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We consider the free boundary problem for current-vortex sheets in ideal incompressible magnetohydrodynamics. The problem
of current-vortex sheets arises naturally, for instance, in geophysics and astrophysics. We prove the existence of a unique solution
to the constant-coefficient linearized problem and an a priori estimate with no loss of derivatives. This is a preliminary result to
the study of linearized variable-coefficient current-vortex sheets, a first step to prove the existence of solutions to the nonlinear
problem.

1. Introduction

1.1. The Eulerian Description. Let us consider the equations
of magnetohydrodynamics (MHD) governing the motion
of a perfectly conducting inviscid incompressible plasma in
three-space dimension. In the case of a homogeneous plasma
(i.e., the density 𝜌 is a positive constant), the equations in a
dimensionless form read

𝜕
𝑡
𝑢 + ∇ ⋅ (𝑢 ⊗ 𝑢 − 𝐻 ⊗ 𝐻) + ∇𝑞 = 0,

𝜕
𝑡
𝐻 − ∇ × (𝑢 × 𝐻) = 0,

div 𝑢 = 0, div𝐻 = 0,

(1)

where, using𝑇 for transposition, 𝑢 = (𝑢
1
, 𝑢
2
, 𝑢
3
)
𝑇 denotes the

plasma velocity, 𝐻 = (𝐻
1
, 𝐻
2
, 𝐻
3
)
𝑇 is the magnetic field (in

Alfvén velocity units), 𝑞 = 𝑝 + |𝐻|
2
/2 is the total pressure,

and 𝑝 is the pressure. For smooth solutions, system (1) can be
written in an equivalent form as

𝜕
𝑡
𝑢 + (𝑢 ⋅ ∇) 𝑢 − (𝐻 ⋅ ∇)𝐻 + ∇𝑞 = 0,

𝜕
𝑡
𝐻 + (𝑢 ⋅ ∇)𝐻 − (𝐻 ⋅ ∇) 𝑢 = 0,

div 𝑢 = 0, div𝐻 = 0.

(2)

We are interested in weak solutions, in a suitable sense, to
(1) that are smooth on either side of a smooth hypersurface
Γ(𝑡) = {𝑥

3
= 𝑓(𝑡, 𝑥

󸀠
)} in [0, 𝑇] × Ω, where Ω ⊂ R3, 𝑥󸀠 =

(𝑥
1
, 𝑥
2
), and that satisfy suitable jump conditions at each

point of the front Γ(𝑡). For notational simplicity, we assume
that the density is the same constant on either side of Γ(𝑡),
so that we can take, with no loss of generality, 𝜌 ≡ 1. In
physical applications, the two densities can be very different,
but such a difference intervenes only at the boundary, and
it is taken into account by the jump condition for the total
pressure (see below), so it does not alter the mathematical
techniques applied in this paper.

Let us set Ω±(𝑡) = {𝑥
3

≷ 𝑓(𝑡, 𝑥
󸀠
)}, where Ω = Ω

+
(𝑡) ∪

Ω
−
(𝑡)∪Γ(𝑡); given any function 𝑔, we set 𝑔± = 𝑔 inΩ

±
(𝑡) and

denote by [𝑔] = 𝑔
+

|Γ(𝑡)
− 𝑔
−

|Γ(𝑡)
the jump across Γ(𝑡).

We look for current-vortex sheets solutions, that is,
smooth solutions (𝑞

±
, 𝑢
±
, 𝐻
±
) of (2) in Ω

±
(𝑡) such that Γ(𝑡)

is a tangential discontinuity, namely, the plasma does not
flow through the discontinuity front, and the magnetic field
is tangent to Γ(𝑡), see, for example, Landau and Lifshitz [1];
thus, the boundary conditions take the form

𝜎front = 𝑢
±
⋅ 𝑛, 𝐻

±
⋅ 𝑛 = 0, [𝑞] = 0 on Γ (𝑡) ,

(3)

where 𝑛 = 𝑛(𝑡) denotes the outward unit normal on 𝜕Ω
−
(𝑡)

and 𝜎front denotes the velocity of propagation of the inter-
face front Γ(𝑡). With the given parametrization of Γ(𝑡), an
equivalent formulation of these jump conditions is

𝜕
𝑡
𝑓 = 𝑢

±
⋅ 𝑁, 𝐻

±
⋅ 𝑁 = 0, [𝑞] = 0 on Γ (𝑡) ,

(4)
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with𝑁:=(−𝜕
1
𝑓, −𝜕
2
𝑓, 1)
𝑇. Notice that the function𝑓 describ-

ing the discontinuity front is part of the unknowns of the
problem, that is, this is a free boundary problem.

System (2), (4) is supplemented with initial conditions

𝑢
±
(0, 𝑥) = 𝑢

±

0
(𝑥) , 𝐻

±
(0, 𝑥) = 𝐻

±

0
(𝑥) , 𝑥 ∈ Ω

±
(0) ,

𝑓 (0, 𝑥
󸀠
) = 𝑓
0
(𝑥
󸀠
) , 𝑥

󸀠
∈ Γ (0) ,

(5)

where div 𝑢
±

0
= div𝐻

±

0
= 0 in Ω

±
(0).

Current-vortex sheets have various interesting appli-
cations in geophysics and astrophysics. For instance, an
accepted model in the literature for the interface region
between the unperturbed flows of the interstellar plasma and
the supersonic solar wind plasma is given by a current-vortex
sheet separating the interstellar plasma compressed at the
bow shock from the solar wind plasma compressed at the
termination shock, see Ruderman and Fahr [2] and references
therein.This current-vortex sheet is called the heliopause and
in some sense can be considered as the outer boundary of the
solar system. Similarly, the boundary separating the shocked
solar wind plasma from the plasma of the magnetosphere
of planets equipped with an intrinsic magnetic field (such
as the Earth, Jupiter . . .) is a current-vortex sheet called
magnetopause.

In order to prove the local existence of solutions to the
current-vortex sheets (nonlinear) problem (2), (4), and (5), it
is useful to prove existence for the linearized problem and the
strong stability, that is, an a priori estimate for the solutions
with no loss of derivatives (see later on). We will perform a
further simplification by assuming a linearization around a
constant-coefficient basic state.Thismust be seen as a prelim-
inary step before considering a linearization around a general
variable-coefficient basic state, in order to prove existence,
uniqueness and stability for the solution to problem (2), (4),
and (5) without resorting to a Nash-Moser iteration. Such
result would be a rigorous confirmation of the stabilizing
effect of the magnetic field on Kelvin-Helmholtz instabilities,
which is well known in astrophysics.

In the last years, there has been a renewed interest for
the analysis of free interface problems in fluid dynamics,
especially for the Euler equations in the vacuumand thewater
waves problem, see Coutand and Shkoller [3, 4] and the ref-
erences thereinto. This fact has produced different method-
ologies for obtaining a priori estimates and the proof of
the existence of solutions. If the interface moves with the
velocity of fluid particles, a natural approach consists in
the introduction of the Lagrangian coordinates that reduces
the original problem to a new one on a fixed domain. This
approach has been recently employed with success in a series
of papers by Coutand and Shkoller on the incompressible
and compressible Euler equations in the vacuum, see [3, 4].
However, this method seems hardly applicable to problem
(2), (4), and (5).

For incompressible current-vortex sheets, the precise
description of the region of weak stability is known, meaning
that for states outside this region the problem is ill posed. In
this region, Morando et al. [5], for the constant-coefficient

linearized equations, have shown an a priori estimate for
solutions with loss of regularity with respect to the data.
In a subset of the region of weak stability, that is, under
a more restrictive stability condition (i.e., (6), introduced
in the following), Trakhinin [6] has shown a similar result
with no loss of regularity for the solutions to the linearized
problem with respect to the source terms, but with loss of
derivatives with respect to the coefficients of the problem.
Moreover, in a recent paper, Coulombel et al. [7] have shown
that the same more restrictive stability condition is sufficient
for an a priori estimate of solutions to the nonlinear problem
with no loss of regularity (here, space periodicity is assumed).
However, in all the previous cases, existence of the solution
is missing. Let us note that we are looking for the existence
and an a priori estimate with no loss of derivatives for
the linearized incompressible current-vortex sheet problem.
Reference [6] already provides an estimate with no loss
of regularity in the constant-coefficient case, but such a
loss manifests for variable coefficients, and existence is not
proved. The main novelty of our paper is the existence result;
however, we hope that it is possible to extend the techniques
here used in order to obtain an a priori estimate with no
loss of regularity even for the variable-coefficient linearized
problem.We point out that the estimate in [7] is optimal, with
no loss of derivatives, but refers to the nonlinear problem and
does not help in proving existence for the linearized system.

In [8], Secchi and Trakhinin have established existence
and stability for the linearized compressible plasma-vacuum
(free boundary) problem. In that case, the interface separates
a plasma region governed by the usualMHDequations froma
vacuum region with pre-Maxwell dynamics for the magnetic
field, as in the case ofmagnetic confinement in nuclear fusion
processes.This work has been employed byMorando et al. [9]
to obtain the analogous result for the incompressible prob-
lem. However, the techniques used in these papers cannot be
easily adapted to current-vortex sheets, since they rely on a
secondary symmetrization in the vacuum part that cancels
problematic boundary terms and cannot be reproduced in
plasma part.

In the present paper, we follow an approach different from
the one ofCoutand and Shkoller. To reduce our free boundary
problem to the fixed domain, we consider a change of
variables inspired from Lannes [10] and performed in Secchi
and Trakhinin [8]. The control of the function describing the
free interface follows from a stability condition introduced by
Trakhinin in [11], that is, the strong stability condition

max (
󵄨󵄨󵄨󵄨𝐻
+
× [𝑢]

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝐻
−
× [𝑢]

󵄨󵄨󵄨󵄨) <
󵄨󵄨󵄨󵄨𝐻
+
× 𝐻
−󵄨󵄨󵄨󵄨 , (6)

which implies in particular that 𝐻
+

× 𝐻
− is not the zero

vector.
We use a compressible approximation and perform some

changes of variables in order to obtain a symmetric hyper-
bolic problem with conditions in a more suitable form, so
that we can apply the results by Lax and Phillips [12] and
Secchi [13, 14] for maximally nonnegative linear symmetric
hyperbolic systems with characteristic boundary of con-
stant multiplicity. Another fundamental tool is the so-called
secondary symmetrization, which is a linear combination



International Journal of Differential Equations 3

of the equations of the hyperbolic system that allows a
simplification of the border term necessary to obtain the
a priori estimate (see Section 4). By exploiting such tech-
niques, we obtain the existence of a unique solution to the
incompressible current-vortex sheets free boundary problem
linearized about a suitable constant-coefficient state and show
that the solution satisfies a priori estimates with no loss of
derivatives with respect to data. As mentioned above, this is a
preliminary step in order to prove existence and stability for
the current-vortex sheet nonlinear problem.

1.2.The Reference DomainΩ. To avoid using local coordinate
charts necessary for arbitrary geometries, and for simplicity,
we will assume that the space domainΩ occupied by the fluid
is given by Ω = R3. We also set

Ω
±
:= Ω ∩ {𝑥

3
≷ 0} , Γ := Ω ∩ {𝑥

3
= 0} . (7)

The moving discontinuity front is given by

Γ (𝑡) := Ω ∩ {𝑥
3
= 𝑓 (𝑡, 𝑥

󸀠
)} . (8)

1.3. An Equivalent Formulation in the Fixed Domain Ω. To
reduce the free boundary problem (2), (4), and (5) to the fixed
domains Ω

±, we introduce a suitable change of variables. In
all what follows, 𝐻𝑠(𝜔) denotes the Sobolev space of order 𝑠

on a domain 𝜔.
The diffeomorphism that reduces the free boundary

problem (2), (4), and (5) to the fixed domains Ω
± is given in

the following lemma (see [8]).

