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fg k(t,s,x(s))ds), x(0) = xo, t € I, = [0,a], a >0, where f, k, x are functions with val-
ues in a Banach space E and the integral is taken in the sense of HL. Additionally, the
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1. Introduction

In this paper, we establish some existence principles for integrodifferential operator equa-
tions and present existence results for integrodifferential and integral equations.

Let (E, | - II) be a Banach space, (Ej, || - ||) a separable Banach space, f, k, x are func-
tions with values in a Banach space E (or in a separable Banach space E; ).

We prove two existence theorems for the problem

x'(t) = f<t,x(t),ﬂk(t,s,x(s))ds),

x(0) =xg, tel,=][0,a],a>0,xy€E,

(1.1)

where the integral is taken in the sense of HL [1].

The Henstock-Kurzweil integral encompasses the Newton, Riemann, and Lebesgue
integrals [2-5]. A particular feature of this integral is that integrals of highly oscillating
functions such as F’(¢), where F(t) = t*sint 2 on (0, 1] and F(0) = 0, can be defined. This
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integral was introduced by Henstock and Kurzweil independently in 1957-1958 and has
since proved useful in the study of ordinary differential equations [6—10].

It is well known that Henstock’s lemma plays an important role in the theory of the
Henstock-Kurzweil integral in the real-valued case. On the other hand, in connection
with the Henstock-Kurzweil integral for Banach space-valued functions, Cao pointed out

n [1] that Henstock’s lemma holds for the case of finite dimension, but it does not always
hold for the case of infinite dimension.

In this paper, we will use the definition of HL integral which satisfies Henstock’s
lemma.

As each Bochner integrable function is HL integrable function, so our results extend
corresponding theorems for differential, integral, and integrodifferential equations where
the right-hand side of (1.1) was Bochner integrable. We obtain this result even using
Carathéodory concept of a solution and not the approximate derivative, which comes
from the properties of primitives of Henstock-Kurzweil-Denjoy concept of the integral.

We should mention that an extensive work has been done in the study of the solutions
of particular cases of (1.1) (see, e.g., [11-17]).

A Moénch fixed point theorem [18] and the techniques of the theory of the measure
of noncompactness are used to prove the existence of solution of problem (1.1). By us-
ing some conditions expressed in terms of the measure of noncompactness which the
function f satisfies, we define a completely continuous operator F over the Banach space
C([0,a]), whose fixed points are solutions of (1.1). The fixed point theorem of Ménch is
used to prove the existence of a fixed point of the operator F.

Our fundamental tools are the Kuratowski and Hausdorff measures of noncompactess
[19].

For any bounded subset A of E we denote by a(A) the Kuratowski measure of noncom-
pactness of A, that is, the infimum of all € > 0, such that there exists a finite covering of A
by sets of diameter smaller than .

For any bounded subset A of E we denote by «;(A) the Hausdorff measure of noncom-
pactness of A, that is, the infimum of all € > 0, such that A can be covered by a finite
number of balls of radius smaller than e.

The properties of measure of noncompactness y = a and y = a; are as follows:

(i) if A C B, then y(A) < y(B);
(i) y(A) = y(A), where A denotes the closure of A;
(iii) y(A) = 0 if and only if A is relatively compact;
(iv) y(AU B) = max{y(A),y(B)};
(v) y(A4) = IAIy(A), (A € R);
(vi) y(A+B) < y(A) +y(B);
(vii) y(convA) = p(A);
(viii) a1(A) < a(A) <2a1(A).

LemMma 1.1 [20]. Let H € C(I;,E) be a family of strongly equicontinuous functions. Let,
for t € I, H(t) = {h(t) € E, h € H}. Then ac(H) = sup,c; a(H(t)) = a(H(l,)), where
ac(H) denotes the measure of noncompactness in C(I,,E) and the function t — a(H(t)) is
continuous.



Aneta Sikorska-Nowak 3

We now gather some well-known definitions and results from the literature, which we
will use throughout this paper.

