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Introduction

In this paper we study some connections among (a) boundary value problems
arising in partial differential equations, (b) function space integrals (stochastic process
expectations), and (¢) what we have decided to call Fréchet-Volterra (F.V.) variational
cquations—equations where an unknown functional appears under operations involving
F.V. derivatives. Before giving an explicit example to illustrate the kind of connections
we mean, let us first recall briefly the definition of a ¥.V. derivative.(?)

By a functional we mean a complex valued function u(q) defined on a space of
functions q=g¢(t) where ¢€T, an open interval of B. By the F.V. derivative of the
functional u(q) at the point 7, denoted by du/dg(tr), we mean the limit (in a suitable
sense) of

u(g+ @n) —ulg)
[oadt

where {@,} is a sequence of functions of ¢ with support [t — &, T+ &), &, £,—0, max
|@a]—0.(") We also define F.V. derivatives of higher order.

As an illustrative example of the connections referred to above, let us consider
first the function space integral. Let C(0,t) be the space of continuous functions z{o)
on 0< o<t with 2(0)=0. We will denote by E¥{F|z]} the Wiener integral (Brownian
motion expectation) of a functional F[z] defined on C(0,?), i.e., the integral based on
the Wiener measure (Brownian motion stochastic process measure) on the space C(0,¢).
By EY{F[z]; x<z(t)y<z+e} we mean the integral of F[z] taken over the subspace of
0(0,t) consisting of functions z(g) for which x<z(t)<z+e. Finally we will find it
useful to consider lin; e 'EY{F(z); x<z(t)<z+e}, which we will denote by EY{F[z]

8(z(t) — x)}.

Now in particular consider

t t
u(z, t; Q) =E{exp (if z(a)g(o)do ~ %f 2%(0)do) 6(2(t) + x)}, (L1
0 0

(1) For a precise definition of the F.V. derivative, see chapter I, section 1, of this paper.
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where g¢(c) (a parametric function in this integral) is continuous on [0, ¢]. Using prob-
abilistic techniques it is not difficult to explicitly caleulate this function space integral

and indeed one obtains

2 .
u(x, t; q) = (27! sinh t)’ } exp ( — . z ur

2 tanh ¢ tanh ¢ 0

¢
f R(t,o; — l)q(a)da)
1 ¢t ot
x CXP(§ LLR(U, & — l)q(o)q(f)dadE) (1.2)

1 t ot
X exp(m fofoR(t, o, - Rt & — 1)q(0)q($)d06£),
where R!o, &; pu) is the resolvent kernel on [0,t] of min (g, &), i.e.,

—-cosh (t — &) sinh a

< H
0 : cosh ¢ os¢
(0,8 —1)= — cosh (t — g)sinh &
B b = gzt
cosh ¢

From a well-known theorem of Kac [12, 13] (see also Rosenblatt [20], Cameron [I],
Darling and Siegert [4]) it follows that u(x,t;q) as defined in (1.1) is the solution of

ou 18 :
a:—éé—:;=—%u+uq(t)u ulz, t;9)—>0, z—>+ oo, u(xtq)—>0x) 0. (1.3)

Now one can obtain (1.2) by solving this system directly as well as by calcu-
lating the function space integral above. The motivation for this paper is now illu-
strated by the observation that u(z,f;q) as defined in (1.1) also satisfies a F.V. va-

riational equation, specifically (1.1) is the unique solution of

13 3
ou - = (— fmin(r, s)q(s)ds)u—f min (1,8)—é¥—ds—ita—u, 0<t<t,
0

8q(7) 0 8q(s) .

ou .
11_31 E—q(T)—zxu, (1.4)
ouz,t0) 18ulx £0)  —a*

ot 2 Ox? T "9 u(x: & O)a u(x: t; 0)_)6(1:) t—0.

It will be shown in Chapter II, section 14, that (1.2) can also be obtained from
the system (1.4) by using techniques appropriate to such a system—in this very simple
example, by using a F.V. series expansion of the unknown functional u(z,¢;¢) and
determining the coefficients (functions in this case) by recurrence formulae and the
other conditions in (1.4).
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Thus we have three quite different problems, (1.1), (1.3), and (1.4), each solvable
by its own particular technique and all leading to (1.2). As indicated above, the
relation between the function space integral and the partial differential equation has
been well explored and generalized. We are chiefly interested here in the connection
between the systems (1.3) and (1.4) and the general relation between boundary value
problems and F.V. variational equations that this particular example suggests.

Let us now see how one can obtain the system (1.4) by operating formally with

the function space integral (1.1). We have from (1.1), for any point 0<7<{,

ou T EY{z(7) exp (iftz(a)q(a)da -1 Jtzz(a)da) o(z(t) — x)}. (1.5)
dq(T) 0 2Jo

Noting that

BE(FRI0C0 - n) =5 | ¢ B FE Yy,

we have

ou _ ij‘” ‘WE“’{ (Jt d )x (_lfz do+1¢ t)}d 1.6
Sa0 " 2m) L viz(r) exp |4 Oz(a)q(a) o) xexp| =3 ]z (a)do +ipz(t) | (dp. (1.6)

To proceed it is essential to exploit the relation between the integral in function

space and the derivative in function space, i.e. between the Wiener expectation and
the F.V. derivative—we must integrate by parts in function space. For this we have
the relation (cf. Cameron [2])

oF
(s

¢
f min (z, $)EY {—~ }ds =EY{2(7)F[2]}. (1.7)
0 (SZ

~

Using this we get from (1.6),

5 . %) t 5 ) ¢
sa s min w2 {5 Lo (¢ sortors)
1 1
X exp ( - éf 2%(o)do + i[uz(t))} }dsd[u. (1.8)
0

As is easily seen (*) 8z(¢)/0z(s) = 0:(s), the Dirac measure in ¢ at the point s. Thus we

have

(1) We will show this in chapter I, example 1.1.



F.V. VARIATIONAL EQUATIONS 151

. t
Sg‘(% ~5 fﬁwe‘”" fo min (7, s) ¥ {(iq(s> —2(s) + i ()

X exp(iftz(a)q(o')dc - %f 22(g)do + iuz(t) )}dsd,u

0 0

t t t
= ( — f min (7, s)q(s)ds)E;" {exp (zj z(0)q(o)do — % J 2¥o) 60)6(z(t) — x)}
0 0 [}

t 2 £
— zj min (7, s) E,";’{ z(s) exp (z f 2(o)q{o)do — %f z%a)do‘)é(z(t) — x)}ds
0

0 0

o0 t ¢
4 eE{XP (z f {o)g(o)o f z%a)doﬂuz(t))}dm (1.9)

27 -0 0 0

and finally, therefore, the Volterra variational equation,

¢ t
gs(% - ( - fo min (7, s)q(s)ds)u - fo min (7, 8)(%:;) ds— iTZ_Z' (1.10)

The condition in (1.4) that lim 55%=ixu follows from (1.5), and the other condi-
7>t~

tions in (1.4) from the fact that (1.1) with g(c)=0 satisfies (1.3) with ¢(o)=0.