Lemma 1. Let𝑚 ≥ 3 be an integer. Then, for all 𝑇 > 0 and for
all 𝑓 ∈ ⋂

𝑚−1

𝑗=0
C𝑗([0, 𝑇];𝐻

𝑚−𝑗−0.5
(R2)) satisfying without loss

of generality ‖𝑓‖C([0,𝑇];𝐻2(R2)) ≤ 1, there exists a function

𝜓 ∈

𝑚−1

⋂

𝑗=0

C
𝑗
([0, 𝑇] ;𝐻

𝑚−𝑗
(R
3
)) (9)

such that the function

Ψ (𝑡, 𝑥) := (𝑥
󸀠
, 𝑥
3
+ 𝜓 (𝑡, 𝑥)) , (𝑡, 𝑥) ∈ [0, 𝑇] × Ω

(10)

defines an 𝐻
𝑚-diffeomorphism of Ω for all 𝑡 ∈ [0, 𝑇]. More-

over, there holds

𝜕
𝑗

𝑡
(Ψ − 𝐼𝑑) ∈ C ([0, 𝑇] ;𝐻

𝑚−𝑗
(Ω)) for 𝑗 = 0, . . . , 𝑚 − 1,

Ψ (𝑡, 𝑥
󸀠
, 0) = (𝑥

󸀠
, 𝑓 (𝑡, 𝑥

󸀠
)) , 𝜕

3
Ψ(𝑡, 𝑥

󸀠
, 0) = (0, 0, 1) .

(11)

We set

𝐴 := [𝐷Ψ]
−1

(inverse of the Jacobian matrix),

𝐽 := det [𝐷Ψ] (determinant of the Jacobian matrix),

𝑎 := 𝐽𝐴 (transpose of the cofactor matrix),
(12)

and we compute

𝐴 = (

1 0 0

0 1 0

−
𝜕
1
𝜓

𝐽
−
𝜕
2
𝜓

𝐽

1

𝐽

) , 𝐽 = 1 + 𝜕
3
𝜓,

𝑎 = (

𝐽 0 0

0 𝐽 0

−𝜕
1
𝜓 −𝜕

2
𝜓 1

) .

(13)

Now we may reduce the free boundary problem (2), (4), and
(5) to a problem in the fixed domains Ω

± by the change of
variables (10). Let us set
𝑣
±
(𝑡, 𝑥) := 𝑢

±
(𝑡, Ψ (𝑡, 𝑥)) , 𝐵

±
(𝑡, 𝑥) := 𝐻

±
(𝑡, Ψ (𝑡, 𝑥)) ,

𝑄
±
(𝑡, 𝑥) := 𝑞

±
(𝑡, Ψ (𝑡, 𝑥)) .

(14)
Then, the system (2), (4), and (5) can be reformulated on the
fixed reference domains Ω± as

𝜕
𝑡
𝑣
±
+ (𝑣̃
±
⋅ ∇) 𝑣
±
− (𝐵̃
±

⋅ ∇) 𝐵
±
+ 𝐴
𝑇
∇𝑄
±
= 0,

𝜕
𝑡
𝐵
±
+ (𝑣̃
±
⋅ ∇) 𝐵

±
− (𝐵̃
±

⋅ ∇) 𝑣
±
= 0,

(𝐴
𝑇
∇) ⋅ 𝑣
±
= 0, (𝐴

𝑇
∇) ⋅ 𝐵

±
= 0, in [0, 𝑇] × Ω

±
,

[𝑄] = 0, 𝜕
𝑡
𝑓 = 𝑣

±
⋅ 𝑁, 𝐵

±
⋅ 𝑁 = 0, on [0, 𝑇] × Γ,

𝑣
±

|𝑡=0
= 𝑣
±

0
, 𝐵
±

|𝑡=0
= 𝐵
±

0
, on Ω

±
,

𝑓
|𝑡=0

= 𝑓
0
, on Γ.

(15)
In (15), we have set

𝑁 := (−𝜕
1
𝜓, −𝜕
2
𝜓, 1)
𝑇

,

𝑣̃ := 𝐴𝑣 − (0, 0,
𝜕
𝑡
𝜓

𝐽
)

𝑇

= (𝑣
1
, 𝑣
2
,
𝑣 ⋅ 𝑁 − 𝜕

𝑡
𝜓

𝐽
)

𝑇

,

𝐵̃ := 𝐴𝐵 = (𝐵
1
, 𝐵
2
, 𝐵 ⋅

𝑁

𝐽
)

𝑇

.

(16)

Notice that

𝐽 = 1, 𝑁 = (−𝜕
1
𝑓, −𝜕
2
𝑓, 1)
𝑇

, 𝑣̃
3
= 𝐵̃
3
= 0 on Γ.

(17)

Wewarn the reader that the notation𝐴
𝑇 is used to denote the

transpose of 𝐴 and has nothing to do with the time interval
[0, 𝑇] on which the smooth solution is sought; we hope that
this does not create any confusion. Vectors are written in
columns.

If we set 𝑄±
𝑇

= [0, 𝑇] × Ω
±, 𝜔
𝑇

= [0, 𝑇] × Γ, and 𝑉
±

=

(𝑄
±
, 𝑣
±
, 𝐵
±
)
𝑇, problem (15) can be written in short form as

P (𝑉
±
, 𝜓) = 0 in 𝑄

±

𝑇
,

B (𝑉
±
, 𝑓) = 0 on 𝜔

𝑇
,

(𝑣
±
, 𝐵
±
, 𝑓
±
)
󵄨󵄨󵄨󵄨𝑡=0 = (𝑣

±

0
, 𝐵
±

0
, 𝑓
±

0
) in (Ω

±
)
2

× Γ,

(18)

where 0 is the zero vector.
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2. The Linearized Problem

2.1. Basic State. Let

(𝑉̂
±

, 𝑓̂) (19)

be such that 𝑉̂+ and 𝑉̂
− are constant vectors, 𝑉̂ = (𝑄̂, 𝑣̂, 𝐵̂)

𝑇,
and

𝑓̂ ≡ 0. (20)

We can then take 𝜓̂ ≡ 0, so that 𝐽̂ = 𝜕
3
Ψ̂
3

= 1 + 𝜕
3
𝜓̂ =

1. Similarly, we determine all the “hat” functions as for the
corresponding functions obtained for (𝑉±, 𝑓). Let us note, in
particular, that 𝐴̂ = 𝑎̂ = 𝐼

3
, 𝑁̂𝑇 = (0, 0, 1), ̃̂𝑣 = 𝑣̂, and ̃̂

𝐵 = 𝐵̂.
We assume that

[𝑄̂] = 0, 𝑣̂
±

3
= 𝐵̂
±

3
= 0. (21)

In particular, 𝑄̂+ = 𝑄̂
−. Under these hypotheses, we have that

the basic state (𝑉̂
±

, 𝑓̂) is a solution of problem (15).
Moreover, we assume that the basic state satisfies

max (
󵄨󵄨󵄨󵄨󵄨󵄨
𝐵̂
+

× [𝑣̂]
󵄨󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨󵄨
𝐵̂
−

× [𝑣̂]
󵄨󵄨󵄨󵄨󵄨󵄨
) <

󵄨󵄨󵄨󵄨󵄨󵄨
𝐵̂
+

× 𝐵̂
−󵄨󵄨󵄨󵄨󵄨󵄨

. (22)

This is the analogue of condition (6) and implies
󵄨󵄨󵄨󵄨󵄨󵄨
𝐵̂
+

× 𝐵̂
−󵄨󵄨󵄨󵄨󵄨󵄨

> 0. (23)

2.2. Linearized Problem. The linearized equations for (15) are

𝑑

𝑑𝑠
P (𝑉
±

𝑠
, 𝜓
𝑠
)
󵄨󵄨󵄨󵄨𝑠=0 = F

±
,

𝑑

𝑑𝑠
B (𝑉
±

𝑠
, 𝑓
𝑠
)
󵄨󵄨󵄨󵄨𝑠=0 = 𝑔

±
,

(24)

where 𝑉
𝑠

= 𝑉̂ + 𝑠𝛿𝑉, 𝑓
𝑠

= 𝑓̂ + 𝑠𝛿𝑓, 𝜓
𝑠

= 𝜓̂ + 𝑠𝛿𝜓, and
𝛿𝑉, 𝛿𝑓, 𝛿𝜓 are the unknowns. Here, we consider the source
terms in order to make the system inhomogeneous.

If we omit 𝛿 and write explicitly the linearized equations,
we get, in 𝑄

±

𝑇
,

𝜕
𝑡
𝑣
±
+ (𝑣̂
±
⋅ ∇) 𝑣
±
− (𝐵̂
±

⋅ ∇) 𝐵
±
+ ∇𝑄
±
= F
±

1
,

𝜕
𝑡
𝐵
±
+ (𝑣̂
±
⋅ ∇) 𝐵

±
− (𝐵̂
±

⋅ ∇) 𝑣
±
= F
±

2
,

div 𝑣
±
= 𝐹
±

𝑣
,

div 𝐵
±
= 𝐹
±

𝐵
.

(25)

The linearized boundary conditions are obtained in a similar
way (let us recall that we are omitting 𝛿):

[𝑄] = 𝑔
0
,

𝜕
𝑡
𝑓 − 𝑣
±

3
+ 𝑣̂
󸀠±

⋅ ∇
󸀠
𝑓 = 𝑔

±

1
,

−𝐵
±

3
+ 𝐵̂
󸀠±

⋅ ∇
󸀠
𝑓 = 𝑔

±

2

(26)

on 𝜔
𝑇
, where, as usual, if𝑤 = (𝑤

1
, 𝑤
2
, 𝑤
3
)
𝑇 is a vector, we set

𝑤
󸀠
= (𝑤
1
, 𝑤
2
)
𝑇, and moreover, ∇󸀠 = (𝜕

1
, 𝜕
2
)
𝑇.

2.3. Reduction to Homogeneous Boundary Conditions. Let 𝑢±,
ℎ
±

denote vector-valued functions which solve, respectively,
the elliptic problems

div 𝑢
±
= 𝐹
±

𝑣
in 𝑄
±

𝑇
, 𝑢

±

3
= −𝑔
±

1
on 𝜔
𝑇
,

div ℎ
±

= 𝐹
±

𝐵
in 𝑄
±

𝑇
, ℎ

±

3
= −𝑔
±

2
on 𝜔
𝑇

(27)

and set 𝑢 = 𝑣 − 𝑢, ℎ = 𝐵 − ℎ, and 𝑞 = 𝑄 − 𝑞, where 𝑞
+

=

𝑔
0
on 𝜔
+

𝑇
and 𝑞

−
= 0 on 𝜔

−

𝑇
(here, letters 𝑢 and 𝑞 represent

different variables from the ones introduced in the original
formulation (1)).