Definition 1.2. A function f : I, X E X E — E is L'-Carathéodory if the following condi-
tions hold:

(i) the map ¢ — f(t,x,y) is measurable for all (x, y) € E%

(ii) the map (x,y) — f(t,x,y) is continuous for almost all ¢ € I,.

Definition 1.3. A function k : I, X I, X E — E is L'-Carathéodory if the following condi-
tions hold:

(i) the map (t,s) — k(t,s, y) is measurable for all y € E;

(i) the map y — k(t,s, y) is continuous for almost all (¢,s) € I2.

Definition 1.4. A nonnegative real-valued function (t,s,z) — h(t,s,z) defined on I, X I, X
E is a Kamke function if h satisfies the Carathéodory conditions, and for each fixed t, s,
the function z — h(t,s,z) is nondecreasing and for each ¢, 0 < g < 4, the function iden-
tically equal to zero is the unique continuous solution of the integral equation z(t) =
Jy h(t,s,2(s))ds defined on [0,q).

Definition 1.5 [3, 5]. A family & of functions F is said to be uniformly absolutely contin-
uous in the restricted sense on A < [a,b] or in short uniformly AC,(A) if for every € >0,
there exists # > 0 such that for every F in & and for every finite or infinite sequence
of nonoverlapping intervals {[a;,b;]} with a;,b; € A and satisfying >; |b; — a;| < 7, then
> iw(F,lai,b;]) < &, where w denotes the oscillation of F over [a;,b;] (i.e., w(F, [a;, b;]) =
sup{|F(r) = F(s)|:r,s € [ai bi]}).

A family & of functions F is said to be uniformly generalized absolutely continuous in
the restricted sense on [a,b] or uniformly ACGy if [a,b] is the union of a sequence of
closed sets A; such that on each A;, the function F is uniformly ACy (A;).

In the proof of the main theorem we will apply the following fixed point theorem.

THEOREM 1.6 [18]. Let D be a closed convex subset of E, and let F be a continuous map
from D into itself. If for some x € D, the implication

V =conv ({x} UF(V)) = V is relatively compact (1.2)
holds for every countable subset V of D, then F has a fixed point.

2. Henstock-Kurzweil integral in Banach spaces

In this part, we present the Henstock-Kurzweil integral in a Banach space and we give
some properties of this integral.

Definition 2.1. Let & be a positive function defined on the interval [a, b]. A tagged interval
(x,[c,d]) consists of an interval [¢,d] C [a,b] and a point x € [¢,d]. The tagged interval
(x,[c,d]) is subordinate to 6 if [c,d] C [x — §(x),x+ 8(x)].
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The letter P will be used to denote finite collections of nonoverlapping tagged intervals.
Let

P={(si[cidi]): 1<i<n}, neN, (2.1)

be such a collection in [a,b]. Then
(i) the points {s;: 1 <i < n} are called the tags of P,
(ii) the intervals {[c;,d;] : 1 <i < n} are called the intervals of P,
(iii) if (s, [ci»d;]) is subordinate to § for each i, then we write P is sub-d,
(iv) if [a,b] = U™, [ci»di], then P is called a tagged partition of [a, b],
(v) if P is a tagged partition of [a,b] and if P is sub-&, then we write P is sub-é on
[a,b],
(vi) if f : [a,b] — E, then f(P) =", f(s))(di — ci),
(vii) if F is defined on the subintervals of [a, b], then

n

F(P) = S F([end]) = S (F(d) F(c)). (22)

i=1 i=1

If F: [a,b] — E, then F can be treated as a function of intervals by defining F([d,
c]) = F(d) — F(c). For such a function, F(P) = F(b) — F(a) if P is a tagged parti-
tion of [a,b].

Definition 2.2 [1]. A function f : [a,b] — E is Henstock-Kurzweil integrable on [a,b] (f €
HK([a,b],E)) if there exists a vector z in E with the following property: for each ¢ >0,
there exists a positive function § on [a,b] such that || f(P) — z|| < ¢ whenever P is sub-¢
on [a,b]. The function f is Henstock-Kurzweil integrable on a measurable set A C [a,b]
if fya is Henstock-Kurzweil integrable on [a,b]. The vector z is the Henstock-Kurzweil
integral of f.

