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Existence of positive solutions for advanced equations with several terms ẋ(t) +∑m
k=1 ak(t)x(hk(t)) = 0, hk(t) ≥ t is investigated in the following three cases: (a) all coefficients

ak are positive; (b) all coefficients ak are negative; (c) there is an equal number of positive and
negative coefficients. Results on asymptotics of nonoscillatory solutions are also presented.

1. Introduction

This paper deals with nonoscillation properties of scalar advanced differential equations.
Advanced differential equations appear in several applications, especially as mathematical
models in economics; an advanced term may, for example, reflect the dependency on
anticipated capital stock [1, 2].

It is not quite clear how to formulate an initial value problem for such equations, and
existence and uniqueness of solutions becomes a complicated issue. To study oscillation, we
need to assume that there exists a solution of such equation on the halfline. In the beginning of
1980s, sufficient oscillation conditions for first-order linear advanced equations with constant
coefficients and deviations of arguments were obtained in [3] and for nonlinear equations
in [4]. Later oscillation properties were studied for other advanced and mixed differential
equations (see the monograph [5], the papers [6–12] and references therein). Overall, these
publications mostly deal with sufficient oscillation conditions; there are only few results
[7, 9, 12] on existence of positive solutions for equations with several advanced terms and
variable coefficients, and the general nonoscillation theory is not complete even for first-order
linear equations with variable advanced arguments and variable coefficients of the same sign.
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The present paper partially fills up this gap. We obtain several nonoscillation results for
advanced equations using the generalized characteristic inequality [13]. The main method
of this paper is based on fixed point theory; thus, we also state the existence of a solution in
certain cases.

In the linear case, the best studied models with advanced arguments were the
equations of the types

ẋ(t) − a(t)x(h(t)) + b(t)x(t) = 0,

ẋ(t) − a(t)x(t) + b(t)x
(
g(t)

)
= 0,

(1.1)

where a(t) ≥ 0, b(t) ≥ 0, h(t) ≥ t, and g(t) ≥ t.
Let us note that oscillation of higher order linear and nonlinear equations with

advanced and mixed arguments was also extensively investigated, starting with [14]; see
also the recent papers [15–19] and references therein.

For equations with an advanced argument, the results obtained in [20, 21] can be
reformulated as Theorems A–C below.

Theorem A (see [20]). If a, b, and h are equicontinuous on [0,∞), a(t) ≥ 0, b(t) ≥ 0, h(t) ≥ t, and
lim supt→∞[h(t) − t] < ∞, then the advanced equation

ẋ(t) + a(t)x(h(t)) + b(t)x(t) = 0 (1.2)

has a nonoscillatory solution.

In the present paper, we extend Theorem A to the case of several deviating arguments
and coefficients (Theorem 2.10).

Theorem B (see [20]). If a, b, and h are equicontinuous on [0,∞), a(t) ≥ 0, b(t) ≥ 0, h(t) ≥ t,
lim supt→∞[h(t) − t] < ∞, and

lim sup
t→∞

∫h(t)

t

a(s) exp

{∫h(s)

s

b(τ)dτ

}

ds <
1
e
, (1.3)

then the advanced equation

ẋ(t) − a(t)x(h(t)) − b(t)x(t) = 0 (1.4)

has a nonoscillatory solution.

Corollary 2.3 of the present paper extends Theorem B to the case of several coefficients
ak ≥ 0 and advanced arguments hk (generally, b(t) ≡ 0); if

∫maxkhk(t)

t

m∑

i=1

ai(s)ds ≤ 1
e
, (1.5)
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then the equation

ẋ(t) +
m∑

k=1

ak(t)x(hk(t)) = 0 (1.6)

has an eventually positive solution. To the best of our knowledge, only the opposite
inequality (with minkhk(t) rather than maxkhk(t) in the upper bound) was known as a
sufficient oscillation condition. Coefficients and advanced arguments are also assumed to
be of a more general type than in [20]. Comparison to equations with constant arguments
deviations, and coefficients (Corollary 2.8) is also outlined.

For advanced equations with coefficients of different sign, the following result is
known.

Theorem C (see [21]). If 0 ≤ a(t) ≤ b(t) and h(t) ≥ t, then there exists a nonoscillatory solution of
the equation

ẋ(t) − a(t)x(h(t)) + b(t)x(t) = 0. (1.7)

This result is generalized in Theorem 2.13 to the case of several positive and negative
terms and several advanced arguments; moreover, positive terms can also be advanced as far
as the advance is not greater than in the corresponding negative terms.