Thus we see that the variational equation in (1.4) arises from ‘“differentiating”
(1.1) with respect to the parametric function ¢ and that what we have done is the
function space analogue of the usual one-dimensional technique of obtaining a dif-
ferential equation for a Fourier transform by differentiation with respect to the para-
meter of the transform. From this point of view, the differential equation “boundary
condition” in (1.4) is then quite natural as it determines the transform when the
parameter is zero.

It should be remarked that the technique used in this particular example of
obtaining the F.V. variational equation from (1.1) can be used in more general situa-

tions. First of all one can consider the more general function space integral

t

u(z, t;q)=E7 {exp (zf 2(o)q(o)do— f v(z(o‘))da) o(z(t) — x)}, (1.11)

0 0

where v(x)>0 is continuous on (— oo, o), (1.1) being the special case v(x)=} 22 As-
suming further that v(z) is differentiable and denoting its derivative by v’(z) we obtain

formally, in the same way as above, the F.V. variational equation
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t t
5(@%) = ( - fo min (7, S)Q(s)ds)u - ifo min (7, s)v'( - i%)uds - irgz, (1.12)

where again 0<t<t and where the operator v'(—140/dg(s)) must be defined appropri-
ately (!)—it is clear what the operator means when v(x) is a polynomial.

Just as in the special case (1.1), it follows from Kac [12] that (1.11) is the
solution (for this we need only that v{x)>0 is continuous) of

2
ou_L10%w_ _ v(x)u +txq(tyn, u(x,l;q)—>0 x— -+ oo, u(xt;q)—>dx) t—=0. (1.13)

And in this casc we are again interested in the connection between the system (1.13)

and the F.V. variational system consisting of (1.12) augmented by the conditions

. ou
lim —=7txu

Tt~ (Sq('!') (1 14)
. 2 . *
5“(’5&’—;’—0) - ;8 “%2:—’0) ~ — (@) uz, £0), u@,b;0)->dx) t—0.

The first of the conditions in (1.14) comes again directly from (1.11) and the differential
equation condition in (1.14) follows from the fact that (1.11) satisfies (1.13) when ¢(g)=0.

From the point of view of differential equations the interesting observation is
that the solution of (1.13) considered as a functional of the parametric function q satisfies a
F.V. variational equation. Although in the particular example (1.1) and also in (1.11)
the relationship between the differential equation boundary value problem and the
F.V. variational system was through the space integral, it is clear that a more gen-
eral problem presents itself which we now describe.

Consider a linear (?) boundary value problem
Au(x)=0, z€Q, an open set of R", (1.15)
where A is a linear partial differential operator with some boundary conditions
Bju(z)=0 4§=0,1,2,..., u, (1.16)

where z €I', the boundary of (, and where B; is a lincar partial differential ope-

rator.

(1) We do this in chapter 1I, section 4.
(2) The same problems arise in non-linear cases but nothing seems to be known in this direc-
tion at this time.
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We introduce, in association with this boundary value problem,(') a family of

boundary value problems:
Aulz)= B(q)u, (1.17)

where B{g) is a family of linear partial differential operators depending on the para-
metric function ¢ and where we impose on (1.17) the boundary conditions (1.16).

Now in (1.17) the solution u depends on gq
u(x) = u(x; q), (1.18)

ie., it is a functional of ¢ and we ask the following questions:

1. For what B(q) does the F.V. derivative du/dg(t) exist? Do higher order F.V.
derivatives exist? And what is important,

2. Can one choose B(g) in such a way that u(x;q) satisfies a F.V. variational
equation? ]

3. If the answer to the preceding question is “yes”, then the natural next ques-
tion is, does this variational equation augmented by certain ‘‘boundary conditions”
have u(x;q) as its unique solution? That is, are the differential equation boundary

value problem and the F.V. variational equation system equivalent?

We find these questions interesting because, as alreaydy noted in the explicit
example (1.1), the tools which seem natural for attacking F.V. variational equations,
e.g., F.V. series, function space integral transforms, (2) etc., are essentially different
from the natural or known tools used in partial differential equations.

In chapter I we will see that question 1 above can be answered quite generally
but, as stated above, questions 2 and 3 seem difficult. We shall study these questions
for some mixed problems in chapter I and in order to obtain anything like complete
results we shall have to confine ourselves to some Cauchy problems in chapter II. Our
approach will be quite abstract since we are looking for general methods to apply in
the case of various differential operators (cf. Remark 9.5 in chapter I). We will,
however, show that the solution w(z,t;q) of (1.13) does satisfy the F.V. variational
equation (1.12) and moreover that w(x,t;¢) is the unique solution of (1.12) satisfying
the conditions (1.14). The same methods used to show this will also show that the

fundamental solution of the Schrédinger equation,

(*) We are purposely being brief here—we implicitly assume all the boundary value problems
are well set.
(2) And other methods yet to be found.
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92
al‘—??—}= —i Vi@ +izgtu (1.19)

satisfies the F.V. variational equation

t t
5% = (— ifo min (7, s) q(s)ds)u - iL min (7,s) V' ( — zb%@j)u ds+ T%Z- (1.20)

Now in the Schrodinger equation case there is no direct representation of u(z,t;¢q),
the solution of (1.19), as a function space integral. (*)(*) However, using a conjecture of
Donsker expressing u(z,f;q) as the limit of a certain Wiener expectation one can
formally derive that w(x,#;q) satisfies the F.V. variational equation (1.20). Actually,
whether (1.20) is obtained, formally or not, using function space integrals or just
guessing by analogy with (1.12), the point is that once we know the equation (1.20)
we prove that wu(x,,q), the solution of (1.19), satisties (1.20), using our general methods
not involving function space integrals.

Our proof of uniqueness, i.e., that u(a,t;q) is the only solution of the F.V. var-
iational equation satisfying certain side conditions does involve the use of function
space integrals, and an inversion formula for function space transforms (cf. Cameron
and Donsker [3]). Only in very special cases (cf. chapter II, section 14) can we prove
uniqueness without the function space integral. It would be of great intesest, in the
general setting of this paper, to prove the equivalence of the differential equation
boundary value problem and the F.V. variational system without recourse to function
space integration, since in certain cases there is, intrinsically at least, no function space
integral involved.

