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The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM)
for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method
to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.

1. Introduction

Integral equations of the first kind arise in several applica-
tions. These include applications in biology, chemistry, phys-
ics, and engineering. In recent years, much work has been
carried out by researchers in mathematics and engineering in
applying and analyzing novel numerical and semi analytical
methods for obtaining solutions of integral equations of the
first kind. Among these are the homotopy analysis method
[1], operational Tau method [2], homotopy perturbation
method [3], Adomian decomposition [3], quadrature rule [4],
and automatic augmented Galerkin algorithms [5].

In this study, we develop the optimal homotopy asymp-
toticmethod (OHAM), which was proposed byMarinca et al.
[6, 7], for solving the linear Fredholm integral equations of
the first kind. This method is characterized by it is conver-
gence criteria which are more flexible than other methods.

The general form of the linear Fredholm integral equa-
tions of the first kind is

𝑓 (𝑠) = ∫
𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔 (𝑡) 𝑑𝑡, (1)

where 𝑎 and 𝑏 are constant and the functions 𝑘(𝑠, 𝑡) and 𝑓(𝑠)
are known.

It should be noted that OHAM has been applied to the
nonlinear Fredholm integral equations of the second kind by
[8].

2. Application of OHAM to
the Linear Fredholm Integral Equations of
the First Kind

In this section, we formulate the optimal homotopy asymp-
totic method (OHAM) for solving the linear Fredholm inte-
gral equations of the first kind following the procedure as
outlined in [6, 7] and other papers. Let us consider a form
of the linear Fredholm integral equation of the first kind:

𝑓 (𝑠) − ∫
𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑔 (𝑡) 𝑑𝑡 = 0. (2)

Using OHAM, we can obtain a family of equations as fol-
lows:

(1 − 𝑝) [𝐿 (𝑔 (𝑠, 𝑝)) + 𝑓 (𝑠)]

= 𝐻 (𝑝) [𝐿 (𝑔 (𝑠, 𝑝)) + 𝑓 (𝑠) + 𝑁 (𝑔 (𝑠, 𝑝))] ,
(3)

where 𝑝 ∈ [0, 1] is an embedding parameter, 𝑔(𝑠, 𝑝) is un-
known function, and𝐻(𝑝) is an (nonzero) auxiliary function
for 𝑝 ̸= 0 and𝐻(0) = 0 and given as 𝐻(𝑝) = ∑

𝑚

𝑗=1
𝑐𝑗𝑝
𝑗 where

𝑐𝑗, 𝑗 = 1, 2, . . ., are auxiliary constants, and when 𝑝 = 0 and
𝑝 = 1 it holds that

𝑔 (𝑠, 0) = 𝑔
0
(𝑠) , 𝑔 (𝑠, 1) = 𝑔 (𝑠) , (4)
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respectively. For obtaining the approximate solution, we use
Taylor’s series expansion about 𝑝 as follows:

𝑔 (𝑠, 𝑝, 𝑐𝑗) = 𝑔0 (𝑠) +
∞

∑
𝑚=1

𝑔𝑚 (𝑠, 𝑐𝑗) 𝑝
𝑚, 𝑗 = 1, 2, . . . .

(5)

If the series (5) convergence occurs when 𝑝 = 1, one has

𝑔 (𝑠, 1, 𝑐𝑗) = 𝑔0 (𝑠) +
∞

∑
𝑚=1

𝑔𝑚 (𝑠, 𝑐𝑗) , 𝑗 = 1, 2, . . . . (6)

Substituting (5) in (3) and equating the coefficients of like
powers of 𝑝, we get as follows:

𝑂(𝑝0) : 𝑔0 (𝑠) = −𝑓 (𝑠) ,

𝑂 (𝑝1) : 𝑔1 (𝑠) = −𝑐1 ∫
𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔0 (𝑡) 𝑑𝑡,

𝑂 (𝑝2) : 𝑔2 (𝑠) = (1 + 𝑐1) 𝑔1 (𝑠) − 𝑐1 ∫
𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔1 (𝑡) 𝑑𝑡

− 𝑐2 ∫
𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔0 (𝑡) 𝑑𝑡,

𝑂 (𝑝𝑖) : 𝑔𝑖 (𝑠) = (1 + 𝑐1) 𝑔𝑖−1 (𝑠) +
𝑖−1

∑
𝑗=2

𝑐𝑗𝑔𝑖−𝑗 (𝑠)

−
𝑖

∑
𝑘=1

𝑐𝑘 ∫
𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔𝑖−𝑘 (𝑡) 𝑑𝑡.