We also study advanced equations with positive and negative coefficients in the case
when positive terms dominate rather than negative ones; some sufficient nonoscillation
conditions are presented in Theorem 2.15; these results are later applied to the equation with
constant advances and coefficients. Let us note that analysis of nonoscillation properties of
the mixed equation with a positive advanced term

ẋ(t) + a(t)x(h(t)) − b(t)x
(
g(t)

)
= 0, h(t) ≥ t, g(t) ≤ t, a(t) ≥ 0, b(t) ≥ 0 (1.8)

was also more complicated compared to other cases of mixed equations with positive and
negative coefficients [21].

In nonoscillation theory, results on asymptotic properties of nonoscillatory solutions
are rather important; for example, for equations with several delays and positive coefficients,
all nonoscillatory solutions tend to zero if the integral of the sum of coefficients diverges;
under the same condition for negative coefficients, all solutions tend to infinity. In Theorems
2.6 and 2.11, the asymptotic properties of nonoscillatory solutions for advanced equations
with coefficients of the same sign are studied.

The paper is organized as follows. Section 2 contains main results on the existence of
nonoscillatory solutions to advanced equations and on asymptotics of these solutions: first
for equations with coefficients of the same sign, then for equations with both positive and
negative coefficients. Section 3 involves some comments and open problems.
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2. Main Results

Consider first the equation

ẋ(t) −
m∑

k=1

ak(t)x(hk(t)) = 0, (2.1)

under the following conditions:

(a1) ak(t) ≥ 0, k = 1, . . . , m, are Lebesgue measurable functions locally essentially
bounded for t ≥ 0,

(a2) hk : [0,∞) → � are Lebesgue measurable functions, hk(t) ≥ t, k = 1, . . . , m.

Definition 2.1. A locally absolutely continuous function x : [t0,∞) → R is called a solution of
problem (2.1) if it satisfies (2.1) for almost all t ∈ [t0,∞).

The same definition will be used for all further advanced equations.

Theorem 2.2. Suppose that the inequality

u(t) ≥
m∑

k=1

ak(t) exp

{∫hk(t)

t

u(s)ds

}

, t ≥ t0 (2.2)

has a nonnegative solution which is integrable on each interval [t0, b], then (2.1) has a positive solution
for t ≥ t0.

Proof. Let u0(t) be a nonnegative solution of inequality (2.2). Denote

un+1(t) =
m∑

k=1

ak(t) exp

{∫hk(t)

t

un(s)ds

}

, n = 0, 1, . . . , (2.3)

then

u1(t) =
m∑

k=1

ak(t) exp

{∫hk(t)

t

u0(s)ds

}

≤ u0(t). (2.4)

By induction we have 0 ≤ un+1(t) ≤ un(t) ≤ u0(t). Hence, there exists a pointwise limit u(t) =
limn→∞un(t). By the Lebesgue convergence theorem, we have

u(t) =
m∑

k=1

ak(t) exp

{∫hk(t)

t

u(s)ds

}

. (2.5)

Then, the function

x(t) = x(t0) exp

{∫ t

t0

u(s)ds

}

for any x(t0) > 0 (2.6)

is a positive solution of (2.1).
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Corollary 2.3. If
∫maxkhk(t)

t

m∑

i=1

ai(s)ds ≤ 1
e
, t ≥ t0, (2.7)

then (2.1) has a positive solution for t ≥ t0.

Proof. Let u0(t) = e
∑m

k=1 ak(t), then u0 satisfies (2.2) at any point t where
∑m

k=1 ak(t) = 0. In
the case when

∑m
k=1 ak(t)/= 0, inequality (2.7) implies

u0(t)
∑m

k=1 ak(t) exp
{∫hk(t)

t
u0(s)ds

}

≥ u0(t)
∑m

k=1 ak(t) exp
{∫maxkhk(t)

t
u0(s)ds

}

=
e
∑m

k=1 ak(t)
∑m

k=1 ak(t) exp
{
e
∫maxkhk(t)
t

∑m
i=1 ai(s)ds

}

≥ e
∑m

k=1 ak(t)
∑m

k=1 ak(t)e
= 1.

(2.8)

Hence, u0(t) is a positive solution of inequality (2.2). By Theorem 2.2, (2.1) has a positive
solution for t ≥ t0.

Corollary 2.4. If there exists σ > 0 such that hk(t) − t ≤ σ and
∫∞
0

∑m
k=1 ak(s)ds < ∞, then (2.1)

has an eventually positive solution.

