

D = {𝐷 = {𝐷 (𝜔)}
𝜔∈Ω

: 𝐷 (𝜔) ⊆ 𝑋 for every𝜔 ∈ Ω} . (4)

Definition 3. LetD be a collection of families of subsets of𝑋.
ThenD is called inclusion closed if𝐷 = {𝐷(𝜔)}

𝜔∈Ω
∈ D and

𝐷 = {𝐷(𝜔) ⊆ 𝑋 : 𝜔 ∈ Ω} with 𝐷(𝜔) ⊆ 𝐷(𝜔) for all 𝜔 ∈ Ω

imply that𝐷 ∈ D.

Definition 4. LetD be a collection of families of subsets of𝑋,
and {𝐾(𝜔)}

𝜔∈Ω
is called a pullback absorbing set for 𝜙 inD if,

for every 𝐵 ∈ D and 𝜔 ∈ Ω, there exists 𝑡(𝜔, 𝐵) > 0 such that

𝜙 (𝑡, 𝜃
−𝑡
𝜔, 𝐵 (𝜃

−𝑡
𝜔)) ⊆ 𝐾 (𝜔) , ∀𝑡 ≥ 𝑡 (𝜔, 𝐵) . (5)

Definition 5. Let D be a collection of families of subsets of
𝑋. Then 𝜙 is said to be D-pullback asymptotically compact
in𝑋 if, for every 𝜔 ∈ Ω, {𝜙(𝑡

𝑛
, 𝜃

−𝑡
𝑛

𝜔, 𝑥
𝑛
)}

∞

𝑛=1
has a convergent

subsequence in𝑋whenever 𝑡
𝑛
→ ∞ and 𝑥

𝑛
∈ 𝐵(𝜃

−𝑡
𝑛

𝜔)with
{𝐵(𝜔)}

𝜔∈Ω
∈ D.

Definition 6. Let D be a collection of families of subsets of
𝑋 and {A(𝜔)}

𝜔∈Ω
∈ D. Then {A(𝜔)}

𝜔∈Ω
∈ D is called a

D-pullback global attractor for 𝜙 if the following conditions
are satisfied, for every 𝜔 ∈ Ω:

(i) A(𝜔) is compact,
(ii) {A(𝜔)}

𝜔∈Ω
is invariant, that is,

𝜙 (𝑡, 𝜔,A (𝜔)) = A (𝜃
𝑡
𝜔) , ∀𝑡 ≥ 0, (6)

(iii) {A(𝜔)}
𝜔∈Ω

attracts every set in D, that is, for every
𝐵 = {𝐵(𝜔)}

𝜔∈Ω
∈ D,

lim
𝑡→∞

𝑑 (𝜙 (𝑡, 𝜃
−𝑡
𝜔, 𝐵 (𝜃

−𝑡
𝜔)) ,A (𝜔)) = 0, (7)

where 𝑑 is the Hausdorff semimetric given by 𝑑(𝑌, 𝑍) =

sup
𝑦∈𝑌

inf
𝑧∈𝑍

‖𝑦 − 𝑧‖
𝑋
for any 𝑌 ⊆ 𝑋 and 𝑍 ⊆ 𝑋.

Theorem 7. LetD be an inclusion-closed collection of families
of subsets of𝑋 and 𝜙 a continuous 𝜃-cocycle on𝑋. Suppose that
{𝐾(𝜔)}

𝜔∈Ω
∈ D is a closed absorbing set for 𝜙 in D and 𝜙 is

D-pullback asymptotically compact in𝑋. Then 𝜙 has a unique
D-pullback global attractor {A(𝜔)}

𝜔∈Ω
∈ D which is given by

A (𝜔) = ⋂
𝜏≥0

⋃
𝑡≥𝜏

𝜙 (𝑡, 𝜃
−𝑡
𝜔,𝐾 (𝜃

−𝑡
𝜔)). (8)

3. Cocycle Related to Three-Component
Reversible Gray-Scott System

In this section, we constructed a 𝜃-cocycle for the nonau-
tonomous three-component reversible Gray-Scott system
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defined on R𝑛. For every 𝜏 ∈ R and 𝑡 > 𝜏, system (1) with
initial data (2) can be rewritten as

𝜕𝑔

𝜕𝑡
− 𝐴𝑔 + 𝐻 (𝑔) = 𝑓 (𝑥, 𝑡) , 𝑥 ∈ O, (9)

with initial condition

𝑔 (𝑥, 𝜏) = 𝑔
𝜏
(𝑥) , 𝑥 ∈ R

𝑛

, (10)

where

𝑔 = (𝑢, V, 𝑤)𝑇,

𝑓 (𝑥, 𝑡) = (𝑓
1
(𝑥, 𝑡) , 𝑓

2
(𝑥, 𝑡) , 𝑓

3
(𝑥, 𝑡))

𝑇

, 𝑥 ∈ O,

𝐴 = (

𝑑
1
Δ 0 0

0 𝑑
2
Δ 0

0 0 𝑑
3
Δ

) ,

𝐻 (𝑔) = (

− (𝐹 + 𝑘) 𝑢 + 𝑢
2V − 𝐺𝑢

3

+ 𝑁𝑤

−𝐹V − 𝑢
2V + 𝐺𝑢

3

𝑘𝑢 − (𝐹 + 𝑁)𝑤

) ,

(11)

and here 𝑇 denotes the transposition.
As in the case of bounded domains, by conducting a priori

estimate on theGalerkin approximate solutions of system (9)-
(10) similar to the autonomous system studied in [7], we can
prove that if 𝑓 ∈ 𝐿

2

loc(R,H)), then problem (9)-(10) is well
defined in H. That is, for any 𝑔

𝜏
∈ H and 𝜏 ∈ R, (9) possesses

a unique solution 𝑔 satisfying

𝑔 ∈ 𝐶 ([𝜏,∞) ;H) ∩ 𝐿
2

loc ([𝜏,∞) ;E) , (12)

which continuously depends on the initial data 𝑔
𝜏
∈ H. To

construct a cocycle 𝜙 for problem (9)-(10), we denote byΩ =

R and define a shift operator 𝜃
𝑡
onΩ for every 𝑡 ∈ R by

𝜃
𝑡
(𝜏) = 𝑡 + 𝜏, ∀𝜏 ∈ R. (13)

Let 𝜙 be a mapping from R+

× Ω × H to H given by

𝜙 (𝑡, 𝜏, 𝑔
𝜏
) = 𝑔 (𝑡 + 𝜏, 𝜏, 𝑔

𝜏
) , (14)

where 𝑡 ≥ 0, 𝜏 ∈ R, 𝑔
𝜏
∈ H, and 𝑔 is the solution of problem

(9)-(10). By the uniqueness of solutions, we find that, for every
𝑡, 𝑠 ≥ 0, 𝜏 ∈ R and 𝑔

𝜏
∈ H,

𝜙 (𝑡 + 𝑠, 𝜏, 𝑔
𝜏
) = 𝑔 (𝑡, 𝑠 + 𝜏, 𝜙 (𝑠, 𝜏, 𝑔

𝜏
)) . (15)

Then it follows that 𝜙 is a continuous 𝜃-cocycle on H. The
purpose of this paper is to study the existence of pullback
attractors for 𝜙 in an appropriate phase space.

Let H be a subset of H and denote
󵄩󵄩󵄩󵄩󵄩
H
󵄩󵄩󵄩󵄩󵄩
= sup

𝑥∈H

‖𝑥‖H. (16)

Let 𝐷 = {𝐷(𝑡)}
𝑡∈R be a family of subsets of H. That is, 𝐷(𝑡) ∈

H for every 𝑡 ∈ R and satisfying

lim
𝑡→−∞

𝑒
𝐹𝑡

‖𝐷 (𝑡)‖
2

= 0, (17)

where 𝐹 is a positive number given in (1). Hereafter, we use
D

𝐹
to denote the collection of all families of subsets of H

satisfying (17), that is,
D

𝐹
= {𝐷 = {𝐷 (𝑡)}

𝑡∈R : 𝐷 satisfies (17)} . (18)
Throughout this paper, we assume the following conditions
for the external term:

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉 < ∞, ∀𝜏 ∈ R, (19)

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉 < ∞,

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
4

U󸀠
𝑑𝜉 < ∞, ∀𝜏 ∈ R,

(20)

lim sup
𝐾→∞

∫
𝜏

−∞

∫
|𝑥|≥𝐾

𝑒
𝐹𝜉󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝜉)

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝜉 = 0, ∀𝜏 ∈ R. (21)

It is useful to note that condition (21) implies that, for
every 𝜏 ∈ R and 𝛽 > 0, there is 𝐾 = 𝐾(𝜏, 𝛽) > 0 such that

∫
𝜏

−∞

∫
|𝑥|≥𝐾

𝑒
𝐹𝜉󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥, 𝜉)

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝜉 ≤ 𝛽𝑒
𝐹𝜏

, 𝑖 = 1, 2, 3. (22)

As we will see later, inequality (22) is crucial for deriving
uniform estimates on the tails of solutions, and these esti-
mates are necessary for proving the asymptotic compactness
of solutions.

4. Uniform Estimates of Solutions

In this section, we derive uniform estimates of solutions of
problem (9)-(10) defined onR𝑛 when 𝑡 → ∞. We start with
the estimates in H.

Lemma 8. Suppose that (19) holds. Then for every 𝜏 ∈ R and
𝐷 = {𝐷(𝑡)}

𝑡∈R ∈ D
𝐹
, there exists 𝑇 = 𝑇(𝜏,𝐷) > 0 such that

for all 𝑡 ≥ 𝑇,

󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

≤ 𝑀𝑒
−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉,

∫
𝜏

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩∇𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝑠 ≤ 𝑀∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉,

(23)
where 𝑔

0
(𝜏 − 𝑡) ∈ 𝐷(𝜏 − 𝑡) and𝑀 depends on 𝐺, 𝐹, 𝑁, and 𝑘.