We note that this definition includes the generalized Riemann integral defined by
Gordon in [21].

Definition 2.3 [1]. A function f : [a,b] — E is HL integrable on [a,b] (f € HL([a,b],E))
if there exists a function F : [a,b] — E, defined on the interval [a,b], satisfying the fol-
lowing property: given € > 0, there exists a positive function & on [a,b] such that if
P = {(si,[ci»di]) : 1 < i < n} is a tagged partition of [a,b] sub-6, then

M:

||f (si) (di = ci) = F([eindi]) || <& (2.3)

1

We note that by the triangle inequality, f € HL([a,b],E) implies f € HK([a,b],E). In
general, the converse is not rue. For real-valued functions, the two integrals are equiva-
lent.

Definition 2.4. Let f : I, — E be Henstock-Kurzweil integrable on [a,b]. Then a function
F(t) = fat f(s)ds, which is defined on subintervals of [a,b] and the integral is in the sense
of Henstock-Kurzweil, is called the primitive of f.

For the integral, we have the following theorems.
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TaEOREM 2.5 [1]. Let f : [a,b] — E. If f = 0 almost everywhere on [a,b], then f is HL in-
tegrable on [a,b] and fff(t)dt =0.

TaEOREM 2.6 [1]. Let f : [a,b] — E be HL integrable on [a,b] and let F(x) = [ f(t)dt for
each x € [a,b]. Then
(i) the function F is continuous on [a,b],
(ii) the function F is differentiable almost everywhere on [a,b] and F' = f,
(iii) f is measurable.

THEOREM 2.7 (see [22, Theorem 5]). Suppose that f, : [a,b] — E, n=1,2,..., is a sequence
of HL integrable functions satisfying the following conditions:
(1) fu(x) — f(x) almost everywhere in [a,b], as n — co;
(ii) the set of primitives of f, {Fn(x)}, where F,(x) = [ fu(s)ds, is uniformly ACG,
in n;
(iii) the primitives F,, are equicontinuous on [a,b],
then f is HL integrable on [a,b] and [} f, — [ f uniformly on [a,b], as n — co.

We note that this theorem for Denjoy-Bochner integrals is mentioned in [22] without
a proof. It is also true for HL integrals. The proof is similar to that of [5, Theorem 7.6],
see also [23, Theorem 4].

TuEoREM 2.8. If the function f : I, — E is HL integrable, then

J F(tydt e 1] -comv £(I), (2.4)
1

where conv f (I) is the closure of the convex of f(I), I is an arbitrary subinterval of 1,, and
1| is the length of I.

The proof is similar to that of [24, Lemma 2.1.3]; see also [25, Theorem 10.4, page
268].

LemMa 2.9 [10]. Let E; be a separable Banach space. Suppose that V is a countable set of HL
integrable functions. Let F = {fotx(s)ds, x €V, t €l,} be an equicontinuous, equibounded,
and uniformly ACGy on I,. Then oy (fot V(s)ds) < fot a1(V(s))ds, t € I, whenever a;(V (s))
< @(s) for s € I a.e. ¢ is a Lebesgue integrable function and «; denotes the Hausdorff mea-
sure of noncompactness.

3. Existence results for integrodifferential equations
We will consider the problem

t

x(t) = xo+J

0

f(z,x(z),f(jk(z,s,x(s))ds) dz, tel, x)€E, (3.1)

where integrals are taken in the sense of HL.
To obtain the existence result it is necessary to define a notion of a solution.
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Definition 3.1. An ACGy function x : I, — E is said to be a solution of problem (1.1) if it
satisfies the following conditions:

(i) x(0) = xo;

(i1) x'(t) = f(t,x(t),fotk(t,s,x(s))ds) fora.e. t € I,.