The equations in (25) can be recast in terms of (𝑞, 𝑢, ℎ):

𝜕
𝑡
𝑢
±
+ (𝑣̂
±
⋅ ∇) 𝑢
±
− (𝐵̂
±

⋅ ∇) ℎ
±
+ ∇𝑞
±
= 𝐹
±

1
,

𝜕
𝑡
ℎ
±
+ (𝑣̂
±
⋅ ∇) ℎ
±
− (𝐵̂
±

⋅ ∇) 𝑢
±
= 𝐹
±

2
,

div 𝑢
±
= 0, div ℎ

±
= 0,

(28)

with new source terms 𝐹
𝑖
= F
𝑖
+ f
𝑖
(𝑣̂, 𝐵̂, ∇𝑞, ∇

𝑡,𝑥
𝑢, ∇
𝑡,𝑥

ℎ), 𝑖 =

0, 1, 2, with boundary conditions

[𝑞] = 0,

𝜕
𝑡
𝑓 − 𝑢
±

3
+ 𝑣̂
󸀠±

⋅ ∇
󸀠
𝑓 = 0,

−ℎ
±

3
+ 𝐵̂
󸀠±

⋅ ∇
󸀠
𝑓 = 0

(29)

and initial data

(𝑢
±
, ℎ
±
, 𝑓
±
)
󵄨󵄨󵄨󵄨𝑡=0 = (𝑣

±

0
− 𝑢
±
(0) , 𝐵

±

0
− ℎ
±

(0) , 𝑓
±

0
) . (30)

3. Notations and Results

3.1. Function Spaces. We denote by 𝐻
𝑚

= 𝐻
𝑚
(Ω) the usual

Sobolev space and by || ⋅ ||
𝑚
its norm, while || ⋅ || is simply the

norm of 𝐿2 = 𝐿
2
(Ω). We introduce a smooth odd function

𝜎 = 𝜎(𝑥
3
) defined inR such that 𝜎(𝑥

3
) = 𝑥
3
for 0 ≤ 𝑥

3
≤ 1/2

and 𝜎(𝑥
3
) = 1 for 𝑥

3
≥ 1 and set 𝑍

1
= 𝜕
𝑥
1

, 𝑍
2
= 𝜕
𝑥
2

and 𝑍
3
=

𝜎𝜕
𝑥
3

. For a multi-index 𝛼 = (𝛼
1
, 𝛼
2
, 𝛼
3
), |𝛼| = 𝛼

1
+𝛼
2
+𝛼
3
, we

set 𝜕𝛼
∗

= 𝑍
𝛼
1

1
𝑍
𝛼
2

2
𝑍
𝛼
3

3
,

‖𝑢‖
2

𝑚,∗
= ∑

|𝛼|+2𝛽≤𝑚

󵄩󵄩󵄩󵄩󵄩
𝜕
𝛼

∗
𝜕
𝛽

𝑥
3

𝑢
󵄩󵄩󵄩󵄩󵄩

2

,

𝐻
𝑚

∗
= 𝐻
𝑚

∗
(Ω) = {𝑢 ∈ 𝐿

2
: ‖𝑢‖
𝑚,∗

< +∞} ,

(31)

where 𝛽 ≥ 0 is an integer number (see [14–17]).
If 𝑢(𝑡), defined on [0, 𝑇] with values in 𝐻

𝑚

∗
, is such that

𝜕
𝑘

𝑡
𝑢(𝑡) ∈ 𝐻

𝑚−𝑘

∗
for 𝑘 = 1, 2, . . . , 𝑚, we set

|||𝑢 (𝑡) |||
2

𝑚,∗
=

𝑚

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑘

𝑡
𝑢 (𝑡)

󵄩󵄩󵄩󵄩󵄩

2

𝑚−𝑘,∗
,

L
𝑝

𝑇
(𝐻
𝑚

∗
) =

𝑚

⋂

𝑘=0

𝑊
𝑘,𝑝

(0, 𝑇;𝐻
𝑚−𝑘

∗
) ,

(32)
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where𝑊
𝑘,𝑝

(0, 𝑇;𝐻
𝑚−𝑘

∗
) is the space of functions which are in

𝐿
𝑝 together with the time derivatives up to order 𝑘 on [0, 𝑇],

with values in 𝐻
𝑚−𝑘

∗
. The spaces L2

𝑇
(𝐻
𝑚

∗
) and L∞

𝑇
(𝐻
𝑚

∗
) are

equipped with norms, respectively,

[𝑢]
2

𝑚,∗,𝑇
=∫

𝑇

0

|||𝑢 (𝑡) |||
2

𝑚,∗
𝑑𝑡, |||𝑢 |||

𝑚,∗,𝑇
= sup
[0,𝑇]

|||𝑢 (𝑡) |||
𝑚,∗

.

(33)

We define the same function spaces and norms for a gen-
eral space domain 𝐸 in the same way; we write, for instance,
||𝑔||
𝑚,∗;𝐸

to specify the domain that we are considering.

3.2. Main Result. Now, we are able to state the main theorem.
We set 𝑈 = (𝑞, 𝑢, ℎ)

𝑇 and consider problem

𝜕
𝑡
𝑢
±
+ (𝑣̂
±
⋅ ∇) 𝑢
±
− (𝐵̂
±

⋅ ∇) ℎ
±
+ ∇𝑞
±
= 𝐹
±

1
,

𝜕
𝑡
ℎ
±
+ (𝑣̂
±
⋅ ∇) ℎ
±
− (𝐵̂
±

⋅ ∇) 𝑢
±
= 𝐹
±

2
,

div 𝑢
±
= 0

(34)

in 𝑄
±

𝑇
, with boundary conditions

[𝑞] = 0,

𝜕
𝑡
𝑓 − 𝑢
±

3
+ 𝑣̂
󸀠±

⋅ ∇
󸀠
𝑓 = 0

(35)

on 𝜔
𝑇
, and initial data

(𝑢
±
, ℎ
±
, 𝑓)

󵄨󵄨󵄨󵄨𝑡=0 = (𝑢
±

0
, ℎ
±

0
, 𝑓
0
) in (Ω

±
)
2

× Γ, (36)

where

div 𝑢
±

0
= div ℎ

±

0
= 0 on Ω

±
. (37)

Theorem 2. Assume that the constant basic state (𝑉̂
±

, 𝑓̂)

satisfies (20), (21), and (22), and moreover, assume that 𝑢
±

0
,

ℎ
±

0
∈ 𝐻
1
(Ω
±
), div 𝑢

±

0
= div ℎ

±

0
= 0 on Ω

±, and 𝑓
0
∈ 𝐻
1/2

(Γ).
Assume that 𝐹

±
= (𝐹
±

1
, 𝐹
±

2
) ∈ L2

𝑇
(𝐻
1

∗
(Ω
±
)), div𝐹

±

2
= 0 in

𝑄
±

𝑇
, and (𝐹

±

2
)
3

= 0 on [0, 𝑇] × Γ, where (𝐹
±

2
)
3
denotes the

third component of vector 𝐹
±

2
. Finally, assume as well the

compatibility conditions on {𝑡 = 0} × Γ:

𝜕
𝑡
𝑓
0
− 𝑢
±

3
+ 𝑣̂
󸀠±

⋅ ∇
󸀠
𝑓
0
= 0,

−ℎ
±

3
+ 𝐵̂
󸀠±

⋅ ∇
󸀠
𝑓
0
= 0.

(38)

Then there exists a unique solution (𝑈
±
, 𝑓) to (34), (35),

and (36) (𝑞± unique up to additive constants) such that
𝑢
±
, ℎ
±

∈ 𝐿
∞

([0, 𝑇];𝐻
1

∗
(Ω
±
)) ∩ 𝑊

1,∞
([0, 𝑇]; 𝐿

2
(Ω
±
)), 𝑞± ∈

𝐿
∞

([0, 𝑇];
̇

𝐻
1
(Ω
±
)) ( ̇

𝐻
1 is the homogeneous Sobolev space),

and 𝑓 ∈ C0([0, 𝑇];𝐻
1/2

(Γ)); in addition, for each 𝑡 ∈ [0, 𝑇],
the following a priori estimate

∑

±

(||| (𝑢, ℎ)
±
(𝑡) |||
2

1,∗;Ω
± +

󵄩󵄩󵄩󵄩󵄩
(𝑢
3
, ℎ
3
)
±

(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝐻
1(Ω±)

+
󵄩󵄩󵄩󵄩∇𝑞
±
(𝑡)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

) +
󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1/2
(Γ)

≤ 𝐶𝑒
𝐶𝑡

∑

±

(||| (𝑢
0
, ℎ
0
)
±

|||
2

1,∗;Ω
± + [𝐹

±
]
2

1,∗,𝑡;Ω
±

+
󵄩󵄩󵄩󵄩𝐹
±

1
(0)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

) +
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩
2

𝐻
1/2
(Γ)

(39)

is satisfied, where 𝐶 = 𝐶(𝑣̂, 𝐵̂) is a positive constant.
Moreover, one has (𝑢±

3
, ℎ
±

3
)|
Γ
∈ 𝐿
∞

([0, 𝑇];𝐻
1/2

(Γ)).

Remark 3. In order to consider the nonlinear problem, it
might be useful to have higher regularity estimates, with
no loss of derivatives, provided that data are sufficiently
regular.The𝐻1 regularity can be obtained from the equations
for rot 𝑢 and rot ℎ, which allow to improve the regularity
for the normal derivatives. Taking further derivatives and
proceeding as in the proof of Proposition 13, one can expect
to get higher regularity. The details are postponed to a future
paper.

As for the regularity assumption on 𝑢
±

0
, ℎ±
0
, see

Section 4.5.
Note that div ℎ

±
= 0 in 𝑄

±

𝑇
and −ℎ

±

3
+ 𝐵̂
󸀠±

⋅ ∇
󸀠
𝑓 = 0 on

[0, 𝑇] × Γ follow from (34), (35), and (36) and the assumptions
of Theorem 2 and, in particular, from the validity of the re-
strictions of such equations at time 𝑡 = 0. More precisely, we
have the following result.

Proposition 4. Under the same assumptions ofTheorem 2, the
solution 𝑈

± satisfies

div ℎ
±
= 0 in 𝑄

±

𝑇
, (40)

−ℎ
±

3
+ 𝐵̂
󸀠±

⋅ ∇
󸀠
𝑓 = 0 in 𝜔

𝑇
. (41)

Proof. If we take the divergence in the second equation in (34)
and use div 𝑢

±
= div 𝐹

±

2
= 0 in 𝑄

±

𝑇
, we get

(𝜕
𝑡
+ 𝑣̂
±
⋅ ∇) div ℎ

±
= 0, (42)

and hence div ℎ
±

= 0 in 𝑄
±

𝑇
, since at time 𝑡 = 0, we have

div ℎ
±
= div ℎ

±

0
= 0 on Ω

± by assumption.
On the other hand, let us take just the third component

of the second equation in

𝜕
𝑡
ℎ
±

3
+ (𝑣̂
󸀠±

⋅ ∇
󸀠
) ℎ
±

3
− (𝐵̂
󸀠±

⋅ ∇
󸀠
) 𝑢
±

3
= 0, (43)

where we have used (𝐹
±

2
)
3
= 0 and 𝑣̂

±

3
= 𝐵̂
±

3
= 0. If we substi-

tute 𝑢
±

3
from the second equation into (35) and observe that

(𝐵̂
󸀠±

⋅ ∇
󸀠
)(𝑣̂
󸀠±

⋅ ∇
󸀠
𝑓) = (𝑣̂

󸀠±
⋅ ∇
󸀠
)(𝐵̂
󸀠±

⋅ ∇
󸀠
𝑓), we deduce that

(𝜕
𝑡
+ 𝑣̂
󸀠±

⋅ ∇
󸀠
) (ℎ
±

3
− 𝐵̂
󸀠±

⋅ ∇
󸀠
𝑓) = 0 (44)

in [0, 𝑇]×Γ. Using the third equation in (38), which holds for
𝑡 = 0, we conclude that ℎ±

