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The Exp-function method plays an important role in searching for analytic solutions of many nonlinear differential equations. In
this paper, we prove that the balancing procedure in the method is unnecessary when the balanced nonlinear term is a product of
the dependent variable under consideration and its derivatives. And in this case, the ansatz of the method can be simplified to be
with less parameters so as to be easy to calculate.

1. Introduction

In 2006, He and Wu firstly proposed the so-called Exp-
functionmethod to search for solitary solutions and periodic
solutions of nonlinear partial differential equations (PDE) [1].
Thismethod soon drew the attention ofmany researchers and
was successfully applied to many nonlinear problems [2–31].
Among them, it is worth mentioning that Zhu firstly applied
thismethod to difference-differential equations, which shows
that the method is also effective in this case [8, 9]. After
Zhu, Dai et al. generalized the Exp-function method to find
new exact traveling wave solutions of nonlinear PDE and
nonlinear differential-difference equations [19]. Recently, Ma
et al. extended the Exp-function method to multiple Exp-
function method for constructing multiple wave solutions
[32, 33]. He elucidated how to solve fractional differential
equations with local fractional derivatives via the fractional
complex transformation and the Exp-function method [34].

For convenience, we first introduce the Exp-function
method in brief.

1.1. Outline of the Exp-Function Method. Suppose that we
consider a (1+1)-dimensional nonlinear PDE in the form

𝐸 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑡
, 𝑢
𝑡𝑡
, . . .) = 0. (1)

Using traveling wave transformation

𝑢 = 𝑢 (𝜂) , 𝜂 = 𝑘𝑥 + 𝜔𝑡, (2)

we get a nonlinear ordinary differential equation (ODE)

𝑃 (𝑢, 𝑢
󸀠
, 𝑢
󸀠󸀠
, . . .) = 0, (3)

where the prime, as it is in the following, denotes the
derivation with respect to 𝜂.

The Exp-function method is based on the assumption
that the solutions of (3) can be expressed in the following
form:

𝑢 (𝜂) =
∑
𝑑

𝑛=−𝑐
𝑎
𝑛
exp (𝑛𝜂)

∑
𝑞

𝑛=−𝑝
𝑏
𝑛
exp (𝑛𝜂)

=
𝑎
−𝑐
exp (−𝑐𝜂) + ⋅ ⋅ ⋅ + 𝑎

𝑑
exp (𝑑𝜂)

𝑏
−𝑝

exp (−𝑝𝜂) + ⋅ ⋅ ⋅ + 𝑏
𝑞
exp (𝑞𝜂)

,

(4)

where 𝑐, 𝑑,𝑝, and 𝑞 are positive integers to be determined and
𝑎
𝑛
and 𝑏
𝑛
are constants to be specified.

Then we can express the highest order nonlinear and
linear terms in (3) in terms of (4). In the resulting terms,
determine 𝑑 and 𝑞 through balancing the highest order Exp-
function and 𝑐 and 𝑝 by balancing the lowest order one.

Substituting (4) along with the determined 𝑐, 𝑑, 𝑝, and 𝑞
into (3), we can obtain an equation for exp(𝜂). Setting all the
coefficients of the different powers of exp(𝜂) to zero leads to
a set of algebraic equations for 𝑎

𝑛
, 𝑏
𝑛
, 𝑘, and 𝜔. Determine

values of 𝑎
𝑛
, 𝑏
𝑛
, 𝑘, and 𝜔 by solving this algebraic equations

and put these values into (4). Thus we may obtain nontrivial
exact traveling wave solutions of (1).
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1.2. An Open Problem. Among the Exp-functionmethod, the
balancing computation is laborious but prior. However, we
observe that the balancing procedure of the Exp-function
method in studied examples always leads to the same case
𝑐 = 𝑝 and 𝑑 = 𝑞 [21]. This fact has partly been proved in
[16, 22]. In [16], Ali has proved it by assuming the highest
order linear and nonlinear terms as 𝑢(𝑛) and 𝑢𝑟𝑢(𝑠) (𝑠 < 𝑛),
respectively. In [22], making use of the same approach as was
done by Ebaid proved the fact for nonlinear terms in the
form 𝑢

𝛾 (𝛾 ⩾ 2), 𝑢(𝑠)𝑢𝑘 (𝑠, 𝑘 ⩾ 1), [𝑢(𝑠)]Ω (𝑠 ⩾ 1, Ω ⩾ 2),
and [𝑢(𝑠)]Ω𝑢𝜆 (𝑠, Ω, 𝜆 ⩾ 1), respectively, along with linear
term 𝑢

(𝑟)
(𝑟 ⩾ 1). Ebaid claimed in the abstract and section

“Conclusions” of his article that the case 𝑐 = 𝑝 and 𝑑 = 𝑞 is
the only relation that “can be obtained through applying the
Exp-function ansatz for all possible cases of nonlinearODEs.”