Definition 3.2. A continuous function x:1, — E is said to be a solution of the problem
(3.1) if it satisfies x(t) = xo + fotf 2), Jo k(z,5,x(s))ds)dz for every t € I,.

Let us observe that each solution x of problem (1.1) is equivalent to the solution of
problem (3.1).

Let x be a continuous solution of (1 1) By definition, x is ACG4 function and x(0) =
Xo. Since, for a.e. t € I, x'(t) = f(t,x(¢ fo (t,s,x(s))ds) and the last is HL integrable,
so is differentiable a.e. Moreover, fot f (z,x(z),f0 (z,5,x(5))ds)dz = |, x"(s)ds = x(t) — xy.
Thus satisfies (3.1).

Now assume that y is ACG, function and it is clear that y(0) = x¢. By the defini-
tion of HL integrals there exists an ACGy function G such that G(0) = xo and G'(¢) =
Ft,y(1), [s k(t,s, y(s))ds) a.e.

Hence

y(t) = x0+ J:f(z,y(z), J:k(z,s,y(s))ds) dz

, (3.2)
—xot L G/ (s)ds = %0 + G(t) — G(0) = G(2).
We obtain y = G and then y'(¢) = f (¢, y(¢), fo t,s,y(s))ds).
For x € C(I,,E), we define the norm of x by ||x|lc = sup{llx(¢)ll,t € L,}.
Now we present an existence theorem for the problem (1.1) in a separable Banach
space E;.
Let B = {x € C(I,E) : lIxllc < llxollc + p, p > 0}. Note that this set is closed and con-
vex
Define the operator F : C(I,,E) — C(I,, E) by

F(x)(£) = x0 + f f(z,x(z), Jzk(z,s,x(s))ds> dz, tel, xck. (3.3)
0 0
Let
T = (F(x) € C(I,E) : x € B]. (3.4)

THEOREM 3 3 Assume that, for each ACGy function x : I, — Ey, functions k(-,s,x(s)),

fx( fo ,5,x(s))ds) are HL integrable, f and k are L'-Carathéodory functzons Sup-
pose that there exists a constant d such that

a(f(t,A,C)) <d-max{a(A),a(C)} for each bounded subset A,C C Ey, t € I,
(3.5)

where « denotes the Kuratowski measure of noncompactness.
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Assume that
a(k(t,s,X)) < h(t,s,a(X)) for each bounded subset X CE;, 0 <s<t<a, (3.6)

where h is a Kamke function.
Moreover, let T be equicontinuous, equibounded, and uniformly ACG4 on I,. Then there
exists at least one solution of problem (1.1) on I, for some 0 <c <aandd-c<1.

Proof. By equicontinuity and equiboundedness of T, there exists a number ¢, 0 < ¢ < g,
such that

J; £ (25, [ kasxtsas)az

<p forfixedp>0,tel, xeB. (3.7)

By our assumptions the operator F is well defined and maps B into B,

IF)@)]| =

xo+J f<zx (2), J (z,5,x(s) ds)dzH

(3.8)
gHMMC+HLf<aM@th&¢J@»$>hHsHmMc+p
Using Theorem 2.6 we deduce that F is continuous.

Suppose that V C B satisfies the condition V = conv({x} U F(V)) for some x € B. We
will prove that V' is relatively compact, thus (1.2) is satisfied. Theorem 1.6 will ensure that
F has a fixed point.

Let,fort € I, V(t) = {v(t) € E, : v € V'}. Since V is equicontinuous, so by Lemma 1.1,
t — v(t) = a(V(t)) is continuous on I,.

For fixed t € I, we divide the interval [0,¢] into m parts: 0 =) <t; < -+ <t =
t, where t; = it/m, i=0,1,...,m. We denote T; = [t;,t;is1], i = 0,1,...,m — 1. Let us fix
z€ . Let [{ K(s)ds = {[; x s) :x €K} for any K C C(I,E;) and let k denotes the map-
ping defined by kz(x(s)) = k(z,s,x(s)) for each x € B; and s € I.. Obviously, I:Z(V(s)) =
k(z,s,V(s)).

