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We investigate the initial value problem for a class of fractional evolution equations in a
Banach space. Under some monotone conditions and noncompactness measure conditions of
the nonlinearity, the well-known monotone iterative technique is then extended for fractional
evolution equations which provides computable monotone sequences that converge to the
extremal solutions in a sector generated by upper and lower solutions. An example to illustrate
the applications of the main results is given.

1. Introduction

In this paper, we use the monotone iterative technique to investigate the existence and
uniqueness of mild solutions of the fractional evolution equation in an ordered Banach space
X,

Du(t) + Au(t) = f(t,u(t)), tel, (L1)
u(0) = xg € X, '
where D* is the Caputo fractional derivative of order 0 < « < 1,1 = [0,T], A : D(A) C
X — X is a linear closed densely defined operator, —A is the infinitesimal generator of an
analytic semigroup of uniformly bounded linear operators T'(t) (t > 0),and f : I x X — X is
continuous.

The origin of fractional calculus (i.e., calculus of integrals and derivatives of any
arbitrary real or complex order) goes back to Newton and Leibnitz in the seventieth century.
We observe that the fractional order can be complex in viewpoint of pure mathematics,
and there is much interest in developing the theoretical analysis and numerical methods
to fractional equations, because they have recently proved to be valuable in various fields
such as physics, chemistry, aerodynamics, viscoelasticity, porous media, electrodynamics
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of complex medium, electrochemistry, control, and electromagnetic. For instance, fractional
calculus concepts have been used in the modeling of transmission lines [1], neurons [2],
viscoelastic materials [3], and electrical capacitors [4-6]. References [5, 6] used modified
Riemann-Liouville fractional derivatives (Jumarie’s fractional derivatives) and proposed the
method of fractional complex transform to find exact solutions which are much needed in
engineering applications. Other examples from fractional-order dynamics can be found in
[7, 8] and the references therein.

Fractional evolution equations are evolution equations where the integer derivative
with respect to time is replaced by a derivative of any order. In recent years, fractional
evolution equations have attracted increasing attention, see [9-23]. A strong motivation for
investigating the Cauchy problem (1.1) comes from physics. For example, fractional diffusion
equations are abstract partial differential equations that involve fractional derivatives in
space and time. The main physical purpose for investigating these type of equations is to
describe phenomena of anomalous diffusion appearing in transport processes and disordered
systems. The time fractional diffusion equation is obtained from the standard diffusion
equation by replacing the first-order time derivative with a fractional derivative of order
a € (0,1), namely,

ofu(y,t) = Au(y,t), t>0, yER, (1.2)

where A may be linear fractional partial differential operator. For fractional diffusion
equations, we can see [24-26] and the references therein.

It is well known that the method of monotone iterative technique has been proved to
be an effective and a flexible mechanism. It yields monotone sequences of lower and upper
approximate solutions that converge to the minimal and maximal solutions between the
lower and upper solutions. Early on, Du and Lakshmikantham [27] established a monotone
iterative method for an initial value problem for ordinary differential equation. Later on,
many papers used the monotone iterative technique to establish existence and comparison
results for nonlinear problems. For evolution equations of integer order (a = 1), Li [28-32]
and Yang [33] used this method, in which positive Cyp-semigroup plays an important role.
Recently, there have been some papers which deal with the existence of the solutions of initial
value problems or boundary value problems for fractional ordinary differential equations by
using this method, see [34—43].

However, when many partial differential equations involving time-variable ¢ turn to
evolution equations in Banach spaces, they always generate an unbounded closed operator
term A, such as (1.2). A is corresponding to linear partial differential operator with certain
boundary conditions. In this case, the results in [34-43] are not suitable. To the best of the
authors” knowledge, no results yet exist for the fractional evolution equations involving a
closed operator term by using the monotone iterative technique. The approach via fractional
differential inequalities is clearly better suited as in the case of classical results of differential
equations, and therefore this paper choose to proceed in that setup.

If —A is the infinitesimal generator of an analytic semigroup in a Banach space, then
—(A + gI) generates a uniformly bounded analytic semigroup for g > 0 large enough. This
allows us to reduce the general case in which —A is the infinitesimal generator of an analytic
semigroup to the case in which the semigroup is uniformly bounded. Hence, for convenience,
throughout this paper, we suppose that —A is the infinitesimal generator of an analytic
semigroup of uniformly bounded linear operators T(t) (t > 0).
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Our contribution in this work is to establish the monotone iterative technique for the
fractional evolution (1.1). Under some monotone conditions and noncompactness measure
conditions of nonlinearity f, which are analogous to those in Li and liu [44], Li [28-32], Chen
and li [45], Chen [46], and Yang [33, 47], we obtain results on the existence and uniqueness of
mild solutions of the problem (1.1). In this paper, positive semigroup also plays an important
role. At last, to illustrate our main results, we examine sufficient conditions for the main
results to a fractional partial differential diffusion equation.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper.