Corollary 2.5. If there exists σ > 0 such that hk(t) − t ≤ σ and limt→∞ak(t) = 0, then (2.1) has an
eventually positive solution.

Proof. Under the conditions of either Corollary 2.4 or Corollary 2.5, obviously there exists
t0 ≥ 0 such that (2.7) is satisfied.

Theorem 2.6. Let
∫∞ ∑m

k=1 ak(s)ds = ∞ and x be an eventually positive solution of (2.1), then
limt→∞x(t) = ∞.

Proof. Suppose that x(t) > 0 for t ≥ t1, then ẋ(t) ≥ 0 for t ≥ t1 and

ẋ(t) ≥
m∑

k=1

ak(t)x(t1), t ≥ t1, (2.9)

which implies

x(t) ≥ x(t1)
∫ t

t1

m∑

k=1

ak(s)ds. (2.10)

Thus, limt→∞x(t) = ∞.
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Consider together with (2.1) the following equation:

ẋ(t) −
m∑

k=1

bk(t)x
(
gk(t)

)
= 0, (2.11)

for t ≥ t0. We assume that for (2.11) conditions (a1)-(a2) also hold.

Theorem 2.7. Suppose that t ≤ gk(t) ≤ hk(t), 0 ≤ bk(t) ≤ ak(t), t ≥ t0, and the conditions of
Theorem 2.2 hold, then (2.11) has a positive solution for t ≥ t0.

Proof. Let u0(t) ≥ 0 be a solution of inequality (2.2) for t ≥ t0, then this function is also a
solution of this inequality if ak(t) and hk(t) are replaced by bk(t) and gk(t). The reference to
Theorem 2.2 completes the proof.

Corollary 2.8. Suppose that there exist ak > 0 and σk > 0 such that 0 ≤ ak(t) ≤ ak, t ≤ hk(t) ≤
t + σk, t ≥ t0, and the inequality

λ ≥
m∑

k=1

ake
λσk (2.12)

has a solution λ ≥ 0, then (2.1) has a positive solution for t ≥ t0.

Proof. Consider the equation with constant parameters

ẋ(t) −
m∑

k=1

akx(t + σk) = 0. (2.13)

Since the function u(t) ≡ λ is a solution of inequality (2.2) corresponding to (2.13), by
Theorem 2.2, (2.13) has a positive solution. Theorem 2.7 implies this corollary.

Corollary 2.9. Suppose that 0 ≤ ak(t) ≤ ak, t ≤ hk(t) ≤ t + σ for t ≥ t0, and

m∑

k=1

ak ≤ 1
eσ

, (2.14)

then (2.1) has a positive solution for t ≥ t0.

Proof. Since
∑m

k=1 ak ≤ 1/eσ, the number λ = 1/σ is a positive solution of the inequality

λ ≥
(

m∑

k=1

ak

)

eλσ, (2.15)

which completes the proof.
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Consider now the equation with positive coefficients

ẋ(t) +
m∑

k=1

ak(t)x(hk(t)) = 0. (2.16)

Theorem 2.10. Suppose that ak(t) ≥ 0 are continuous functions bounded on [t0,∞) and hk are
equicontinuous functions on [t0,∞) satisfying 0 ≤ hk(t) − t ≤ δ, then (2.16) has a nonoscillatory
solution.

Proof. In the space C[t0,∞) of continuous functions on [t0,∞), consider the set

M =

{

u | 0 ≤ u ≤
m∑

k=1

ak(t)

}

, (2.17)

and the operator

(Hu)(t) =
m∑

k=1

ak(t) exp

{

−
∫hk(t)

t

u(s)ds

}

. (2.18)

If u ∈ M, then Hu ∈ M.
For the integral operator

(Tu)(t) :=
∫hk(t)

t

u(s)ds, (2.19)

we will demonstrate that TM is a compact set in the space C[t0,∞). If u ∈ M, then

‖(Tu)(t)‖C[t0,∞) ≤ sup
t≥t0

∫ t+δ

t

|u(s)|ds ≤ sup
t≥t0

m∑

k=1

ak(t)δ < ∞. (2.20)

Hence, the functions in the set TM are uniformly bounded in the space C[t0,∞).
Functions hk are equicontinuous on [t0,∞), so for any ε > 0, there exists a σ0 > 0 such

that for |t − s| < σ0, the inequality

|hk(t) − hk(s)| < ε

2

(

sup
t≥t0

m∑

k=1

ak(t)