Let

F(V(t)) = {F(x)(t) € C(I,E1) :x € V,t € I}

! z (3.9)
= {xo +I f(z,x(z),J k(z,s,x(s))ds)dz xeV te Ic}.
0 0
By Theorem 2.8 and the properties of the HL integral, we have
lit1 z
=Xt Z j ( (Z),J k(z,s,x(S))ds>dz

0

m-1 (3.10)

Exo+ . (tiy1 —t;)convf (Z, J k. ( ds) foreachx € V.

i=0

Therefore, F(V(£)) C xo+ 35" (tis1 — ti)conv f (z, V(T)), [ k.(V (s))ds).
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Using (3.5), (3.6), Lemma 2.9, and the properties of the measure of noncompactness

a we have
F(V(©) TZOI b — ((,V(Ti),jozi?z(\f(s))ds))

(3.11)
m—1 z.,
< go tip1 — 1) - d- max{oc(V(T,-)),oc(Jo kz(V(s))ds)}.
Let us observe that
1) if a(V(T))) >« fo (V(s))ds), then
a(V) =a(conv({x} UF(V))) <a(F(V)) <d-c-a(V), (3.12)

because d - ¢ < 1,50 a(V) < a(V), a contradiction;

(ii) if (V(T3)) < a(J§ ko(V (s))ds), then

z

a(V) < 2 b —t) - d- a(LZ%Z(V(s))ds)szdaxl(Jo %Z(V(s))ds)

z

<2dc Jozal(k(z,s, V(s))ds) < 2dc Jo a(k(z,s,V(s))ds) < ZdCJ:h(z,s, V(s))ds,

(3.13)

since V =conv({x} UF(V)) so
W(t) < ZdCJ:h(z,s,v(s))ds. (3.14)

Hence applying now a theorem on differential inequalities we get v(¢) = a(V(t)) = 0. By
Arzela-Ascoli theorem, V is relatively compact. So, by Theorem 1.6, F has a fixed point
which is a solution of the problem (1.1). O

For real-valued Banach space E, we have the following theorem.

THEOREM 3 4. Assume that for each ACGy function x : I, — E, functions k(-,s,x(s)), f(+,

fo ,5,x(s))ds) are HL integrable, f and k are L'- Camtheodoryfunctzons Suppose
that there exlsts a constant dy such that

a(f(t,A,C)) <di - max{a(A),a(C)} for each bounded subset A,C CE, t € I,.
(3.15)

Assume that there exists a continuous function d, : I, X I, — Ry such that

a(k(I,1,X)) <supdy(t,s)a(X) for each bounded subset X CE, t,s€ I, I C I,
sel
(3.16)
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and the zero function is the unique continuous solution of the inequality

p(t)<dy-cosup,, JO dy(z,5)p(s)ds on .. (3.17)

Moreover, let T be equicontinuous, equibounded, and uniformly ACGy on 1,. Then there
exists a solution of problem (1.1) on I, for some0<c <aandd, -c< 1.

Proof. By equicontinuity and equiboundedness of T, there exists a number ¢, 0 < ¢ < g,
such that

|

By our assumptions the operator F is well defined and maps B into B,

Jotf (z,x(z), Jozk(z,s,x(s))ds) dz

<p forfixedp>0,xeB, tel. (3.18)

IFG)@)]| =

X+ J:f (z,x(z), J:k(z,s,x(s))ds> dz

<||xo|lc + HJ(:f(z,x(z),Ek(z,s,x(s))ds) z

Using Theorem 2.6 we deduce that F is continuous.

Suppose that V C B satisfies the condition V = conv({x} U F(V)) for some x € B. We
will prove that V' is relatively compact, thus (1.2) is satisfied. Theorem 1.6 will ensure that
F has a fixed point.

