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Area, coarea, and approximation in W1,1

David Swanson

Abstract. Let Ω⊂R
n be an arbitrary open set. We characterize the space W 1,1

loc (Ω) using

variants of the classical area and coarea formulas. We use these characterizations to obtain a norm

approximation and trace theorems for functions in the space W 1,1(Rn).

1. Introduction

Let Ω⊂R
n be an open set and let p≥1. The Sobolev space W 1,p(Ω) consists

of all functions u∈Lp(Ω) whose first order distributional partial derivatives also
belong to Lp(Ω). The space W 1,p(Ω) is a Banach space with respect to the norm

(1) ‖u‖1,p;Ω = (‖u‖p
Lp(Ω)+‖Du‖p

Lp(Ω))
1/p,

where Du is the distributional gradient of u. When Ω=R
n we write ‖ · ‖1,p in place

of ‖ · ‖1,p;Rn . The space W 1,p
loc (Ω) consists of all functions u defined on Ω which

belong to the space W 1,p(Ω′) for every open set Ω′ whose closure is a compact
subset of Ω. It is not hard to verify that u∈W 1,p

loc (Ω) if and only if u∈W 1,p(Q)
for every open n-cube Q whose closure is contained in Ω. The space W 1,p

0 (Ω) is
defined as the closure of C∞

0 (Ω) in the norm of W 1,p(Ω). Associated with the space
W 1,p(Rn) is the p-capacity γp, defined for each set E⊂R

n as

(2) γp(E) = inf{‖u‖p
1,p :u∈W 1,p(Rn) and E⊂ int{u≥ 1}}.

Here and throughout the paper we abuse notation when we by {u≥1} mean the
set {x:u(x)≥1}. It is well known (cf. [6] and [16]) that γp is an outer regular outer
measure on R

n. Throughout the paper we will write γ in place of γ1.
In this paper we consider several geometric and analytic properties of functions

in the space W 1,1
loc (Ω). The area and coarea formulas for Lipschitz mappings (cf. [7,

Theorem 3.2.3] and [7, Theorem 3.2.5]) are fundamental results in geometric mea-
sure theory. In Section 3 we consider the area and coarea of functions u∈W 1,1

loc (Ω).
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Extensions of the area and coarea formulas to mappings in Sobolev spaces have
previously been obtained in [12] and [11]. A basic technical issue in problems of
this sort is that such functions u are generally not continuous, and one must use
care to formulate the theorem for the so-called precise representative of u. We show
that the area and coarea formulas as obtained in [11] may be cast in such a way as
to be independent of any particular representative of u, and in fact may be used
to characterize the space W 1,1

loc (Ω). Our argument draws ideas from the theory of
functions of bounded variation and sets of finite perimeter.

An important property of functions in the Sobolev space W 1,p(Rn) is that of
quasicontinuity: for every u∈W 1,p(Rn) and ε>0 there exist an open set U and
a continuous function v defined on R

n so that γp(U)<ε, and v coincides with the
precise representative of u off of U . It was proved in [4] and [14] that if p>1,
then the approximator v may in fact be selected so that v∈C(Rn)∩W 1,p(Rn) and
‖u−v‖1,p<ε in addition to the above stated properties. Thus u may be approxi-
mated simultaneously pointwise and in norm by a continuous function v. In Sec-
tion 4 we give a proof of this result in the case p=1. The argument relies on the
results obtained in Section 3, along with a smoothing operator first developed in [5]
by Calderón and Zygmund and used in [14].

Finally in Section 5 we characterize the spaceW 1,1
0 (Ω) as a subspace ofW 1,1(Ω).

Bagby [2] and Havin [10] proved independently that if u∈W 1,p(Rn), p>1, then
u∈W 1,p

0 (Ω) if and only if u vanishes off Ω in the sense that

lim
r!0+

∫
B(x,r)

|u(y)| dy= 0

for γp-quasievery x∈R
n\Ω. A variant of this was obtained by the author and Ziemer

who proved in [15] that if u∈W 1,p(Ω), then u∈W 1,p
0 (Ω) if and only if

lim
r!0+

1
rn

∫
B(x,r)∩Ω

|u(y)| dy= 0

for γp-quasievery x∈∂Ω. This condition may be described by stating that u has
inner trace 0 at quasievery point x∈∂Ω. We extend both of these results to the
case p=1.

2. Preliminaries

Definition 2.1. Given E⊂R
n and s≥0, we denote by Hs(E) the s-dimensional

Hausdorff measure of E and byHs
∞(E) the s-dimensional Hausdorff content, defined
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as

Hs
∞(E) = inf

{ ∞∑
k=1

(diamEk)s :E⊂
∞⋃

k=1

Ek

}
.