“However, one cannot construct a general form for
the highest order nonlinear term because there are many
possibilities other than the ones considered” [21]; Aslan
and Marinakis concluded that these authors just took some
special cases of the nonlinear term into account and hence the
problem still remained open. In this paper, wewill construct a
special case to show that Ebaid’s claim is not true; namely, the
case 𝑐 = 𝑝 and 𝑑 = 𝑞 is not the only relation for some special
differential equations and hence the problem is still open.

In what follows, wewill discuss the relations of 𝑐, 𝑑,𝑝, and
𝑞 in a more effective and concise way.

2. Main Result

2.1. Some Terminology. To begin with, we recall some termi-
nology in [35].

A monomial in a collection of variables 𝑥
1
, . . . , 𝑥

𝑛
is a

product

𝑥
𝛼
1

1
𝑥
𝛼
2

2
. . . 𝑥
𝛼
𝑛

𝑛
, (5)

where the 𝛼
𝑖
are nonnegative integers.

The total degree of (5) is the sum of the exponents: 𝛼
1
+

⋅ ⋅ ⋅ + 𝛼
𝑛
.

A polynomial is said to be homogeneous if all the
monomials appearing in it with nonzero coefficients have the
same total degree.

For instance, 𝑢2𝑢󸀠𝑢󸀠󸀠3 is a product of 𝑢 and its derivatives
𝑢
󸀠 and 𝑢

󸀠󸀠, and its total degree is 6. 𝑢2 + 𝑢
󸀠2
+ 𝑢𝑢
󸀠󸀠 is

homogeneous.

2.2. Two Introducing Ansatz Function. For convenience, we
assume V(𝜂) is expressed in the form

V (𝜂) =
∑
𝑑
1

𝑛=−𝑐
1

𝑘
𝑛
exp (𝑛𝜂)

∑
𝑞
1

𝑛=−𝑝
1

𝑙
𝑛
exp (𝑛𝜂)

=

𝑘
−𝑐
1

exp (−𝑐
1
𝜂) + ⋅ ⋅ ⋅ + 𝑘

𝑑
1

exp (𝑑
1
𝜂)

𝑙
−𝑝
1

exp (−𝑝
1
𝜂) + ⋅ ⋅ ⋅ + 𝑙

𝑞
1

exp (𝑞
1
𝜂)
,

(6)

where 𝑐
1
, 𝑑
1
, 𝑝
1
, and 𝑞

1
are positive integers to be determined

and 𝑘
𝑛
and 𝑙
𝑛
are constants to be specified.

The following three formulas will be used in this section:

𝑢
󸀠
(𝜂)

=

(𝑝 − 𝑐) 𝑎
−𝑐
𝑏
−𝑝

exp (− (𝑐 + 𝑝) 𝜂) + ⋅ ⋅ ⋅ + (𝑑 − 𝑞) 𝑎
𝑑
𝑏
𝑞
exp ((𝑑 + 𝑞) 𝜂)

𝑏
2

−𝑝
exp (−2𝑝𝜂) + ⋅ ⋅ ⋅ + 𝑏2

𝑞
exp (2𝑞𝜂)

,

(7)

𝑢 (𝜂) ⋅ V (𝜂)

=

𝑎
−𝑐
𝑘
−𝑐
1

exp (− (𝑐 + 𝑐
1
) 𝜂) + ⋅ ⋅ ⋅ + 𝑎

𝑑
𝑘
𝑑
1

exp ((𝑑 + 𝑑
1
) 𝜂)

𝑏
−𝑝
𝑙
−𝑝
1

exp (− (𝑝 + 𝑝
1
) 𝜂) + ⋅ ⋅ ⋅ + 𝑏

𝑞
𝑙
𝑞
1

exp ((𝑞 + 𝑞
1
) 𝜂)