Let, fort € I, V(t) = {v(t) € E: v € V}. Since V is equicontinuous, so by Lemma 1.1,
t— v(t) = a(V(t)) is continuous on I..

For fixed t € I. we divide the interval [0,¢] into m parts: 0 =ty <t; < --- <t =t
where t; = it/m, i = 0,1,...,m, and for fixed z € [0, ] we divide the interval [0,z] into m
parts: 0 = zp <z < - - - <z, = 2, where z; = jz/m, j = 0,1,

Let V([zj,zj+1]) = {u(s):u €V, z; <s<zju}, j=0,1,...,m— 1. By Lemma 1.1 and
the continuity of v there exists s; € I; = [zj,z+1] such that

(3.19)
< ||x0||c+l~

a(V([zj>zj+1])) = sup{a(V(s)) :zj < s < zjy1 | :=v(sj). (3.20)
By Theorem 2.8 and the properties of the HL integral we have

tiv1

xo+zj (z,u(z) ZJ k(z,s,u(s)) ds)dz

m—1 -
€xo+ > (tim —ti)mf<z» Z zj11 — z;j)convk(z, IJ’V([ZJ’ZJ“]))>

i=0
(3.21)
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Using (3.15), (3.16), and the properties of measure of noncompactness «, we have

F(V (1) Z by — ( ( z 2 —2)) convk(z,z,,v([z,,z]+1]))))

=0

Z_ (tix1—t;) -dyp- max{a(V(I)),a(Z (zj+1—zj)mk(z,Ij,V([zj,sz])))}.
. " (3.22)

Let us observe that
(i) if a(V (1)) > a(S 7' (2111 - 27)@0nVk(2, 1}, V([2),2411))), then

a(V) =a(conv({x} UG(V))) <a(F(V)) <d; - c-a(V), (3.23)

because d; - c < 1s0 a(V) < a(V), a contradiction;
() if V(1)) < a(S7 (2721 — 2000k (215, V([27,2721])), then

m—1

a(V) <

™M

(ti1 — ( Z Zj1 — cond(Z,I],V([z],z]+1]))>

-1

0

-1

(tip1 — ;) - dy -

3
3

IA

(zjr1 — zj)a(k(z,1;, V([zj,zj11])))

1

3
|

MH O'M

IA

(ti —t;) - d1 - D (zjn1 —zj) supda(z,9)a(V ([ z),2j11]))

s€l;

Il
(=]

-

Il
(=1

. (3.24)
= Z zjr1 —2j) - da(z,pj)v(s))
=0

||
T

g 21— 2)) - da(2ap))v(p))

m—1

+Z(qﬁfqﬂéﬁw»WQﬂmeDﬂ-

j=0

By continuity of v we have v(s;) — v(p;) <eand e — 0 if m — 0, s0

v(t)=a(V() <dy-c-sup Cdz(z,s)v(s)ds. (3.25)

zel, J0

By (3.17) we have v(t) = a(V(t)) =0 for t € L.

Using Arzela-Ascoli theorem, we obtain that V is relatively compact. By Theorem 1.6
the operator F has a fixed point. This means that there exists a solution of the problem
(1.1). 0



Aneta Sikorska-Nowak 11

References

(1]

S. S. Cao, “The Henstock integral for Banach-valued functions,” Southeast Asian Bulletin of
Mathematics, vol. 16, no. 1, pp. 35-40, 1992.

V. G. Celidze and A. G. Divarseiévili, Theory of the Denjoy Integral and Some of Its Applications,
Tbilis. Gos. Univ., Tbilisi, Russia, 1978.

R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, vol. 4 of Graduate Studies
in Mathematics, American Mathematical Society, Providence, RI, USA, 1994.

R. Henstock, The General Theory of Integration, Oxford Mathematical Monographs, The Claren-
don Press, Oxford University Press, New York, NY, USA, 1991.

P. Y. Lee, Lanzhou Lectures on Henstock Integration, vol. 2 of Real Analysis, World Scientific,
Teaneck, NJ, USA, 1989.

T. S. Chew, “On Kurzweil generalized ordinary differential equations,” Journal of Differential
Equations, vol. 76, no. 2, pp. 286-293, 1988.