Observe that Hs(E)=0 if and only if Hs
∞(E)=0.

It was proved by Fleming [8] that

Hn−1(E) = 0 if and only if γ(E) = 0.

In fact, there exist constants C1 and C2 depending only on n with the property that

(3) C1H
n−1
∞ (E)≤ γ(E)≤C2(Hn−1

∞ (E)+Hn−1
∞ (E)n/(n−1))

holds for all E⊂R
n. A simple proof of the inequality on the left-hand side of (3)

was given in [11]. The inequality on the right-hand side of (3) follows easily from
the observation that

γ(B(x0, r))≤C2(rn+rn−1)

for all x0∈R
n and r>0, and a simple covering argument.

Definition 2.2. Let u∈L1
loc(R

n), and let x∈R
n. For r>0 we define

ūr(x) =
∫

B(x,r)

u(y) dy.

We define the precise representative of u by

ū(x) = lim
r!0+

ūr(x)

at all points x where the limit exists.

Any point x where ū(x) exists is called a Lebesgue point of u. It is well known
that almost every point x∈R

n is a Lebesgue point of a function u∈L1
loc(R

n), and if
u∈W 1,1

loc (Rn), then in fact Hn−1-almost every point x∈R
n is a Lebesgue point of u.

We will use the following somewhat stronger fact, see e.g. [6, proof of Theorem 1,
pp. 160–162].

Proposition 2.3. Suppose that u∈W 1,1(Rn). Then ū(x) exists for Hn−1-
almost every x∈R

n, and for every ε>0 there exists an open set U with Hn−1
∞ (U)<ε

such that

lim
r!0+

∫
B(x,r)

|u(y)−ū(x)| dy= 0

uniformly for x∈R
n\U .
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Note that Hn−1∞ and γ may be used interchangeably in the conclusion of Prop-
osition 2.3.

Definition 2.4. Let E⊂R
n be measurable. The density of E at a point x∈R

n

is the quantity

(4) D(E, x) = lim
r!0+

|B(x, r)∩E|
|B(x, r)|

provided that the limit exists. The measure-theoretic interior of E is the set of all
points x where E has density 1, and the measure-theoretic exterior of E is the set of
all points x where E has density 0. The measure-theoretic boundary of E, defined
by

(5) ∂ME= R
n∩{x :D(E, x) �= 0}∩{x :D(E, x) �= 1},

consists of all points which are neither measure-theoretic interior nor measure-
theoretic exterior points of E.

In our development we will use the space BV(Ω) consisting of all functions u∈
L1(Ω) whose first order distributional partial derivatives are signed Radon measures
on Ω with finite total variation. The distributional gradient of a function u∈BV(Ω)
is the vector-valued measure Du=(µ1, ..., µn), with total variation measure ‖Du‖.
The total variation ‖Du‖ is absolutely continuous with respect to Lebesgue measure
if and only if each of the measures µi is, in which case the partial derivatives may
be represented by L1 functions. This observation implies the following result.

Proposition 2.5. Let u∈BV(Ω). Then u∈W 1,1(Ω) if and only if ‖Du‖ is
absolutely continuous with respect to Lebesgue measure, in which case

‖Du‖(Ω) =
∫
Ω

|Du| dx.

Definition 2.6. A Lebesgue measurable set E⊂R
n is said to have finite perime-

ter in Ω if and only if χE∈BV(Ω). The perimeter ofE in Ω is defined as the quantity

P (E,Ω) = ‖DχE‖(Ω).

The following characterization of BV(Ω) in terms of the perimeters of level sets
was obtained by Fleming and Rishel [9].

Proposition 2.7. Let u∈L1(Ω). Then u∈BV(Ω) if and only if
∫ ∗

R

P ({u> t},Ω) dt<∞,
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in which case t 	!P ({u>t},Ω) is measurable and

‖Du‖(Ω) =
∫

R

P ({u> t},Ω) dt.

Here, and throughout the paper,
∫ ∗ is used to denote the upper Lebesgue

integral. The Hausdorff measure of the measure theoretic boundary of a set E is
closely related to its perimeter. We will require the following background results.

Proposition 2.8. ([6, Theorem 1, p. 222]) Let E⊂R
n be measurable. If

Hn−1(∂ME)<∞, then E has finite perimeter.

Proposition 2.9. ([16, Theorem 5.8.1 and Lemma 5.9.5]) Let E⊂R
n be mea-

surable. If P (E,Ω)<∞, then

P (E,Ω) =Hn−1(Ω∩∂ME).