Definition 2.1 (see [7]). The Riemann-Liouville fractional integral of order a > 0 with the
lower limit zero, of function f € L;(R*), is defined as

1 (! -
Vﬂﬂ=ﬂ5LU—$“ﬂ®%, 2.1)

where I'(+) is the Euler gamma function.

Definition 2.2 (see [7]). The Caputo fractional derivative of order a > 0 with the lower limit
zero,n—1 < a < n, is defined as

Def(t) = mf( §)"LF0) (), (22)

where the function f(t) has absolutely continuous derivatives up to ordern - 1. If 0 < a < 1,
then

Df(t) = (2.3)

F(l a) J‘ (t—s)

If f is an abstract function with values in X, then the integrals and derivatives which appear
in (2.1) and (2.2) are taken in Bochner's sense.

Proposition 2.3. For a, > 0 and f as a suitable function (for instance, [7]), one has
(i) I*IPf () = TP £ (1)

(ii) IIP £ (£) = IPT°£ (1)
(iii) I*(f () + g()) = I f(t) + I"g(t)
(iv) I*D*f(t) = f(t) - f(0), O<a<1
(v) DUIf(E) = f(1)
(vi) D*DFf(t) # D**F £ (1)

(vii) D*DPf(t) # DPD*f (¢),

(viii) D*C =0, C is a constant.
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We observe from the above that the Caputo fractional differential operators possess
neither semigroup nor commutative properties, which are inherent to the derivatives on
integer order. For basic facts about fractional integrals and fractional derivatives, one can
refer to the books [7, 48-50].

Let X be an ordered Banach space with norm || - || and partial order <, whose positive
cone P = {y € X | y > 8} (0 is the zero element of X) is normal with normal constant N.
Let C(I, X) be the Banach space of all continuous X-value functions on interval I with norm
llullc = maxser||u(t)]]. Foru,v € C(I,X), u <v & u(t) <ov(t), forall t € I. Forv,w € C(I, X),
denote the ordered interval [v,w] = {u € C(I,X) | v £ u < w} and [v(t), w(t)] = {y € X |
o(t) <y <w(t)}, t € I.Set C*I,X) = {u € C(I,X) | D*u exists and D*u € C(I, X)}. By Xj,
we denote the Banach space D(A) with the graphnorm || - || = || - || + [|A - ||. We note that —A
is the infinitesimal generator of a uniformly bounded analytic semigroup T(t) (¢t > 0). This
means that there exists M > 1 such that

T <M, t>0. (2.4)

Definition 2.4. 1f vy € C*°(I, X) N C(I, X;) and satisfies

D%y (t) + Avg(t) < f(t,vo(t), tel, vo(0) < xo, (2.5)

then vy is called a lower solution of the problem (1.1); if all inequalities of (2.5) are inverse,
we call it an upper solution of problem (1.1).

Lemma 2.5 (see [12, 19, 20]). If h satisfies a uniform Hoélder condition, with exponent p € (0,1],
then the unique solution of the Cauchy problem

Du(t) + Au(t) = h(t), tel,

u(0) =xp e X (2.6)
is given by
t
u(t) = U(t)xg + f (t— s)“_lV(t —s)h(s)ds, (2.7)
0
where
Uft) = J‘OO Ca(0)T(t0)d0, Vit)y=a J‘Oo 0¢.(0)T (t70)d6, (2.8)
0 0
a(8) = 2070/, (617°), 29)
pa(0) = %i(—n"—leﬂﬂw sin(nra), 6 € (0,00), (2.10)
n=0 :

¢ (0) is a probability density function defined on (0, o).
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Remark 2.6 (see [19,20,22]). $a(0) 20, 6 € (0,0), [;°¢a(0)d0 =1, [°02,(0)d6 = 1/T(1+a).

Definition 2.7. By the mild solution of the Cauchy problem (2.6), we mean the function u €
C(I, X) satistying the integral equation

u(t) =U(t)xo + J; (t—s)* 'V (t - s)h(s)ds, (2.11)

where U (t) and V() are given by (2.8) and (2.9), respectively.

Definition 2.8. An operator family S(t) : X — X (t > 0) in X is called to be positive if for any
u € P and t > 0 such that S(t)u > 6.