,

(8)

𝑢 (𝜂)

V (𝜂)

=

𝑎
−𝑐
𝑙
−𝑝
1

exp (− (𝑐 + 𝑝
1
) 𝜂) + ⋅ ⋅ ⋅ + 𝑎

𝑑
𝑙
𝑞
1

exp ((𝑑 + 𝑞
1
) 𝜂)

𝑏
−𝑝
𝑘
−𝑐
1

exp (− (𝑝 + 𝑐
1
) 𝜂) + ⋅ ⋅ ⋅ + 𝑏

𝑞
𝑘
𝑑
1

exp ((𝑞 + 𝑑
1
) 𝜂)

.

(9)

Before presenting our definitions, we recall an important
fact that the constants 𝑎

−𝑐
, 𝑎
𝑑
, 𝑏
−𝑝
, and 𝑏

𝑞
in the ansatz of

(4) can be assumed to be nonzero during the process of
balancing the linear term of highest order with the highest
order nonlinear term of certain ODE, and so do the constants
𝑘
−𝑐
1

, 𝑘
𝑑
, 𝑙
−𝑝
1

, and 𝑙
𝑞
in ansatz (6). Hence, in this paper, we

assume that all above eight constants are nonzero.
Therefore, for ansatz (4), we can define the ansatz func-

tions 𝐿(⋅) and 𝑅(⋅) as follows:

𝐿 (𝑢) = 𝐿(
𝑎
−𝑐
exp (−𝑐𝜂) + ⋅ ⋅ ⋅ + 𝑎

𝑑
exp (𝑑𝜂)

𝑏
−𝑝

exp (−𝑝𝜂) + ⋅ ⋅ ⋅ + 𝑏
𝑞
exp (𝑞𝜂)

)

= −𝑐 − (−𝑝) = 𝑝 − 𝑐,

𝑅 (𝑢) = 𝑅(
𝑎
−𝑐
exp (−𝑐𝜂) + ⋅ ⋅ ⋅ + 𝑎

𝑑
exp (𝑑𝜂)

𝑏
−𝑝

exp (−𝑝𝜂) + ⋅ ⋅ ⋅ + 𝑏
𝑞
exp (𝑞𝜂)

) = 𝑑 − 𝑞.

(10)

In particular, we define 𝐿(𝐶) = 𝑅(𝐶) = 0 for arbitrary con-
stant 𝐶.

For example, we have

𝐿(
exp (−𝜂) + exp (2𝜂)
exp (−2𝜂) + exp (2𝜂)

) = 1,

𝑅(
exp (−𝜂) + exp (2𝜂)
exp (−2𝜂) + exp (2𝜂)

) = 0.

(11)

According to the definitions, we can find that in ansatz (4) 𝑐 =
𝑝 equals 𝐿(𝑢) = 0 and 𝑑 = 𝑞 equals 𝑅(𝑢) = 0. Therefore, the
open problem for ansatz (4) is equal to whether the relations
𝐿(𝑢) = 0 and 𝐿(𝑢) = 0 hold.



Abstract and Applied Analysis 3

2.3. Properties of the Ansatz Functions. Assuming 𝑐 ̸= 𝑝, 𝑑 ̸= 𝑞,
𝑐
1
̸= 𝑝
1
, and 𝑑

1
̸= 𝑞
1
in ansatz (4) and (6), from (7), we obtain

𝐿 (𝑢
󸀠
) = 2𝑝 − (𝑐 + 𝑝) = 𝑝 − 𝑐 = 𝐿 (𝑢) ,

𝑅 (𝑢
󸀠
) = (𝑑 + 𝑞) − 2𝑞 = 𝑑 − 𝑞 = 𝑅 (𝑢) .

