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On the factorization of certain probability distributions

By Haravp CrRAMER

1. The object of this Note is to show that a large class of probability
distributions of the type known as infinitely divisible have divisors which are
not infinitely divisible. Among these distributions are, in particular, the Pearson
Type III distribution and all non-normal stable distributions.

In the first two paragraphs, we briefly recall some known definitions and
results. The main theorem will then be stated and proved in paragraph 3.

If & is a random variable, the probability of the relation & < z is a func-
tion F(z) of the real variable z. The function F(z). which determines the
probability distribution of the variable &, is known as the distribution function
(d.f) of & In order that a given function F(x) should be the d.f. of some
random variable, it is necessary and sufficient that F (x) should be never de-
creasing and everywhere continuous to the right, and such that F (-— oo} =
and F(+ oo)=1. The function

oL

p(t) = [ €= d F (z)

~ 00

is called the characteristic function (c.f.) of the distribution. To every d.f.
F(z), there is one and only one c.f. @(¢), uniquely defined for all real ¢.

Suppose now that the variables & and &, are independent in the ordinary
probability sense, and consider the sum & =& + &. Let the d.fis of the
variables £, & and & be F, F;, and F,, while the corresponding c.f:s are
®, @1 and @,. We then have

o0

F@)=[F (z —t)dFy(t) = [ Fy@—t)dFy(1).

We shall say that F is composed of F, and F,, and use the abbreviated notation
F=F «F,=F,+ F,.

To this symbolic multiplication of the d.f:s corresponds a real multiplication
of the ¢.fis. We have, in fact, ¢ () = ¢y (¢) g2 (t). The operation of composition
i1s commutative and associative, so that any symbolic product F = Fy %---» F,
1s uniquely defined and independent of the order of the factors. The symbolic
product of n identical factors will be written as a symbolic nth power: F™,
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Thus the class of all d.f:s forms a semigroup with respect to the operation
of composition. The unit element of this semigroup is the d.f.

[0 for z<0,

E@) 11 for 20,

which is the d.f. of a »variable» & which always takes the value 0. The only
divisors of the unit are the d.f:s of the form £ (z-—m), where m is a con-
stant. We have, in fact E{(z) = E (x — m) *» E(x = m). The corresponding rela-
tion between the c.fis is 1 = ¢™¥t.eg—mi, .

A factorization of the probability distribution defined by F(z) is any repre-
sentation F = F, =---« F, where n>1, and no F, is a divisor of the unit.
Each F, is then said to be a divisor of . When F has no factorization, it
is called indecomposable. A simple case of an indecomposable d. f. is

F(z)=pE(z) + qgE(x—1),
where p and ¢ are positive constants such that p + ¢ =1.

2. The probability distribution defined by F(z) is called nfinitely divisible,
if to every n=1,2,... we can find a d.f. @ such that ¥ = GU"l. The pro-
perties of infinitely divisible distributions have been studied by several authors,
notably by Pavr L&vy, who has shown (cf e.g. 3) that the logarithm of the
c.f. @ (t) of any infinitely divisible distribution can be written in the form

. . vt
1) log (1) =met — o 6% + f(e”’”—— 1 ﬁﬁ?)dM(x),

— o0

where m and o® 2 0 are real constants, while M (z) is real and never de-
creasing in each of the intervals (— oo, 0) and (0, + oo), and such that

1
M (— o0) =M (+ o0) =0, fxsz(x) < oo, Further, any choice of m, ¢ and
-1

M () consistent with these conditions yields an infinitely divisible distribution,
and the representation of log ¢ (¢) in the form (1) is unique.

The class of infinitely divisible distributions includes many important types
of distributions occurring in various applications. Thus for M (z) = 0 we have
the normal distribution, and for ¢ = 0, M (z) = 2 E(x — 1) — 1 L (x) the Poisson
distribution. For ¢ =0, M (z) =0 for z << 0 and M'(z) = Az~ 'e «® for x>0,
we obtain the Pearson Type III distribution, and finally for ¢ =20,
M (z)=A4|z|« " for <0 and M’'(x) = Ba~ ! for x > 0, where 0 < a < 2,
we obtain the non-normal stable distributions.

It follows from the above that the problem of finding all possible factoriza-
tions of an infinitely divisible d.f. # can be completely solved, as long as we
restrict ourselves to factors which are themselves infinitely divisible. In fact,
if F=F,+ -« F,, where every F, is infinitely divisible, the logarithm of the
c. f. @, corresponding to ¥, can be written in the form (1), and we must have

m= Zmr, o = 4:0;, M (z) = ZM* (z). Conversely, any choice of the my,,
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o, and M, (x) consistent with these conditions yields a factorization of F, such
that all the factors are infinitely divisible.

In the two particular cases of the normal and the Poisson distributions, it
is known (Cramiir, 1, p. 52, and Raixov, 5) that the factorizations obtained
in this way remain the only possible ones, even if we remove the restriction
that the factors F, should be infinitely divisible. Thus any divisor of a normal
distribution is itself normal, and similarly for the Poisson distribution.

On the other hand, it has been shown by examples (cf e.g. Lévy, 3 and 4)
that there exist infinitely divisible d.f:s F such that F can be factorized into
F =F, «F,, where at least one of the factors is mot infimitely divisible. This
case occurs e.g. when F is the symbolic product of a certain number of ap-
propriately chosen Poisson distributions.