From Definition 2.8, if T'(t) (¢t > 0) is a positive semigroup generated by -A, h > 0,
xo > 0, then the mild solution u € C(I, X) of (2.6) satisfies u > 6. For positive semigroups,
one can refer to [28-32].

Now, we recall some properties of the measure of noncompactness will be used later.
Let pu(-) denote the Kuratowski measure of noncompactness of the bounded set. For the
details of the definition and properties of the measure of noncompactness, see [51]. For any
B c C(I,X)and t € I, set B(t) = {u(t) | u € B}. If B is bounded in C(I, X), then B(t) is
bounded in X, and pu(B(t)) < u(B).

Lemma 2.9 (see [52]). Let B = {u,} c C(I,X) (n=1,2,...) be a bounded and countable set, then
u(B(t)) is Lebesgue integral on I,

;({L up(H)dt | n = 12}) < ZJIy(B(t))dt. (2.12)

In order to prove our results, one also needs a generalized Gronwall inequality for fractional
differential equation.

Lemma 2.10 (see [53]). Suppose that b > 0, p > 0, and a(t) is a nonnegative function locally
integrable on 0 < t < T (some T < +oo), and suppose that u(t) is nonnegative and locally integrable
on 0 <t <T with

u(t) <a(t)+b J‘t (t- s)ﬂ_lu(s)ds (2.13)
0
on this interval, then
u(t) < a(t) + ft [i%(t - s)”ﬁ-la(s)]ds, 0<t<T (2.14)
0] n=1

3. Main Results

Theorem 3.1. Let X be an ordered Banach space, whose positive cone P is normal with normal
constant N. Assume that T(t) (t > 0) is positive, the Cauchy problem (1.1) has a lower solution
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vy € C(I, X) and an upper solution wy € C(I, X) with vy < wy, and the following conditions are
satisfied.

(H1) There exists a constant C > 0 such that
f(tr x2) - f(t/ xl) 2 _C(xZ - xl)/ (31)

forany t € I, and vy(t) < x1 < xp < wy(t), that is, f(t,x) + Cx is increasing in x for
x € [vo(£), wo(H)].

(Hy) There exists a constant L > 0 such that
u({f(t,xa)}) < Lu({xu)), (3.2)

forany t € I, and increasing or decreasing monotonic sequences {x,} C [vo(t), wo(t)],

then the Cauchy problem (1.1) has the minimal and maximal mild solutions between vy and wy, which
can be obtained by a monotone iterative procedure starting from vy and wy, respectively.

Proof. It is easy to see that —(A + CI) generates an analytic semigroup S(t) = e “'T(¢),
and S(t) (t > 0) is positive. Let ®(t) = [;7¢.(0)S(t°0)d6, ¥(t) = a [;° 02.(0)S(t*0)d6. By
Remark 2.6, ®(t) (t > 0) and ¥(t) (t > 0) are positive. By (2.4) and Remark 2.6, we have that

a
Ia+1)

[P <M, [[FD < M= M, t20. (3.3)

Let D = [vg, wy], we define a mapping Q : D — C(I, X) by
t
Qu(t) = D(t)xg + f (t—s) " "W(t—s)[f(s,u(s)) + Cu(s)]ds, tel (3.4)
0
By Lemma 2.5 and Definition 2.7, u € D is a mild solution of the problem (1.1) if and only if
u = Qu. (3.5)

For uy,u; € D and u; < up, from the positivity of operators @(t) and ¥(t), and (H;), we have
that

Qu1 S Quz. (36)
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Now, we show that vy < Quy, Qwy < wy. Let D*vy(t) + Avg(t) + Cop(t) = o(t), by
Definition 2.4, Lemma 2.5, and the positivity of operators @(t) and ¥(t), we have that

vo(t) = D(t)vy(0) + f; (t— )" 'W(t - s)o(s)ds

< O(H)xg + ft (t—s)""W(t - s)[f(s,00(s)) + Cvo(s)]ds (37)
0

=Quo(t), tel,

namely, vy < Quyp. Similarly, we can show that Qwy < wy. For u € D, in view of (3.6), then
v £ Quy < Qu £ Quwp < wy. Thus, Q : D — D is an increasing monotonic operator. We can
now define the sequences

Uy =Quy1, wy=Qw,q, n=12,..., (3.8)

and it follows from (3.6) that

<< v, < <Lw, << wp <wy. (3.9)

Let B = {v,} (n=1,2,...) and By = {v,-1} (n =1,2,...). It follows from By = B U {vy} that
u(B(t)) = u(Bo(t)) for t € I. Let

o(t) = u(B(t)) = u(Bo(t)), tel (3.10)