Proof. Define

𝑊(𝑡, 𝑥) =
𝑁

𝑘
𝑤 (𝑡, 𝑥) , 𝜇 =

𝑘

𝑁
, (24)

then the system (1) becomes
𝜕𝑢

𝜕𝑡
= 𝑑

1
Δ𝑢 − (𝐹 + 𝑘) 𝑢 + 𝑢

2V − 𝐺𝑢
3

+ 𝑘𝑊 + 𝑓
1
(𝑡, 𝑥) ,

(25)

𝜕V

𝜕𝑡
= 𝑑

2
ΔV − 𝐹V − 𝑢

2V + 𝐺𝑢
3

+ 𝑓
2
(𝑡, 𝑥) , (26)

𝜇
𝜕𝑊

𝜕𝑡
= 𝜇𝑑

3
Δ𝑊 + 𝑘𝑢 − (𝜇𝐹 + 𝑘)𝑊 + 𝑓

3
(𝑡, 𝑥) . (27)
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Taking the inner products (𝜕𝑢/𝜕𝑡, 𝐺𝑢(𝑡)), (𝜕V/𝜕𝑡, V(𝑡)), and
(𝜇(𝜕𝑊/𝜕𝑡), 𝐺𝑊(𝑡)) and then suming up the resulting equal-
ities, we get

1

2

𝑑

𝑑𝑡
(𝐺‖𝑢‖

2

+ ‖V‖2 + 𝜇𝐺‖𝑊‖
2

) + 𝑑
1
𝐺‖∇𝑢‖

2

+ 𝑑
2
‖∇V‖2 + 𝜇𝐺𝑑

3
‖∇𝑊‖

2

= 2𝑘𝐺∫
R𝑛

𝑢𝑊𝑑𝑥

− (𝐺 (𝐹 + 𝑘) ‖𝑢‖
2

− 𝐹‖V‖2 − 𝐺 (𝜇𝐹 + 𝑘) ‖𝑊‖
2

)

− ∫
R𝑛

(𝐺𝑢
2

− 𝑢V)
2

𝑑𝑥 + 𝐺∫
R𝑛

𝑢𝑓
1
𝑑𝑥

+ ∫
R𝑛

V𝑓
2
𝑑𝑥 + 𝐺∫

R𝑛
𝑊𝑓

3
𝑑𝑥

≤ 𝐺∫
R𝑛

𝑢𝑓
1
𝑑𝑥 + ∫

R𝑛
V𝑓

2
𝑑𝑥 + 𝐺∫

R𝑛
𝑊𝑓

3
𝑑𝑥

− 𝐹 (𝐺‖𝑢‖
2

+ ‖V‖2 + 𝜇𝐺‖𝑊‖
2

)

≤ −
1

2
𝐹 (𝐺‖𝑢‖

2

+ ‖V‖2 + 𝜇𝐺‖𝑊‖
2

)

+
𝐺

2𝐹
|𝑓

1
|
2

+
1

2𝐹
|𝑓

2
|
2

+
𝐺

2𝜇𝐹
|𝑓

3
|
2

.

(28)

Setting

𝑑 = min {𝑑
1
, 𝑑

2
, 𝑑

3
} , 𝐶

1
=

max {1, 𝐺, 𝐺/𝜇}
𝐹min {1, 𝐺, 𝐺/𝜇}

, (29)

then (28) becomes
𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔 (𝑡)
󵄩󵄩󵄩󵄩
2

+ 2𝑑
󵄩󵄩󵄩󵄩∇𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝐶
1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

. (30)

Multiplying (30) by 𝑒
𝐹𝑡 and then integrating the resulting

inequality on (𝜏 − 𝑡, 𝜏) with 𝑡 ≥ 0, we find that

󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+ 2𝑑𝑒
−𝐹𝜏

∫
𝜏

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩∇𝑔 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉

≤ 𝑒
−𝐹𝜏

𝑒
𝐹(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑔0 (𝜏 − 𝑡)

󵄩󵄩󵄩󵄩
2

+ 𝐶
1
𝑒
−𝐹𝜏

∫
𝜏

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉

≤ 𝑒
−𝐹𝜏

𝑒
𝐹(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑔0 (𝜏 − 𝑡)

󵄩󵄩󵄩󵄩
2

+ 𝐶
1
𝑒
−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉.

(31)
Notice that 𝑔

0
(𝜏 − 𝑡) ∈ 𝐷(𝜏 − 𝑡) and𝐷 = {𝐷(𝑡)}

𝑡∈R ∈ D
𝐹
. We

find that for every 𝜏 ∈ R, there exists 𝑇 = 𝑇(𝜏,𝐷) such that
for all 𝑡 ≥ 𝑇,

𝑒
𝐹(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑔0 (𝜏 − 𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝐶
1
∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉. (32)

By (31) and (32), we get that, for all 𝑡 ≥ 𝑇,

󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+ 2𝑑𝑒
−𝐹𝜏

∫
𝜏

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩∇𝑔 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉

≤ 2𝐶
1
𝑒
−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉,

(33)

which completes the proof.

The following lemma is useful for deriving uniform
estimates of solutions in E.

Lemma 9. Suppose that (19) holds. Then for every 𝜏 ∈ R and
𝐷 = {𝐷(𝑡)}

𝑡∈R ∈ D
𝐹
, there exists 𝑇 = 𝑇(𝜏,𝐷) > 2 such that

for all 𝑡 ≥ 𝑇,

∫
𝜏

𝜏−2

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝜉 ≤ 𝑀∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉,

∫
𝜏

𝜏−2

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩∇𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝜉 ≤ 𝑀∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉,

(34)

where 𝑔
0
(𝜏 − 𝑡) ∈ 𝐷(𝜏 − 𝑡) and𝑀 relies on 𝐺, 𝐹, 𝑁, and 𝑘.

Proof. By (30) we find that

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔 (𝑡)
󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝐶
1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

. (35)

Let 𝑠 ∈ [𝜏 − 2, 𝜏] and 𝜏 > 2. Multiplying the above by 𝑒𝐹𝑡 and
integrating over (𝜏 − 𝑡, 𝑠), we get

𝑒
𝐹𝑠󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

≤ 𝑒
𝐹(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑔0 (𝜏 − 𝑡)

󵄩󵄩󵄩󵄩
2

+ 𝐶
1
∫
𝑠

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉

≤ 𝑒
𝐹(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑔0 (𝜏 − 𝑡)

󵄩󵄩󵄩󵄩
2

+ 𝐶
1
∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉.

(36)

Therefore, there exists 𝑇 = 𝑇(𝜏,𝐷) > 2 such that for all 𝑡 ≥ 𝑇

and 𝑠 ∈ [𝜏 − 2, 𝜏],

𝑒
𝐹𝑠󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

≤ 2𝐶
1
∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉. (37)

Integrate the above with respect to 𝑠 on (𝜏 − 2, 𝜏) to obtain

∫
𝜏

𝜏−2

𝑒
𝐹𝑠󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝑠

≤ 4𝐶
1
∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉.

(38)

On the other hand, for 𝑠 = 𝜏 − 2, (37) implies that

𝑒
𝐹(𝜏−2)󵄩󵄩󵄩󵄩𝑔 (𝜏 − 2, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

≤ 2𝐶
1
∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉.

(39)

Multiplying (30) by 𝑒𝐹𝜏 and then integrating over (𝜏 − 2, 𝜏),
by (38) we get that, for all 𝑡 ≥ 𝑇,

𝑒
𝐹𝜏󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+ 2𝑑∫
𝜏

𝜏−2

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩∇𝑔 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉

≤ 𝑒
𝐹(𝜏−2)󵄩󵄩󵄩󵄩𝑔 (𝜏 − 2, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+ 𝐶
1
∫
𝜏

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉

≤ 3𝐶
1
∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉.

(40)

which along with (39) completes the proof.
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Note that 𝑒𝜆𝜉 ≥ 𝑒
𝜆𝜏−2𝜆 for any 𝜉 ≥ 𝜏−2. So as an immediate

consequence of Lemma 9 we have the following estimates.

Corollary 10. Suppose that (19) holds. Then for every 𝜏 ∈ R

and 𝐷 = {𝐷(𝑡)}
𝑡∈R ∈ D

𝐹
, there exists 𝑇 = 𝑇(𝜏,𝐷) > 2 such

that for all 𝑡 ≥ 𝑇,

∫
𝜏

𝜏−2

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝑠

≤ 𝑀𝑒
−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉,

∫
𝜏

𝜏−2

󵄩󵄩󵄩󵄩∇𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝑠

≤ 𝑀𝑒
−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉,

(41)

where 𝑔
0
(𝜏 − 𝑡) ∈ 𝐷(𝜏 − 𝑡) and𝑀 depends on 𝐺, 𝐹, 𝑁, and 𝑘.

Before the derivation of uniform estimates of solutions in
E, we firstly give two propositions which will frequently be
used in the next results.

Proposition 11. Suppose that (20) holds.Then for every 𝜏 ∈ R

and 𝐷 = {𝐷(𝑡)}
𝑡∈R ∈ D

𝐹
, there exists 𝑇 = 𝑇(𝜏,𝐷) > 0 such

that for all 𝑡 ≥ 𝑇,

󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
6

6
≤ 𝑀𝑒

−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉, (42)

∫
𝜏

𝜏−2

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
6

6
𝑑𝜉 ≤ 𝑀∫

𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉,

(43)

where 𝑔
0
(𝜏 − 𝑡) ∈ 𝐷(𝜏 − 𝑡) and𝑀 depends on 𝐺, 𝐹, 𝑁, and 𝑘.