On the other hand,(?) and what is of some interest from the point of view of
stochastic processes, the relation between function space integrals and F.V. varia-
tional equations exists without the corresponding partial differential equation. To be
specific, consider, for example, a Gaussian stochastic process {ya,0<a<t} with mean
function zero and covariance function ¢{g,£). Let us denote expectations on this pro-

cess by B%{-}. It is possible to show that in this case (1.7) can be replaced by

ft s) B¢ {5—F}d = E2{y(7) Fly]} (1.21)
0@(7» ¥ 5(s) s = B y(t) Fly -

and that operating formally as before,

(1) Except by the so-called “Feynman integral’ (see Gelfand and Yaglom [8]).
(2) We do not pursue this point in the present paper.
(*) (Added in proof.) Cf. also Nelson, Colloque C.N.A.S. Paris, June 1962.
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t

t
u{z, t; q)EEi{ exp (@J‘ y(o) g(o)do — f v(y(a))da) A(y(t) - x)} (1.22)
0

0

satisfies the F.V. variational equation

4 ‘ . ¢ , .0 . o
@(% - ( - LQ(L s) Q(S)ds)u - zfog(r, sy ( -~ z%)uds — (¢, r)a—l—;, (1.23)

Now one of the reasons that in the special case p{g, &) =min (5, &) (the Wiener pro-
cess), the function space integral also satisfies a partial differential equation is because
the Wiener process is Markovian. The F.V. variational equation (1.23) holds for
u(z,t;q) defined by (1.22) whether the Gaussian process {y5,0<a<t} is Markovian
or not. However, in the non-Markovian case the determination of just what boundary
conditions on the solution of (1.23) specify the function space integral (1.22) as the
unigue solution seems difficult. It is not difficult to see that if g(c, &) is the Green
function of a Sturm-Liouville differential equation (in this case {yo,0< o<t} is Mar-
kovian), then one has again a differential equation as in (1.3) but where the differen-
tial operator — 19/0x?, which is inverse to min (g, &), is replaced by the corresponding
Sturm-Liouville differential operator.

The study of F.V. variational equations in their own right should prove use-
ful. In this connection see Lévy [16] for a discussion of certain variational equations.
In a paper of Hopf [11] a F.V. variational equation is considered in conjunction
with a corresponding partial differential equation boundary value problem; however,
the relation indicated formally there seems quite different from the type of corre-
spondence considered here. Connections between F.V. variational equations, boundary
value problems, and function space integrals of the type we consider here exist in
a formal way in the literature of quantum field theory, although there the context
is much more complicated. From that point of view the results in this paper are
only the beginnings of what is needed (cf. Schwinger [24], [25], Kristensen [15]).
The authors are extremely grateful to Professor Povl Kristensen, professor of Physies
at Aarhus University, for generously informing them and discussing with them these
latter results. ,

Finally the authors wish to express their gratitude to Aarhus University and
the Université de Nancy for making their collaboration possible.
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CHAPTER 1

F.V. derivatives of certain functionals

1. Definition of the F.V. derivative

Let E be a vector topological space, locally convex, complete,(!) and let T be
an open interval, bounded or not, of R(I'=R is possil;le). By D(T) (or O(T)) we
mean the space of infinitely differentiable (or continuous) functions on 7' with compact
support provided with the topology of Schwartz (ef. Schwartz [22]) (or with the to-
polozy of uniform convergence on every compact set of 7'). The functions of D(T)
and C(T) are complex-valued.

A functional will be a mapping ¢—>®(¢q) from D(T) or C(T) into E with the

following properties:

The mapping ¢—>D(q) is continuous. (1.1)
For every g and ¢, belonging to D(T) (or C(T)), the function (1.2)
E—>P(q+&q,) is entire analytic with values in E. '
Let ¢ be a fixed element in D(T). For every w€D(T) we define
a .
0(g; ) = 7 DG+ E) lemo- (1.3)

This is an element of E, hence a mapping y—0®(q:y) from D(T) into E. Let

us check that this mapping is linear. First of all it is obvious from the definition that
0®(q; ky) = kdD(g; ) for every k€ C.
Therefore, we want to show for every wu,, vy, €D(T) that
OD(g; w1+ y) = 0D(g; ) + 0D(g; ). (1.4)
Now if ¢’ €E’, the dual space of E, then the scalar function
£p & (Plg+éyr+ &) ) =W(5, &)

is partially differentiable in &,,&,. Thus

() We do not look for the most general hypotheses under which what follows is correct.
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P (0,0) . 8¥(0,0)
851 +§2 852 +O(l§‘)5

where |&|=(|& |2+ |& 2. But 0¥ (0,0)/0& = (0D(q; yu), €'>,i=1,2 so that

W(&,, &) =T(0,0)+&

(D(g -+ E(ypy + ) — DAg), € = E6D(g; ) + 0D(g; wo), €D + o |€]).

Dividing by & and letting £&—0, we obtain

OD(g; py + ), €D = (0D(g; 1) + 0Q(g; ,), €

for every ¢’ €E’ so that (1.4) follows.(!)
We now check that the mapping y—d®(q; ) is continuous from D(T') into K.
Indeed from definition (1.3) and Cauchy’s theorem (2) it follows that

27 .
oD(g; p) = %JO D(g+ey)edb, (1.5)

this integral being taken in £. Let V be a convex neighborhood of 0 in £. We look
for a neighborhood U of 0 in D(T) such that

0®(q; )€V  whenever peU. (1.6)

From (1.1) there exists a neighborhood U of 0 in D(T') such that ®(g+x)—DB(q)EV
whenever X €U, and also €% €U if xeU.

Hence, since

1 2n . .
5B(g; ) — 50(g; 0) = 50(q; ) = - f (@(g+ ) — B(g))ed0

2:7'[0

we have (1.6) if peU.

Therefore we have obtained a continuous linear mapping
y—>0D(q; p) (1.7)

from D(T) into K. By definition (cf. Schwartz [23]) this means the mapping (1.7) defines
a distribution 0®(q)[dq(t) on T with values in E. This distribution verifies

od(g) _ i
»3200) Y(v)dr = 8D(g; v) . (1.8)

(*) This reasoning is well known and we recall it here for the convenience of the reader (see
Hille-Phillips [10] and the bibliography mentioned there).
(3) Which holds for vector-valued analytic functions (see for instance Grothendieck [9]).
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DeriviTioN 1.1. The distribution §®(q)/dq(r) €D’ (T; E), the space of distributions

in T with values in E, is the F.V. derivative of the functional @.

Remark 1.1. If the functional ¢—®(q) is given continuous on C(T), then the
same reasoning as above proves that y—0®(¢; @) is linear continuous from C(T) into

E and hence a measure with values in E for the F.V. derivative 0®(q)/dq(T).