)−1
, k = 1, . . . , m (2.21)

holds. From the relation

∫hk(t0)

t0

−
∫hk(t)

t

=
∫ t

t0

+
∫hk(t0)

t

−
∫hk(t0)

t

−
∫hk(t)

hk(t0)
=
∫ t

t0

−
∫hk(t)

hk(t0)
, (2.22)
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we have for |t − t0| < min{σ0, ε/2 supt≥t0
∑m

k=1 ak(t)} and u ∈ M the estimate

|(Tu)(t) − (Tu)(t0)| =
∣
∣
∣
∣
∣

∫hk(t)

t
u(s) −

∫hk(t0)

t0

u(s)ds

∣
∣
∣
∣
∣

≤
∫ t

t0

|u(s)|ds +
∫hk(t)

hk(t0)
|u(s)|ds

≤ |t − t0|sup
t≥t0

m∑

k=1

ak(t) + |hk(t) − hk(t0)|sup
t≥t0

m∑

k=1

ak(t)

<
ε

2
+
ε

2
= ε.

(2.23)

Hence, the set TM contains functions which are uniformly bounded and equicontinuous on
[t0,∞), so it is compact in the space C[t0,∞); thus, the setHM is also compact in C[t0,∞).

By the Schauder fixed point theorem, there exists a continuous function u ∈ M such
that u = Hu, then the function

x(t) = exp

{

−
∫ t

t0

u(s)ds

}

(2.24)

is a bounded positive solution of (2.16). Moreover, since u is nonnegative, this solution is
nonincreasing on [t0,∞).

Theorem 2.11. Suppose that the conditions of Theorem 2.10 hold,

∫∞

t0

m∑

k=1

ak(s)ds = ∞, (2.25)

and x is a nonoscillatory solution of (2.16), then limt→∞x(t) = 0.

Proof. Let x(t) > 0 for t ≥ t0, then ẋ(t) ≤ 0 for t ≥ t0. Hence, x(t) is nonincreasing and thus
has a finite limit. If limt→∞x(t) = d > 0, then x(t) > d for any t, and thus ẋ(t) ≤ −d∑m

k=1 ak(t)
which implies limt→∞x(t) = −∞. This contradicts to the assumption that x(t) is positive, and
therefore limt→∞x(t) = 0.

Let us note that we cannot guarantee any (exponential or polynomial) rate of
convergence to zero even for constant coefficients ak, as the following example demonstrates.

Example 2.12. Consider the equation ẋ(t) +x(h(t)) = 0, where h(t) = tt ln t, t ≥ 3, x(3) = 1/ ln 3.
Then, x(t) = 1/(ln t) is the solution which tends to zero slower than t−r for any r > 0.

Consider now the advanced equation with positive and negative coefficients

ẋ(t) −
m∑

k=1

[
ak(t)x(hk(t)) − bk(t)x

(
gk(t)

)]
= 0, t ≥ 0. (2.26)
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Theorem 2.13. Suppose that ak(t) and bk(t) are Lebesgue measurable locally essentially bounded
functions, ak(t) ≥ bk(t) ≥ 0, hk(t) and gk(t) are Lebesgue measurable functions, hk(t) ≥ gk(t) ≥ t,
and inequality (2.2) has a nonnegative solution, then (2.26) has a nonoscillatory solution; moreover,
it has a positive nondecreasing and a negative nonincreasing solutions.

Proof. Let u0 be a nonnegative solution of (2.2) and denote

un+1(t) =
m∑

k=1

(

ak(t) exp

{∫hk(t)

t

un(s)ds

}

− bk(t) exp

{∫gk(t)

t

un(s)ds

})

, t ≥ t0, n ≥ 0.

(2.27)

We have u0 ≥ 0, and by (2.2),

u0 ≥
m∑

k=1

ak(t) exp

{∫hk(t)

t

u0(s)ds

}

≥
m∑

k=1

(

ak(t) exp

{∫hk(t)

t

u0(s)ds

}

− bk(t) exp

{∫gk(t)

t

u0(s)ds

})

= u1(t).