Proof. Let 𝑉(𝑡, 𝑥) = (V(𝑡, 𝑥))/𝐺, then (25)–(27) become

𝜕𝑢

𝜕𝑡
= 𝑑

1
Δ𝑢 − (𝐹 + 𝑘) 𝑢 + 𝐺𝑢

2

𝑉 − 𝐺𝑢
3

+ 𝑘𝑊 + ℎ
1
(𝑡, 𝑥) ,

𝜕𝑉

𝜕𝑡
= 𝑑

2
Δ𝑉 − 𝐹𝑉 − 𝑢

2

𝑉 + 𝑢
3

+ ℎ
2
(𝑡, 𝑥) ,

𝜇
𝜕𝑊

𝜕𝑡
= 𝜇𝑑

3
Δ𝑊 + 𝑘𝑢 − (𝜇𝐹 + 𝑘)𝑊 + ℎ

3
(𝑡, 𝑥) .

(44)

Taking the inner products (𝜕𝑢/𝜕𝑡, 𝑢
5

(𝑡)), (𝜕𝑉/𝜕𝑡, 𝐺𝑉5

(𝑡))

and (𝜇(𝜕𝑊/𝜕𝑡),𝑊
5

(𝑡)) and then suming up the resulting
equalities, we get

1

6

𝑑

𝑑𝑡
(‖𝑢‖

6

6
+ 𝐺‖𝑉‖

6

6
+ 𝜇‖𝑊‖

6

6
)

+ 5 (𝑑
1

󵄩󵄩󵄩󵄩󵄩
𝑢
2

∇𝑢
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
2
𝐺
󵄩󵄩󵄩󵄩󵄩
𝑉

2

∇𝑉
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜇𝑑
3
𝐺
󵄩󵄩󵄩󵄩󵄩
𝑊

2

∇𝑊
󵄩󵄩󵄩󵄩󵄩

2

)

≤ − (𝐹 + 𝑘) ∫
R𝑛

𝑢
6

𝑑𝑠 + 𝐹∫
R𝑛

𝑉
5

𝑑𝑥 − 𝐺𝐹∫
R𝑛

𝑉
6

𝑑𝑥

− (𝜇𝐹 + 𝑘)∫
R𝑛

𝑊
6

𝑑𝑥 + 𝑘∫
R𝑛

𝑢
5

𝑊𝑑𝑥 + 𝑘∫
R𝑛

𝑢𝑊
5

𝑑𝑥

− 𝐺∫
R𝑛

(𝑢
8

− 𝑢
7

𝑉 − 𝑢
3

𝑉
5

+ 𝑢
2

𝑉
6

) 𝑑𝑥

+ ∫
R𝑛

𝑢
5

𝑓
1
𝑑𝑥 + 𝐺∫

R𝑛
𝑉

5

𝑓
2
𝑑𝑥 + ∫

R𝑛
𝑊

5

𝑓
3
𝑑𝑥.

(45)

By Young’s inequality,

−𝐺∫
R𝑛

(𝑢
8

− 𝑢
7

𝑉 − 𝑢
3

𝑉
5

+ 𝑢
2

𝑉
6

) 𝑑𝑥 ≤ 0,

𝐺∫
R𝑛

𝑉
5

𝑓
2
𝑑𝑥 ≤

5𝐹𝐺

6
‖𝑉‖

6

6
+
𝐺
󵄩󵄩󵄩󵄩𝑓2

󵄩󵄩󵄩󵄩
6

V 󸀠

6𝐹5
,

∫
R𝑛

𝑢
5

𝑓
1
𝑑𝑥 ≤

5𝐹

6
‖𝑢‖

6

6
+

󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩
6

V 󸀠

6𝐹5
,

∫
R𝑛

𝑊
5

ℎ
3
𝑑𝑥 ≤

5𝜇𝐹

6
‖𝑊‖

6

6
+

󵄩󵄩󵄩󵄩𝑓3
󵄩󵄩󵄩󵄩
6

V 󸀠

6(𝜇𝐹)
5
.

(46)

From (46) then (45) yields

𝑑

𝑑𝑡
(‖𝑢‖

6

6
+ 𝐺‖𝑉‖

6

6
+ 𝜇‖𝑊‖

6

6
) + 𝐹 (‖𝑢‖

6

6
+ 𝐺‖𝑉‖

6

6
+ 𝜇‖𝑊‖

6

6
)

≤

󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩
6

V 󸀠

𝐹5
+
𝐺
󵄩󵄩󵄩󵄩𝑓2

󵄩󵄩󵄩󵄩
6

V 󸀠

𝐹5
+

󵄩󵄩󵄩󵄩𝑓3
󵄩󵄩󵄩󵄩
6

V 󸀠

(𝜇𝐹)
5
.

(47)

Denote

𝐶
4
=

max {1, 𝐺, 1/𝜇5

}

𝐹5 min {1, 1/𝐺5, 1/𝜇5}
, (48)

then from (47) implies that
𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔 (𝑡)
󵄩󵄩󵄩󵄩
6

6
+ 𝐹

󵄩󵄩󵄩󵄩𝑔 (𝑡)
󵄩󵄩󵄩󵄩
6

6
≤ 𝐶

4

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩
6

V 󸀠
. (49)

Multiplying (49) by 𝑒
𝐹𝑡 and then integrating the resulting

inequality on (𝜏 − 𝑡, 𝜏) with 𝑡 ≥ 0, we find that
󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
6

6

≤ 𝑒
−𝐹𝜏

𝑒
𝐹(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑔0 (𝜏 − 𝑡)

󵄩󵄩󵄩󵄩
6

6
+ 𝐶

4
𝑒
−𝐹𝜏

∫
𝜏

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉
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≤ 𝑒
−𝐹𝜏

𝑒
𝐹(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑔0 (𝜏 − 𝑡)

󵄩󵄩󵄩󵄩
6

6
+ 𝐶

4
𝑒
−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉.

(50)

Notice that 𝑔
0
(𝜏 − 𝑡) ∈ 𝐷(𝜏 − 𝑡) and𝐷 = {𝐷(𝑡)}

𝑡∈R ∈ D
𝐹
.

We find that, for every 𝜏 ∈ R, there exists 𝑇 = 𝑇(𝜏,𝐷) such
that for all 𝑡 ≥ 𝑇,

𝑒
𝐹(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑔0 (𝜏 − 𝑡)

󵄩󵄩󵄩󵄩
6

6
≤ 𝐶

4
∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉. (51)

By (50) and (51), we get that, for all 𝑡 ≥ 𝑇,

󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
6

6
≤ 2𝐶

4
𝑒
−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉,

(52)

which completes the proof.

Similarly, we have the following.

Proposition 12. Suppose that (20) holds.Then for every 𝜏 ∈ R

and 𝐷 = {𝐷(𝑡)}
𝑡∈R ∈ D

𝐹
, there exists 𝑇 = 𝑇(𝜏,𝐷) > 0 such

that for all 𝑡 ≥ 𝑇,

󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
4

4
≤ 𝑀𝑒

−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
4

U󸀠
𝑑𝜉,

∫
𝜏

𝜏−2

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
4

4
𝑑𝜉 ≤ 𝑀∫

𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
4

U󸀠
𝑑𝜉,

(53)

where 𝑔
0
(𝜏 − 𝑡) ∈ 𝐷(𝜏 − 𝑡) and𝑀 depends on 𝐺, 𝐹, 𝑁, and 𝑘.

Proof. The proof is similar to Proposition 11 except for few
trivial details, and thus we omit it here.

Lemma 13. Suppose that (19) and (20) hold. Then for every
𝜏 ∈ R and 𝐷 = {𝐷(𝑡)}

𝑡∈R ∈ D
𝐹
, there exists 𝑇 = 𝑇(𝜏,𝐷) > 2

such that for all 𝑡 ≥ 𝑇,

󵄩󵄩󵄩󵄩∇𝑔 (𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

≤ 𝑀𝑒
−𝐹𝜏

(∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉 + ∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉) ,

∫
𝑡

𝜏−1

󵄩󵄩󵄩󵄩󵄩
𝑔
𝜉
(𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜉

≤ 𝑀𝑒
−𝐹𝜏

(∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉 + ∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉) ,

(54)

where 𝑔
0
(𝜏 − 𝑡) ∈ 𝐷(𝜏 − 𝑡) and𝑀 depends on 𝑑, 𝐺, 𝐹, 𝑁, and

𝑘.

Proof. Taking the inner product of the first equation of
system (1) with 𝑢

𝑡
, the second equation with V

𝑡
, and the third

equation with 𝑤
𝑡
, respectively, in 𝐿

2

(R𝑛

) and then replacing
𝑡 by 𝜉, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑢
𝜉
(𝜉, 𝜏 − 𝑡, 𝑢

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩󵄩

2

+
𝑑

𝑑𝜉
(
𝑑
1

2

󵄩󵄩󵄩󵄩∇𝑢 (𝜉, 𝜏 − 𝑡, 𝑢
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+
(𝐹 + 𝑘)

2

󵄩󵄩󵄩󵄩𝑢 (𝜉, 𝜏 − 𝑡, 𝑢
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

)

≤
1

2

󵄩󵄩󵄩󵄩󵄩
𝑢
𝜉
(𝜉, 𝜏 − 𝑡, 𝑢

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩󵄩

2

+ (
4

3
+ 2𝐺

2

)
󵄩󵄩󵄩󵄩𝑢 (𝜉, 𝜏 − 𝑡, 𝑢

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
6

6

+
2

3

󵄩󵄩󵄩󵄩V (𝜉, 𝜏 − 𝑡, V
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
6

6

+ 2𝑁
2󵄩󵄩󵄩󵄩𝑤 (𝜉, 𝜏 − 𝑡, 𝑤

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+ 2
󵄩󵄩󵄩󵄩𝑓1 (𝜉)

󵄩󵄩󵄩󵄩
2

,

(55)