Example 1.1. Let E=D'(Q), distributions on Q, where Q={x,t|x€R,t>0} and
let T=(0,00). For ¢€D(T) let ®(q) be the function z,t—>¢(f) so that dD(¢; ) is the
function z,t—yp(t). Tt follows that dD(g)/dq(t) is the function

7—>1,868:(7)
120->D’(Q),

where d;(7) is the Dirac measure in ¢ at the point 7 (so that (1.8 (1), w(z)v(t)> =

( J' <f’mu(x)dac)v(r), % and v being test functions). To show this we need only note that

fw<1,®6t(r), w(x)v(t)) p(r)dr = (fw u(x)dx) (J‘wv(t)w(r)dt)
0 0

0

and ooy @y~ (| uwas) ([ " woa).
- 00 0
Example 1.2. Let £ and T be as in Example 1.1 and for g€ D(T) let ®(q)
be the constant x,t—q(s), where s is fized. Thus d®(g;yp) is the function, z,t-—>yp(s),
from which it follows that Jd®(q)/d¢(t) is now a distribution, 8,(s)®1, ;. This is clear
since if ¢ is given in D(T), then

fér (’5)® ]z.HP(T)dT = 1/)(8)3

an element of D;; and hence the result.
If we assume in (1.8) that t—>d®(q)/do(7) is actually a continuous function from
T to E, then one can define the value of this function at the point 7,€7T by

0P(q)
dq(7,)

=1lim 6®(q; v,),

where y, €D(T) and the support of y, are [1y: &, Tyt fal, &% fu->0, v, =0, fzpn(r)d.r -1,

and where y,—>6,(1,) for the weak topology of measures on 7. One says that v, is
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a regularising sequence at t,. Assuming that
1 .
[P+ Ep) — V(9] —>0P(g; p) in B as £=0

uniformly for vy, an element of a regularizing sequence, one obtains

- £ 1.
& Vprd T (1.9)

Oq(vy) e
We can state this results as follows; we introduce the

DEerFiNiTION 1.2. A sequence ¢,€D(T) is a F.V. sequence at the point 7 if:

(i) The support of ¢, is [T+ ay, T+ fa], 0, f—0 (of arbitrary sign).
(ii) m%x|<pn (t)|—>o0.

Then éy,=¢, is a F.V. sequence at the point 1 and

o) _ . <®(q+¢n) - d)(q)), (1.10)

dq(T
9(7) f galt)dt
T
where {¢@,} is a F.V. sequence at 7.
This is the original definition of Volterra [26]. One can show (cf. Volterra [26])
that, conversely, if a functional ®(q), verifying (1.1) and (1.2) admits a F.V. de-

rivative (given by (1.10)) for every 7 €7, and that v—d®(g)/dq(7) is, for example,
piece-wise continuous with values in E, then 7—>d®(q)/01(v) defines a distribution
which coincides with the distribution defined by (1.8).(}) We shall need

Lemma 1.1. Let D(g) be a functional verifying (1.1) and (1.2) such that

d®(q)
dq(t)

=0 in D'(T, E), for every g€ D(T). (1.11)

Then ®(q) does not depend on q.

Proof. 1t follows from (1.3) that
d

aE D(g + Ep) = 0D(g+ Eyp; ), (1.12)

(1) Our more general definition allows us to consider simultaneously the ordinary and the “ex-
ceptional” points of Volterra (cf. Volterra [26]).
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d d
26+ ED) = G O+ EF2)y) o,

since

6®(q +&y)

3q(0) w(r)dr =0,

But OD(g - &y p) = fT

by (1.11) so that ®(g-+ &) does not depend on £ and this for every ¢ and y in D(T)

from which the result follows.

Remark 1.2. Let us apply definition (1.10) to example 1.1. We must consider

(g + @) — Plg)
J @n (t)dt
0

where {@,} is a F.V. sequence at 7. We obtain

1,®

@n(t)
f @n(t)dt
0

which converges to 1,84,(t) as n— oo,

2. A functional associated with a Cauchy problem

Let A= A(8/ox) be a partial differential operator with constant coefficients on R.
We consider the Cauchy problem:

Az u(z, t)+ éatu(x, t) + w(x)u(z, t) = ixq(t) u(z, t), (2.1)

u(z, 0) = f(z), (2.2)

where z € R, ¢t >0, f(x) is given and with growth conditions on f(x) and u(z, f) as x— % oo.
We will assume ¢() real and continuous and w(z) continuous and complex-valued.
We now make precise assumptions. Let 4 be a vector topological space, locally

convex, complete, of functions or distributions on R,. We assume

For every a€ A, wa(zx—w(zx)a(z)) and xa are defined as ele-
ments of D'(R), distributions on R; the mappings a—wa and (C.1)

a—>xa being continuous.
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Given f € 4, there exixsts one and only one function, {—u( - ,t),
continuous from ¢>0—4 which is a solution of (2.1) and
{2.2). We assume further that the mapping f—u is contin-
uous from 4—0(0, oo; A), the space of continuous functions

from {>0—+4 with the topology of uniform convergence on

every compact set. (')

We define in this way a functional

g—>u(q) = u(, 1, ) = u(g; %, 1)

defined for ¢(t) €C(T) (continuous functions in ¢>0) and with values in C(0,00; A4).

We need two more assumptions.

The solution of (2.1) and (2.2) in C(0,00; A) is stable in g¢, } ©3
3)

ie., g—>u(g; »,t) is continuous from C(T') to C(0,o0; A4).

Let M(A) be the space L(C(R), A) of continuous linear mappings from C(R),
continuous functions on R, into 4. MT(A4) is a subspace of D’(A4), distributions with

values in 4. We will assume

Given geM(A4), ¢g=0 for t<0, there exists a unique ele-
ment %€ M(A), u=0 for t<0, which is a solution of

(A, + gt + w(x) — ixq(t))u =g. (C4)

The mapping g—u is continuous from (A) into itself.(2)

Our purpose in this section is to study the Volterra derivative of the functiona

g—>u(g). One has

- TuvorEM 2.1. Assuming (C.1)—(C4), the functional g—u(g;=,t)=u(x,t; q)from
o(T), T=10, ), into M(A) admits a Volterra derivative for every v>0. This Volterra
derivative du(x, t; q)[0q(t) is characterized by the following properties:

ou(z, t; g)

5q(7) =0 fori<r, (2.3)

(1) In other words the Cauchy problem is “well set’’ in the sense of Hadamard. Notice also that
the space A contains the conditions at oo in .

(2) In this statement the initial Cauchy condition is contained in the second member g (Sobolev-
Schwartz method).

11 — 622906. Acta mathematica 108. Imprimé le 21 décembre 1962
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for t>1, du(x,t; q)[oq(z) is the solution of the Cauchy problem,

o . du(,t;q)

(A,—l— (%—I- w(x) mg(t)) Wéq(t) =
du(z, 7; . (
%7@= zu(z, T; q)

»M—Eﬁé’(—j;—m is continuous from t>1:—>;4.(1)

Proof. Let

0
A—A,+a—t+w(x)

and let g, be a F.V. sequence at t. We consider

= v,,(x, t) — u(q + 003 %, t) - u(q; Z, t).
fentta

By definition
Au(g + on; @, t) = i2(g + 0n) w(g + 0n; @, 1),

w(g + gn; @, 0) = f(2).
Therefore,
on(t)

fgn(t)dt

Av, —ixq(tyw, = izu(g + g,; 2, t)

vy (2, 0) =0,

(2.4)

(2.5)

(2.6)

(2.7)

Thus, v, is the solution of the non-homogeneous Cauchy problem (as in (C.4)) with

second member

f@n( )dt

As has already been observed

AU y —dy(1)

f o (D)t

(2.8)