3. Area and coarea

Throughout this section we assume that Ω⊂R
n is an open set, n≥2. The fol-

lowing extensions of the classical area and coarea formulas to precise representatives
of functions in the space W 1,1

loc (Ω) were proved in [11].

Proposition 3.1. (Area formula) Suppose that u∈W 1,1
loc (Ω). Then

Hn({(x, y)∈R
n+1 :x∈E and ū(x) = y}) =

∫
E

√
1+|Du|2 dx

for every Lebesgue measurable set E⊂Ω.

Proposition 3.2. (Coarea formula) Suppose that u∈W 1,1
loc (Ω). Then

∫
R

Hn−1(E∩ū−1(t)) dt=
∫

E

|Du| dx

for every measurable set E⊂Ω.

Next we introduce the idea of upper and lower approximate limits. The nota-
tion is adapted from [7, Theorem 4.5.9].

Definition 3.3. Let u : Ω!R be Lebesgue measurable.
(1) The upper approximate limit of u at a point x∈Ω is

µu(x) = ap lim sup
y!x

u(y) = inf{s :D({u> s}, x) = 0}.
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(2) The lower approximate limit of u at a point x∈Ω is

λu(x) = ap lim inf
y!x

u(y) = sup{s :D({u< s}, x) = 0}.

(3) The extended graph of u over a set E⊂Ω is

Gu(E) = {(x, t)∈R
n+1 :x∈E and λu(x)≤ t≤µu(x)}.

(4) The extended level set of u at level t in a set E⊂Ω is

{x∈E :λu(x)≤ t≤µu(x)}.

Remark 3.4. If u=v almost everywhere in Ω, then by definition λu=λv and
µu=µv everywhere in Ω. Moreover, if x is a Lebesgue point of u, then λu(x)=
ū(x)=µu(x). If u∈W 1,1

loc (Ω) then Hn−1-almost every x∈Ω is a Lebesgue point of u,
which implies that

Hn(Gu(E)) =Hn({(x, y)∈R
n :x∈E and ū(x) = y})

and

Hn−1(E∩ū−1(t)) =Hn−1({x∈E :λu(x)≤ t≤µu(x)})

for any set E⊂Ω.

In light of this remark, Propositions 3.1 and 3.2 may be restated as follows.

Proposition 3.5. Suppose that u∈W 1,1
loc (Ω). Then

Hn(Gu(E)) =
∫

E

√
1+|Du|2 dx

for every Lebesgue measurable set E⊂Ω.

Proposition 3.6. Suppose that u∈W 1,1
loc (Ω). Then

∫
R

Hn−1({x∈E :λu(x)≤ t≤µu(x)}) dt=
∫

E

|Du| dx

for every measurable set E⊂Ω.

The novelty of Propositions 3.5 and 3.6 is that neither formula depends on
any particular representative of u. It turns out that both of these formulas have
converse statements which may be used to characterize the Sobolev space W 1,1

loc (Ω).
The following lemma states a general sufficient criterion for membership in W 1,1(Ω).



Area, coarea, and approximation in W1,1 387

Lemma 3.7. Suppose that u∈L1
loc(Ω) and that there exists h∈L1

loc(Ω) such
that

(6)
∫ ∗

R

Hn−1({x∈E :λu(x)≤ t≤µu(x)}) dt≤
∫

E

h dx

for every measurable set E⊂Ω. Then u∈W 1,1
loc (Ω).

Proof. It suffices to prove that u∈W 1,1(Q) for every open n-cube Q compactly
contained in Ω. Fix Q, and define v=uχQ. Then

‖Du‖(Q) = ‖Dv‖(Q)

and

Q∩∂M{u> t}=Q∩∂M{v > t}.

Since v vanishes outside Q, it follows that

(7) ∂M{v > t}⊂ [Q∩∂M{u> t}]∪∂Q, t �= 0.

Let t∈R and let x∈∂M{u>t}. Then D({u>t}, x) �=0, hence D({u>s}, x)=0 implies
s>t. Thus µu(x)≥t. Likewise, D({u>t}, x) �=1 implies that D({u≤t}, x) �=0, in
which case D({u<s}, x)=0 implies s≤t. Thus λu(x)≤t. It follows that

(8) Q∩∂M{u> t}⊂ {x∈Q :λu(x)≤ t≤µu(x)}.

Now, assumption (6) implies that Hn−1(Q∩∂M{u>t})<∞ for almost every t∈R,
and therefore (7) implies

Hn−1(∂M{v > t})<∞, a.e. t∈R.

For all such t, Proposition 2.8 implies that P ({v>t}, Q)<∞, and Proposition 2.9
implies in turn that

‖Dχ{v>t}‖(Q) =Hn−1(Q∩∂M{v > t}).