󵄩󵄩󵄩󵄩󵄩
V
𝜉
(𝜉, 𝜏 − 𝑡, V

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩󵄩

2

+
𝑑

𝑑𝜉
(
𝑑
2

2

󵄩󵄩󵄩󵄩∇V (𝜉, 𝜏 − 𝑡, 𝑢
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+
𝐹

2

󵄩󵄩󵄩󵄩V (𝜉, 𝜏 − 𝑡, V
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

)

≤
1

2

󵄩󵄩󵄩󵄩󵄩
V
𝜉
(𝜉, 𝜏 − 𝑡, V

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩󵄩

2

+ (1 +
3

2
𝐺
2

)
󵄩󵄩󵄩󵄩𝑢 (𝜉, 𝜏 − 𝑡, 𝑢

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
6

6

+
1

2

󵄩󵄩󵄩󵄩V (𝜉, 𝜏 − 𝑡, V
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
6

6
+
3

2

󵄩󵄩󵄩󵄩𝑓2 (𝜉)
󵄩󵄩󵄩󵄩
2

,

(56)

󵄩󵄩󵄩󵄩󵄩
𝑤

𝜉
(𝜉, 𝜏 − 𝑡, 𝑤

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩󵄩

2

+
𝑑

𝑑𝜉
(
𝑑
3

2

󵄩󵄩󵄩󵄩∇𝑤 (𝜉, 𝜏 − 𝑡, 𝑤
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+
(𝐹 + 𝑁)

2

󵄩󵄩󵄩󵄩𝑤 (𝜉, 𝜏 − 𝑡, 𝑤
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

)

≤
1

2

󵄩󵄩󵄩󵄩󵄩
𝑤

𝜉
(𝜉, 𝜏 − 𝑡, 𝑤

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑘
2󵄩󵄩󵄩󵄩𝑢 (𝜉, 𝜏 − 𝑡, 𝑢

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑓3 (𝜉)

󵄩󵄩󵄩󵄩
2

,

(57)

where (55) and (56) are partly due to the Young inequality
‖𝑢

4V2‖ ≤ (2/3)‖𝑢‖
6

6
+ (1/3)‖V‖6

6
. Denote 𝑢

0
(𝜏 − 𝑡), V

0
(𝜏 −



Abstract and Applied Analysis 7

𝑡), 𝑤
0
(𝜏−𝑡), and𝑔

0
(𝜏−𝑡)with 𝑢

0
, V

0
, 𝑤

0
, and𝑔

0
, respectively.

Adding the three inequalities (55)–(57) together, we have

󵄩󵄩󵄩󵄩󵄩
𝑢
𝜉
(𝜉, 𝜏 − 𝑡, 𝑢

0
)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
V
𝜉
(𝜉, 𝜏 − 𝑡, V

0
)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑤

𝜉
(𝜉, 𝜏 − 𝑡, 𝑤

0
)
󵄩󵄩󵄩󵄩󵄩

2

+
𝑑

𝑑𝜉
(𝑑

1

󵄩󵄩󵄩󵄩∇𝑢 (𝜉, 𝜏 − 𝑡, 𝑢
0
)
󵄩󵄩󵄩󵄩
2

+ 𝑑
2

󵄩󵄩󵄩󵄩∇V (𝜉, 𝜏 − 𝑡, V
0
)
󵄩󵄩󵄩󵄩
2

+ 𝑑
3

󵄩󵄩󵄩󵄩∇𝑤 (𝜉, 𝜏 − 𝑡, 𝑤
0
)
󵄩󵄩󵄩󵄩
2

+ (𝐹 + 𝑘)
󵄩󵄩󵄩󵄩𝑢 (𝜉, 𝜏 − 𝑡, 𝑢

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩V (𝜉, 𝜏 − 𝑡, V

0
)
󵄩󵄩󵄩󵄩
2

+ (𝐹 + 𝑁)
󵄩󵄩󵄩󵄩𝑤 (𝜉, 𝜏 − 𝑡, 𝑤

0
)
󵄩󵄩󵄩󵄩
2

)

≤ 4 (1 +
3

2
𝐺
2

)
󵄩󵄩󵄩󵄩𝑢 (𝜉, 𝜏 − 𝑡, 𝑢

0
)
󵄩󵄩󵄩󵄩
6

6
+ 2

󵄩󵄩󵄩󵄩V (𝜉, 𝜏 − 𝑡, V
0
)
󵄩󵄩󵄩󵄩
6

6

+ 4𝑁
2󵄩󵄩󵄩󵄩𝑤 (𝜉, 𝜏 − 𝑡, 𝑤

0
)
󵄩󵄩󵄩󵄩
2

+ 2𝑘
2󵄩󵄩󵄩󵄩𝑢 (𝜉, 𝜏 − 𝑡, 𝑢

0
)
󵄩󵄩󵄩󵄩
2

+ 4
󵄩󵄩󵄩󵄩𝑓1 (𝜉)

󵄩󵄩󵄩󵄩
2

+ 3
󵄩󵄩󵄩󵄩𝑓2 (𝜉)

󵄩󵄩󵄩󵄩
2

+ 2
󵄩󵄩󵄩󵄩𝑓3 (𝜉)

󵄩󵄩󵄩󵄩
2

.

(58)

Let

𝐶
2
= 4 + 6𝐺

2

, 𝐶
3
= 2max {2𝑁2

, 𝑘
2

} . (59)

Then (58) yields

󵄩󵄩󵄩󵄩󵄩
𝑔
𝜉
(𝜉, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩󵄩

2

+
𝑑

𝑑𝜉
(𝑑
󵄩󵄩󵄩󵄩∇𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+𝐹
󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

)

≤ 𝐶
2

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
6

6
+ 𝐶

3

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
2

+ 4
󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

.

(60)

That is,

𝑑

𝑑𝜉
(𝑑
󵄩󵄩󵄩󵄩∇𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

)

≤ 𝐶
2

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
6

6
+ 𝐶

3

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
2

+ 4
󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

.

(61)

Let 𝑠 ≤ 𝜏 and 𝑡 ≥ 2. By integrating (61) over (𝑠, 𝜏), we get

𝑑
󵄩󵄩󵄩󵄩∇𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

≤ 𝑑
󵄩󵄩󵄩󵄩∇𝑔 (𝑠, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐶
2
∫
𝜏

𝑠

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
6

6
𝑑𝜉

+ 𝐶
3
∫
𝜏

𝑠

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
2

𝑑𝜉 + 4∫
𝜏

𝑠

󵄩󵄩󵄩󵄩𝑓 (𝜉)
󵄩󵄩󵄩󵄩
2

𝑑𝜉.

(62)

Now integrating the above with respect to s on (𝜏 − 1, 𝜏), we
find

𝑑
󵄩󵄩󵄩󵄩∇𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

≤ 𝑑∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩∇𝑔 (𝑠, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
2

𝑑𝑠

+ 𝐹∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
2

𝑑𝑠

+ 𝐶
2
∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
6

6
𝑑𝜉

+ 𝐶
3
∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
2

𝑑𝜉

+ 4∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩𝑓 (𝜉)
󵄩󵄩󵄩󵄩
2

𝑑𝜉,

(63)

which alongwith Corollary 10 and Proposition 11 implies that
there exists 𝑇 = 𝑇(𝜏,𝐷) > 2 such that for all 𝑡 ≥ 𝑇,

𝑑
󵄩󵄩󵄩󵄩∇𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

≤ (𝑑 + 𝐹 + 𝐶
3
+ 4𝑒

𝐹

)𝑀𝑒
−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉

+ 𝐶
2
𝑒
𝐹

𝑀𝑒
−𝐹𝜏

∫
𝜏

−∞

󵄩󵄩󵄩󵄩𝑓 (𝜉)
󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉

≤ 𝑀𝑒
−𝐹𝜏

(∫
𝜏

−∞

𝑒
𝐹𝜉 󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉 + ∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉) .

(64)

Similarly, first integrating (61) with respect to 𝜉 on (𝑠, 𝜏 − 1)

and then integrating with respect to s on (𝜏−2, 𝜏−1), by using
Corollary 10 and Proposition 11, we can get that for all 𝑡 ≥ 𝑇,

𝑑
󵄩󵄩󵄩󵄩∇𝑔 (𝜏 − 1, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔 (𝜏 − 1, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

≤ (𝑑 + 𝐹 + 𝐶
3
+ 4𝑒

𝐹

)𝑀𝑒
−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉 󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉

+ 𝐶
2
𝑒
𝐹

𝑀𝑒
−𝐹𝜏

∫
𝜏

−∞

󵄩󵄩󵄩󵄩𝑓 (𝜉)
󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉

≤ 𝑀𝑒
−𝐹𝜏

(∫
𝜏

−∞

𝑒
𝐹𝜉 󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉 + ∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉) .

(65)
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Now integrating (60) over (𝜏 − 1, 𝜏), we obtain

∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩󵄩
𝑔
𝜉
(𝜉, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜉

+ 𝑑
󵄩󵄩󵄩󵄩∇𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

≤ 𝑑
󵄩󵄩󵄩󵄩∇𝑔 (𝜏 − 1, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔 (𝜏 − 1, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩
2

+ 𝐶
2
∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
6

6
𝑑𝜉

+ 𝐶
3
∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔
0
)
󵄩󵄩󵄩󵄩
2

𝑑𝜉

+ 4∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩𝑓 (𝜉)
󵄩󵄩󵄩󵄩
2

𝑑𝜉,

(66)

which along with (65) shows that, for all 𝑡 ≥ 𝑇,

∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩󵄩
𝑔
𝜉
(𝜉, 𝜏 − 𝑡, 𝑔

0
)
󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜉

≤ 𝑀𝑒
−𝐹𝜏

(∫
𝜏

−∞

𝑒
𝐹𝜉 󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉 + ∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉) .

(67)

Then Lemma 13 follows from (64) and (67) which completes
the proof.

Lemma 14. Suppose that (19) and (20) hold, and let

𝑑𝑓

𝑑𝑡
∈ [𝐿

2

loc (R, 𝐿
2

(R
𝑛

))]
3

. (68)

Then for every 𝜏 ∈ R and 𝐷 = {𝐷(𝑡)}
𝑡∈R ∈ D

𝐹
, there exists

𝑇 = 𝑇(𝜏,𝐷) > 2 such that for all 𝑡 ≥ 𝑇,

󵄩󵄩󵄩󵄩𝑔𝜏 (𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

≤ 𝑀𝑒
−𝐹𝜏

𝑒
𝑀𝑒
−𝐹𝜏

∫

𝜏

−∞

𝑒
𝐹𝜉

‖𝑓(𝜉)‖
4

U󸀠
𝑑𝜉

× (∫
𝜏

−∞

𝑒
𝐹𝜉 󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉

+∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉)

+𝑀∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝜉
(𝜉)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜉,

(69)

where 𝑔
0
(𝜏 − 𝑡) ∈ 𝐷(𝜏 − 𝑡) and𝑀 depends on 𝑑, 𝐺, 𝐹, 𝑁, 𝑘,

and 󰜚 (a positive constant in the Gagliardo-Nirenberg inequal-
ity).

Proof. Let 𝑢
𝑡
= 𝑢̃, V

𝑡
= Ṽ, and 𝑊

𝑡
= 𝑤 and differentiate

system (1) with respect to 𝑡 to get that

𝜕𝑢̃

𝜕𝑡
= 𝑑

1
Δ𝑢̃ − (𝐹 + 𝑘) 𝑢̃ + 2𝑢V𝑢̃ + 𝑢

2Ṽ

− 3𝐺𝑢
2

𝑢̃ + 𝑘𝑤 +
𝜕𝑓

1

𝜕𝑡
(𝑡, 𝑥) ,

𝜕Ṽ

𝜕𝑡
= 𝑑

2
ΔṼ − 𝐹Ṽ − 2𝑢V𝑢̃ − 𝑢

2Ṽ + 3𝐺𝑢
2

𝑢̃ +
𝜕𝑓

2

𝜕𝑡
(𝑡, 𝑥) ,

𝜕𝑤

𝜕𝑡
= 𝑑

3
Δ𝑤 + 𝑘𝑢̃ − (𝐹 + 𝑁)𝑤 +

𝜕𝑓
3

𝜕𝑡
(𝑡, 𝑥) .

(70)

Taking the inner products (𝜕𝑢̃/𝜕𝑡, 𝑢̃), (𝜕Ṽ/𝜕𝑡, Ṽ), and
(𝜕𝑤/𝜕𝑡, 𝑤) in 𝐿

2

(R𝑛

) and then putting the three equalities
together, we have

1

2

𝑑

𝑑𝑡
(‖𝑢̃‖

2

+ ‖Ṽ‖2 + ‖𝑤‖
2

) + 𝑑
1
‖∇𝑢̃‖

2

+ 𝑑
2
‖∇Ṽ‖2 + 𝑑

3
‖∇𝑤‖

2

+ (𝐹 + 𝑘) ‖𝑢̃‖
2

+ 𝐹‖Ṽ‖2 + (𝑁 + 𝑘) ‖𝑤‖
2

≤ (2 +
3

2
𝐺) (‖𝑢‖

2

4
+ ‖V‖2

4
) (‖𝑢̃‖

2

4
+ ‖Ṽ‖2

4
)

+ 𝑁‖𝑤‖
2

4
+ 𝑘‖𝑢̃‖

2

4
+
𝑁

4
‖𝑢̃‖

2

4
+
𝑘

4
‖𝑤‖

2

4

+
𝐹

2
(‖𝑢̃‖

2

+ ‖Ṽ‖2 + ‖𝑤‖
2

)

+
1

2𝐹
(
󵄩󵄩󵄩󵄩𝑓1𝑡 (𝑡)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑓2𝑡 (𝑡)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑓3𝑡 (𝑡)

󵄩󵄩󵄩󵄩
2

) .

(71)

That is,

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+ 2𝑑
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

≤ (4 + 3𝐺)
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

4

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

4
+
1

2
max {𝑁, 𝑘}

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+
1

𝐹

󵄩󵄩󵄩󵄩𝑓𝑡 (𝑡)
󵄩󵄩󵄩󵄩
2

.

(72)

Due to the Hölder inequality and Gagliardo-Nirenberg
inequality,

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+ 2𝑑
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

≤ (4 + 3𝐺)
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

4

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

4
+
1

2
max {𝑁, 𝑘}

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+
1

𝐹

󵄩󵄩󵄩󵄩𝑓𝑡 (𝑡)
󵄩󵄩󵄩󵄩
2

≤ (4 + 3𝐺) 󰜚
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

4

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩

+
1

2
max {𝑁, 𝑘}

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+
1

𝐹

󵄩󵄩󵄩󵄩𝑓𝑡 (𝑡)
󵄩󵄩󵄩󵄩
2

≤ 2𝑑
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩
2

+
(4 + 3𝐺)

2

󰜚
2

8𝑑

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
4

4

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+ 𝛿
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+
1

𝐹

󵄩󵄩󵄩󵄩𝑓𝑡 (𝑡)
󵄩󵄩󵄩󵄩
2

,

(73)
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where 𝛿 = (1/2)max{𝑁, 𝑘}. Then (73) implies that

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

≤ (
(4 + 3𝐺)

2

󰜚
2

8𝑑

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
4

4
+ 𝛿)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+
1

𝐹

󵄩󵄩󵄩󵄩𝑓𝑡 (𝑡)
󵄩󵄩󵄩󵄩
2

. (74)

By the Gronwall lemma, letting 𝑠 ∈ [𝜏 − 1, 𝜏] and 𝑡 ≥ 1 and
integrating on (𝑠, 𝜏), by 𝑔 = 𝑔

𝑡
we get

󵄩󵄩󵄩󵄩𝑔𝜏 (𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑔𝜏 (𝑠, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

× 𝑒
((4+3𝐺)

2

󰜚
2

/8𝑑) ∫

𝜏

𝑠

‖𝑔(𝜉,𝜏−𝑡,𝑔
0
(𝜏−𝑡))‖

4

4
𝑑𝜉+𝛿(𝜏−𝑠)

+
1

𝐹
∫
𝜏

𝑠

󵄩󵄩󵄩󵄩󵄩
𝑓
𝜉
(𝜉)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜉

≤
󵄩󵄩󵄩󵄩𝑔𝜏 (𝜏, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

× 𝑒
((4+3𝐺)

2

󰜚
2

/8𝑑) ∫

𝜏

𝑠

‖𝑔(𝜉,𝜏−𝑡,𝑔
0
(𝜏−𝑡))‖

4

4
𝑑𝜉+𝛿(𝜏−𝑠)

+
1

𝐹
∫
𝜏

𝑠

󵄩󵄩󵄩󵄩󵄩
𝑓
𝜉
(𝜉)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜉.

(75)

Now integrating (75) with respect to 𝑠 on (𝜏 − 1, 𝜏), we find
󵄩󵄩󵄩󵄩𝑔𝜏 (𝜏, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

≤ 𝑒
((4+3𝐺)

2

󰜚
2

/8𝑑)𝑒
−𝐹𝜏

∫

𝜏

𝜏−1

𝑒
−𝐹𝜉

‖𝑔(𝜉,𝜏−𝑡,𝑔
0
(𝜏−𝑡))‖

4

4
𝑑𝜉+𝛿

× ∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩𝑔𝜏 (𝑠, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝑠

+
1

𝐹
∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝜉
(𝜉)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜉

≤ 𝑒
𝑀𝑒
−𝐹𝜏

∫

𝜏

−∞

𝑒
𝐹𝜉

‖𝑓(𝜉)‖
4

U󸀠
𝑑𝜉+𝛿

× ∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩𝑔𝜏 (𝑠, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝑠

+
1

𝐹
∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝜉
(𝜉)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜉,

(76)

which along with Lemma 13 and Proposition 12 shows that
there exists 𝑇 = (𝜏,𝐷) > 2 such that for all 𝑡 ≥ 𝑇,

󵄩󵄩󵄩󵄩𝑔𝜏 (𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

≤ 𝑀𝑒
−𝐹𝜏

𝑒
𝑀𝑒
−𝐹𝜏

∫

𝜏

−∞

𝑒
𝐹𝜉

‖𝑓(𝜉)‖
4

U󸀠
𝑑𝜉

× (∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉 + ∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
6

V 󸀠
𝑑𝜉)

+𝑀∫
𝜏

𝜏−1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝜉
(𝜉)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜉,

(77)

which completes the proof.

We now establish uniform estimates on the tails of
solutions when 𝑡 → ∞. We show that the tails of solutions
are uniformly small for large space and time variables.
These uniform estimates are crucial for proving the pullback
asymptotic compactness of the cocycle 𝜙.

Lemma 15. Suppose that (19) and (20) hold. Then for every
𝜀 > 0, 𝜏 ∈ R, and 𝐷 = {𝐷(𝑡)}

𝑡∈R ∈ D
𝐹
, there exist 𝑇 =

𝑇(𝜏,𝐷, 𝜀) > 2 and 𝐾 = 𝐾(𝜏, 𝜀) > 0 such that for all 𝑡 ≥ 𝑇 and
𝑁 ≥ 𝐾,

∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝜏, 𝜏 − 𝑡, 𝑔
0
(𝜏 − 𝑡))

󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤ 𝜀, (78)

where𝑔
0
(𝜏−𝑡) ∈ 𝐷(𝜏−𝑡),𝐾 depends on 𝜏 and 𝜀, and𝑇 depends

on 𝜏, 𝐷, and 𝜀.