(7)

For finding the constants 𝑐1, 𝑐2, 𝑐3, . . ., we can get the result of
the𝑚th-order approximations as follows:

𝑔𝑚 (𝑠, 𝑐𝑗) = 𝑔0 (𝑠) +
𝑚

∑
𝑘=1

𝑔𝑘 (𝑠, 𝑐𝑗) , 𝑗 = 1, 2, . . . , 𝑚. (8)

If we substitute (8) into (1) we obtain the residual equation

𝑅 (𝑠, 𝑐𝑗) = 𝐿 (𝑔𝑚 (𝑠, 𝑐𝑗)) + 𝑓 (𝑠) − ∫
𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔
𝑚 (𝑡, 𝑐𝑗) 𝑑𝑡.

(9)

If 𝑅(𝑠, 𝑐𝑗) = 0, then 𝑔𝑚(𝑠, 𝑐𝑗) will be the exact solution. The
least squares method can be used to determine 𝑐1, 𝑐2, 𝑐3, . . . .
At first we consider the functional

𝐽 (𝑐𝑗) = ∫
𝑏

𝑎

𝑅2 (𝑠, 𝑐𝑗) 𝑑𝑠. (10)

By using Galerkin’s method we get the following system:

𝜕𝐽

𝜕𝑐𝑗
= 2∫
𝑏

𝑎

𝑅 (𝑠, 𝑐𝑗)
𝜕𝑅

𝜕𝑐𝑗
𝑑𝑠, (11)

and thenminimizing it to obtain the values of 𝑐1, 𝑐2, . . . , 𝑚, we
have

𝜕𝐽

𝜕𝑐1
=

𝜕𝐽

𝜕𝑐2
= ⋅ ⋅ ⋅ =

𝜕𝐽

𝜕𝑐𝑚
= 0. (12)

With these constants, the approximate solution is deter-
mined.

3. Numerical Examples and Discussion

In this section, three examples of the linear Fredholm integral
equations of the first kind were solved to show the efficiency
of the present method. Maple software with long format and
double accuracy was used to carry out the computations.

Example 1. We consider the following equation [9]:

1

2
sin (𝑠) = ∫

𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) 𝑔 (𝑡) 𝑑𝑡, (13)

for which the exact solution is𝑔(𝑠) = sin(𝑠). ApplyingOHAM
to the linear Fredholm integral equation of first kind yields

𝐿 (𝑔 (𝑠, 𝑝)) = 𝑔 (𝑠) ,

𝑁 (𝑔 (𝑠, 𝑝)) = −∫
𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) 𝑔 (𝑡) 𝑑𝑡,

𝑓 (𝑠) =
1

2
sin (𝑠)

(14)

which satisfies

(1 − 𝑝) [(𝑔0 (𝑠) + 𝑝𝑔1 (𝑠) + 𝑝2𝑔2 (𝑠) + ⋅ ⋅ ⋅ ) +
1

2
sin (𝑠)]

= (𝑝𝑐1 + 𝑝2𝑐2 + 𝑝3𝑐3 + ⋅ ⋅ ⋅ )

× [ (𝑔0 (𝑠) + 𝑝𝑔1 (𝑠) + 𝑝2𝑔2 (𝑠) + ⋅ ⋅ ⋅ ) +
1

2
sin (𝑠)

− ∫
𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) (𝑔0 (𝑡) + 𝑝𝑔1 (𝑡)

+𝑝2𝑔2 (𝑡) + ⋅ ⋅ ⋅ ) 𝑑𝑡] .