It follows from (8) and (6) that
∫ ∗

R

‖Dχ{v>t}‖(Ω) dt=
∫ ∗

R

Hn−1(Q∩∂M{v > t}) dt=
∫ ∗

R

Hn−1(Q∩∂M{u> t}) dt

≤
∫ ∗

R

Hn−1(Q∩{λu ≤ t≤µu}) dt≤
∫

Q

h dx<∞.
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Therefore, Proposition 2.7 implies v∈BV(Q), and

‖Dv‖(Q)≤
∫

Q

h dx.

Since u and v coincide on Q it follows that u∈BV(Q) and

‖Du‖(Q)≤
∫

Q

h dx.

This argument may be repeated with any n-cube Q′⊂Q, in which case a simple
covering argument yields

‖Du‖(E)≤
∫

E

h dx

for every Lebesgue measurable set E⊂Q. In particular

E 	−! ‖Du‖(E)

satisfies Luzin’s condition (N). Proposition 2.5 implies that u∈W 1,1(Q). �

Theorem 3.8. Suppose that u∈L1
loc(Ω) and that there exists g∈L1

loc(Ω) with
the property that

∫
R

Hn−1({x∈E :λu(x)≤ t≤µu(x)}) dt=
∫

E

g dx

for every measurable set E⊂Ω. Then u∈W 1,1
loc (Ω) and |Du|=g almost everywhere.

Proof. Appealing to Lemma 3.7 we have u∈W 1,1
loc (Ω). Proposition 3.6 then

implies that
∫

E

g dx=
∫

E

|Du| dx

for every Lebesgue measurable set E⊂Ω. Thus |Du|=g almost everywhere. �

Lemma 3.9. Suppose that u∈L1
loc(Ω) and that there exists h∈L1

loc(Ω) with
the property that

Hn(Gu(E))≤
∫

E

h dx

for every measurable set E⊂Ω. Then u∈W 1,1
loc (Ω).
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Proof. Let E⊂Ω. Define the projection p : Ω×R!R by p(x, t)=t, so that
Lip(p)=1 and

Gu(E)∩p−1(t) = {x∈Ω :λu(x)≤ t≤µu(x)}×{t}

for all t∈R. The Eilenberg inequality (cf. [13, Theorem 7.7]) asserts the existence
of a constant C depending only on n with the property that

∫ ∗

R

Hn−1(Gu(E)∩p−1(t)) dt≤CHn(Gu(E)).

Next let π : R
n+1!R

n denote the projection π(x, t)=x so that

π(Gu(E)∩p−1(t)) = {x∈E :λu(x)≤ t≤µu(x)}.

Since Hausdorff measure is non-increasing on projection it follows that

Hn−1({x∈E :λu(x)≤ t≤µu(x)})≤Hn−1(Gu(E)∩p−1(t))

for all t∈R. Therefore
∫ ∗

R

Hn−1({x∈E :λu(x)≤ t≤µu(x)}) dt≤
∫ ∗

R

Hn−1(Gu(E)∩p−1(t)) dt

≤CHn(Gu(E))≤C

∫
E

h dx

for any measurable set E⊂Ω. Finally apply Lemma 3.7 to conclude that u∈
W 1,1

loc (Ω). �

Theorem 3.10. Suppose that u∈L1
loc(Ω) and that there exists g∈L1

loc(Ω) with
the property that

Hn(Gu(E)) =
∫

E

√
1+g2 dx

for every measurable set E⊂Ω. Then u∈W 1,1
loc (Ω) and |Du|=|g| almost everywhere.

Proof. Lemma 3.9 implies that u∈W 1,1
loc (Ω). It follows from Proposition 3.5

that
∫

E

√
1+|Du|2 dx=

∫
E

√
1+g2 dx

for every measurable set E⊂Ω. Therefore |Du|=|g| almost everywhere. �
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Denote the zero extension of a function u : Ω!R by

(9) u∗(x) =

{
u(x), x∈Ω,

0, x /∈Ω.

The characterizations obtained above may be used to prove a simple sufficient condi-
tion for the zero extension of a function u∈W 1,1

loc (Ω) to belong to the spaceW 1,1
loc (Rn).

Theorem 3.11. Let u∈W 1,1
loc (Ω). If u∗(x)=0 for Hn−1-almost every x∈∂Ω,

then u∗∈W 1,1
loc (Rn) and Du∗=(Du)∗ almost everywhere.

Proof. Let E⊂R
n be a measurable set. In light of Theorem 3.8 it will suffice

to show that

(10)
∫

R

Hn−1({x∈E :λu∗(x)≤ t≤µu∗(x)}) dt=
∫

E

|(Du)∗| dx.