3
− 𝐵̂
󸀠±

⋅ ∇
󸀠
𝑓 = 0 in [0, 𝑇] × Γ.
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4. Proof

4.1. Hyperbolic Regularization. Now, let us consider the fol-
lowing hyperbolic compressible regularization (see Secchi
[18]), where 𝜀 > 0:

𝜕
𝑡
𝑞
±
+(𝑣̂
±
⋅ ∇) 𝑞
±
−𝜀𝐵̂
±

⋅ (𝜕
𝑡
ℎ
±
+(𝑣̂
±
⋅ ∇) ℎ
±
)+

1

𝜀
div 𝑢
±
= 0,

(45)

𝜕
𝑡
𝑢
±
+ (𝑣̂
±
⋅ ∇) 𝑢
±
− (𝐵̂
±

⋅ ∇) ℎ
±
+

1

𝜀
∇𝑞
±
= 𝐹
±

1
, (46)

𝜕
𝑡
ℎ
±
+ (𝑣̂
±
⋅ ∇) ℎ
±
− (𝐵̂
±

⋅ ∇) 𝑢
±

− 𝜀𝐵̂
±

{𝜕
𝑡
𝑞
±
+ (𝑣̂ ⋅ ∇) 𝑞

±
− 𝜀𝐵̂
±

⋅ (𝜕
𝑡
ℎ
±
+ (𝑣̂
±
⋅ ∇) ℎ
±
)}

= 𝐹
±

2
,

(47)

with boundary conditions (35).
Here, the solution 𝑈 = (𝑞, 𝑢, ℎ)

𝑇 depends on 𝜀 but, in
this moment, we will not use the more precise notation 𝑈

𝜀
=

(𝑞
𝜀
, 𝑢
𝜀
, ℎ
𝜀
)
𝑇 to denote the solution to the previous system

(with suitable initial data). Let us note that, at least formally, if
we project the system (45), (46), and (47) on the subspace of
divergence-free functions, it converges, as 𝜀 → 0, to system
(34) projected on the same subspace; it is sufficient tomultiply
(45) by 𝜀 and take the limit.Wewill make this statementmore
precise in Section 4.7.

Equations (45)–(47) in 𝑄
±

𝑇
form a symmetric system:

(

1 0
𝑇

−𝜀(𝐵̂
±

)
𝑇

0 𝐼
3

𝑂
3

−𝜀𝐵̂
±

𝑂
3

𝐼
3
+ 𝜀
2
𝐵̂
±

⊗ 𝐵̂
±

)𝜕
𝑡
(

𝑞
±

𝑢
±

ℎ
±

) +
1

𝜀
(

div 𝑢
±

∇𝑞
±

0

)

+(

𝑣̂
±
⋅∇ 0

𝑇
−𝜀(𝐵̂
±

)
𝑇

𝑣̂
±
⋅∇

0 𝑣̂
±
⋅ ∇ −𝐵̂

±

⋅ ∇

−𝜀𝐵̂
±

𝑣̂
±
⋅∇ −𝐵̂

±

⋅∇ (𝐼
3
+𝜀
2
𝐵̂
±

⊗𝐵̂
±

) 𝑣̂
±
⋅ ∇

)(

𝑞
±

𝑢
±

ℎ
±

)

= (

0

𝐹
±

1

𝐹
±

2

),

(48)

or in a compact form,

𝐿
±
𝑈
±
≐ 𝐴
±

0
𝜕
𝑡
𝑈
±
+

3

∑

𝑗=1

(𝐴
±

𝑗
+

1

𝜀
E
1,𝑗+1

) 𝜕
𝑗
𝑈
±
= 𝐹
±
, (49)

where eachmatrix𝐴
±

𝑗
is bounded in 𝜀 andE

ℎ,𝑖
= (𝑒
(ℎ,𝑖)

𝑗,𝑘
)
1≤𝑗,𝑘≤7

,
where 𝑒

(ℎ,𝑖)

𝑗,𝑘
= 1 if (𝑗, 𝑘) = (ℎ, 𝑖) or (𝑗, 𝑘) = (𝑖, ℎ), 𝑒(ℎ,𝑖)

𝑗,𝑘
= 0

otherwise. Notice that 𝐴±
3
= 𝑂
7
because of (21).

One can easily check that, as 𝜀 → 0, this system con-
verges to (34), at least formally.Moreover, the system is hyper-
bolic, since (omitting ±)

𝐴
0
𝑈 ⋅ 𝑈 = (𝑞 − 𝜀𝐵̂ ⋅ ℎ)

2

+ |𝑢|
2
+ |ℎ|
2
> 0 (50)

for each (𝑞, 𝑢, ℎ) ̸= (0, 0, 0).

4.2. Secondary Symmetrization. This new formulation is
obtained by a linear combination of (45), (46), and (47) in
the previous step and aims to simplify boundary terms in the
following computations (see Remark 5).

More precisely, let us consider the system

(45) + 𝜀𝜆𝐵̂ ⋅ (46) −
𝜆

𝜀
div ℎ = 0, (51)

𝜀𝜆𝐵̂ (45) + (46) − 𝜆 (54) = 0, (52)

−𝜆 (𝐼
3
+ 𝜀
2
𝐵̂ ⊗ 𝐵̂) (46) + (47) = 0, (53)

where 𝜆 = 𝜆
± will be chosen conveniently later on and (54)

denotes the equation obtained by substituting (45) into (47),
that is,

𝜕
𝑡
ℎ
±
+ (𝑣̂
±
⋅ ∇) ℎ
±
− (𝐵̂
±

⋅ ∇) 𝑢
±
+ 𝐵̂
± div 𝑢

±
= 𝐹
±

2
.

(54)

We get

(𝑑
𝑡
𝑞 − 𝜀𝐵̂ ⋅ 𝑑

𝑡
ℎ +

1

𝜀
div 𝑢) + 𝜀𝜆𝐵̂ ⋅ {𝑑

𝑡
𝑢 − (𝐵̂ ⋅ ∇) ℎ +

1

𝜀
∇𝑞}

−
𝜆

𝜀
div ℎ = 𝜀𝜆𝐵̂ ⋅ 𝐹

1
,

𝜀𝜆𝐵̂ (𝑑
𝑡
𝑞 − 𝜀𝐵̂ ⋅ 𝑑

𝑡
ℎ) + 𝑑

𝑡
𝑢 − (𝐵̂ ⋅ ∇) ℎ +

1

𝜀
∇𝑞

− 𝜆 {𝑑
𝑡
ℎ − (𝐵̂ ⋅ ∇) 𝑢} = 𝐹

1
− 𝜆𝐹
2
,

− 𝜆 (𝐼
3
+𝜀
2
𝐵̂ ⊗ 𝐵̂) {𝑑

𝑡
𝑢−(𝐵̂ ⋅ ∇) ℎ+

1

𝜀
∇𝑞}+𝑑

𝑡
ℎ−(𝐵̂ ⋅ ∇) 𝑢

− 𝜀𝐵̂ (𝑑
𝑡
𝑞 − 𝜀𝐵̂ ⋅ 𝑑

𝑡
ℎ) = −𝜆 (𝐼

3
+ 𝜀
2
𝐵̂ ⊗ 𝐵̂) 𝐹

1
+ 𝐹
2
,

(55)

where 𝑑
𝑡
≐ 𝜕
𝑡
+ (𝑣̂ ⋅ ∇). This system is symmetric; indeed, the

coefficient of 𝑑
𝑡
is

A
0
= (

1 𝜀𝜆𝐵̂
𝑇

−𝜀𝐵̂
𝑇

𝜀𝜆𝐵̂ 𝐼
3

−𝜆 (𝐼
3
+ 𝜀
2
𝐵̂ ⊗ 𝐵̂)

−𝜀𝐵̂ −𝜆 (𝐼
3
+ 𝜀
2
𝐵̂ ⊗ 𝐵̂) 𝐼

3
+ 𝜀
2
𝐵̂ ⊗ 𝐵̂

) ,

(56)

the singular term is given by

1

𝜀
(

0 ∇
𝑇

−𝜆∇
𝑇

∇ 𝑂
3

𝑂
3

−𝜆∇ 𝑂
3

𝑂
3

) , (57)
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and the remaining derivatives are included in

(

𝜆𝐵̂ ⋅ ∇ 0
𝑇

−𝜀𝜆𝐵̂
𝑇

(𝐵̂ ⋅ ∇)

0 𝜆𝐵̂ ⋅ ∇ −𝐵̂ ⋅ ∇

−𝜀𝜆 (𝐵̂ ⊗ 𝐵̂) ∇ −𝐵̂ ⋅ ∇ 𝜆 (𝐼
3
+ 𝜀
2
𝐵̂ ⊗ 𝐵̂) (𝐵̂ ⋅ ∇)

) ,

(58)

where 𝐼
3
and𝑂

3
denote, respectively, the identity and null 3×

3 matrix. All these matrices are symmetric, and the system
can be recast as

L
±
𝑈
±
≐ A
±

0
𝜕
𝑡
𝑈
±
+

3

∑

𝑗=1

(A
±

𝑗
+
1

𝜀
E
1,𝑗+1

−
𝜆

𝜀
E
1,𝑗+4

) 𝜕
𝑗
𝑈
±
= F
±
,

(59)

where each matrix A±
𝑗
is bounded in 𝜀 provided 𝜆

± is
bounded and E

ℎ,𝑖
= (𝑒
(ℎ,𝑖)

𝑗,𝑘
)
1≤𝑗,𝑘≤7

, where 𝑒
(ℎ,𝑖)

𝑗,𝑘
= 1 if (𝑗, 𝑘) =

(ℎ, 𝑖) or (𝑗, 𝑘) = (𝑖, ℎ), 𝑒(ℎ,𝑖)
𝑗,𝑘

= 0 otherwise. Notice that A±
3

=

𝑂
7
.

Remark 5. The secondary symmetrization is inspired by [11,
19], which we refer to for further details. The main idea is
to consider the following variant of (49), which takes into
account the divergence constraint for the magnetic field

𝐷
±
𝐴
±

0
𝜕
𝑡
𝑈
±
+

3

∑

𝑗=1

𝐷
±
(𝐴
±

𝑗
+
1

𝜀
E
1,𝑗+1

) 𝜕
𝑗
𝑈
±
+𝜆
±
𝐸
± div ℎ

±
= 𝐹
±
,

(60)

where the matrix 𝐷
± and the vector 𝐸

± depend on the basic
state. 𝐷 is then chosen in order to obtain A

0
, whose form is

useful to get the energy a priori estimate, while 𝐸 is chosen
to maintain the symmetry of the system. As pointed out in
[19] (Remark 5), such a choice is related to the conservation
of cross-helicity: 𝑑/𝑑𝑡 ∫(𝑣 ⋅𝐵) 𝑑𝑥 = 0. On the other hand, one
main feature of the secondary symmetrization is that 𝜆± can
be chosenwidely arbitrarily, so that in the followingwewill be
able to find a suitable 𝜆

± which simplifies singular boundary
terms in the a priori estimate.

The following lemma guarantees that, under our assump-
tions and a suitable choice of 𝜆±, the matricesA±

0
are positive

definite and (59) is symmetric hyperbolic.

Lemma 6. If

(𝜆
±
)
2

<
1

1 +
󵄨󵄨󵄨󵄨󵄨󵄨
𝜀𝐵̂
±󵄨󵄨󵄨󵄨󵄨󵄨

2
, (61)

then the symmetric matricesA±
0
are positive definite.