(2.28)

Since ak(t) ≥ bk(t) ≥ 0 and t ≤ gk(t) ≤ hk(t), then u1(t) ≥ 0.
Next, let us assume that 0 ≤ un(t) ≤ un−1(t). The assumptions of the theorem imply

un+1 ≥ 0. Let us demonstrate that un+1(t) ≤ un(t). This inequality has the form

m∑

k=1

(

ak(t) exp

{∫hk(t)

t

un(s)ds

}

− bk(t) exp

{∫gk(t)

t

un(s)ds

})

≤
m∑

k=1

(

ak(t) exp

{∫hk(t)

t

un−1(s)ds

}

− bk(t) exp

{∫gk(t)

t

un−1(s)ds

})

,

(2.29)

which is equivalent to

m∑

k=1

exp

{∫hk(t)

t

un(s)ds

}(

ak(t) − bk(t) exp

{

−
∫hk(t)

gk(t)
un(s)ds

})

≤
m∑

k=1

exp

{∫hk(t)

t

un−1(s)ds

}(

ak(t) − bk(t) exp

{

−
∫hk(t)

gk(t)
un−1(s)ds

})

.

(2.30)

This inequality is evident for any 0 ≤ un(t) ≤ un−1(t), ak(t) ≥ 0, and bk ≥ 0; thus, we have
un+1(t) ≤ un(t).

By the Lebesgue convergence theorem, there is a pointwise limit u(t) = limn→∞un(t)
satisfying

u(t) =
m∑

k=1

(

ak(t) exp

{∫hk(t)

t

u(s)ds

}

− bk(t) exp

{∫gk(t)

t

u(s)ds

})

, t ≥ t0, (2.31)



10 Abstract and Applied Analysis

u(t) ≥ 0, t ≥ t0. Then, the function

x(t) = x(t0) exp

{∫ t

t0

u(s)ds

}

, t ≥ t0 (2.32)

is a positive nondecreasing solution of (2.26) for any x(t0) > 0 and is a negative nonincreasing
solution of (2.26) for any x(t0) < 0.

Corollary 2.14. Let ak(t) and bk(t) be Lebesgue measurable locally essentially bounded functions
satisfying ak(t) ≥ bk(t) ≥ 0, and let hk(t) and gk(t) be Lebesgue measurable functions, where hk(t) ≥
gk(t) ≥ t. Assume in addition that inequality (2.7) holds. Then, (2.26) has a nonoscillatory solution.

Consider now the equation with constant deviations of advanced arguments

ẋ(t) −
m∑

k=1

[ak(t)x(t + τk) − bk(t)x(t + σk)] = 0, (2.33)

where ak, bk are continuous functions, τk ≥ 0, σk ≥ 0.
Denote Ak = supt≥t0ak(t), ak = inft≥t0ak(t), Bk = supt≥t0bk(t), bk = inft≥t0bk(t).

Theorem 2.15. Suppose that ak ≥ 0, bk ≥ 0, Ak < ∞, and Bk < ∞.
If there exists a number λ0 < 0 such that

m∑

k=1

(
ake

λ0τk − Bk

)
≥ λ0, (2.34)

m∑

k=1

(
Ak − bke

λ0σk
)
≤ 0, (2.35)

then (2.33) has a nonoscillatory solution; moreover, it has a positive nonincreasing and a negative
nondecreasing solutions.

Proof. In the space C[t0,∞), consider the set M = {u | λ0 ≤ u ≤ 0} and the operator

(Hu)(t) =
m∑

k=1

(

ak(t) exp

{∫ t+τk

t

u(s)ds

}

− bk(t) exp

{∫ t+σk

t

u(s)ds

})

. (2.36)

For u ∈ M, we have from (2.34) and (2.35)

(Hu)(t) ≤
m∑

k=1

(
Ak − bke

λ0σk
)
≤ 0,

(Hu)(t) ≥
m∑

k=1

(
ake

λ0τk − Bk

)
≥ λ0.

(2.37)

Hence, HM ⊂ M.
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Consider the integral operator

(Tu)(t) :=
∫ t+δ

t

u(s)ds, δ > 0. (2.38)

We will show that TM is a compact set in the space C[t0,∞). For u ∈ M, we have

‖(Tu)(t)‖C[t0,∞) ≤ sup
t≥t0

∫ t+δ

t

|u(s)|ds ≤ |λ0|δ. (2.39)

Hence, the functions in the set TM are uniformly bounded in the space C[t0,∞).
The equality

∫ t0+δ
t0

− ∫ t+δ
t =

∫ t
t0
+
∫ t0+δ
t − ∫ t0+δ

t − ∫ t+δ
t0+δ

=
∫ t
t0
− ∫ t+δ

t0+δ
implies

|(Tu)(t) − (Tu)(t0)| =
∣
∣
∣
∣
∣

∫ t+δ

t

u(s) −
∫ t0+δ

t0

u(s)ds

∣
∣
∣
∣
∣

≤
∫ t

t0

|u(s)|ds +
∫ t+δ

t0+δ
|u(s)|ds ≤ 2|λ0||t − t0|.