By (9) we have λu∗ =λu and µu∗ =µu in Ω, and by assumption

λu∗(x) =µu∗(x) = u∗(x) = 0

for Hn−1-almost all x∈R
n\Ω. For any t �=0 it follows that

Hn−1(E∩{λu∗ ≤ t≤µu∗}) =Hn−1(E∩Ω∩{λu ≤ t≤µu}),

and therefore Proposition 3.6 implies∫
R

Hn−1(E∩{λu∗ ≤ t≤µu∗}) dt=
∫

R

Hn−1(E∩Ω∩{λu ≤ t≤µu}) dt

=
∫

E∩Ω

|Du| dx=
∫

E

|Du|∗ dx.

Since |Du|∗=|(Du)∗| we obtain (10), completing the proof. �

4. An approximation theorem

In this section we will prove the following theorem.

Theorem 4.1. Let u∈W 1,1(Rn) and let ε>0. Then there exists an open set
U⊂R

n with γ(U)<ε and a function v∈W 1,1(Rn)∩C(Rn) with the property that
‖u−v‖1,1<ε and ū(x)=v(x) for all x∈R

n\U .

This theorem extends the classical notion of quasicontinuity in the space
W 1,1(Rn). The approximator v is constructed using a smoothing procedure de-
veloped by Calderón and Zygmund. The following was proved in [5].
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Proposition 4.2. Let U⊂R
n be an open set with |U |<1. Then there exist

a function δ∈C∞(U) and positive constants C1 and C2 depending only on n (and
in particular independent of U) with the property that

C1 dist(x, ∂U)≤ δ(x)≤ dist(x, ∂U)

and

sup
x∈U

|Dδ(x)| ≤C2.

For the remainder of this section we will denote by Cn a generic constant whose
value may change from line to line, but whose value in any specific instance depends
only on n.

Proposition 4.3. Suppose that u∈L1(U), w : U!R is measurable, and that

|w(x)| ≤
∫

B(x,δ(x)/2)

|u(z)| dz.

Then w∈L1(U) and ‖w‖1≤Cn‖u‖1.

Proof. Integrate the stated inequality over U and apply Fubini’s theorem to
obtain ∫

U

|w(x)| dx≤Cn

∫
U

∫
U

δ(x)−nχB(x,δ(x)/2)(z)|u(z)| dz dx

=Cn

∫
U

|u(z)|
∫

U

δ(x)−nχB(x,δ(x)/2)(z) dx dz.(11)

Given x, z∈U , we have z∈B(
x, 1

2δ(x)
)

if and only if x∈B(
z, 1

2δ(x)
)
, in which case

dist(z, ∂U)≥ 1
2δ(x) and

dist(z, ∂U)≤ |z−x|+dist(x, ∂U)≤Cnδ(x).

It follows that

δ(x)−nχB(x,δ(x)/2)(z)≤Cnδ(z)−nχB(z,Cnδ(z))(x),

and therefore ∫
U

δ(x)−nχB(x,δ(x)/2)(z) dx≤Cn

for every z∈U . With reference to (11) we conclude that∫
U

|w(x)| dx≤Cn

∫
U

|u(x)| dx. �
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Next we define a smoothing operator on L1
loc(U) which is bounded in the

Sobolev norm. The argument presented here is adapted from that given in [14].
Let ϕ∈C∞

0 (B(0, 1)) have the property that P=P ∗ϕε for every ε>0 and every de-
gree one polynomial P , where ϕε(x)=ε−nϕ(x/ε). For x∈U and z∈R

n define

(12) ψz(x) =ϕδ(x)/2(x−z).

Since δ and ϕ are smooth it is clear that ψz∈C∞(U) for all z∈R
n. Moreover it can

be shown that |Dψz(x)|≤Cnδ(x)−n−1 for all x∈U . Given u∈L1
loc(U) we define the

smoothing Su of u by

(13) Su(x) =
∫

Rn

ψz(x)u(z) dz.

It follows from the construction that Su∈C∞(U). We will show that S is bounded
on W 1,1(U). The proof will use the following result of Bojarski and Haj�lasz [3].

Proposition 4.4. Let B⊂R
n be an open ball and let u∈W 1,1(B). Let

(14) TBu(y) =
∫

B

u(z)+Du(z)·(y−z) dz.

Then

(15) |u(y)−TBu(y)| ≤Cn

∫
B

|a−Du(z)|
|y−z|n−1

dz

for almost all y∈B, and for any vector a∈R
n.