Fort € I, from (H;), (3.3), (3.4), (3.8), (3.10), Lemma 2.9, and the positivity of operator ¥(t),
we have that

p(t) = u(B(t)) = p(QBo(t))

= y<{f (t—8) " "W(t-8)[f(5,0-1(5)) + Cvn1(s)]ds | n = 1,2,...})
0
t
: 2.[0”<{(t =5)" (= 9)[f (5,001 () + Coua(s)] [ n=1,2,...} )ds (311)
<2y [ (15" L+ Couto)ds

=2M;(L +C) f t (t—s)" " o(s)ds.
0

By (3.11) and Lemma 2.10, we obtain that ¢(t) = 0 on I. This means that v,(t) (n=1,2,...) is
precompact in X for every t € I. So, v, (t) has a convergent subsequence in X. In view of (3.9),
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we can easily prove that v, (t) itself is convergent in X. That is, there exists u(t) € X such that
vn(t) — u(t)asn — oo foreveryt € I. By (3.4) and (3.8), for any t € I, we have that

t
vp(t) = O()xg + j (t—8)" " W(t - 5)[f(5,0p-1(5)) + Cvn1(s)] ds. (3.12)
0
Letn — oo, then by Lebesgue-dominated convergence theorem, for any ¢ € I, we have that
t
u(t) = d(t)xo + ’[ (t—s)""W(t-s) [f(s,u(s)) + Cu(s)]ds, (3.13)
0

and u € C(I, X), then u = Qu. Similarly, we can prove that there exists u € C(I, X) such that
u = Qu. By (3.6),if u € D, and u is a fixed point of Q, then v1 = Quy < Qu = u < Qwy = wy.
By induction, v, < u < w,. By (3.9) and taking the limit as n — oo, we conclude that
vo < u < u <u < wp. That means that u, u are the minimal and maximal fixed points of Q
on [vg, wy], respectively. By (3.5), they are the minimal and maximal mild solutions of the
Cauchy problem (1.1) on [vg, wy], respectively. O

Remark 3.2. Theorem 3.1 extends [37, Theorem 2.1]. Even if A = 0 and X = R, our results are
also new.

Corollary 3.3. Let X be an ordered Banach space, whose positive cone P is reqular. Assume that
T(t) (t > 0) is positive, the Cauchy problem (1.1) has a lower solution vy € C(I,X) and an upper
solution wy € C(I, X) with vy < wy, and (Hy) holds, then the Cauchy problem (1.1) has the minimal
and maximal mild solutions between vy and wy, which can be obtained by a monotone iterative
procedure starting from vy and wy, respectively.

Proof. Since (H;) is satisfied, then (3.9) holds. In regular positive cone P, any monotonic
and ordered-bounded sequence is convergent, then there exist u € C(I,E), u € C(I,E), and
limy, —, v, = u, lim,,_, ,w, = u. Then by the proof of Theorem 3.1, the proof is then complete.

O

Corollary 3.4. Let X be an ordered and weakly sequentially complete Banach space, whose positive
cone P is normal with normal constant N. Assume that T(t) (t > 0) is positive, the Cauchy problem
(1.1) has a lower solution vy € C(I, X) and an upper solution wy € C(I, X) with vy < wy, and (Hy)
holds, then the Cauchy problem (1.1) has the minimal and maximal mild solutions between vy and
wy, which can be obtained by a monotone iterative procedure starting from vy and wy, respectively.

Proof. Since X is an ordered and weakly sequentially complete Banach space, then the
assumption (H;) holds. In fact, by [54, Theorem 2.2], any monotonic and ordered bounded
sequence is precompact. Let x, be an increasing or decreasing sequence. By (H;), { f(t, x,,) +
Cx,} is a monotonic and ordered bounded sequence. Then, by the properties of the measure
of noncompactness, we have

n({f & x)}) < u({f(t,x0) + Cxn}) + u({Cxn}) = 0. (3.14)

So, (H3) holds. By Theorem 3.1, the proof is then complete. O
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Theorem 3.5. Let X be an ordered Banach space, whose positive cone P is normal with normal
constant N. Assume that T(t) (t > 0) is positive, the Cauchy problem (1.1) has a lower solution
vy € C(I,X) and an upper solution wy € C(I,X) with vy < wy, (Hi) holds, and the following
condition is satisfied:

(H3) there is constant S > 0 such that
Ft,x2) = f(t,21) < S(x2 - x1), (3.15)

forany t € I, vp(t) < x1 < xp < wplt).

Then the Cauchy problem (1.1) has the unique mild solution between vy and wy, which can be obtained
by a monotone iterative procedure starting from vy or wy.