Proof. Omitting “±”, we have

A
0
𝑈 ⋅ 𝑈

= (𝑞+𝜀𝜆𝐵̂ ⋅ 𝑢−𝜀𝐵̂ ⋅ ℎ) 𝑞+{𝜀𝜆𝐵̂𝑞+𝑢−𝜆 (𝐼
3
+𝜀
2
𝐵̂ ⊗ 𝐵̂) ℎ} ⋅ 𝑢

+ {−𝜀𝐵̂𝑞−𝜆 (𝐼
3
+𝜀
2
𝐵̂ ⊗ 𝐵̂) 𝑢+(𝐼

3
+𝜀
2
𝐵̂ ⊗ 𝐵̂) ℎ} ⋅ ℎ

= (𝑞−𝜀𝐵̂ ⋅ ℎ)
2

+𝑢 ⋅ 𝑢+ℎ ⋅ ℎ+2𝜀𝜆𝐵̂ ⋅ 𝑢 (𝑞−𝜀𝐵̂ ⋅ ℎ)−2𝜆ℎ ⋅ 𝑢

≥ (𝑞−𝜀𝐵̂ ⋅ ℎ+𝜀𝜆𝐵̂ ⋅ 𝑢)
2

+|ℎ − 𝜆𝑢|
2
+(1−𝜆

2
−𝜆
2󵄨󵄨󵄨󵄨󵄨
𝜀𝐵̂

󵄨󵄨󵄨󵄨󵄨

2

) |𝑢|
2
.

(62)

If

1 − 𝜆
2
− 𝜆
2󵄨󵄨󵄨󵄨󵄨
𝜀𝐵̂

󵄨󵄨󵄨󵄨󵄨

2

> 0, (63)

that is to say, if

𝜆
2
<

1

1 +
󵄨󵄨󵄨󵄨󵄨
𝜀𝐵̂

󵄨󵄨󵄨󵄨󵄨

2
, (64)

then the matrixA
0
is positive definite.

Lemma 7. There exists 𝜀
0

> 0 such that, for each 𝜀 ∈ ]0, 𝜀
0
],

the choice

𝜆
±
= 𝜆̂
±

≐
[𝑣̂] × 𝐵̂

∓

󵄨󵄨󵄨󵄨󵄨󵄨
𝐵̂
+

× 𝐵̂
−󵄨󵄨󵄨󵄨󵄨󵄨

sign (𝐵̂
+

1
𝐵̂
−

2
− 𝐵̂
+

2
𝐵̂
−

1
) (65)

satisfies (61) and hencemakes thematricesA±
0
positive definite.

Proof. Since
󵄨󵄨󵄨󵄨󵄨󵄨
[𝑣̂] × 𝐵̂

∓󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝐵̂
+

× 𝐵̂
−󵄨󵄨󵄨󵄨󵄨󵄨

< 1, (66)

which follows from (22), we deduce that there exists 𝜀
0

> 0

such that, for each 𝜀 ∈ [0, 𝜀
0
[, the inequality

󵄨󵄨󵄨󵄨󵄨󵄨
[𝑣̂] × 𝐵̂

∓󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝐵̂
+

× 𝐵̂
−󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

√1 +
󵄨󵄨󵄨󵄨󵄨󵄨
𝜀𝐵̂
±󵄨󵄨󵄨󵄨󵄨󵄨

2
(67)

follows, so we conclude that (61) holds true for 𝜀 small
enough.

Let us remark that 𝜆̂
±

is a constant term independent of
𝜀; moreover, since 𝐵̂

±

3
= 0, this choice of 𝜆± is the same as

𝜆̂
±

=
[𝑣̂
1
] 𝐵̂
∓

2
− [𝑣̂
2
] 𝐵̂
∓

1

𝐵̂
+

1
𝐵̂
−

2
− 𝐵̂
+

2
𝐵̂
−

1

, (68)

which will be useful in the following steps. Moreover, this
choice is equivalent to

[𝑣̂
󸀠
− 𝜆̂𝐵̂
󸀠

] = 0. (69)

In addition, we set

Δ = 𝐵̂
+

1
𝐵̂
−

2
− 𝐵̂
+

2
𝐵̂
−

1
, (70)

which is always different from zero thanks to (23).
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4.3. Boundary Conditions in Algebraic Form. The boundary
conditions can be recast so that the space derivatives of the
front function 𝑓 do not appear explicitly.

Lemma 8. The boundary conditions (35) imply, on 𝜔
𝑇
, the

boundary conditions

[𝑞] = 0,

[𝑢
3
− 𝜆̂ℎ
3
] = 0

(71)

and the front equation
𝜕
𝑡
𝑓 = 𝑢

±

3
+ 𝑆
±

+
ℎ
−

3
− 𝑆
±

−
ℎ
+

3
, (72)

with

𝑆
±

+
=

1

Δ
(𝑣̂
±

1
𝐵̂
+

2
− 𝑣̂
±

2
𝐵̂
+

1
) , 𝑆

±

−
=

1

Δ
(𝑣̂
±

1
𝐵̂
−

2
− 𝑣̂
±

2
𝐵̂
−

1
) ,

Δ = 𝐵̂
+

1
𝐵̂
−

2
− 𝐵̂
+

2
𝐵̂
−

1
.

(73)

Proof. Condition (41) can be recast as

𝐵̂
+

1
𝜕
1
𝑓 + 𝐵̂

+

2
𝜕
2
𝑓 = ℎ

+

3
,

𝐵̂
−

1
𝜕
1
𝑓 + 𝐵̂

−

2
𝜕
2
𝑓 = ℎ

−

3
.

(74)

Since

Δ = det(
𝐵̂
+

1
𝐵̂
+

2

𝐵̂
−

1
𝐵̂
−

2

) ̸= 0 (75)

by hypothesis, we can obtain

𝜕
1
𝑓 =

1

Δ
{ℎ
+

3
𝐵̂
−

2
− ℎ
−

3
𝐵̂
+

2
},

𝜕
2
𝑓 = −

1

Δ
{ℎ
+

3
𝐵̂
−

1
− ℎ
−

3
𝐵̂
+

1
}.

(76)

By substituting in the second equation of (35), we get

𝜕
𝑡
𝑓 = 𝑢

±

3
+

𝑣̂
±

1
𝐵̂
+

2
− 𝑣̂
±

2
𝐵̂
+

1

Δ
ℎ
−

3
−

𝑣̂
±

1
𝐵̂
−

2
− 𝑣̂
±

2
𝐵̂
−

1

Δ
ℎ
+

3
. (77)

Using the definition of 𝑆±
+
and 𝑆

±

−
, we deduce the condi-

tions
𝜕
𝑡
𝑓 = 𝑢

±

3
+ 𝑆
±

+
ℎ
−

3
− 𝑆
±

−
ℎ
+

3
,

𝑢
+

3
+ 𝑆
+

+
ℎ
−

3
− 𝑆
+

−
ℎ
+

3
= 𝑢
−

3
+ 𝑆
−

+
ℎ
−

3
− 𝑆
−

−
ℎ
+

3
.

(78)

The last condition can be recast as

[𝑢
3
] = − [𝑆

+
] ℎ
−

3
+ [𝑆
−
] ℎ
+

3
, (79)

where

[𝑆
+
] = 𝑆
+

+
− 𝑆
−

+
, [𝑆

−
] = 𝑆
+

−
− 𝑆
−

−
. (80)

Recalling (68), we have

𝜆̂
±

= [𝑆
∓
] . (81)

The previous condition becomes

[𝑢
3
− 𝜆̂ℎ
3
] = 0, (82)

and the lemma is proved.

4.4. Equivalence of Systems. Obviously, if (𝑈𝜀, 𝑓𝜀) is a solution
to system (49) with boundary conditions (35), then it also
satisfies system (59) with conditions (71) (we are assuming
the same initial conditions); the converse holds true as well.

Proposition 9. If 𝑈
𝜀 is a solution to system (59) with bound-

ary conditions (71), then one can find a unique 𝑓
𝜀, so that

(𝑈
𝜀
, 𝑓
𝜀
) is a solution to system (49) with boundary conditions

(35) and the same initial conditions.

Proof. First, we prove that (49) is satisfied. Since (59) holds,
then we have (51), (52), and (53). If we substitute (54) = (47)
+ 𝜀𝐵̂(45) into (52), we get (46) = 𝜆̂(47), and substituting this
relation in (53), we deduce

(𝐼
3
− 𝜆̂
2

𝐼
3
− 𝜆̂
2

𝜀
2
𝐵̂ ⊗ 𝐵̂) (47) = 0. (83)

Since

det (𝐼
3
−𝜆̂
2

𝐼
3
−𝜆̂
2

𝜀
2
𝐵̂ ⊗ 𝐵̂) = (1−𝜆̂

2

)

2

(1−𝜆̂
2

−𝜆̂
2

𝜀
2󵄨󵄨󵄨󵄨󵄨
𝐵̂
󵄨󵄨󵄨󵄨󵄨

2

) ̸= 0

(84)

thanks to (61), then we get (47) = 0 and consequently (46) =
𝜆̂(47) = 0.

From (51), in order to prove (45), it is now sufficient to
establish that div ℎ

𝜀
= 0, since we already know that (46) = 0.

With this aim, we substitute (51) into (47) and get

𝜕
𝑡
ℎ
𝜀
+ (𝑣̂ ⋅ ∇) ℎ

𝜀
− 𝜆̂𝐵̂ div ℎ

𝜀
+ 𝐵̂ div 𝑢

𝜀
− (𝐵̂ ⋅ ∇) 𝑢

𝜀
= 𝐹
2
.

(85)

Taking the divergence of the above equation, exploiting the
assumption div 𝐹

2
= 0 and the fact that 𝑣̂, 𝐵̂, 𝜆̂ are piecewise

constant, and simplifying, we deduce that

(𝜕
𝑡
+ (𝑣̂ − 𝜆̂𝐵̂) ⋅ ∇) div ℎ

𝜀
= 0. (86)

Since div ℎ
𝜀
= 0 in {𝑡 = 0} × Ω

± by assumption on the initial
data, we conclude that div ℎ

𝜀
= 0 in𝑄

±

𝑇
, so that (45) = 0 from

(51). Then (45), (46), and (47) are satisfied, which means that
(49) holds.

Now, we have to prove (35). Condition [𝑞
𝜀
] = 0 on 𝜔

𝑇

obviously holds, since we have the same condition in (71).We
need to prove that there exists𝑓𝜀 so that 𝜕

𝑡
𝑓
𝜀
+𝑣̂
󸀠±
⋅∇
󸀠
𝑓
𝜀
= 𝑢
𝜀,±

3

on 𝜔
𝑇
. Given 𝑢

𝜀,±

3
and ℎ
𝜀,±

3
, let us define 𝑓

± as the solutions of

𝜕
𝑡
𝑓
±
+ 𝑣̂
󸀠±

⋅ ∇
󸀠
𝑓
±
= 𝑢
𝜀,±

3
in 𝜔
𝑇
,

𝑓
±󵄨󵄨󵄨󵄨𝑡=0 = 𝑓

0
on Γ.