Lemma 4.5. Let u∈W 1,1(U). Then Su∈W 1,1(U) and ‖Su‖1,1;U≤Cn‖u‖1,1;U .

Proof. Let x∈U . By (13) we have

|Su(x)| ≤
∫

B(x,δ(x)/2)

|u(z)| dz,

so Proposition 4.3 implies that Su∈L1(U) and ‖Su‖1≤Cn‖u‖1. On the other hand,
if P is a polynomial with degree one then

Su(y) =P (y)+
∫

Rn

ψz(y)(u(z)−P (z)) dz

for all y∈U because ϕε commutes with P . This implies

(16) DSu(x) =DP (x)+
∫

Rn

Dψz(x)(u(z)−P (z)) dz,
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and therefore

(17) |DSu(x)| ≤ |DP (x)|+ Cn

δ(x)

∫
B(x,δ(x)/2)

|u(z)−P (z)| dz.

Let B=B
(
x, 1

2δ(x)
)

and define P (y)=TBu(y), so that

(18) |DP (x)| ≤
∫

B

|Du(z)| dz.

On the other hand, Proposition 4.4 with a=0 implies

|u(z)−P (z)| ≤Cn

∫
B

|Du(w)|
|w−z|n−1

dw

for almost every z∈B, and Fubini’s theorem implies in turn that
∫

B

|u(z)−P (z)| dz≤Cn

∫
B

∫
B

|Du(w)|
|w−z|n−1

dw dz

=Cn

∫
B

|Du(w)|
∫

B

1
|w−z|n−1

dz dw.

Now, if w, z∈B(
x, 1

2δ(x)
)

then z∈B(w, δ(x)), and thus
∫

B

1
|w−z|n−1

dz≤
∫

B(w,δ(x))

1
|w−z|n−1

dz=Cnδ(x).

It follows that

(19)
∫

B

|u(z)−P (z)| dz≤Cnδ(x)
∫

B

|Du(w)| dw.

Finally, we combine (17), (18), and (19) to conclude

|DSu(x)| ≤Cn

∫
B(x,δ(x)/2)

|Du(w)| dw.

As above, Proposition 4.3 implies that DSu∈L1(U) and that ‖DSu‖1≤Cn‖Du‖1.
Thus Su∈W 1,1(U), and

‖Su‖1,1;U ≤Cn‖u‖1,1;U . �

Proof of Theorem 4.1. After these preliminaries we are prepared to prove
Theorem 4.1. We divide the proof into several steps. Let u∈W 1,1(Rn) and let ε>0
be given. Fix δ>0.
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Step 1. Definition of U and v. Let K⊂R
n be a closed set with γ(Rn\K)<δ

such that ū(x) exists for all x∈K and

(20)
∫

B(x,r)

|u(y)−ū(x)| dy! 0, as r! 0+,

uniformly for x∈K, cf. Proposition 2.3 above. Define U=R
n\K. We may assume

with no loss of generality that |U |<1. Let Su denote the smoothing of u in U , and
define v by

v(x) =

{
Su(x), x∈U,
ū(x), x∈K.

Clearly v=ū is continuous on K, v∈W 1,1(U), and by Lemma 4.5,

‖v‖1,1;U ≤Cn‖u‖1,1;U .

Step 2. The function v is continuous. Since v|U and v|K are continuous and U
is open, it suffices to show that

(21) lim
x!y
x∈U

v(x) = v(y)

at each point y∈K. Let y∈K and let x∈U . Let x′∈K satisfy |x−x′|=dist(x, ∂U).
Then |x−x′|≤|x−y|, hence

|y−x′| ≤ |x−x′|+|x−y| ≤ 2|x−y|.
Since δ(x)≤|x−x′| and

v(x)−v(x′) =
∫

Rn

ψz(x)(u(z)−ū(x′)) dz,

we have

|v(x)−v(x′)| ≤
∫

B(x,δ(x)/2)

|u(z)−ū(x′)| dz≤
∫

B(x′,3|x−x′|/2)

|u(z)−ū(x′)| dz.

It follows that

|v(x)−v(y)| ≤ |v(x′)−v(y)|+|v(x)−v(x′)|
≤ |v(x′)−v(y)|+

∫
B(x′,3|x−x′|/2)

|u(z)−ū(x′)| dz.