(*) This Cauchy problem with initial value at =7 is well set under hypotheses (C.1)—(C.4) (re-

place ¢ by t+7 and note by (C.1) that x—u(x, 7; ¢) belongs to ;4).
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weakly in the space of Radon measures on R, and according to (C.3) and (C.1),
wu(g + on; x, t)—>izu(q; x,t) in the space C(0, co; A). Therefore

In—>izu(g; 2, t) 6, (7) = 12u(g; 7, T) 0y (T) (2.9)

in M(A). By (C4) it follows that v, converges in JH(A4) to the wrique solution v in
MmA) of
Av - txq(t)v = izu(z, t; q) 6, (1). (2.10)

v(z,t;9) =0 for £ <O0. (2.11)
This proves already that du(x,t; q)/dg(r) exists (in T(A)) and that

og(r)

(2.12)

Let us now introduce the unigque function t—U( -, ¢; ¢), continuous from > 71— 4, with
AU —ixqt)U =0, (>1, (2.13)
Uz, 1; q) = tzu(z, 73 q). (2.14)

If Uz, ?; q) is defined as U(x,t; q) for t=7 and O otherwise, then we have
AU —izqt)U = izu(x, 7; 9) 6, (1), (2.15)
and, of course, U=0, t<O. (2.16)

By comparing (2.10), (2.11) with (2.15), (2.16) and using the uniqueness in (C.4) we
obtain that v=U. This completes the proof of the theorem.

Remark 2.1. Taking E=TN(A) we see that the functional g—u(g) verifies (1.1)
and (1.2). Indeed, (1.1) follows from (C.3) (and more precisely ¢—u(q) is continuous
with values in C(0, co; A)). One proves (1.2) by the same reasoning as above in the

proof of Theorem 2.1. In this way one obtains that du(x,¢;q;y) is the solution of
Adu(z, t; q; p) — izq(t) du(z, t; ¢; ) = sxp(t) u(z, t; q),
du(x, 0; ¢; ) =0,

and then by the same reasoning as in Example (1.1) one obtains Theorem 2.1.
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3. A Volterra variational equation

Our aim in this section is to see to what extent properties (2.3) and (2.4)

“characterize” wu(x,t; ¢). More precisely, let ®(x,¢;¢q) be a functional verifying

D(x, t; q) €C(0, oo; A), g—> being continuous from 3.1)
C(T), T =0, o), into C(0, oo; A), '
and if £=M(A), (1.2) holds and we can define } (3.2)
0D(x, t; 9)/0g() in M(A) for every 7> 0. '

Let us denote by W(x,{;¢) the solution of the Cauchy problem:

(A —12q(t))¥" =0 for t>1,
W(z, 7;9) = i2®@(x, 7;9), (3.3)
W(-,t;q) continuous from > 71— A.

Let ‘i"(m, & q)="Y(x,t; q) if =7 and 0 otherwise. We now further assume about ® that

it verifies the following Volterra variational equation:

ég);%(’i—;l) =W(x, 8 q) (34)

with the boundary conditions:
®(x, 0; ) = f(x), f(x) given in A, (3.5)
Az, 10)=0. (") (3.6)

We want to prove now

TrEEOREM 3.1. Assuming that (C.1)-(C.4) (of section 2) hold, there exists one and
only one functional ®(q) verifying (3.1), (3.2), (3.4), (3.5) and (3.6). This functional ® is
the unique solution of the Cauchy problem:

(A —izq(t) =0, (3.7)
®(z, 0; ) = f(x), (3.5)
t—>®( -, t;,q) 1is continuous from t=0—>A. (3.8)

Proof. Let us introduce the new functional

R(x, t; q) = AD(x, t; q) — ixq(t) D(x, t; q). (3.9)

(*) This is a new kind of “boundary condition”.
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Considered as a functional with values in D’(R, x R;) this functional verifies (1.1) and
(1.2). As is easily checked, it follows from (3.9) that

oR(q) _ . . 0D(q) .
54(7) =(A zxq)_—aq(_[) 12 ®(q)d (7).
From (3.3) and (3.4) it follows that
0R(g)
=0. 3.10
Sqfr) (310)
But Lemma 1.1 and (3.10) imply
E(q) = R(x, t;q) = R(x, 1, 0), (3.11)

and (3.6) and (3.9) imply that R(z,?;0)=0. Thus R(q)=0 and we have
(A —dxq(8)) D =0.

Therefore, if a solution exists, it is necessarily given by the unique solution of the
Cauchy problem (3.7), (3.5), and (3.8). Since, by Theorem 2.1, we know that this
solution actually verifies (3.1), (3.2), (3.4), (8.5) and (3.6), the theorem is proved.

4. A functional associated with a mixed problem

We introduce the following notations. Let H and K be two Hilbert spaces. If
frg€H (and u,v€K), (f,g9) (and ((u,v)) denote the scalar product of f and ¢ (and »
and v (in H and K respectively). We assume that K< H, the injection K—H being
continuous, and K being dense in H. We set |f|=(f,/)},||u]| = ((w,u)).

We assume that ¢ varies in (— oo,f;) where #,>0 is fixed. Let a(t;u,v) be a
family of continuous sesquilinear forms (') on K x K. We assume that a(t; u, v) is given
for t<t, and that the function ¢—a(f;u,v) is continuous on (— oo,t,], for every
u, v €K, with

|a(t; w, v)[ < M|l ||o]l,

where M is a constant independent of ¢.(2) If X is a Banach space, by L2(a, §; X)

(*) alt;u,v) is a linear in u, semi- (or anti)-linear in v and | a(f; u, v) | < c(t)||u|| ||v]|. :

(3) We are not looking for the most general hypotheses here. We notice that the behaviour of
al(t;u,v) for t<0 is irrelevant for what follows. For this kind of problem the reader is referred to
[17] (where K =TV).
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we mean the space of the (classes of) functions in («, ) which are square integrable
with values in X. If X is a Hilbert space (scalar product (f,¢)x), then L%(«, f; X) is
a Hilbert space for the scalar product

B
f (F(¢), 9(8))x dt.

We make now the first hypothesis.

Given f€H and g € L2 — oo, ty; K), with ¢g=0 for £ <0, there
exists an unique function u €L?(— oo, ¥y; K), with =0 for
t<0, such that(')

d .
a(t; ult), v) + k7 (u(t), v) — ig{t) (Bulf), v) = ((g(t), v)) + (}, v)0 * (M.1)

for every v€K, where(?) BEL(K; H), q is given continuous

in (—oo,4](®*) and where & is the Dirac measure at the

origin.