(15)

Now we use (7) to obtain a series of problems:

𝑂(𝑝0) : 𝑔0 (𝑠) = −
1

2
sin (𝑠) ,

𝑂 (𝑝1) : 𝑔1 (𝑠) = −𝑐1 ∫
𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) 𝑔0 (𝑡) 𝑑𝑡,

𝑂 (𝑝2) : 𝑔2 (𝑠) = (1 + 𝑐1) 𝑔1 (𝑠)

− 𝑐1 ∫
𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) 𝑔1 (𝑡) 𝑑𝑡

− 𝑐2 ∫
𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) 𝑔0 (𝑡) 𝑑𝑡.

(16)

Hence the solutions are

𝑂(𝑝0) : 𝑔0 (𝑠) = −
1

2
sin (𝑠) ,

𝑂 (𝑝1) : 𝑔1 (𝑠) =
1

4
𝑐1 sin (𝑠) ,

𝑂 (𝑝2) : 𝑔2 (𝑠) =
1

4
(1 + 𝑐1) 𝑐1 sin (𝑠)

−
1

8
𝑐2
1
sin (𝑠) +

1

4
𝑐2 sin (𝑠) .

(17)
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By substituting 𝑔0(𝑠), 𝑔1(𝑠), and 𝑔3(𝑠) solutions in (6), we
obtain

𝑔 (𝑠) = −
1

2
sin (𝑠) +

1

4
𝑐1 sin (𝑠)

+
1

4
(1 + 𝑐1) 𝑐1 sin (𝑠)

−
1

8
𝑐2
1
sin (𝑠) +

1

4
𝑐2 sin (𝑠) .

(18)

For the calculations of the constants 𝑐1 and 𝑐2, the use of the
technique mentioned in (8)–(12) yields

𝑐1 = 6.000000004, 𝑐2 = −24.00000002. (19)

Substituting values in (18), the final solution becomes

𝑔 (𝑠) = sin (𝑠) . (20)

This is the exact solution.

Table 1 shows some numerical results of these solutions
calculated according to the present method.

The exact solution, OHAM solution and absolute error of
this example are shown in Figure 1.

Example 2. We consider the following equation [10]:

1

4
𝑠2 = ∫

1

0

5

2
𝑠2𝑡2𝑔 (𝑡) 𝑑𝑡, (21)

for which the exact solution is 𝑔(𝑠) = (1/2)𝑠2. Applying
OHAM to the linear Fredholm integral equation of first kind
yields

𝐿 (𝑔 (𝑠, 𝑝)) = 𝑔 (𝑠) ,

𝑁 (𝑔 (𝑠, 𝑝)) = −∫
1

0

5

2
𝑠2𝑡2𝑔 (𝑡) 𝑑𝑡,

𝑓 (𝑠) =
1

4
𝑠2

(22)

which satisfies

(1 − 𝑝) [(𝑔0 (𝑠) + 𝑝𝑔1 (𝑠) + 𝑝2𝑔2 (𝑠) + ⋅ ⋅ ⋅ ) +
1

4
𝑠2]

= (𝑝𝑐1 + 𝑝2𝑐2 + 𝑝3𝑐3 + ⋅ ⋅ ⋅ )

× [ (𝑔0 (𝑠) + 𝑝𝑔1 (𝑠) + 𝑝2𝑔2 (𝑠) + ⋅ ⋅ ⋅ ) +
1

4
𝑠2

− ∫
1

0

5

2
𝑠2𝑡2 (𝑔0 (𝑡) + 𝑝𝑔1 (𝑡) + 𝑝2𝑔2 (𝑡) + ⋅ ⋅ ⋅ ) 𝑑𝑡] .

(23)

Table 1: Numerical results of Example 1.