Proof. Choose a smooth cut-off function satisfying 0 ≤

𝜌(𝑠) ≤ 1 for 𝑠 ∈ R+, 𝜌(𝑠) = 0 for 0 ≤ 𝑠 ≤ 1, and 𝜌(𝑠) = 1

for 𝑠 ≥ 2. Suppose that there exists a constant 𝑐 such that
|𝜌

󸀠

(𝑠)| ≤ 𝑐 for 𝑠 ∈ R+.
Taking the inner product of (25), (26), and (27) with

𝐺𝜌(|𝑥|
2

/𝐾
2

)𝑢, 𝜌(|𝑥|2/𝐾2

)V, and 𝐺𝜌(|𝑥|
2

/𝐾
2

)𝑊 in 𝐿
2

(R𝑛

),
respectively, we get

𝐺

2

𝑑

𝑑𝑡
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑢|

2

− 𝑑
1
𝐺∫

R𝑛
𝜌(

|𝑥|
2

𝐾2
)𝑢Δ𝑢

+ 𝐺 (𝐹 + 𝑘) ∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑢|

2

= 𝐺∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑢

3V 𝑑𝑥 − 𝐺
2

∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑢

4

𝑑𝑥

+ 𝑘𝐺∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑢𝑊𝑑𝑥 + 𝐺∫

R𝑛
𝜌(

|𝑥|
2

𝐾2
)𝑓

1
𝑢 𝑑𝑥,

1

2

𝑑

𝑑𝑡
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |V|2 − 𝑑

2
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) VΔV 𝑑𝑥

+ 𝐹∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |V|2𝑑𝑥

= −∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑢

2V2𝑑𝑥 + 𝐺∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) V𝑢3𝑑𝑥

+ ∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑓

2
V 𝑑𝑥,

𝜇𝐺

2

𝑑

𝑑𝑡
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑊|

2

− 𝜇𝐺𝑑
3
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑊Δ𝑊

+ 𝐺 (𝜇𝐹 + 𝑘)∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑊|

2

= 𝑘𝐺∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑊𝑢𝑑𝑥 + 𝐺∫

R𝑛
𝜌(

|𝑥|
2

𝐾2
)𝑊𝑓

3
𝑑𝑥.

(79)
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Add up the three equalities. Then we have

𝑑

𝑑𝑡
(
𝐺

2
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑢|

2

+
1

2
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |V|2

+
𝜇𝐺

2
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑊|

2

)

− (𝑑
1
𝐺∫

R𝑛
𝜌(

|𝑥|
2

𝐾2
)𝑢Δ𝑢 + 𝑑

2
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) VΔV

+𝜇𝐺𝑑
3
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑊Δ𝑊)

+ 𝐺 (𝐹 + 𝑘)∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑢|

2

+ 𝐹∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |V|2𝑑𝑥

+ 𝐺 (𝜇𝐹 + 𝑘)∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑊|

2

≤ −∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)(𝐺𝑢

2

− 𝑢V)
2

𝑑𝑥

+ 2𝑘𝐺∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑢𝑊𝑑𝑥 + 𝐺∫

R𝑛
𝜌(

|𝑥|
2

𝐾2
)𝑓

1
𝑢 𝑑𝑥

+ ∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑓

2
V 𝑑𝑥 + 𝐺∫

R𝑛
𝜌(

|𝑥|
2

𝐾2
)𝑊𝑓

3
𝑑𝑥

≤ 𝐺𝑘∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑢|

2

+ 𝐺𝑘∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑊|

2

+
𝐺𝐹

2
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑢|

2

+
𝐹

2
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |V|2𝑑𝑥

+
𝜇𝐺𝐹

2
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑊|

2

𝑑𝑥

+
𝐺

2𝐹
∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑓1 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 +
𝐺

2𝜇𝐹
∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑓3 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

+
1

2𝐹
∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑓2 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑥.

(80)

That is,

𝑑

𝑑𝑡
(𝐺∫

R𝑛
𝜌(

|𝑥|
2

𝐾2
) |𝑢|

2

+ ∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |V|2

+𝜇𝐺∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑊|

2

)

+ 𝐺𝐹∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑢|

2

+ 𝐹∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |V|2

+ 𝐺𝜇𝐹∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
) |𝑊|

2

≤
2𝑐

𝐾
(𝑑

1
𝐺(‖𝑢‖

2

+ ‖∇𝑢‖
2

) + 𝑑
2
(‖V‖2 + ‖∇V‖2)

+𝑑
3
𝐺𝜇 (‖𝑊‖

2

+ ‖∇𝑊‖
2

)) +
𝐺

𝐹
∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑓1 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

+
𝐺

𝜇𝐹
∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑓3 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 +
1

𝐹
∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑓2 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑥.

(81)

Here, we use the integration by parts. We have

∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)𝑢Δ𝑢𝑑𝑥 ≤

𝑐

𝐾
(‖𝑢‖

2

+ ‖∇𝑢‖
2

) . (82)

Denote 𝑑o = max{𝑑
1
, 𝑑

2
, 𝑑

3
}, then we can deduce from (81)

that

𝑑

𝑑𝑡
∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)
󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨
2

𝑑𝑥 + 𝐹∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)
󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨
2

≤
2𝑐𝑑

o

𝐾
(
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑔

󵄩󵄩󵄩󵄩
2

) + 𝐶
1
∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑥.

(83)

Multiplying (83) by 𝑒𝐹𝑡 and then integrating over (𝜏−𝑡, 𝜏)with
𝑡 ≥ 0, we get

∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)
󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝜏, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄨󵄨󵄨󵄨
2

𝑑𝑥

≤ 𝑒
−𝐹𝜏

𝑒
𝐹(𝜏−𝑡)

∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)
󵄨󵄨󵄨󵄨𝑔0 (𝑥, 𝜏 − 𝑡)

󵄨󵄨󵄨󵄨
2

𝑑𝑥

+
2𝑐𝑑

o

𝐾
𝑒
−𝐹𝜏

∫
𝜏

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝜉

+ 𝐶
1
𝑒
−𝐹𝜏

∫
𝜏

𝜏−𝑡

∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝜉)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝜉

≤ 𝑒
−𝐹𝜏

𝑒
𝐹(𝜏−𝑡)

∫
R𝑛

󵄨󵄨󵄨󵄨𝑔0 (𝑥, 𝜏 − 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

+ 𝐶
1
𝑒
−𝐹𝜏

∫
𝜏

−∞

∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝜉)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝜉

+
2𝑐𝑑

o

𝐾
𝑒
−𝐹𝜏

∫
𝜏

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝜉.

(84)

Note that for given 𝜀 > 0, there is 𝑇
1
= 𝑇

1
(𝜏, 𝐷, 𝜀) > 0 such

that for all 𝑡 ≥ 𝑇
1
,

𝑒
−𝐹𝜏

𝑒
𝐹(𝜏−𝑡)

∫
R𝑛

󵄨󵄨󵄨󵄨𝑔0 (𝑥, 𝜏 − 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤ 𝜀. (85)

By (22), there is 𝐾
1
= 𝐾

1
(𝜏, 𝜀) > 0 such that for all𝑁 ≥ 𝐾

1
,

𝐶
1
𝑒
−𝐹𝜏

∫
𝜏

−∞

∫
|𝑥|≥𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝜉)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝜉 ≤ 𝜀. (86)
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For the last term on the right-hand side of (84), it follows
from Lemma 8 that there is 𝑇

2
= 𝑇

2
(𝜏, 𝐷) such that for all

𝑡 ≥ 𝑇
2
,

2𝑐𝑑
o

𝐾
𝑒
−𝐹𝜏

∫
𝜏

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝜉

≤
2𝑐𝑑

o

𝐾
𝑀𝑒

−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉.

(87)

Therefore, there is𝐾
2
= 𝐾

2
(𝜏, 𝜀) > 𝐾

1
such that for all𝐾 ≥ 𝐾

2

and 𝑡 ≥ 𝑇
2
,

2𝑐𝑑
𝑜

𝐾
𝑒
−𝐹𝜏

∫
𝜏

𝜏−𝑡

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑔 (𝜉, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩
2

𝑑𝜉 ≤ 𝜀.

(88)

Let 𝑇 = max{𝑇
1
, 𝑇

2
} and then by (85)–(88), we find that, for

all𝐾 ≥ 𝐾
2
and 𝑡 ≥ 𝑇,

∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)
󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝜏, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤ 3𝜀, (89)

and hence for all𝐾 ≥ 𝐾
2
and 𝑡 ≥ 𝑇,

∫
|𝑥|≥√2𝑁

𝜌(
|𝑥|

2

𝐾2
)
󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝜏, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄨󵄨󵄨󵄨
2

𝑑𝑥

≤ ∫
R𝑛

𝜌(
|𝑥|

2

𝐾2
)
󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝜏, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄨󵄨󵄨󵄨
2

𝑑𝑥

≤ 3𝜀,

(90)

which completes the proof.

5. Existence of Pullback Attractors

In this section, we prove the existence of aD
𝐹
-pullback global

attractor for the nonautonomous three-component reversible
Gray-Scott system on R𝑛. We first establish theD

𝐹
-pullback

asymptotic compactness of solutions and prove the existence
of a pullback attractor in H. Then we show that this attractor
is actually aD

𝐹
-pullback attractor in E.

Lemma 16. Suppose that (19) and (20) hold. Then 𝜙 is D
𝐹
-

pullback asymptotically compact inH. That is, for every 𝜏 ∈ R,
𝐷 = {𝐷(𝑡)}

𝑡∈R ∈ D
𝐹
, 𝑡

𝑛
→ ∞, and 𝑔

0,𝑛
∈ 𝐷(𝜏 − 𝑡

𝑛
), the

sequence 𝜙(𝑡
𝑛
, 𝜏 − 𝑡

𝑛
, 𝑔

0,𝑛
) has a convergent subsequence in H.