Since |x′−y|≤2|x−y| and |x−x′|≤|x−y|, the continuity of v|K and the uniformity
of the limit (20) imply that

|v(x′)−v(y)|+
∫

B(x′,|x−x′|)
|u(z)−ū(x′)| dz! 0,

as |x−y|!0+. This establishes (21), and proves the continuity of v at y.
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Step 3. We must show that the piecewise definition of v implies v∈W 1,1(Rn).
By construction v−u∈W 1,1(U). Let x∈K. Then

∫
B(x,r)

|v(y)−u(y)| dy≤
∫

B(x,r)

|v(y)−v(x)| dy+
∫

B(x,r)

|u(y)−ū(x)| dy,

hence

lim
r!0+

∫
B(x,r)

|v(y)−u(y)| dy= 0

by (20) and the continuity of v. Since v−u=0 a.e. on K, we have (v−u)∗=(v−u),
where ∗ denotes the zero extension off U as in (9) above. It follows that

(v−u)∗(x) = (v−u)(x) = 0

for all x∈K. Theorem 3.11 implies (v−u)∗∈W 1,1(Rn), hence

v= (v−u)∗+u∈W 1,1(Rn).

Step 4. Norm approximation. Observe that

‖u−v‖1,1 = ‖u−v‖1,1;U ≤‖u‖1,1;U +‖v‖1,1;U ≤C‖u‖1,1;U .

Finally δ>0 must be specified. Simply select δ so that δ<ε and γ(U)<δ implies
C‖u‖1,1;U<ε. This concludes the proof of the theorem. �

A consequence of Theorem 4.1 is a fairly straightforward proof of the following
result.

Theorem 4.6. Let u∈W 1,1(Rn) and suppose that {ϕj}∞j=1 is a sequence of
continuous functions in W 1,1(Rn) which converges to u in the W 1,1 norm. Then
there exists a subsequence ϕjk

with the property that

Hn−1({x :ϕjk
(x) � ū(x)}) = 0.

Proof. Let j, k≥1 and define

Ej,k =
{
x : |ϕj(x)−ū(x)| ≥ 1

k

}
.

Let δ>0. Choose an open set U and a function v∈W 1,1(Rn)∩C(Rn) with the
property that v(x)=ū(x) for all x∈R

n\U , γ(U)<δ, and ‖ū−v‖1,1<δ. If x∈Ej,k\U ,
then |ϕj(x)−v(x)|=|ϕj(x)−ū(x)|≥1/k, so that

(k+δ)|ϕj(x)−v(x)|> 1.
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Since |ϕj−v| is continuous, this implies that |ϕj−v|≥1 on a neighborhood of
Ej,k\U . Thus

γ(Ej,k\U)≤ (k+δ)‖ϕj−v‖1,1.

It follows that

γ(Ej,k)≤ γ(Ej,k\U)+γ(U)≤ (k+δ)‖ϕj−v‖1,1+δ

≤ (k+δ)‖ϕj−ū‖1,1+(k+δ)‖ū−v‖1,1+δ≤ (k+δ)‖ϕj−ū‖1,1+(k+δ)δ+δ.

Now pass to the limit as δ!0 to conclude that γ(Ej,k)≤k‖ϕj−ū‖1,1. Choose jk so
that

γ(Ejk,k)≤ 1
2k
.

Let F 1=
⋃∞

k=1Ejk,k. Then γ(F 1)≤1 and x /∈F 1 implies that ϕjk,k(x)!ū(x). Label
this subsequence by {ϕ1

j}∞j=1. Now apply a diagonalization procedure. Inductively,
having obtained a set Fm with γ(Fm)<1/m and a sequence ϕm

j with the property
that ϕm

j !ū off Fm, repeat the argument above to find a set Fm+1 with γ(Fm+1)<
1/(m+1) and a subsequence {ϕm+1

j }∞j=1 of {ϕm
j }∞j=1 with the property that ϕm+1

j !
ū off Fm+1. The sequence {ϕj

j}∞j=1 is the desired subsequence, converging to ū off
a set F with γ(F )=0. �

Corollary 4.7. Suppose that u∈W 1,1
0 (Ω). Then ū(x)=0 for Hn−1-almost ev-

ery x∈R
n\Ω.

Proof. By definition there exists a sequence {ϕj}∞j=1⊂C∞
0 (Ω) with the property

that ϕj!u in W 1,1(Rn). If x∈R
n\Ω, then ϕj(x)=0 for all x. By the preceding

theorem, this implies that ū(x)=0 for Hn−1-almost all x∈R
n\Ω. �

5. Trace theorems

The proof of the following theorem closely follows the argument given in Section 9.2
of [1].

Theorem 5.1. Let u∈W 1,1(Rn) and let Ω⊂R
n be an open set. Then u∈

W 1,1
0 (Ω) if and only if ū(x)=0 for Hn−1-almost all x∈R

n\Ω.