𝑠 𝑔exact 𝑔OHAM |𝑔exact − 𝑔OHAM|

0 0 0 0
0.1 0.09983341665 0.09983341665 0
0.2 0.1986693308 0.1986693308 0
0.3 0.2955202067 0.2955202067 0
0.4 0.3894183423 0.3894183423 0
0.5 0.4794255386 0.4794255386 0
0.6 0.5646424734 0.5646424734 0
0.7 0.6442176872 0.6442176872 0
0.8 0.7173560909 0.7173560909 0
0.9 0.7833269096 0.7833269096 0
1.0 0.8414709848 0.8414709848 0

Now we use (7) to obtain a series of problems:

𝑂(𝑝0) : 𝑔0 (𝑠) = −
1

4
𝑠2,

𝑂 (𝑝1) : 𝑔1 (𝑠) = −𝑐1 ∫
1

0

5

2
𝑠2𝑡2𝑔0 (𝑡) 𝑑𝑡,

𝑂 (𝑝2) : 𝑔2 (𝑠) = (1 + 𝑐1) 𝑔
1
(𝑠)

−𝑐1 ∫
1

0

5

2
𝑠2𝑡2𝑔1 (𝑡) 𝑑𝑡−𝑐2 ∫

1

0

5

2
𝑠2𝑡2𝑔0 (𝑡) 𝑑𝑡.

(24)

Hence the solutions are

𝑂(𝑝0) : 𝑔0 (𝑠) = −
1

4
𝑠2,

𝑂 (𝑝1) : 𝑔1 (𝑠) =
1

8
𝑐1𝑠
2,

𝑂 (𝑝2) : 𝑔2 (𝑠) =
1

8
(1 + 𝑐1) 𝑐1𝑠

2 −
1

16
𝑐2
1
𝑠2 +

1

8
𝑐2𝑠
2.

(25)

By substituting 𝑔0(𝑠), 𝑔1(𝑠), and 𝑔3(𝑠) solutions in (6), we
obtain

𝑔 (𝑠) = −
1

4
𝑠2 +

1

8
𝑐1𝑠
2 +

1

8
(1 + 𝑐1) 𝑐1𝑠

2 −
1

16
𝑐2
1
𝑠2 +

1

8
𝑐2𝑠
2.

(26)

For the calculations of the constants 𝑐1and 𝑐2, the use of the
technique mentioned in (8)–(12) yields

𝑐1 = 6, 𝑐2 = −24. (27)

Substituting values in (26), the final solution becomes

𝑔 (𝑠) =
1

2
𝑠2. (28)

This is the exact solution.

Table 2 shows some numerical results of these solutions
calculated according to the present method.

The exact solution, OHAM solution and absolute error of
this example are shown in Figure 2.
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Table 2: Numerical results of Example 2.

𝑠 𝑔exact 𝑔OHAM |𝑔exact − 𝑔OHAM|

0 0 0 0
0.1 0.005 0.005 0
0.2 0.02 0.02 0
0.3 0.045 0.045 0
0.4 0.08 0.08 0
0.5 0.125 0.125 0
0.6 0.18 0.18 0
0.7 0.245 0.245 0
0.8 0.32 0.32 0
0.9 0.405 0.405 0
1.0 0.5 0.5 0

Example 3. We consider the following equation [9]:

1

2
𝑠2 = ∫

1

0

2𝑠2𝑡 𝑔 (𝑡) 𝑑𝑡, (29)

for which the exact solution is 𝑔(𝑠) = (1/2)𝑠2. Applying
OHAM to the linear Fredholm integral equation of first kind
yields

𝐿 (𝑔 (𝑠, 𝑝)) = 𝑔 (𝑠) ,

𝑁 (𝑔 (𝑠, 𝑝)) = −∫
1

0

2𝑠2𝑡 𝑔 (𝑡) 𝑑𝑡,

𝑓 (𝑠) =
1

2
𝑠2

(30)

which satisfies

(1 − 𝑝) [(𝑔0 (𝑠) + 𝑝𝑔1 (𝑠) + 𝑝2𝑔2 (𝑠) + ⋅ ⋅ ⋅ ) +
1

2
𝑠2]

= (𝑝𝑐1 + 𝑝2𝑐2 + 𝑝3𝑐3 + ⋅ ⋅ ⋅ )

× [ (𝑔0 (𝑠) + 𝑝𝑔1 (𝑠) + 𝑝2𝑔2 (𝑠) + ⋅ ⋅ ⋅ ) +
1

2
𝑠2

− ∫
1

0

2𝑠2𝑡 (𝑔0 (𝑡) + 𝑝𝑔1 (𝑡) + 𝑝2𝑔2 (𝑡) + ⋅ ⋅ ⋅ ) 𝑑𝑡] .