Proof. The proof is a slightly modification of Lemma 5.1 in
[20] and thus is omitted here.

Theorem 17. Suppose that (19) and (20) hold. Then prob-
lem (9)-(10) has a unique D

𝐹
-pullback global attractor

{A(𝜏)}
𝜏∈R ∈ D

𝐹
in H. That is, for every 𝜏 ∈ R,

(i) A(𝜏) is compact in H,

(ii) {A(𝜏)}
𝜏∈R is invariant. That is,

𝜙 (𝑡, 𝜏,A (𝜏)) = A (𝑡 + 𝜏) , ∀𝑡 ≥ 0, (91)

(iii) {A(𝜏)}
𝜏∈R attracts every set in D

𝐹
with respect to the

norm of H. That is, for every 𝐵 = {𝐵(𝜏)}
𝜏∈R ∈ D

𝐹
,

lim
𝑡→∞

𝑑
𝐻
(𝜙 (𝑡, 𝜏 − 𝑡, 𝐵 (𝜏 − 𝑡) ,A (𝜏))) = 0, (92)

where for any𝑋,𝑌 ⊆ H, 𝑑H(𝑋, 𝑌) = sup
𝑥∈𝑋

inf
𝑦∈𝑌

‖𝑥 − 𝑦‖H.

Proof. For 𝜏 ∈ R, denote

𝐵 (𝜏) = {𝑔 :
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

≤ 𝑀𝑒
−𝐹𝜏

∫
𝜏

−∞

𝑒
𝐹𝜉󵄩󵄩󵄩󵄩𝑓 (𝜉)

󵄩󵄩󵄩󵄩
2

𝑑𝜉} . (93)

Note that 𝐵 = {𝐵(𝜏)}
𝜏∈R ∈ D

𝐹
is a D

𝐹
-pullback absorbing

for 𝜙 in H by Lemma 8. In addition, 𝜙 is D
𝐹
-pullback

asymptotically compact by Lemma 16. Thus, the existence
of a D

𝐹
-pullback global attractor for 𝜙 in H follows from

Theorem 7.

In what follows, we strengthen Theorem 17 and show
that the global attractor {A(𝜏)}

𝜏∈R is actually a D
𝐹
-pullback

global attractor inE. As a necessary step towards this goal, we
first prove the asymptotic compactness of solutions in E.

Lemma 18. Suppose that (19) and (20) hold. Let

𝑑𝑓

𝑑𝑡
∈ [𝐿

2

loc (R, 𝐿
2

(R
𝑛

))]
3

. (94)

Then 𝜙 isD
𝐹
-pullback asymptotically compact inE.That is, for

every 𝜏 ∈ R,𝐷 = {𝐷(𝑡)}
𝑡∈R ∈ D

𝐹
, 𝑡

𝑛
→ ∞, and 𝑔

0,𝑛
∈ 𝐷(𝜏−

𝑡
𝑛
), the sequence 𝜙(𝑡

𝑛
, 𝜏−𝑡

𝑛
, 𝑔

0,𝑛
) has a convergent subsequence

in E.

Proof. By Lemma 16, the sequence 𝜙(𝑡
𝑛
, 𝜏−𝑡

𝑛
, 𝑔

0,𝑛
) = 𝑔(𝜏, 𝜏−

𝑡, 𝑔
0,𝑛
) has a convergent subsequence in H, and hence there

exists 𝑔 ∈ H such that, up to a subsequence,

𝑔 (𝜏, 𝜏 − 𝑡, 𝑔
0,𝑛
) 󳨀→ 𝑔 inH. (95)

This shows that 𝜙(𝑡
𝑛
, 𝜏 − 𝑡

𝑛
, 𝑔

0,𝑛
) is a Cauchy sequence in

H. Next, we prove that the sequence is actually a Cauchy
sequence in E. For any 𝑛,𝑚 ≥ 1, it follows from (9) that

𝑔
𝜏
(𝜏, 𝜏 − 𝑡

𝑛
, 𝑔

0,𝑛
) − 𝑔

𝜏
(𝜏, 𝜏 − 𝑡

𝑚
, 𝑔

0,𝑚
)

= 𝐴 (𝑔 (𝜏, 𝜏 − 𝑡
𝑛
, 𝑔

0,𝑛
) − 𝑔 (𝜏, 𝜏 − 𝑡

𝑚
, 𝑔

0,𝑚
))

− 𝐻 (𝑔 (𝜏, 𝜏 − 𝑡
𝑛
, 𝑔

0,𝑛
) − 𝑔 (𝜏, 𝜏 − 𝑡

𝑚
, 𝑔

0,𝑚
)) .

(96)
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That is,

𝜕 (𝑢
𝑛
− 𝑢

𝑚
)

𝜕𝜏
= 𝑑

1
Δ (𝑢

𝑛
− 𝑢

𝑚
) − (𝐹 + 𝑘) (𝑢

𝑛
− 𝑢

𝑚
)

+ (𝑢
2

𝑛
V
𝑛
− 𝑢

2

𝑚
V
𝑚
) − 𝐺 (𝑢

3

𝑛
− 𝑢

3

𝑚
)

+ 𝑁 (𝑤
𝑛
− 𝑤

𝑚
) ,

𝜕 (V
𝑛
− V

𝑚
)

𝜕𝜏
= 𝑑

2
Δ (V

𝑛
− V

𝑚
) − 𝐹 (V

𝑛
− V

𝑚
)

− (𝑢
2

𝑛
V
𝑛
− 𝑢

2

𝑚
V
𝑚
) + 𝐺 (𝑢

3

𝑛
− 𝑢

3

𝑚
) ,

𝜕 (𝑤
𝑛
− 𝑤

𝑚
)

𝜕𝜏
= 𝑑

3
Δ (𝑤

𝑛
− 𝑤

𝑚
) + 𝑘 (𝑢

𝑛
− 𝑢

𝑚
)

− (𝐹 + 𝑁) (𝑤
𝑛
− 𝑤

𝑚
) ,

(97)

where 𝑢
𝑛
, 𝑢

𝑚
denote 𝑢(𝜏, 𝜏−𝑡

𝑛
, 𝑢

0,𝑛
), 𝑢(𝜏, 𝜏−𝑡

𝑚
, 𝑢

0,𝑚
) and so

do as V
𝑛
, V

𝑚
, 𝑤

𝑛
, 𝑤

𝑚
, and 𝑔

𝑛
, 𝑔

𝑚
. Taking the inner products

(𝜕(𝑢
𝑛
−𝑢

𝑚
)/𝜕𝜏, 𝑢

𝑛
−𝑢

𝑚
), (𝜕(V

𝑛
− V

𝑚
)/𝜕𝜏, V

𝑛
− V

𝑚
) and (𝜕(𝑤

𝑛
−

𝑤
𝑚
)/𝜕𝜏, 𝑤

𝑛
− 𝑤

𝑚
), respectively, and summing up the three

equalities, we get

𝑑 (
󵄩󵄩󵄩󵄩∇ (𝑢

𝑛
− 𝑢

𝑚
)
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇ (V

𝑛
− V

𝑚
)
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇ (𝑤

𝑛
− 𝑤

𝑚
)
󵄩󵄩󵄩󵄩
2

)

+ (𝐹 + 𝑘)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑚

󵄩󵄩󵄩󵄩
2

+ 𝐹
󵄩󵄩󵄩󵄩V𝑛 − V

𝑚

󵄩󵄩󵄩󵄩
2

+ (𝑁 + 𝑘)
󵄩󵄩󵄩󵄩𝑤𝑛

− 𝑤
𝑚

󵄩󵄩󵄩󵄩
2

≤ (𝑁 + 𝑘) (𝑤
𝑛
− 𝑤

𝑚
, 𝑢

𝑛
− 𝑢

𝑚
)

+ (𝑢
2

𝑛
V
𝑛
− 𝑢

2

𝑚
V
𝑚
, 𝑢

𝑛
− 𝑢

𝑚
− V

𝑛
+ V

𝑚
)

− 𝐺 (𝑢
3

𝑛
− 𝑢

3

𝑚
, 𝑢

𝑛
− 𝑢

𝑚
− V

𝑛
+ V

𝑚
)

−
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕

𝜕𝜏
(𝑢

𝑛
− 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚

󵄩󵄩󵄩󵄩 .

(98)

Because of the Hölder inequality and Gagliardo-Nirenberg
inequality, we have

(𝑢
2

𝑛
V
𝑛
− 𝑢

2

𝑚
V
𝑚
, 𝑢

𝑛
− 𝑢

𝑚
− V

𝑛
+ V

𝑚
)

− 𝐺 (𝑢
3

𝑛
− 𝑢

3

𝑚
, 𝑢

𝑛
− 𝑢

𝑚
− V

𝑛
+ V

𝑚
)

≤
𝑑

2

󵄩󵄩󵄩󵄩∇ (𝑔
𝑛
− 𝑔

𝑚
)
󵄩󵄩󵄩󵄩
2

+
𝐶
2

󰜚
2

2𝑑
(
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
4

4
+
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
6

6
)
󵄩󵄩󵄩󵄩𝑔𝑛 − 𝑔

𝑚

󵄩󵄩󵄩󵄩
2

.

(99)

From (98) and (99), it yields

𝑑
󵄩󵄩󵄩󵄩∇ (𝑢

𝑛
− 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚
)
󵄩󵄩󵄩󵄩
2

+ 2𝐹
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚

󵄩󵄩󵄩󵄩
2

≤ −2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕

𝜕𝜏
(𝑢

𝑛
− 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚

󵄩󵄩󵄩󵄩

+ (
𝐶
2

󰜚
2

𝑑
(
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
4

4
+
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
6

6
) + 2𝛿)

×
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚

󵄩󵄩󵄩󵄩
2

.