(2.40)

Hence, the set TM and so the set HM are compact in the space C[t0,∞).
By the Schauder fixed point theorem, there exists a continuous function u satisfying

λ0 ≤ u ≤ 0 such that u = Hu; thus, the function

x(t) = x(t0) exp

{∫ t

t0

u(s)ds

}

, t ≥ t0 (2.41)

is a positive nonincreasing solution of (2.33) for any x(t0) > 0 and is a negative nondecreasing
solution of (2.26) for any x(t0) < 0.

Let us remark that (2.35) for any λ0 < 0 implies
∑m

k=1(Ak − bk) < 0.

Corollary 2.16. Let
∑m

k=1(Ak − bk) < 0,
∑m

k=1 Ak > 0, and for

λ0 =
ln
(∑m

k=1 Ak/
∑m

k=1 bk
)

maxkσk
, (2.42)

the inequality

m∑

k=1

(
ake

λ0τk − Bk

)
≥ λ0 (2.43)

holds, then (2.33) has a bounded positive solution.

Proof. The negative number λ0 defined in (2.42) is a solution of both (2.34) and (2.35); by
definition, it satisfies (2.35), and (2.43) implies (2.34).
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Figure 1: The domain of values (d, r) satisfying inequality (2.47). If the values of advances d and r are
under the curve, then (2.44) has a positive solution.

Example 2.17. Consider the equation with constant advances and coefficients

ẋ(t) − ax(t + r) + bx(t + d) = 0, (2.44)

where 0 < a < b, d > 0, r ≥ 0. Then, λ0 = (1/d) ln(a/b) is the minimal value of λ for which
inequality (2.35) holds; for (2.44), it has the form a − beλd ≤ 0.

Inequality (2.34) for (2.44) can be rewritten as

f(λ) = aeλr − b − λ ≥ 0, (2.45)

where the function f(x) decreases on (−∞,− ln(ar)/r] if τ > 0 and for any negative x if r = 0;
besides, f(0) < 0. Thus, if f(λ1) < 0 for some λ1 < 0, then f(λ) < 0 for any λ ∈ [λ1, 0). Hence,
the inequality

f(λ0) = a
(a

b

)r/d
− b − 1

d
ln
(a

b

)
≥ 0 (2.46)

is necessary and sufficient for the conditions of Theorem 2.15 to be satisfied for (2.44).
Figure 1 demonstrates possible values of advances d and r, such that Corollary 2.16

implies the existence of a positive solution in the case 1 = a < b = 2. Then, (2.46) has the form
0.5r/d ≥ 2 − (ln 2)/d, which is possible only for d > 0.5 ln 2 ≈ 0.347 and for these values is
equivalent to

r ≤ −d ln(2 − ln 2/d)
ln 2

. (2.47)
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3. Comments and Open Problems

In this paper, we have developed nonoscillation theory for advanced equations with variable
coefficients and advances. Most previous nonoscillation results deal with either oscillation
or constant deviations of arguments. Among all cited papers, only [8] has a nonoscillation
condition (Theorem 2.11) for a partial case of (2.1) (with hk(t) = t + τk), which in this case
coincides with Corollary 2.4. The comparison of results of the present paper with the previous
results of the authors was discussed in the introduction.

Finally, let us state some open problems and topics for research.

(1) Prove or disprove:
if (2.1), with ak(t) ≥ 0, has a nonoscillatory solution, then (2.26) with positive and
negative coefficients also has a nonoscillatory solution.

As the first step in this direction, prove or disprove that if h(t) ≥ t and the equation

ẋ(t) − a+(t)x(h(t)) = 0 (3.1)

has a nonoscillatory solution, then the equation

ẋ(t) − a(t)x(h(t)) = 0 (3.2)

also has a nonoscillatory solution, where a+(t) = max{a(t), 0}.
If these conjectures are valid, obtain comparison results for advanced equations.

(2) Deduce nonoscillation conditions for (2.1) with oscillatory coefficients. Oscillation
results for an equation with a constant advance and an oscillatory coefficient were
recently obtained in [22].

(3) Consider advanced equations with positive and negative coefficients when the
numbers of positive and negative terms do not coincide.

(4) Study existence and/or uniqueness problem for the initial value problem or
boundary value problems for advanced differential equations.
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