(12)

So we have

𝐿 (𝑢) = 𝐿 (𝑢
󸀠
) = 𝐿 (𝑢

󸀠󸀠
) = ⋅ ⋅ ⋅ = 𝐿 (𝑢

(𝑛)
) ,

𝑅 (𝑢) = 𝑅 (𝑢
󸀠
) = ⋅ ⋅ ⋅ = 𝑅 (𝑢

(𝑛)
) ,

(13)

for arbitrary nonnegative integer 𝑛.
And from (8) and (9), we have

𝐿 (𝑢 ⋅ 𝜐) = (𝑝 + 𝑝
1
) − (𝑐 + 𝑐

1
)

= (𝑝 − 𝑐) + (𝑝
1
− 𝑐
1
)

= 𝐿 (𝑢) + 𝐿 (𝜐) ,

𝑅 (𝑢 ⋅ 𝜐) = (𝑑 + 𝑑
1
) − (𝑞 + 𝑞

1
)

= (𝑑 − 𝑞) + (𝑑
1
− 𝑞
1
)

= 𝑅 (𝑢) + 𝑅 (𝜐) ,

𝐿 (
𝑢

𝜐
) = (𝑝 + 𝑐

1
) − (𝑐 + 𝑝

1
)

= (𝑝 − 𝑐) − (𝑝
1
− 𝑐
1
)

= 𝐿 (𝑢) − 𝐿 (𝜐) ,

𝑅 (
𝑢

𝜐
) = (𝑑 + 𝑞

1
) − (𝑞 + 𝑑

1
)

= (𝑑 − 𝑞) − (𝑑
1
− 𝑞
1
)

= 𝑅 (𝑢) − 𝑅 (𝜐) .

(14)

Hence, we have

𝐿 (𝑢
𝜅
) = 𝜅 ⋅ 𝐿 (𝑢) , 𝑅 (𝑢

𝜅
) = 𝜅 ⋅ 𝑅 (𝑢) , (15)

for any integer 𝜅.

2.4. Theorem and Proof. In this section, we assume the
balanced nonlinear term is a product of dependent variable
𝑢 and its derivatives; namely,

𝑢
𝑖
1(𝑢
󸀠
)
𝑖
2

⋅ ⋅ ⋅ (𝑢
(𝑚)
)
𝑖
𝑚

, (16)

where 𝑖
𝑗
(𝑗 = 1, . . . , 𝑚) are nonnegative integers.The fact that

the product (16) is a nonlinear term implies 𝑖
1
+𝑖
2
+⋅ ⋅ ⋅+𝑖

𝑚
⩾ 2.

In other words, the total degree of (16) is at least 2.

Theorem 1. Suppose that the balanced nonlinear term in (3)
is a product of 𝑢 and its derivatives in the form of (16) and the
balancing linear term is 𝑢(𝑠), where 𝑠 is a nonnegative integer;
then the Exp-function ansatz (4) admits 𝐿(𝑢) = 0 and 𝑅(𝑢) =
0.

Proof. By contradiction, suppose that 𝐿(𝑢) ̸= 0. Then we have

𝐿 (𝑢
𝑖
1(𝑢
󸀠
)
𝑖
2

⋅ ⋅ ⋅ (𝑢
(𝑚)
)
𝑖
𝑚

)

= 𝐿 (𝑢
𝑖
1) + 𝐿 ((𝑢

󸀠
)
𝑖
2

) + ⋅ ⋅ ⋅ + 𝐿 ((𝑢
(𝑚)
)
𝑖
𝑚

)

= 𝑖
1
⋅ 𝐿 (𝑢) + 𝑖

2
⋅ 𝐿 (𝑢
󸀠
) + ⋅ ⋅ ⋅ + 𝑖

𝑚
⋅ 𝐿 (𝑢
(𝑚)
)

= 𝑖
1
⋅ 𝐿 (𝑢) + 𝑖

2
⋅ 𝐿 (𝑢) + ⋅ ⋅ ⋅ + 𝑖

𝑚
⋅ 𝐿 (𝑢)

= (𝑖
1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
) ⋅ 𝐿 (𝑢) ,

𝐿 (𝑢
(𝑠)
) = 𝐿 (𝑢) .

(17)

Balancing linear and nonlinear terms requires

𝐿 (𝑢
𝑖
1(𝑢
󸀠
)
i
2

. . . (𝑢
(𝑚)
)
𝑖
𝑚

) = 𝐿 (𝑢
(𝑠)
) . (18)

So we obtain
(𝑖
1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
− 1) ⋅ 𝐿 (𝑢) = 0. (19)

Since 𝑖
1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
− 1 ̸= 0, we arrive at the result 𝐿(𝑢) = 0.

This is a contradiction.
The result 𝑅(𝑢) = 0 can be obtained in a similar way; here

we omit the details.