Proof. We can find that (H;) and (H3) imply (Ha). In fact, for t € I, let {x,,} C [vo(t), wo(t)]
be an increasing sequence. For m,n =1,2,... with m > n, by (H;) and (H3), we have that

0 < ft,xm) — f(t,xn) + C(xm — xn) < (S+C)(xm — Xn). (3.16)
By (3.16) and the normality of positive cone P, we have

£t xm) = F(E 20)|| < (NS + NC + C) |2t — Xl (3.17)

From (3.17) and the definition of the measure of noncompactness, we have that

u({ftxn)}) < Lu({xa}), (3.18)

where L = NS + NC + C. Hence, (H,) holds.

Therefore, by Theorem 3.1, the Cauchy problem (1.1) has the minimal mild solution u
and the maximal mild solution % on D = [vy, wp]. In view of the proof of Theorem 3.1, we
show that u = u. For t € I, by (3.3), (3.4), (3.5), (H3), and the positivity of operator ¥(t), we
have that

6 <(t) - u(t) = Qu(t) - Qu(t)
t
- fo (£ - ) 1W(t - ) [f (s, T(s)) - f(5,14(5)) + C(@(s) - u(s))]ds

t (3.19)
< J' (t—8)""W(t - s)(S+C)(u(s) - u(s))ds
0

t
<M;(S+C) f (t - 8)" " [u(s) — u(s)]ds.
0
By (3.19) and the normality of the positive cone P, for t € I, we obtain that

t
I[2(s) — u(s)|| < NM; (S +C) fo (t - )™ [(s) - u(s) | . (3.20)
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By Lemma 2.10, then u(t) = u(t) on I. Hence, u = u is the the unique mild solution of the
Cauchy problem (1.1) on [vg, wy]. By the proof of Theorem 3.1, we know it can be obtained
by a monotone iterative procedure starting from vy or wj. O

By Corollary 3.3, Corollary 3.4, Theorem 3.5, we have the following results.

Corollary 3.6. Assume that T(t) (t > 0) is positive, the Cauchy problem (1.1) has a lower solution
vy € C(I, X) and an upper solution wy € C(I, X) with vy < wy, (Hy) and (H3) hold, and one of the
following conditions is satisfied:
(i) X is an ordered Banach space, whose positive cone P is reqular,
(ii) X is an ordered and weakly sequentially complete Banach space, whose positive cone P is
normal with normal constant N,

then the Cauchy problem (1.1) has the unique mild solution between vy and wy, which can be obtained
by a monotone iterative procedure starting from vy or wy.

4. Examples

Example 4.1. In order to illustrate our main results, we consider the fractional partial
differential diffusion equation in X,

ofu—Au=g(y,t,u), (yt)eQxlI,
u|aQ = O, (41)
u(y,0)=¢(y), yeQ,

where 0f is the Caputo fractional partial derivative with order 0 < a < 1, A is the Laplace
operator, I = [0,T], Q C RN is a bounded domain with a sufficiently smooth boundary 0Q,

and g: Q x I x R — Ris continuous.
Let X = L2(Q), P = {v | v € L*(Q),v(y) >0 a.e. y € Q}, then X is a Banach space, and
P is a normal cone in X. Define the operator A as follows:

D(A) = H*(Q) N Hy(Q), Au=—-Au. (4.2)

Then —A generates an analytic semigroup of uniformly bounded analytic semigroup T'(t) (t >
0) in X (see [18]). T(t) (t > 0) is positive (see [31, 32, 55, 56]). Let u(t) = u(-t), f(t,u) =
g(-, t,u(:,t)), then the problem (4.1) can be transformed into the following problem:

Du(t) + Au(t) = f(t,u(t)), tel,

43
u(0) = ¢. (9

Let Aq be the first eigenvalue of A, and ¢ is the corresponding eigenfunction, then A; > 0,
¢1(y) > 0. In order to solve the problem (4.1), we also need the following assumptions:

(01) ¢(y) € H*(Q) NHy(Q),0 < ¢:(y) < ¢1(y), (v, £,0) 20, (v, £, ¢1(y)) < g (y),
(O,) the partial derivative g’, (v, t, u) is continuous on any bounded domain.
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Theorem 4.2. If (O,) and (O,) are satisfied, then the problem (4.1) has the unique mild solution.

Proof. From Definition 2.4 and (O;), we obtain that 0 is a lower solution of (4.3), and ¢1(y)
is an upper solution of (4.3). Form (O,), it is easy to verify that (H;) and (H3) are satisfied.
Therefore, by Theorem 3.5, the problem (4.1) has the unique mild solution. O
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