From (M.1) and the closed graph theorem, it follows that {f,g}—wu is continuous
from H x 120, t,; K)—)Lz(O, to; K). (*) We define in this way a functional g—>u(q) = u(t; ¢) =
u(g; t) from C(T), T=1[0,t,] to LO0,%,; K).(*)

We assume (for this kind of stability condition the reader is referred to [17,
chapter IV]):

The mapping ¢—u(g; ) is continuous from C(0, t,)—L3(0, t,; K). (M.2)

Let us compare these hypotheses with those made in section 2. Here the space
A is replaced to a certain extent, by the two spaces K and H, and the space of
continuous functions with values in 4 is replaced by L0, &) K).(®) The fact that in
section 2, a—>wa is continuous from 4—,4 is contained here in the hypothesis that

aft; u,v) is continuous on K x K (see section 9) and the fact that in section 2, a—>za

(') d/dt is taken in the sense of distributions in (-~ oo, ¢,)

() In general we write L(X;Y) for the space of continuous linear mappings from X into Y.

(?) Or in [0, ¢,] since one can then extend ¢ arbitrarily for £<0.

(%) One can, of course, identify L2, ¢y; K) with the subspace of L2(— oo, t;; K), consisting of the
functions which are 0 for £<0.

(5) g€ L™(0, t,) would in general be enough (cf. [17]).

(%) The fact that we replace “continuity” by “square integrability’’ is the main advantage of
this presentation since du/dg(t) has essentially a discontinuity at ¢=1.
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is continuous from A4—>A4 is replaced, again to some extent (cf. section 9), by the
hypothesis B€L(K; H). Then (M.1) replaces (C.2) and (M.2) replaces (C.3). We shall
also need:

It is possible to choose f€H,, a subspace of H, such that

the corresponding solution of the mixed problem in (M.1), (M.3),

with ¢g=0, is continuous from ¢>0—K.
We can now prove

TarsoREM 4.1. Assume that (M.1), (M.2) and (M.3), hold and that f is given in H,
and g=0. Let uw=u(q;t) be the solution of the mixed problem in (M.1). The functional
q—>u(q; t) admits, as a functional with values in L0, ty; K), a Volterra derivative at 7,7t > 0.
This derivative du(t; q)/0q(t) is characterized by

oult; q) ou

3q(7) € L2(— oo, ty; K), (%=0 fort<t, 4.1)
du(t; ) d (Sult;q) \ . dult; q)
“(t’ 89(7) ’”) +dt( 5q(x) ’”) () (B 39(0) ’”) *2)

= i(Bu(z; q), v} 6;(t) for every vE K.

Proof. The proof follows the same lines as that of Theorem 2.1. Let g, be a
Volterra sequence at the point 7. Setting

onlt) _ult; g+ @n) —ult; q)’
fontta

we have

d
alt; @ (£),0) + 5 (9 (), v) — iq(t) (Bea (6),v) = T‘fﬂ (Butig+e) 0.  (44)
L ()t

Now let &(f) be a once continuously differentiable funetion on [0,#,] with £(t,)=0.
It follows from (4.4) that

to
fo {a(t; @a (8), w(£)) — (@a (8), ¥ (8)) — iq(8)(Bea(t), p(t))}dt

)

ty
= f 0n(8) (Bu(t; g + 0.), w(t))dt, (4.5)
f o (£)dt

0
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v

where here p(t) = &£(t)v. Hence (4.5) holds for w(f)=>& (t)v;, and passing to the limit

<1
(cf.details, for instance, in [17]), (4.5) holds for every y € L?(0,¢,; K), with o’ € L¥0,ty; K),
p(t) =0.

Now as n—oo, the second member in (4.5) converges to (Bu(z; q), w(z)) where we
use here (M.3); and f€H,. By using stability results given in [17], it follows that
@u—>@ in LX0,%; K) which already proves that du(g)/dg(z) exists and indeed actually

equals @. Moreover @ verifies
[t 101900~ 010,970) i1 B0, 60}t = itButz; ), o)
and this is equivalent (cf. [17]) with
alt; 0), )+ % (9l0),0) ig(0) (Bp(0), o) = (Bt 0),0),(7),

where v€ K, (extending ¢ by 0 for t<0) and this proves the theorem.

Remark 4.1. It is possible to give here a converse property analogous to the

one given in section 3 but we do not give details.

Remark 4.2. The functional g¢—wu(g;t) verifies (1.1) and (1.2) if ¢€C[0,4,] and
E = I2(0,t; K). Same proof as in Theorem 4.1 (cf. Remark 2.1).

5. F.V. derivatives of higher order

Let us again consider a functional ¢—®(¢) as in section 1. For every

{91 Wss- -, Y} ED(T)* =D(T) ... x D(T))

(n times), we define

n

" ; Y —0. 5.1
8" D(q; Y1, Yo - Yn) aglagz...a§n®(4+§1wl+ + & pa)l =0 (5.1)
We define in this way an n-linear mapping ¥y, ¥s,..., Yua—>06"0(q; vy, ¥,, ..., ¥,), from

D(T)"—>E. This mapping is continuous and hence defines a distribution,

0"®(g)

U7 /T E). 5.2
6q(11)..-6q(rn)ev( ) (6.2)
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One has

_0"D(q)
77 0g{Ty)...0q(T,)

3"D(q; py, - ) =f (7)o (T)dTy. . dTs. - (5.3)

It is easy to check that

n

dr i
— @ =— ot E ) 54
dfnfb g+ &y) o 851“.%@)(%<Slw+ + &) 1m0 (54)
hence
a _| 9%
d§n¢)(q +EP)|eao= an Sqe)—oq(rn) YT )W(Ty). .. w(Tn)dTy. .. dT,. (5.5)

Since £—+>®(g+&y) is an entire analytic function, one has (in the space E)

Dg+y)= 3 5 0y, -y,

nz=0

and using (5.5) we obtain

O(g+ &y) = Eo Tl I oy v (1) .. p(T,)d7. .. d,. (5.6)

" f 0" ®(g)
T

This is the F.V. series of the functional (cf. Volterra [26]). The dustributions
3" D(q}/dq(Ty)...0q(T,) are the F.V. derivatives of higher order. In what follows we are
especially interested in the case when the 6"®(q)/dq(7,)...0¢(7,) are functions and it
will be essential to define §"®(q)/dq(z,)...0q(t,) on the diagonal 7,=1,=...=71,=7. But
the functions 6"®(q)/dq(z;) Og({z,) are not continuous (in our case) so that one has to

define with care "®(q)/dq(z,)...09(t,) when 1, =1,=...=7,=7. We take the following

DerFiNiTION 5.1.

e 8 (a’”cb
8q(r)"  rz>r 0g(r") \0g(v)" !

), n=2,3, ... (5.7)

(of course, when this limit exists).

Remark 5.1. One has the obvious generalization of Lemma 1.1 by replacing

8/6g{ty with 6"/¢{t,)...0¢(z,;) but no generalization when replacing 6/8¢(z) by §"/d¢(z)".
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6. The higher order F.V. derivatives of the functional u(q) defined in section 4

We shall need in this section a stronger hypothesis than (M.3), of section 4.