(100)

By Lemma 14 we find that, for every 𝜏 ∈ R, there exists 𝑇 =

𝑇(𝜏,𝐷) such that for all 𝑡 ≥ 𝑇,
󵄩󵄩󵄩󵄩𝑔𝜏 (𝜏, 𝜏 − 𝑡, 𝑔

0
(𝜏 − 𝑡))

󵄩󵄩󵄩󵄩 ≤ 𝑀. (101)

Since 𝑡
𝑛
→ ∞, there exists𝑁 = 𝑁(𝜏,𝐷) such that 𝑡

𝑛
≥ 𝑇 for

all 𝑛 ≥ 𝑇. Thus, we obtain that, for all 𝑛 ≥ 𝑁,
󵄩󵄩󵄩󵄩𝑔𝜏 (𝜏, 𝜏 − 𝑡, 𝑔

0,𝑛
)
󵄩󵄩󵄩󵄩 ≤ 𝑀, (102)

which along with (100) shows that, for all 𝑛,𝑚 ≥ 𝑁,

𝑑
󵄩󵄩󵄩󵄩∇ (𝑢

𝑛
− 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚
)
󵄩󵄩󵄩󵄩
2

+ 2𝐹
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚

󵄩󵄩󵄩󵄩
2

≤ 2𝑀
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚

󵄩󵄩󵄩󵄩

+ (
𝐶
2

󰜚
2

𝑑
(
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
4

4
+
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
6

6
) + 2𝛿)

×
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑚
+ V

𝑛
− V

𝑚
+ 𝑤

𝑛
− 𝑤

𝑚

󵄩󵄩󵄩󵄩
2

.

(103)

That is,
󵄩󵄩󵄩󵄩∇ (𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0,𝑛
) − 𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0,𝑚
))
󵄩󵄩󵄩󵄩
2

≤ 2𝑀
󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0,𝑛
) − 𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0,𝑚
)
󵄩󵄩󵄩󵄩

+ (
𝐶
2

󰜚
2

𝑑
(
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
4

4
+
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
6

6
) + 2𝛿)

×
󵄩󵄩󵄩󵄩𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0,𝑛
) − 𝑔 (𝜏, 𝜏 − 𝑡, 𝑔

0,𝑚
)
󵄩󵄩󵄩󵄩
2

.

(104)

By Lemma 8 and Propositions 11 and 12, and combining with
the fact that 𝑔(𝜏, 𝜏 − 𝑡, 𝑔

0,𝑛
) is a Cauchy sequence in H, we

complete the proof.

We are now ready to prove the existence of a global
attractor for problem (9)-(10) in E.

Theorem 19. Suppose that (19) and (20) hold. Let

𝑑𝑓

𝑑𝑡
∈ [𝐿

2

loc (R, 𝐿
2

(R
𝑛

))]
3

. (105)

Then problem (9)-(10) has a unique D
𝐹
-pullback global

attractor {A(𝜏)}
𝜏∈R ∈ D

𝐹
in E. That is, for every 𝜏 ∈ R,
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(i) A(𝜏) is compact in E,
(ii) {A(𝜏)}

𝜏∈R is invariant. That is,

𝜙 (𝑡, 𝜏,A (𝜏)) = A (𝑡 + 𝜏) , ∀𝑡 ≥ 0, (106)

(iii) {A(𝜏)}
𝜏∈R attracts every set in D

𝐹
with respect to the

norm of E. That is, for every 𝐵 = {𝐵(𝜏)}
𝜏∈R ∈ D

𝐹
,

lim
𝑡→∞

𝑑E (𝜙 (𝑡, 𝜏 − 𝑡, 𝐵 (𝜏 − 𝑡) ,A (𝜏))) = 0, (107)

where, for any 𝑋,𝑌 ⊆ H, 𝑑H(𝑋, 𝑌) = sup
𝑥∈𝑋

inf
𝑦∈𝑌

‖𝑥 − 𝑦‖E.

Proof. The proof is a slightly modification of Theorem 5.4 in
[20] and thus is omitted here.

Remark 20. In this paper, we study the nonautonomous
three-component reversible Gray-Scott system, which is
probably similar to the system considered in [20]. But, in fact,
the asymptotically dissipative condition of the system cannot
be satisfied (see, e.g., [4, 8] formore details), which is different
from the system considered in [20]. Here, we have to use the
method of the rescaling and grouping estimation to deduce
the uniform estimates of solutions.

Remark 21. In the original three-component reversible Gray-
Scott system (see [4]), the first constant 𝐹 that appears in
the second variable V-section does not depend on the space
variable 𝑥. Here we have to affiliate the constant 𝐹 to𝑓

2
(𝑥), or

else, it will give an obstacle to establish the uniform estimates
of solutions when 𝑡 → ∞ (see also [6, Remark 5.3]).

Acknowledgments

The author would like to thank the anonymous referees for
the very helpful comments and suggestions which largely
improve the quality of the paper. Also more thanks are due
to Professor Yuncheng You and Professor Shengfan Zhou for
their helpful conversation and suggestions in their preparing
for the paper. This work has been partially supported by
NSFC Grants 11071165 and 11161015, NSF of Guangxi Grants
2013GXNSFBA019008, Guangxi Provincial Department of
Research Project Grants 2013YB102, and the Program to
Sponsor Teams for Innovation in the Construction of Talent
Highlands inGuangxi Institutions ofHigher LearningGrants
[2011]47.

References

[1] P. Gray and S. K. Scott, “Autocatalytic reactions in the isother-
mal, continuous stirred tank reactor: oscillations and instabili-
ties in the system 𝑎 + 2𝑏 → 3𝑏, 𝑏 → 𝑐,” Chemical Engineering
Science, vol. 39, pp. 1087–1097, 1984.

[2] S. K. Scott and K. Showalter, “Simple and complex reaction-
diffusion fronts,” in Chemical Waves and Patterns: Understand-
ing Chemical Reactivity, R. Kapral and K. Showalter, Eds., vol.
10, pp. 485–516, Springer, New York, NY, USA, 1995.

[3] H. Mahara, N. J. Suematsu, T. Yamaguchi, K. Ohgane, Y.
Nishiura, and M. Shimomura, “Three-variable reversible Gray-
Scott model,” Journal of Chemical Physics, vol. 121, no. 18, pp.
8968–8972, 2004.

[4] Y. You, “Dynamics of three-component reversible Gray-Scott
model,” Discrete and Continuous Dynamical Systems B, vol. 14,
no. 4, pp. 1671–1688, 2010.

[5] A. Gu, “Random attractors for stochastic three-component
reversible Gray-Scott system with multiplicative white noise,”
Journal of Applied Mathematics, vol. 2012, Article ID 810198, 15
pages, 2012.

[6] A. Gu, “Random attractors of stochastic three-component
reversible Gray-Scott system on unbounded domains,” Abstract
and Applied Analysis, vol. 2012, Article ID 419472, 22 pages,
2012.

[7] A. Gu, S. Zhou, and Z. Wang, “Uniform attractor of non-
autonomous three-component reversible Gray-Scott system,”
Applied Mathematics and Computation, vol. 219, no. 16, pp.
8718–8729, 2013.

[8] Y. You, “Dynamics of two-compartment Gray-Scott equations,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no.
5, pp. 1969–1986, 2011.

[9] J. M. Ball, “Continuity properties and global attractors of gen-
eralized semiflows and the Navier-Stokes equations,” Journal of
Nonlinear Science, vol. 7, no. 5, pp. 475–502, 1997.

[10] T. Caraballo, G. Łukaszewicz, and J. Real, “Pullback attractors
for asymptotically compact non-autonomous dynamical sys-
tems,” Nonlinear Analysis: Theory, Methods & Applications, vol.
64, no. 3, pp. 484–498, 2006.

[11] K. Lu and B. Wang, “Global attractors for the Klein-Gordon-
Schrödinger equation in unbounded domains,” Journal of Dif-
ferential Equations, vol. 170, no. 2, pp. 281–316, 2001.

[12] B. Wang, “Attractors for reaction-diffusion equations in
unbounded domains,” Physica D, vol. 128, no. 1, pp. 41–52, 1999.

[13] P.W. Bates, K. Lu, and B.Wang, “Random attractors for stochas-
tic reaction-diffusion equations on unbounded domains,” Jour-
nal of Differential Equations, vol. 246, no. 2, pp. 845–869, 2009.

[14] B. Wang, “Random attractors for the stochastic Benjamin-
Bona-Mahony equation on unbounded domains,” Journal of
Differential Equations, vol. 246, no. 6, pp. 2506–2537, 2009.

[15] X. Ding and J. Jiang, “Random attractors for stochastic retarded
lattice dynamical systems,” Abstract and Applied Analysis, vol.
2012, Article ID 409282, 27 pages, 2012.

[16] P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical
Systems, vol. 176 of Mathematical Surveys and Monographs,
American Mathematical Society, Providence, RI, USA, 2011.

[17] A. Carvalho, J. Langa, and J. Robinson, Attractors for infinite-
Dimensional Nonautonomous Dynamical Systems, Springer,
New York, NY, USA, 2012.

[18] A. Miranville and S. Zelik, “Attractors for dissipative partial
differential equations in bounded and unbounded domains,”
in Handbook of Differential Equations: Evolutionary Equations,
vol. 4, pp. 103–200, Elsevier/North-Holland, Amsterdam, The
Netherlands, 2008.

[19] P. W. Bates, H. Lisei, and K. Lu, “Attractors for stochastic lattice
dynamical systems,” Stochastics and Dynamics, vol. 6, no. 1, pp.
1–21, 2006.

[20] B. Wang, “Pullback attractors for non-autonomous reaction-
diffusion equations on R𝑛,” Frontiers of Mathematics in China,
vol. 4, no. 3, pp. 563–583, 2009.