Remark. Since our forms of the linear and nonlinear terms
are in a more general setting, Theorem 1 covers the results
presented by Ali and Ebaid, respectively.

2.5. A Simplification for the Exp-FunctionMethod. According
to Theorem 1, if the balanced nonlinear term is a product,
ansatz (4) can be reduced to the following equivalent form:

𝑢 =
𝛼
0
+ 𝛼
1
exp (𝜂) + ⋅ ⋅ ⋅ + 𝛼

𝜏
exp (𝜏𝜂)

1 + 𝛽
1
exp (𝜂) + ⋅ ⋅ ⋅ + 𝛽

𝜏
exp (𝜏𝜂)

, (20)

where 𝜏 is a free positive integer with 𝜏 ⩾ 2 and 𝛼
𝑖
and

𝛽
𝑖
are constants to be specified. Ansatz (20) is concise and

easy to calculate and makes the Exp-function method more
straightforward.

For example, Naher et al. applied the Exp-function
method to constructing the traveling wave solutions of
the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev
equation in the form [25]

𝑢
𝑡
+ 𝛼𝑢
2
𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

+ 𝑢
𝑥𝑦𝑦

+ 𝑢
𝑥𝑧𝑧

= 0. (21)
The traveling wave transformation

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢 (𝜂) , 𝜂 = 𝑥 + 𝑦 + 𝑧 − 𝑉𝑡 (22)
carries (21) into an ODE

−𝑉𝑢
󸀠
+ 𝛼𝑢
2
𝑢
󸀠
+ 3𝑢
󸀠󸀠󸀠
= 0. (23)

Since the nonlinear term 𝑢
2
𝑢
󸀠 is a product of 𝑢 and 𝑢󸀠, we can

immediately assume ansatz (4) in the form

𝑢 =
𝛼
0
+ 𝛼
1
exp (𝜂) + 𝛼

2
exp (2𝜂)

1 + 𝛽
1
exp (𝜂) + 𝛽

2
exp (2𝜂)

, (24)

which is equivalent to the case 𝑐 = 𝑝 = 1 and 𝑑 = 𝑞 = 1 and
in accord with Naher’s (namely, (3.8) in [25]).
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3. A Counter-Example

In [22], Ebaid claimed in his abstract that the case 𝑐 = 𝑝

and 𝑑 = 𝑞 was the only relation that could be obtained by
applying this method to any nonlinear ODE. In this section,
we construct a counter-example to show that the case 𝑐 = 𝑝

and 𝑑 = 𝑞 is not the only relation. In fact, the claim does not
applied to each nonlinear homogeneous ODE.

For example, we can create the following ODE:

𝑢
2
+ 𝑢
󸀠2
+ 𝑢𝑢
󸀠󸀠
= 0, (25)

which can be rewritten as

𝑢 +
𝑢
󸀠2

𝑢
+ 𝑢
󸀠󸀠
= 0. (26)

We have

𝐿(
𝑢
󸀠2

𝑢
) = 𝐿 (𝑢) , 𝐿 (𝑢

󸀠󸀠
) = 𝐿 (𝑢) ,

𝑅(
𝑢
󸀠2

𝑢
) = 𝑅 (𝑢) , 𝑅 (𝑢

󸀠󸀠
) = 𝑅 (𝑢) .

(27)

From (27), the relations 𝐿(𝑢󸀠2/𝑢) = 𝐿(𝑢
󸀠󸀠
) and 𝑅(𝑢󸀠2/𝑢) =

𝑅(𝑢
󸀠󸀠
) hold automatically. Hence by balancing nonlinear term

𝑢
󸀠2
/𝑢 and linear term 𝑢

󸀠󸀠, we cannot determine the relations
of 𝑐, 𝑑, 𝑝, and 𝑞. That is to say, all of them are free constants.
Hence it is possible that the relation 𝑐 ̸= 𝑝 and 𝑑 ̸= 𝑞 holds. In
other words, the relation 𝑐 = 𝑝 and 𝑑 = 𝑞 is not all-inclusive.

4. Conclusion

In summary, we present an entire novel approach to prove
that the balancing procedure in Exp-function method is
unnecessary when the balanced nonlinear term is a product
of the dependent variable under consideration and its deriva-
tives. Our results cover the results presented byAli and Ebaid.
We believe that our work can serve as an answer to the open
problem proposed by Aslan et al.
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