It is possible to choose f€H,, a subspace of H, such that
the corresponding solution of (M.1) (section 4), when ¢g=0,
(M.3)m
verifies the conditions: w(t), Bu(t),..., B™ Pu(t) are all con-

tinuous from [0,{,] into K.

We can now prove

TurEoREM 6.1. We assume that (M.1), (M.2), and (M.3),, hold, f being given in H,
and g =0. Then 6™u(q)/0g(r)™ (cf. definition 5.1) exists and is characterized by:

0™ ult; q) o™ ult; q)

WeLz(—OO,tO;K), 6q(t)m =0f07't<‘( (61)
rultg) \ L4 (SMultig) \ . [ o8"ult;q)
and {5 e ) Cagaee) 1085 )
= ((¢B)™u(t; q), v) 6,(7) for vEK. (6.2)

Proof. The proof is by induction on m. First of all the result is true for m=1
(Theorem 4.1). Assume then that O™ 1u(q)/0g(T)™ ' =um_1(q) = um_1(t;q) exists and is
the unigue solution in L2(— oo, y; K), which is 0 for t<0, of

d
alt; um-1(8 ), v) + 7p (Um-1(89),0) — ig(®) (Bum-1(t; 9), v) = ((iB)" 'u(z; 9), v) 8:(v). (6.3)

We now deduce the result for m. Let p, be a Volterra sequence at 7*, 7*>17. Let

us set

Fall) = (m(t; g+ 0a) — tm_1 (& )- (6.4)
f (O

We obtain

d .
a(t; @n (t), U) + Et ((pn (t), ’U) - W(t) (B(pn (t),’l))

0 (1) (Bt (£ g+ 04), ) +

fgn (t)dt

((1B)™ Nulz; ¢ + a) — u(739)), ©) 84 (7).

1
fgn (t)dt



F.V. VARIATIONAL EQUATIONS 171

Multiplying by &(t)€C’(0, to),g(to)=0 and integrating in ¢t we obtain (as in Theorem

J {a(t; pa(t —(@a(£), 9'(1)) ~ 1g(t) (Bga (1), p(t)} dt)

. to
- f (Bitm 1 (¢ + 0a), 9(t)) 0 1), dt + ((B yratlB 4 e~ U q),w(r)) (6.5)
f on (1)t Joutt

for every p€LX0,ty; K), v € L¥0,t,; H), p(f;) = 0. But as n— oo,

_u('rﬁgn)_'* u(t; q)aéu(r; q)/0g(x*) = 7 in K

M=
f on (2)dt

and, moreover, By,—~By,...,B" 'n,—~B" 'y in K since € H,. But (cf. Theorem 4.1)

du(t; ¢}/bg(z*) =0, since t<1* and therefore

Omy_ 6 " 'u (‘1)
dq(z*)  dq(t*) 8q(r)™" -

exists and is characterized as the unique solution in L2*(— oo,¢,; K) which is 0 for

t<0, of
a(t, Ur*(t)’ 'l)) + j_t (U'r‘ (t)y ’l)) - iq(t) (BU‘!‘ (t)v 'U) = ((zB)um—l (T*)) ’U) 6t (I*) for vEK.

It then follows (cf. also section 8) that, as t*—>7,U,—>U in L2(0, ty; K), where
U is the unique solution in L?* — oo, ty; K), which is 0 for t<0, of

m--1 .
alt U0+ 5000~ i BV - (B2 2T oo, @)

But the induction hypothesis implies that

6m—-1
ﬂ(,r)(m—1)—(lB)m 1 (T,q)
and hence the theorem follows.

Remark 6.1. According to Remark 5.1 there is here (when m>1) no converse

property analogous to the one of section 3.
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7. The operational calculus

Under the hypotheses of Theorem 6.1, one can define

P(—iﬂé—)u= mZa(—i—é—)ku (7.1)

DA LA == W VT Y '

where P = % a, ¥, a,€0. (7.2)
k=0

If now we assume that (M.3), holds for every m (and taking f€ N H,) we can define

P(—1id/0q(z))u for every polynomial and, consequently, we can define F(-id/dq(z))u
for suitable functions F(A).

We shall assume

(M.3),, holds for every m and it is possible to choose a

sequence of polynomials P, (1) such that P, (1)—F(4) in such

a way that for f€ Hy< NH,<H, the corresponding solution
m

of (M.1) (section 4), with g =0, verifies the condition: P, (B)u(t)
converges to a limit in H, uniformly on every compact set,
the limit being called F(B)u(t).

We have then

TuEoREM 7.1. We assume that (M.1), (M.2), and (M.3); hold, and we take f € Hp
and g=0. Then, the sequence () P, (—i0/8q(t))u(l; q) converges in LXO0,ty; K) to a limit
called F(—108/8q(t))ult; q). This limit is characterized by

.0 . . (.6 N\ .
F(—t%)u(t,q)EL(~00,to,K), F( zaq(r))u(t,q)—Ofort<0 (7.3)

and

) ] d . 0 ) . B j__ )
a(t, F( — l@(_'r_)) u(t,q),v) + gt (F( — zgq’—(r)) u(t; q), v) zq(t)(BF( @6(1(1)) u(t; q), v)

= (F(B)u(t; q), v) d;{t) for vE€K. (7.4)

Proof. We observe that from Theorem 6.1 it follows that

(1) The P,, are the polynomials introduced in (M.3)z.
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' d .8 ‘
o2l =g s o)+ (i) 900)

- z‘q(t)(BPm( - zé—q‘?;)) ult;q), v) — (Po(Blu(r: 9), 0)8:(1). (7.5)

From (M.3)r and the stability properties of the solution of the mixed problem
wee see that Theorem 7.1 follows from (7.5).

0" u(t: g)

8. The function 7—-—— -
dq(7)

We want to prove in this section

TurorEM 8.1. Under the hypotheses of Theorem 6.1, the function v—38"u(t; q)/dq(7)”

s continuous from [0, t,]—>L2(0, ¢,; K)

Proof. This follows from equations (6.1), (6.2) and the stability properties of mixed

problems given in [17]. In the same way we have
THEOREM 8.2.Under the hypotheses of Theorem 7.1, the function v—F(— 16/dg(z))u(t; q)

18 continuous from [0, t,]—>L*0, t,; K).