T. S. Chew and F. Flordeliza, “On x = f(t,x) and Henstock-Kurzweil integrals,” Differential
Integral Equations, vol. 4, no. 4, pp. 861-868, 1991.

I. Kubiaczyk and A. Sikorska-Nowak, “Differential equations in Banach space and Henstock-
Kurzweil integrals,” Discussiones Mathematicae. Differential Inclusions, vol. 19, no. 1-2, pp. 35—
43, 1999.

J. Kurzweil, “Generalized ordinary differential equations and continuous dependence on a pa-
rameter,” Czechoslovak Mathematical Journal, vol. 7, no. 82, pp. 418-449, 1957.

A. Sikorska-Nowak, “Retarded functional differential equations in Banach spaces and Henstock-
Kurzweil integrals,” Demonstratio Mathematica, vol. 35, no. 1, pp. 49-60, 2002.

R. P. Agarwal, M. Meehan, and D. O’Regan, “Positive solutions of singular integral equations—a
survey,” Dynamic Systems and Applications, vol. 14, no. 1, pp. 1-37, 2005.

R. P. Agarwal, M. Meehan, and D. O’Regan, Nonlinear Integral Equations and Inclusions, Nova
Science Publishers, New York, NY, USA, 2001.

R. P. Agarwal and D. O’Regan, “Existence results for singular integral equations of fredholm
type,” Applied Mathematics Letters, vol. 13, no. 2, pp. 27-34, 2000.

S. Krzyska, “On the existence of continuous solutions of Urysohn and Volterra integral equations
in Banach spaces,” Demonstratio Mathematica, vol. 28, no. 2, pp. 353-360, 1995.

M. Meehan and D. O’Regan, “Existence theory for nonlinear Volterra integrodifferential and
integral equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 31, no. 3-4, pp.
317-341, 1998.

D. O’Regan, “Existence results for nonlinear integral equations,” Journal of Mathematical Anal-
ysis and Applications, vol. 192, no. 3, pp. 705-726, 1995.

D. O’Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential Equa-
tions, vol. 445 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Nether-
lands, 1998.

H. Monch, “Boundary value problems for nonlinear ordinary differential equations of second
order in Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 4, no. 5, pp.
985-999, 1980.

J. Bana$ and K. Goebel, Measures of Noncompactness in Banach Spaces, vol. 60 of Lecture Notes
in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1980.

A. Ambrosetti, “Un teorema di esistenza per le equazioni differenziali negli spazi di Banach,”
Rendiconti del Seminario Matematico della Universita di Padova, vol. 39, pp. 349-361, 1967.

R. A. Gordon, “Riemann integration in Banach spaces,” The Rocky Mountain Journal of Mathe-
matics, vol. 21, no. 3, pp. 923-949, 1991.

G. Ye, P. Y. Lee, and C. Wu, “Convergence theorems of the Denjoy-Bochner, Denjoy-Pettis and
Denjoy-Dunford integrals,” Southeast Asian Bulletin of Mathematics, vol. 23, no. 1, pp. 135-143,
1999.



12 Journal of Applied Mathematics

[23] A.P. Solodov, “On conditions for the differentiability almost everywhere of absolutely continu-
ous Banach-valued functions,” Moscow University Mathematics Bulletin, vol. 54, no. 4, pp. 29-32,
1999.

[24] R. H. Martin Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Robert E.
Krieger, Melbourne, Fla, USA, 1987.

[25] A. Alexiewicz, Functional Analysis, PWN, Warsaw, Poland, 1969.

Aneta Sikorska-Nowak: Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Umultowska 87, 61-614 Poznan, Poland
Email address: anetas@amu.edu.pl


mailto:anetas@amu.edu.pl

	1. Introduction
	2. Henstock-Kurzweil integral in Banach spaces
	3. Existence results for integrodifferential equations
	References