(87)

Thus, for the completion of the proof of (35), it is sufficient
to show that 𝑓

+
= 𝑓
− in 𝜔

𝑇
. Proceeding as in the proof of

Proposition 4, we first deduce ℎ
𝜀,±

3
= (𝐵̂
󸀠±

⋅ ∇
󸀠
)𝑓
± in 𝜔

𝑇
. Let

us compute

𝑢
𝜀,±

3
− 𝜆̂
±

ℎ
𝜀,±

3
= 𝜕
𝑡
𝑓
±
+ (𝑣̂
󸀠±

⋅ ∇
󸀠
) 𝑓
±
− 𝜆̂
±

(𝐵̂
󸀠±

⋅ ∇
󸀠
)𝑓
±
.

(88)
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Since [𝑢
𝜀

3
− 𝜆̂ℎ
𝜀

3
] = 0 by (71), we obtain

(𝜕
𝑡
+(𝑣̂
󸀠+

−𝜆̂
+

𝐵̂
󸀠+

) ⋅ ∇
󸀠
)𝑓
+
= (𝜕
𝑡
+(𝑣̂
󸀠−

−𝜆̂
−

𝐵̂
󸀠−

) ⋅ ∇
󸀠
)𝑓
−
.

(89)

Thanks to (69), we have 𝑤̂
󸀠
≐ 𝑣̂
󸀠+

− 𝜆̂
+

𝐵̂
󸀠+

= 𝑣̂
󸀠−

− 𝜆̂
−

𝐵̂
󸀠−, and

hence,

(𝜕
𝑡
+ 𝑤̂
󸀠
⋅ ∇
󸀠
) 𝑓
+
= (𝜕
𝑡
+ 𝑤̂
󸀠
⋅ ∇
󸀠
) 𝑓
− in 𝜔

𝑇
,

𝑓
±󵄨󵄨󵄨󵄨𝑡=0 = 𝑓

0
on Γ.

(90)

Thus, we can take 𝑓
𝜀
≐ 𝑓
+
= 𝑓
− in 𝜔

𝑇
, and (35) holds.

4.5. Existence of the Approximate Solution. Now, consider the
system (59) with the boundary conditions (71) and the initial
condition 𝑈

𝜀,±
(0) = 𝑈

±

0
≐ (0, 𝑢

±

0
, ℎ
±

0
)
𝑇. This system can be

written as

L𝑈
𝜀
= F in [0, 𝑇] × Ω,

M𝑈
𝜀
= 0 in [0, 𝑇] × Γ,

𝑈
𝜀
(0) = 𝑈

0
in Ω,

(91)

where we have set 𝑈
𝜀

= (𝑈
𝜀,+

, 𝑈
𝜀,−

)
𝑇 and similarly for the

other quantities;moreover, we set ‖𝑈𝜀‖
Ω
=‖𝑈
𝜀,+

‖
Ω
++‖𝑈
𝜀,−

‖
Ω
−

and so on. Notice thatM𝑈
𝜀
= 0 corresponds to the boundary

conditions (71).
Let us note that, since 𝑞

±

0
≐ 𝑞
𝜀,±

|
𝑡=0

≡ 0, the condition on
Γ given by [𝑞

0
] = 0 is automatically satisfied. Moreover, if we

denote by (𝜕
𝑡
𝑞
±
, 𝜕
𝑡
𝑢
±
, 𝜕
𝑡
ℎ
±
)|
𝑡=0

the homonymous quantities
in (91) evaluated at time 𝑡 = 0 and calculated in terms of the
initial data, from the equations and the hypotheses on 𝑞

±

0
, 𝑢±
0
,

ℎ
±

0
, we get the condition (𝜕

𝑡
𝑞
±
, 𝜕
𝑡
𝑢
±
, 𝜕
𝑡
ℎ
±
)|
𝑡=0

∈ 𝐿
2
(Ω
±
). Let us

note that the hypothesis 𝑢±
0
, ℎ
±

0
in𝐻
1
(Ω
±
), rather than simply

in 𝐻
1

∗
(Ω
±
), is needed exactly here. We have the following

result.

Proposition 10. There exists 𝜀
0

> 0 so that, for each 𝜀 ∈]0,

𝜀
0
], there exists a unique solution 𝑈

𝜀
∈ C0([0, 𝑇];𝐻

1

∗
(Ω)) ∩

C1([0, 𝑇]; 𝐿
2
(Ω)) to problem (91); moreover, one has

|||𝑈
𝜀
(𝑡) |||
1,∗;Ω

≤ 𝐶
𝜀
e𝐶𝜀𝑡 (|||𝑈𝜀

0
|||
1,∗;Ω

+ [F]
1,∗,𝑡;Ω

) (92)

for each 𝑡 ∈ [0, 𝑇] and a suitable 𝐶
𝜀
> 0.

Proof. The boundary matrix of system (91) is given by

A
𝜈
= (

A+
𝜈

𝑂
7

𝑂
7

A−
𝜈

) , (93)

whereA±
𝜈

= ∓(A±
3
+ (1/𝜀)E

1,4
− (𝜆̂
±

/𝜀)E
1,7
). The matrixA

𝜈

is singular with constant rank (indeed,A±
3
is the null matrix)

and, moreover, kerM is maximally nonnegative forA
𝜈
, that

is to say,

A
𝜈
𝑈
𝜀
⋅ 𝑈
𝜀
≥ 0 (94)

for each 𝑈
𝜀

∈ kerM (nonnegativity) and such a property
does not hold in any other vector space properly containing
kerM (maximality). Indeed, we have

A
𝜈

󵄨󵄨󵄨󵄨Γ𝑈
𝜀
⋅ 𝑈
𝜀
= − A

+

𝜈

󵄨󵄨󵄨󵄨Γ𝑈
𝜀,+

⋅ 𝑈
𝜀,+

+ A
−

𝜈

󵄨󵄨󵄨󵄨Γ𝑈
𝜀,−

⋅ 𝑈
𝜀,−

= −
2

𝜀
{[𝑞
𝜀
] (𝑢
𝜀,+

3
− 𝜆̂
+

ℎ
𝜀,+

3
) + 𝑞
𝜀,−

[𝑢
𝜀

3
− 𝜆̂ℎ
𝜀

3
]}

=0

(95)

thanks to [𝑞
𝜀
] = 0 and [𝑢

𝜀

3
− 𝜆̂ℎ
𝜀

3
] = 0 on kerM. Moreover,

let us observe that bothA+
𝜈
andA−

𝜈
have exactly one negative

eigenvalue, so we have the same number of conditions defin-
ing kerM and negative eigenvalues, that is, 2; this implies
maximality.

Thus, we can apply the results in Lax and Phillips [12]
(existence in 𝐿

2, see as well Friedrichs [20] for the non-
characteristic case) and Secchi [13, 14] (regularity in 𝐻

𝑚

∗
),

and deduce the existence of a unique global solution 𝑈
𝜀

∈

C0([0, 𝑇];𝐻
1

∗
(Ω)) ∩ C1([0, 𝑇]; 𝐿

2
(Ω)) to problem (91) such

that (92) holds for each 𝑡 ∈ [0, 𝑇], provided 𝜀 > 0 is
sufficiently small.

Remark 11. Let us note that, in the previous result, the small-
ness of 𝜀 is necessary in order to haveA±

0
positive definite.

We need to have a number of boundary conditions
in (71), that is, defining kerM, equal to the number of
negative eigenvalues of A

𝜈
, that is to say, 2, in order to have

maximality.

Corollary 12. There exists 𝜀
0
> 0, so that, for each 𝜀 ∈ ]0, 𝜀

0
],

there exists a unique solution (𝑈
𝜀
, 𝑓
𝜀
) to problem (49), (35),

and (36) with 𝑞
𝜀,±

|
𝑡=0

≡ 0 such that 𝑈𝜀 ∈ C0([0, 𝑇];𝐻
1

∗
(Ω)) ∩

C1([0, 𝑇]; 𝐿
2
(Ω)), (𝑞, 𝑢

3
, ℎ
3
)
𝜀,±

|
𝜔
𝑇

∈ C0([0, 𝑇];𝐻
1/2

(Γ)) and
𝑓
𝜀
∈ C0([0, 𝑇];𝐻

1/2
(Γ)); moreover, one has

|||𝑈
𝜀
(𝑡) |||
1,∗;Ω

+
󵄩󵄩󵄩󵄩𝑓
𝜀
(𝑡)

󵄩󵄩󵄩󵄩𝐻1/2(Γ)

≤ 𝐶
𝜀
e𝐶𝜀𝑡 (|||𝑈𝜀

0
|||
1,∗;Ω

+ [F]
1,∗,𝑡;Ω

) +
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻1/2(Γ)

(96)

for each 𝑡 ∈ [0, 𝑇] and a suitable 𝐶
𝜀
> 0.

Proof. Problem (91) with 𝑓
𝜀
|
𝑡=0

= 𝑓
0
on Γ is a different way

to say that (59), (71), and (36) with 𝑞
𝜀,±

|
𝑡=0

≡ 0 are satisfied.
Using Propositions 9 and 10, we get the result for 𝑈

𝜀. Let us
note that, since 𝑢

𝜀,±
∈ C0([0, 𝑇];𝐻

1

∗
(Ω)) and the normal

component 𝑢
𝜀,±

3
at the boundary is noncharacteristic, then

the trace 𝑢
𝜀,±

3
|
𝜔
𝑇

is in C0([0, 𝑇];𝐻
1/2

(Γ)), as shown in Secchi
[13, 14] and Shizuta [21]. In particular, 𝜕

3
𝑢
𝜀

3
can be estimated

using the other terms appearing in (45), so that we have
󵄩󵄩󵄩󵄩𝑢
𝜀

3
(𝑡)

󵄩󵄩󵄩󵄩𝐻1(Ω) ≤ 𝐶|||𝑈
𝜀
(𝑡) |||
1,∗;Ω

. (97)

The same holds true for 𝑞
𝜀 as well, for the same reason

(𝜕
3
𝑞
𝜀 is obtained from (46)), and for 𝜕

3
ℎ
𝜀

3
, since div ℎ

𝜀
= 0

is bounded (this follows from (54) proceeding similarly as
in Proposition 4; note that, taking the divergence, the terms
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containing 𝑢
𝜀 cancel together). Thus, from the transport

equation (87), we find 𝑓
𝜀
∈ C0([0, 𝑇];𝐻

1/2
(Γ)) and

󵄩󵄩󵄩󵄩𝑓
𝜀
(𝑡)

󵄩󵄩󵄩󵄩𝐻1/2(Γ)

≤
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻1/2(Γ) + 𝑡
󵄩󵄩󵄩󵄩𝑢
𝜀,+

3

󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐻1/2(Γ))

≤
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻1/2(Γ) + 𝐶𝑡
󵄩󵄩󵄩󵄩𝑢
𝜀,+

3

󵄩󵄩󵄩󵄩𝐿∞(0,𝑡;𝐻1(Ω+))

≤
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻1/2(Γ) + 𝐶
𝜀
𝑒
𝐶
𝜀
𝑡
∑

±

(|||𝑈
±

0
|||
1,∗;Ω

± + [𝐹
±
]
1,∗,𝑡;Ω

±) .

(98)

This concludes the proof.

4.6. A Priori Energy Estimate Uniform in 𝜀. Since estimate
(96) depends on 𝜀, we cannot use it when passing to the limit
as 𝜀 → 0. We can deduce the following a priori estimate for
(𝑈
𝜀,±

, 𝑓
𝜀
), which is an 𝐿

2-estimate uniform in 𝜀, useful to pass
to the limit as 𝜀 → 0. We recall that the choice 𝜆 = 𝜆̂ makes
A±
0
positive definite, and hence, if we fix 𝜀

0
> 0 sufficiently

small, there exists a suitable real number 𝛼
0

∈ ]0, 1], so that
A±
0
≥ 𝛼
0
𝐼
7
for each 𝜀 ∈ ]0, 𝜀

0
].