Proof. Suppose first that u∈W 1,1(Rn)∩W 1,1
0 (Ω). Corollary 4.7 implies that

ū(x)=0 for Hn−1-almost all x∈R
n\Ω.
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Conversely, assume that ū(x)=0 for Hn−1-almost all x∈R
n\Ω. Fix ε>0. It

will suffice to prove that there exists w∈W 1,1
0 (Ω) with ‖u−w‖1,1<ε. Define

K = R
n\Ω and B=K\{x : ū(x) = 0}.

For every positive integer j, appeal to Theorem 4.1 to select vj∈W 1,1(Rn)∩C(Rn)
so that γ({vj �=u})<1/j and ‖u−vj‖1,1<1/j. Define

Ej = {vj �= ū}∪B,

let Vj⊃Ej be an open set with γ(Vj)<1/j, and let ϕj∈W 1,1(Rn) have the property
that 0≤ϕ≤1, ϕj =1 on Vj , and

(22)
∫

Rn

(|ϕj |+|Dϕj|) dx< 1
j
.

Let 0<δ<1 and define the truncation

Tδ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ−1−δ, if x>δ−1,

x−δ, if δ≤x≤δ−1,

0, if |x|<δ,
x+δ, if −δ−1<x<−δ,
−δ−1+δ, if x<−δ−1

so that Tδ is Lipschitz, |DTδ|≤1, and ‖Tδv−v‖1,1!0 as δ!0+ for any v∈W 1,1(Rn).
Since vj is continuous and vanishes on K\Vj, it follows that Tδvj vanishes on
a neighborhood of K\Vj. As ϕj =1 on Vj and Vj is open we conclude that

wδ,j =Tδvj(1−ϕj)

vanishes on a neighborhood of K. Moreover, since ū=vj off Vj , we may write
wδ,j =Tδu(1−ϕj) for all δ and j. This implies that

(23) ‖u−wδ,j‖1,1 = ‖u−Tδu+(Tδu)ϕj‖1,1 ≤‖u−Tδu‖1,1+‖(Tδu)ϕj‖1,1.

Choose δ sufficiently close to 0 so that

(24) ‖u−Tδu‖1,1<ε/2.

To estimate ‖(Tδu)ϕj‖1,1 we note that |(Tδu)ϕj |≤δ−1|ϕj | and

|D((Tδu)ϕj)| ≤ |D(Tδu)| |ϕj |+|Tδu| |Dϕj | ≤ |Du| |ϕj|+δ−1|Dϕj |
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because |DTδ|≤1. This implies that

‖(Tδu)ϕj‖1,1 =
∫

Rn

(|(Tδu)ϕj |+|D((Tδu)ϕj)|) dx

≤ 1
δ

∫
Rn

(|ϕj |+|Dϕj|) dx+
∫

Rn

|Du| |ϕj | dx,

and by (22) we may choose j sufficiently large so that

(25) ‖(Tδu)ϕj‖1,1<ε/2.

Finally, we may combine (23), (24), and (25) to conclude that

‖u−wδ,j‖1,1<ε.

This implies that wδ,j∈W 1,1(Rn). Since wδ,j vanishes on a neighborhood of K it
follows that wδ,j∈W 1,1

0 (Ω). This completes the proof. �

Finally we present a variant of Theorem 5.1 which extends the main result
of [15] to p=1.

Theorem 5.2. Let u∈W 1,1(Ω). Then u∈W 1,1
0 (Ω) if and only if

(26) lim
r!0+

1
rn

∫
B(x,r)∩Ω

|u(y)| dy= 0

for Hn−1-almost all x∈∂Ω.

Proof. If u∈W 1,1
0 (Ω), then u∗∈W 1,1(Rn). Theorem 5.1 implies that

lim
r!0+

1
rn

∫
B(x,r)∩Ω

|u(y)| dy= lim
r!0+

1
rn

∫
B(x,r)

|u∗(y)| dy= 0

for Hn−1-almost all x∈R
n\Ω, and in particular for Hn−1-almost all x∈∂Ω. Con-

versely, if (26) holds, then

lim
r!0+

1
rn

∫
B(x,r)

|u∗(y)| dy= lim
r!0+

1
rn

∫
B(x,r)∩Ω

|u(y)| dy= 0

for Hn−1-almost all x∈∂Ω, and thus

lim
r!0+

∫
B(x,r)

|u∗(y)| dy= 0

for Hn−1-almost all x∈R
n\Ω since u∗ vanishes outside Ω. Theorem 3.11 implies

that u∗∈W 1,1(Rn), and Theorem 5.2 implies in turn that u∗∈W 1,1
0 (Ω). Since u

and u∗ coincide on Ω we conclude that u∈W 1,1
0 (Ω), as desired. �
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