The object of this Note is to show that, in fact, this property holds for
a large class of infinitely divisible distributions.

3. Consider , an infinitely divisible d.f. F, and let the logarithm of the
corresponding c.f. ¢ be represented in the form (1). The function M (z), being
never decreasing, has almost everywhere a finite derivative M’ (z)=0. We now
proceed to prove the following theorem:

Suppose that we can find two positive constants k and ¢ such that M’ (x) >k
almost everywhere in at least one of the two intervals (— ¢, 0) and (0, ¢). Then
F has a divisor which is not infinstely divisible.

Thus in particular the Type III distribution. as well as any non-normal
stable distribution, has a divisor which is not infinitely divisible.

In order to prove the theorem, we may restrict ourselves to the case when
the condition is satisfied in the interval (0, ¢). It then follows from the pre-
ceding paragraph that F has an infinitely divisible divisor @ defined by taking
in the expression (1) of the c.f. m=0=0, M'(z) =k for 0 <z <¢, and
M’ () = 0 elsewhere. Thus we have only to show that G has a non-infinitely
divisible divisor.

Denoting by y(¢) the c.f. corresponding to @, we have according to (1)

" ) stz \
(2) log y(t) =k [ (emﬂ —1— —1—:;2) dz = log y; (t) + log y, (1),
0
where we take
— ite 1 __ i,tL ==
(3) log v, (t) k[ (e 137 w2) or (x) d, (r=1,2),
0

J-s for  —ee<z<(} + &,

a;(x) =17 1 elsewhere in (0, ¢),
[ 0 outside (0, ¢),
) az(gg):-[lﬁ»efor G—ee<z<(F +9e
l 0  elsewhere.

Here ¢ denotes a constant such that 0 << e << 1. »
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It follows from (1) that 9, (¢) is the c.f. of an infinitely divisible d.f. G,.
We shall now show that, if ¢ is sufficiently small, v (f) will be the c.f. of a
non-infinitely divisible d.f. &;. Then by (2) we have G = (4 » G,, and our
theorem will be proved.

For every real z, we define the functions 8, (z), f85(%), . . . by writing

ﬂl (x) =k a4 (x)>

T

Ba(z) = [ Br(@ —1) By (0 dt,

0

ﬂ" (Q’J) = fﬂ,l,1 (Z - t) ﬂl (t) dt.

0

We then have f,(x) = 0 everywhere outside (0, n¢), and it is well known that
we have

ne

[ etpatayda = ([ ot a0 d2)".

0

Further, |B.(x)] £ k" ¢*! for all z, and it follows that

o0 ne ¢
»

(8) / e“’Z‘.ﬂ';fT)dx: i 1 / €% B, (x) dx = exp (k / e“‘”al(x)dx) —1.
° 1 . 1 -0 0

Writing

o ¢
o

%:k[al(x)dx, l:k/—f———

0 0
we now obtain from (3) and (5)

el foral

yi ) = 67"‘"""”(1 + / eiﬂzﬂg?)dw) = / T d Gy (),
‘ T ! .

«
Q —

|

where

&

G, () = e“”'[E @i+ > At f’“duJ.

Obviously Gy (— co) = 0, while from (3) we obtain G4 (+ o0)=3,(0) =1. In
order to prove that G (z) is a d.f., we now only have to show that it is

. . <
never decreasing, 1.c. that }_,ﬂn ()/n! = 0 for all .
1
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Consider first fB;(x), which is everywhere non-negative, except between the
limits (3 & ¢) e, where it takes the value — ke. Further, as ¢ - 0, it 1s obvious
that B,(z) tends to k%(¢c —|c — x]) uniformly in 0 <z << 2c¢. Also it is easily
seen that for all sufficiently small ¢ we have B, (x) = 0 and f5(z) = 0 for all z.
It follows that we can find g such that for £ =g, and for all

v
L

Br@) + 37 Ba(a) + 51 Palo)

Ba(@) = [ Bolw — 1) falt)de = 0,

0

@

Bs(@) = [ Balw — 1) o (t) dt 2

0

1%
L

and hence Z%(? 2 0. Thus Gy is a d.f.
0 !

It now only remains to show that ¢, is not Infinitely divisible. In fact, if
Gy were infinitely divisible. log 94 () could be expressed in the form (1) with
a never decreasing M (x). Now since the derivative M’ (z) exists almost every-
where and is 2 0, and since the representation (1) is unique, it follows from
(2} and (3) that we should have almost everywhere in (0, c)

k == 17'/_[, (x) + kaz (x) g ]\3 [¢£3 (W),

but this is obviously inconsistent with (4). Thus G; cannot be infinitely
divisible, and our theorem is proved.

4. By a theorem due to KmintcmINE (2), any d.f. which is not infinitely
divisible has an indecomposable divisor. Writing the function G of the pre-
ceding paragraph in the form = G« G« ... and applying first the argu-
ment of the preceding paragraph and then KHINTCHINE'S theorem to each
factor, we obtain the following result:

Any infinitely divisible d. f. F satisfying the conditions of the preceding theorem
15 divisible by the product of an infinite sequence of indecomposable d. f:s.
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