Proposition 13. There exists 𝜀
0
> 0, such that, for each 𝜀 ∈]0,

𝜀
0
], the a priori estimate

∑

±

(|||𝑈
𝜀,±

(𝑡) |||
2

1,∗;Ω
±+

󵄩󵄩󵄩󵄩󵄩
(𝑢
3
, ℎ
3
)
𝜀,±

(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝐻
1(Ω±)

)+
󵄩󵄩󵄩󵄩𝑓
𝜀
(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1/2
(Γ)

≤
𝐶

𝛼
0

𝑒
𝐶𝑡/𝛼
0∑

±

(|||𝑈
±

0
|||
2

1,∗;Ω
± + [𝐹

±
]
2

1,∗,𝑡;Ω
±) +

󵄩󵄩󵄩󵄩𝑓0
󵄩󵄩󵄩󵄩
2

𝐻
1/2
(Γ)

(99)

holds for each 𝑡 ∈ [0, 𝑇] and for a suitable 𝐶 > 0 independent
of 𝜀, where 𝑈

𝜀 is the solution to problem (49), (35), and (36)
and 𝑓

𝜀 satisfies (87) with initial condition 𝑓
𝜀
|
𝑡=0

= 𝑓
0
.

Proof. Let us take the scalar product of (59), which is equiva-
lent to (49), with 𝑈

𝜀,± and integrate over 𝑄±
𝑡
(recall that 𝜆± =

𝜆̂
±

); integrating by parts the terms with spatial derivatives
of 𝑈
𝜀,±, exploiting the fact that the coefficient matrices are

constant, and recalling that the boundary matrix is given by
A±
𝜈

= ∓(A±
3
+ (1/𝜀)E

1,4
− (𝜆̂
±

/𝜀)E
1,7

) = ∓((1/𝜀)E
1,4

− (𝜆̂
±

/

𝜀)E
1,7

), sinceA±
3
= 𝑂
7
, we get

∫
𝑄
±

𝑡

A
±

0
𝜕
𝑡
𝑈
𝜀,±

⋅ 𝑈
𝜀,±

𝑑𝑥 𝑑𝑡

∓
1

2𝜀
∫
𝜔
𝑡

(E
1,4

− 𝜆̂
±

E
1,7

)𝑈
𝜀,±

⋅ 𝑈
𝜀,±

𝑑𝑥
󸀠
𝑑𝑡

=
1

2
∫
𝑄
±

𝑡

(

3

∑

𝑗=1

𝜕
𝑗
(A
±

𝑗
+
1

𝜀
E
1,𝑗+1

−
𝜆̂
±

𝜀
E
1,𝑗+4

))𝑈
𝜀,±

⋅ 𝑈
𝜀,±

𝑑𝑥 𝑑𝑡

+ ∫
𝑄
±

𝑡

F
±
⋅ 𝑈
𝜀,±

𝑑𝑥 𝑑𝑡

= ∫
𝑄
±

𝑡

F
±
⋅ 𝑈
𝜀,±

𝑑𝑥 𝑑𝑡,

(100)

where sum over ± is assumed. Let us note that, since the basic
state is piecewise constant, thenA±

𝑗
,E
ℎ,𝑘

and 𝜆̂
±

are piecewise
constant as well; thus,

3

∑

𝑗=1

𝜕
𝑗
(A
±

𝑗
+

1

𝜀
E
1,𝑗+1

−
𝜆̂
±

𝜀
E
1,𝑗+4

) = 0 (101)

in 𝑄
±

𝑡
. Moreover,

∑

±

∓
1

2𝜀
∫
𝜔
𝑡

(E
1,4

− 𝜆̂
±

E
1,7

)𝑈
𝜀,±

⋅ 𝑈
𝜀,±

𝑑𝑥
󸀠
𝑑𝑡

= −
1

𝜀
∫
𝜔
𝑡

{[𝑞
𝜀
] (𝑢
𝜀,+

3
− 𝜆̂
+

ℎ
𝜀,+

3
) + 𝑞
𝜀,−

[𝑢
𝜀

3
− 𝜆̂ℎ
𝜀

3
]} 𝑑𝑥
󸀠
𝑑𝑡

= 0,

(102)

thanks to the boundary conditions [𝑞𝜀] = 0 and [𝑢
𝜀

3
− 𝜆̂ℎ
𝜀

3
] =

0, that hold in 𝜔
𝑡
.

We deduce the equality

∑

±

∫
𝑄
±

𝑡

A
±

0
𝜕
𝑡
𝑈
𝜀,±

⋅ 𝑈
𝜀,±

𝑑𝑥 𝑑𝜏 = ∑

±

∫
𝑄
±

𝑡

F
±
⋅ 𝑈
𝜀,±

𝑑𝑥 𝑑𝜏.

(103)

For the left-hand side, integrating by parts in time and ex-
ploiting the symmetry ofA±

0
, we have

∫
Ω
±

∫

𝑡

0

A
±

0
𝜕
𝑡
𝑈
𝜀,±

⋅ 𝑈
𝜀,±

𝑑𝜏 𝑑𝑥 =
1

2
∫
Ω
±

A
±

0
𝑈
𝜀,±

(𝑡) ⋅ 𝑈
𝜀,±

(𝑡) 𝑑𝑥

−
1

2
∫
Ω
±

A
±

0
𝑈
±

0
⋅ 𝑈
±

0
𝑑𝑥.

(104)

By applying the Cauchy-Schwarz inequality in the right-hand
side, we obtain

∑

±

∫
Ω
±

A
±

0
𝑈
𝜀,±

(𝑡) ⋅ 𝑈
𝜀,±

(𝑡) 𝑑𝑥

≤ ∫

𝑡

0

∑

±

󵄩󵄩󵄩󵄩𝑈
𝜀,±

(𝜏)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

𝑑𝜏 + ∑

±

∫
Ω
±

A
±

0
𝑈
±

0
⋅ 𝑈
±

0
𝑑𝑥

+ ∑

±

∫

𝑡

0

󵄩󵄩󵄩󵄩F
±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

𝑑𝜏,

(105)

and hence, by exploitingA±
0
≥ 𝛼
0
𝐼
7
,

∑

±

󵄩󵄩󵄩󵄩𝑈
𝜀,±

(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

≤
1

𝛼
0

∫

𝑡

0

∑

±

󵄩󵄩󵄩󵄩𝑈
𝜀,±

(𝜏)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

𝑑𝜏

+
1

𝛼
0

∑

±

(𝐶
󵄩󵄩󵄩󵄩𝑈
±

0

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩F
±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

𝑑𝜏) .

(106)
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Through a standard application of Grönwall’s lemma, we
deduce that

∑

±

󵄩󵄩󵄩󵄩𝑈
𝜀,±

(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

≤
𝐶𝑒
𝑡/𝛼
0

𝛼
0

∑

±

(
󵄩󵄩󵄩󵄩𝑈
±

0

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝐹
±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

𝑑𝜏) .

(107)

In the same way, we can apply a tangential derivative 𝑍 =

𝜕
𝑡
, 𝜕
𝑥
1

, 𝜕
𝑥
2

to (59) and (35), take the scalar product with𝑍𝑈
𝜀,±,

and proceed as before to obtain

∑

±

󵄩󵄩󵄩󵄩𝑍𝑈
𝜀,±

(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

≤
𝐶𝑒
𝑡/𝛼
0

𝛼
0

∑

±

(
󵄩󵄩󵄩󵄩𝑍𝑈
±

0

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑍𝐹
±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

𝑑𝜏) .

(108)

It remains to find an estimate for 𝑍
3
𝑈
𝜀,±, where 𝑍

3
=

𝜎𝜕
3
= 𝜎𝜕
𝑥
3

. If we apply 𝜎𝜕
3
to (59) and recall that A±

3
= 𝑂
7
,

we get

A
±

0
𝜕
𝑡
(𝜎𝜕
3
𝑈
𝜀,±

)+

3

∑

𝑗=1

(A
±

𝑗
+
1

𝜀
E
1,𝑗+1

−
𝜆̂
±

𝜀
E
1,𝑗+4

)𝜕
𝑗
(𝜎𝜕
3
𝑈
𝜀,±

)

= 𝜎𝜕
3
F
±
+ (

1

𝜀
E
1,4

−
𝜆̂
±

𝜀
E
1,7

)𝜎
󸀠
𝜕
3
𝑈
𝜀,±

.

(109)

Testing by 𝜎𝜕
3
𝑈
𝜀,±, summing up terms with plus and minus

sign, and simplifying as before, we deduce that

∑

±

∫
𝑄
±

𝑡

A
±

0
𝜕
𝑡
(𝜎𝜕
3
𝑈
𝜀,±

) ⋅ 𝜎𝜕
3
𝑈
𝜀,±

𝑑𝑥 𝑑𝑡

= ∑

±

∫
𝑄
±

𝑡

𝜎𝜕
3
F
±
⋅ 𝜎𝜕
3
𝑈
𝜀,±

𝑑𝑥 𝑑𝑡 + ∑

±

𝐼
±
,

(110)

where

𝐼
±
=

1

𝜀
∫
𝑄
±

𝑡

(E
1,4

− 𝜆̂
±

E
1,7

) 𝜎
󸀠
𝜕
3
𝑈
𝜀,±

⋅ 𝜎𝜕
3
𝑈
𝜀,±

𝑑𝑥 𝑑𝑡,

(111)

so that we get

𝛼
0

2
∑

±

󵄩󵄩󵄩󵄩𝑍3𝑈
𝜀,±

(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

≤ ∑

±

(𝐶
󵄩󵄩󵄩󵄩𝑍3𝑈
±

0

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+
󵄨󵄨󵄨󵄨𝐼
±󵄨󵄨󵄨󵄨)

+ ∑

±

1

2
∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝑍3𝑈
𝜀,±

(𝜏)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+
󵄩󵄩󵄩󵄩𝑍3F

±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

) 𝑑𝜏

(112)

by applying the Cauchy-Schwarz inequality. Therefore, we
need to estimate |𝐼

±
|:

󵄨󵄨󵄨󵄨𝐼
±󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑄
±

𝑡

2𝜎
󸀠 𝜕3𝑞
𝜀,±

𝜀
(𝜎𝜕
3
𝑢
𝜀,±

− 𝜆̂
±

𝜎𝜕
3
ℎ
𝜀,±

) 𝑑𝑥 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∫
𝑄
±

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
3
𝑞
𝜀,±

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍3𝑈
𝜀,±󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝜏

≤ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝑍3𝑈
𝜀,±

(𝜏)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

𝑑𝜏+𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜀
∇𝑞
𝜀,±

(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω±)
𝑑𝜏.

(113)

From (46) and the fact that 𝑣̂±
3
= 𝐵̂
±

3
= 0, we have

1

𝜀
∇𝑞
𝜀,±

= −𝜕
𝑡
𝑢
𝜀,±

− (𝑣̂
󸀠±

⋅ ∇
󸀠
) 𝑢
𝜀,±

+ (𝐵̂
󸀠±

⋅ ∇
󸀠
) ℎ
𝜀,±

+ 𝐹
±

1
.