(31)
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Now we use (7) to obtain a series of problems:

𝑂(𝑝0) : 𝑔0 (𝑠) = −
1

2
𝑠2,

𝑂 (𝑝1) : 𝑔1 (𝑠) = −𝑐1 ∫
1

0

2𝑠2𝑡𝑔0 (𝑡) 𝑑𝑡,

𝑂 (𝑝2) : 𝑔2 (𝑠)

= (1 + 𝑐1) 𝑔1 (𝑠) − 𝑐1 ∫
1

0

2𝑠2𝑡𝑔1 (𝑡) 𝑑𝑡

− 𝑐2 ∫
1

0

2𝑠2𝑡𝑔0 (𝑡) 𝑑𝑡.

(32)

Hence the solutions are

𝑂(𝑝0) : 𝑔0 (𝑠) = −
1

2
𝑠2,

𝑂 (𝑝1) : 𝑔1 (𝑠) =
1

4
𝑐1𝑠
2,

𝑂 (𝑝2) : 𝑔2 (𝑠) =
1

4
(1 + 𝑐1) 𝑐1𝑠

2 −
1

8
𝑐2
1
𝑠2 +

1

4
𝑐2𝑠
2.

(33)

By substituting 𝑔0(𝑠), 𝑔1(𝑠), and 𝑔3(𝑠) solutions in (6), we
obtain

𝑔 (𝑠) = −
1

2
𝑠2 +

1

4
𝑐1𝑠
2 +

1

4
(1 + 𝑐1) 𝑐1𝑠

2

−
1

8
𝑐2
1
𝑠2 +

1

4
𝑐2𝑠
2.

(34)

For the calculations of the constants 𝑐1 and 𝑐2, the use of the
technique mentioned in (8)–(12) yields

𝑐1 = 6, 𝑐2 = −24. (35)

Substituting values in (34), the final solution becomes

𝑔 (𝑠) = 𝑠2. (36)

This is the exact solution.

Table 3: Numerical results of Example 3.

𝑠 𝑔exact 𝑔OHAM |𝑔exact − 𝑔OHAM|

0 0 0 0
0.1 0.01 0.01 0
0.2 0.04 0.04 0
0.3 0.09 0.09 0
0.4 0.16 0.16 0
0.5 0.25 0.25 0
0.6 0.36 0.36 0
0.7 0.49 0.49 0
0.8 0.64 0.64 0
0.9 0.81 0.81 0
1.0 1.0 1.0 0

Table 3 shows some numerical results of these solutions
calculated according to the present method.

The exact solution, OHAM solution and absolute error of
this example are shown in Figure 3.

4. Conclusions

In this paper, we presented the application of the OHAM
in solving the linear Fredholm integral equations of the first
kind. This method was tested on three different examples.
This method proved to be an accurate and efficient technique
for finding approximate solutions for the linear Fredholm
integral equations of the first kind.
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[7] N. Herişanu, V. Marinca, T. Dordea, and G. Madescu, “A
new analytical approach to nonlinear vibration of an electrical
machine,” Proceedings of the Romanian Academy. Series A, vol.
9, no. 3, pp. 229–236, 2008.

[8] M. S. Hashmi, N. Khan, and S. Iqbal, “Optimal homotopy as-
ymptoticmethod for solving nonlinear Fredholm integral equa-
tions of second kind,” Applied Mathematics and Computation,
vol. 218, no. 22, pp. 10982–10989, 2012.

[9] A. Sulaiman and I. Hassan, “Successive approximation method
(S.A.M.) for solving integral equation of the first kind with
symmetric kernel,” Journal of Education and Sciences, vol. 21, no.
4, pp. 149–159, 2008.

[10] A. J. Mohammed and J. I. Mustafa, “Construction of a new tech-
nique in Aitken extrapolation method for solving Fredholm
integral equation of the first kind with iterated kernel,” Journal
of Education and Sciences, vol. 21, no. 2, pp. 143–149, 2008.