(114)

Consequently, if we denote 𝑍
0
= 𝜕
𝑡
, 𝑍
1
= 𝜕
𝑥
1

, and 𝑍
2
= 𝜕
𝑥
2

,
while 𝑍

3
= 𝜎𝜕
𝑥
3

and use estimate (108), we obtain

∑

±

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜀
∇𝑞
𝜀,±

(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

≤ 𝐶∑

±

(

2

∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝑍
𝑗
𝑈
𝜀,±

(𝜏)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+
󵄩󵄩󵄩󵄩𝐹
±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

)

≤ 𝐶∑

±

(
󵄩󵄩󵄩󵄩𝐹
±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+
𝑒
𝜏/𝛼
0

𝛼
0

2

∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝑍
𝑗
𝑈
±

0

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+
𝑒
𝜏/𝛼
0

𝛼
0

∫

𝜏

0

2

∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝑍
𝑗
𝐹
±
(𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

𝑑𝑠) .

(115)

By combining such estimate with the previous ones for 𝐼± and
𝑍
3
𝑈
𝜀,±, integrating by parts in order to simplify the double

integral, and neglecting negative terms obtained in the right-
hand side, we deduce

∑

±

󵄩󵄩󵄩󵄩𝑍3𝑈
𝜀,±

(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

≤
𝐶

𝛼
0

∫

𝑡

0

∑

±

󵄩󵄩󵄩󵄩𝑍3𝑈
𝜀,±

(𝜏)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

𝑑𝜏

+
𝐶

𝛼
0

∑

±

𝛽
±
(𝑡) ,

(116)

where

𝛽
±
(𝑡) =

󵄩󵄩󵄩󵄩𝑍3𝑈
±

0

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+ 𝑒
𝑡/𝛼
0

2

∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝑍
𝑗
𝑈
±

0

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+ ∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝐹
±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

+
󵄩󵄩󵄩󵄩𝑍3𝐹
±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

) 𝑑𝜏

+ 𝑒
𝑡/𝛼
0 ∫

𝑡

0

2

∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝑍
𝑗
𝐹
±
(𝜏)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

𝑑𝜏.

(117)
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By the Grönwall’s lemma, we get

∑

±

󵄩󵄩󵄩󵄩𝑍3𝑈
𝜀,±

(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

≤
𝐶𝑒
𝐶𝑡/𝛼
0

𝛼
0

∑

±

𝛽
±
(𝑡) . (118)

Combining (107), (108), and (118), we obtain that

∑

±

(
󵄩󵄩󵄩󵄩𝑈
𝜀,±

(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻
1

∗(Ω
±)

+
󵄩󵄩󵄩󵄩𝜕𝑡𝑈
𝜀,±

(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

)

≤
𝐶

𝛼
0

𝑒
𝐶𝑡/𝛼
0∑

±

(
󵄩󵄩󵄩󵄩𝑈
±

0

󵄩󵄩󵄩󵄩

2

𝐻
1

∗(Ω
±)

+
󵄩󵄩󵄩󵄩𝜕𝑡𝑈
±

0

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

)

+
𝐶

𝛼
0

𝑒
𝐶𝑡/𝛼
0∑

±

∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝐹
±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐻
1

∗(Ω
±)

+
󵄩󵄩󵄩󵄩𝜕𝑡𝐹
±
(𝜏)

󵄩󵄩󵄩󵄩

2

𝐿
2(Ω±)

) 𝑑𝜏.

(119)

To conclude, we need to estimate𝑓𝜀. From (87), proceeding as
in the proof of Corollary 12 and using the previous estimate,
we get

󵄩󵄩󵄩󵄩𝑢
𝜀,±

3
(𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
1(Ω±)

+
󵄩󵄩󵄩󵄩ℎ
𝜀,±

3
(𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
1(Ω±)

≤ 𝐶|||𝑈
𝜀,±

(𝑡) |||
2

1,∗;Ω
± ,

(120)

󵄩󵄩󵄩󵄩𝑓
𝜀
(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1/2
(Γ)

≤
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩
2

𝐻
1/2
(Γ)

+
𝐶

𝛼
0

𝑒
𝐶𝑡/𝛼
0∑

±

(|||𝑈
±

0
|||
2

1,∗;Ω
±+[𝐹
±
]
2

1,∗,𝑡;Ω
±) .

(121)

Adding up (119) and (121), we deduce the claim.

4.7. Conclusion. Let us denote by CP the compressible prob-
lem (49), (35), and (36) with 𝑞

𝜀,±
|
𝑡=0

≡ 0 and by IP the incom-
pressible problem (34), (35), and (36). Corollary 12 guarantees
that, for 𝜀 sufficiently small, there exists a unique solution

(𝑈
𝜀
, 𝑓
𝜀
) ∈ C

0
([0, 𝑇] ;𝐻

1

∗
(Ω)) ∩ C

1
([0, 𝑇] ; 𝐿

2
(Ω))

× C
0
([0, 𝑇] ;𝐻

1/2
(Γ))

(122)

to CP, and moreover, this solution satisfies (99), which
implies, in particular, that (𝑢

𝜀,±
, ℎ
𝜀,±

, 𝑓
𝜀
) is bounded in

(𝐻
1

∗
(Ω
±
))
2
×𝐻
1/2

(Γ), uniformly in 𝜀 and 𝑡 ∈ [0, 𝑇]. Thus, it is
possible to extract a subsequence weakly convergent, as 𝜀 →

0, to a certain (𝑢
±
, ℎ
±
, 𝑓). Now, we will show that it is possible

to find pressure terms 𝑞± (unique up to additive constants), so
that (𝑞±, 𝑢±, ℎ±, 𝑓) solves IP. Since we are considering linear
systems, the weak limit can be performed easily, with the only
exceptions of the singular term (1/𝜀)∇𝑞

𝜀,± in (46) and the
boundary condition [𝑞] = 0.

If we test (46) against a genericC∞ divergence-free vector
function 𝜑

± compactly supported in 𝑄
±

𝑇
, we observe that

1

𝜀
∫
Ω
±

∇𝑞
𝜀,±

⋅ 𝜑 = −
1

𝜀
∫
Ω
±

𝑞
𝜀,± div 𝜑

±
= 0 (123)

and hence

𝜕
𝑡
𝑢
𝜀,±

+ (𝑣̂
±
⋅ ∇) 𝑢
𝜀,±

− (𝐵̂
±

⋅ ∇) ℎ
𝜀,±

− 𝐹
±

1
= 0 (124)

in the space of solenoidal distributions defined in 𝑄
±

𝑇
, that is

to say, the left-hand side is a gradient −∇𝑄
𝜀,± in the space of

distributions. Taking the weak limit as 𝜀 → 0, we obtain

𝜕
𝑡
𝑢
±
+ (𝑣̂
±
⋅ ∇) 𝑢
±
− (𝐵̂
±

⋅ ∇) ℎ
±
− 𝐹
±

1
= −∇𝑞

± (125)

in a weak sense, where 𝑞
±
(𝑡) ∈ 𝐿

2

loc(Ω
±
) is unique up to

additive constants, and ∇𝑞
± is the weak limit of ∇𝑄

𝜀,±. Note
that∇𝑄

𝜀,± converges since it is equal to a convergent quantity;
moreover, its limit is still a gradient (by the fact that the
subspace of gradients is closed). The weak formulation reads

∑

±

∫

𝑇

0

∫
Ω
±

(𝑢
±
⋅ 𝜕
𝑡
𝜑 + (𝑣̂

󸀠±
⋅ ∇
󸀠
) 𝜑 ⋅ 𝑢

±
− (𝐵̂
󸀠±

⋅ ∇
󸀠
) 𝜑 ⋅ ℎ

±

+𝐹
±

1
⋅ 𝜑 + 𝑞

± div 𝜑) = 0

(126)

for each 𝜑 ∈ C∞
0

([0, 𝑇[ ×Ω) (space of compactly supported
functions). Now, let us consider a generic𝜑 ∈ C∞

0
(]0,𝑇[ ×Ω);

integrating by parts all terms but the ones with 𝐹
±

1
, we deduce

that

∑

±

∫

𝑇

0

∫
Ω
±

(𝜕
𝑡
𝑢
±
+(𝑣̂
󸀠±

⋅ ∇
󸀠
) 𝑢
±
−(𝐵̂
󸀠±

⋅ ∇
󸀠
) ℎ
±
+∇𝑞
±
−𝐹
±

1
) ⋅ 𝜑

= −∫

𝑇

0

∫
Γ

[𝑞] 𝜑
3

(127)

(the other boundary terms are zero because of the support of
𝜑 and the fact that the unit vectors normal to the front are
constant and appear derived). Because of (125), the left-hand
side is zero; this means that [𝑞] = 0 in 𝜔

𝑇
.

Passing to the limit 𝜀 → 0 in (99), we get

∑

±

(||| (𝑢, ℎ)
±
(𝑡) |||
2

1,∗;Ω
±+

󵄩󵄩󵄩󵄩󵄩
(𝑢
3
, ℎ
3
)
±

(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝐻
1(Ω±)

)+
󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1/2
(Γ)

≤ 𝐶𝑒
𝐶𝑡

∑

±

(||| (𝑢
0
, ℎ
0
)
±

|||
2

1,∗;Ω
± + [𝐹

±
]
2

1,∗,𝑡;Ω
±) +

󵄩󵄩󵄩󵄩𝑓0
󵄩󵄩󵄩󵄩
2

𝐻
1/2
(Γ)

.

(128)

Hence, 𝑢, ℎ ∈ 𝐿
∞

([0, 𝑇];𝐻
1

∗
(Ω)) ∩ 𝑊

1,∞
([0, 𝑇]; 𝐿

2
(Ω)), 𝑢

3
,

ℎ
3
∈ 𝐿
∞

([0, 𝑇];𝐻
1
(Ω)) and consequently (𝑢

3
, ℎ
3
)|
Γ
∈ 𝐿
∞

([0,

𝑇];𝐻
1/2

(Γ)), while𝑓 ∈ C0([0, 𝑇];𝐻
1/2

(Γ)) (continuity can be
achieved from (72)).

The regularity of∇𝑞
± can be obtained from the first equa-

tion in (34):

󵄩󵄩󵄩󵄩∇𝑞
±
(𝑡)

󵄩󵄩󵄩󵄩𝐿2(Ω±) ≤ 𝐶(
󵄩󵄩󵄩󵄩𝑢
±
(𝑡)

󵄩󵄩󵄩󵄩𝐻1
∗
(Ω
±
)
+

󵄩󵄩󵄩󵄩𝜕𝑡𝑢
±
(𝑡)

󵄩󵄩󵄩󵄩𝐿2(Ω±)

+
󵄩󵄩󵄩󵄩ℎ
±
(𝑡)

󵄩󵄩󵄩󵄩𝐻1
∗
(Ω
±
)
+

󵄩󵄩󵄩󵄩𝐹
±

1
(𝑡)

󵄩󵄩󵄩󵄩𝐿2(Ω±))

(129)
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(recall that 𝑣̂±
3
= 𝐵̂
±

3
= 0), where

󵄩󵄩󵄩󵄩𝐹
±

1
(𝑡)

󵄩󵄩󵄩󵄩𝐿2(Ω±) ≤
󵄩󵄩󵄩󵄩𝐹
±

1
(0)

󵄩󵄩󵄩󵄩𝐿2(Ω±) + ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜕𝑡𝐹
±

1
(𝜏)

󵄩󵄩󵄩󵄩𝐿2(Ω±)𝑑𝜏

≤
󵄩󵄩󵄩󵄩𝐹
±

1
(0)

󵄩󵄩󵄩󵄩𝐿2(Ω±) +
√𝑡[𝐹
±

1
]
1,∗,𝑡;Ω

±

(130)

by the Cauchy-Schwarz inequality. Using (128), we finally
conclude (39). This ends the proof of Theorem 2.
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