9. Example 1

We want now to apply the considerations above to the Cauchy problem for the

parabolic operator

12 o .
—éa?z%- Vix) +52— 12qt),

where V(z)>0 is a given function continuous on (— oo, o0)(*). Let us introduce the
spaces H and K. We take H=L2(— oo, oo)=L*R) so that if f,g€H,

(f,g=f fla)g()de
as usual. For K we take the space of functions # € H such that

(1+ V(x))u € L*(R) and ;‘ll—: €IX(R).(23)

(1) Actually measurable is enough here.
(?) du/dz is taken in the sense of distributions on R.
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For u,vEK, we set

(w, v)) = f T L+ V@)ulz)r@)ds + f - ‘-@dgdx,

— o0

noting that for this scalar product, K becomes a Hilbert space. For u,v€K we set
1 oo o o0
a(t; u, v) =J d—ud—j;dx+f Vix)utdz.(!) 9.1)

The operator B (using the notation of section 4) is the operator B: f—af of multi-
plication by . This defines B€L(K; H) if V(x)>c|z|2. With simple changes the same
situation obtains if V(z)>c|z| (cf. Remark 9.1). Actually if V() is only assumed >0
all of what follows is correct but with less obvious changes in the proofs (cf. Remark

9.3 at the end of this section), therefore, we will first assume that

V(z)=c|z|, ¢>0. (9.2)

o0

If we set 7e(t; u, v) = a(l; u, v) — iq(t) f zuddz, (9.3)

then we define a continuous sesquilinear form on Kx K (using (9.2)) and since ¢(f)
is real:

dv

1 oo
. 2~ =
Ren(t; v, v) + A|v| 2f T

— 00

2
dx+f (A+ V(x))|v|pdz > a||v]|? (9.4)

where «>0, v€K and A>0. Therefore, by [17, chapter IV] there exists a unique
w € L% — oo, ty; K) such that ©=0 for £<0 and such that for every v€K

7(t; u(t), v) + Z_t (u(t),v)= fw (, t dx + (f fx dx) o4, (9.5)

where f is given in H and
(1+ V(z)) " g(=, t) € L¥0, ty; H).(*) (9.6)

Taking derivatives in the distribution sense we can write (9.5) as

(1) So that a(t; u, v) =a(u, v) does not depend on t. All our considerations apply, however, with
easy changes to the case where V(r,¢) depends on x and t (and in that case a(f; u, v) depends on t).

f f 1+V |g(xt |2dxdt<oo
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19% ou .
3 a? + Vi{z)u + a‘t- —izq(tu =g, t) + f(x) Db, 9.7)

This solves the Cauchy problem. The solution depends continuously on g¢(t) (cf. [17]),
when ¢ varies in C(0,%,). Moreover, (M.1) and (M.2) hold. It is known ([17, Chapter
1V]) that t—u(-;¢) is almost everywhere equal to a continuous function from [0, ] —H

with u(+;0)==f. We define now the subspace H, of H. Let, for m a positive integer,
Hy={f|(1+a3)"f € H} (") (9.8)
and let H, =mf;0H,,,. 9.9)
We now prove
ProrosiTiox 9.1. If f€EH, and g=0,(2) the solution u of the Cauchy problem
(9.7) verifies the condition:
t—u (- t) is continuous from [0, t,]—H,. (9.10)

Proof. For u,v€K, let us set

1% dudp
a,(tu, v)=a,(u,v) :Ef, d_xd_xdx

+ r V(x)yu(z)v(x)dz + fm’ x (gg_ugZ)dx_ f: (l_ix})_zugdx, (9.11)

e .

which defines a continuous sesquilinear form on Kx K. As was done above one now
checks that there exists(®) a unique u, € L — oo,t,; K) such that u; =0 for £<0 and
such that for every v€K (we use here the fact that (1+22)f€H),

a, (b uq (t), v) —ig(t) J‘o_o xu, (t)odx + Zt {(uy (), v)= J‘f (1 -+ a®)f(x)d(x)de. (9.12)

o0
®) I.e.‘f (1 +22)®™| f(2) |2 de < 0o. For convenience let H, = H.

-0
te oo (1 ~z2)2

(2) More generally, —- |g(x, t)l“’ drdt< oo.
0 w 1+ V(x)

(3) In the inequality which corresponds to (9.4) one must now take 4 “large enough”.
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Equation (9.12) can be written in the form

! g ¢ w0 x N 2B e
+ V(x)u, Wz(t)uﬁlﬂz P +8x (1+x2“1) (1+x2)2u1_(1+x ) f(z) Oy,

and therefore

18 ( U . %
=3 (1 +1902) + V() (1 +1x2) - mq(t)(l +1x2) = f(x)0:.

From the uniqueness property we have

uy (2, )
b LSt et . 1
11 u(x, t) (9.13)
But since t—>u,(-,t) is continuous from [0, {,]—H, we have that (9.10) follows from
(9.13) and the definition of H,.

This, although not equivalent, has the force of (M.3); by noticing the

Remark 9.1. Under the hypothesis of Proposition 9.1, wu(f) does not necessarily
belong to K and B: f—af does not map K into H, i.e.,, we are not exactly in the
situation of (M.3); but t—u(f) is continuous from [0,t]—H, and B€L(H; H).

Applying Theorem 4.1 we obtain

ProprosiTIioN 9.2. If (9.2) holds and if f€H,, then the solution u of the Cauchy
problem (9.7) (with g=0) admits a Volterra derivative du(z,t; q)/0q(t) which is charac-

terized as the unique solution in L*(— oo, ty; K), which is zero for t <0, (') of

( 1e2 0 )M(w, tq)

5q7) = qxu(x, T; ¢)0: (7). ‘ (9.14)

Remark 9.2. We are by no means looking for the largest space H, where the
conclusion of Proposition 9.2 is valid, e.g., a simple generalization is obtained by
replacing 1+2* by (1+a?)t.

It feH,, we can use (M.3), and Theorem 6.1, hence

ProrosirTioxn 9.3. If (9.2) holds and if f € H,, the solution u of the Cauchy problem
(9.7) (with ¢g=0) admits a Volterra derivative 6™u(x,t;q)[0q(t)™ which is characterized as

the unique solution in L2(— oo, ty; K), which is zero for t<0(') of

(1) And actually ¢<T.
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102 0 b b
(‘éa_x2+ Vi HEF“‘M) —é‘q‘%)—m@ (iz)"ulw, T 4,3,(v). (9.15)

From this last proposition we have for fEH,,

1 o2 o . .
(— 252 + Vix) + 5 zxq(t))P( —1 6;?1))10(:10, t; q) = P(x)u(x, 1; 9)0:(T) (9.16)

for every polynomial P(1). We note that (9.16) characterizes P(—1d/8q(t))u(,t;q) by
adding that P(—148/0¢(z))u(z,t;q) EL — oo, {; K) and should be zero for t<0.(") In
chapter 11 we will pass to the limit and replace P(—id/dq(z)) by F(—16/dq(z)) where

F(x) is a suitable restricted function.

Remark 9.3. We want now to drop hypothesis (9.2) assuming only that V(x)

is continuous (or measurable) with
V(x)=0. (9.17)

The difficulty arises from the fact that
u, 1;—>iq(t)f vuddx

is not continuous on Kx K. (2)
We then modify the preceding observations as follows. Let us consider the class

of functions ¢ which satisfy

@ €L0,ty; K), ¢ €L¥0,ty; H), @t)=0 018
and 2(1+ V(z)) " ¥p € L2(0, ty; H). (%) (9.18)
For uw€L?0,t,; K) and ¢ satisfying (9.18) we set
1 0udg . . o
E ——L — —u— . .
(u, @)= f f {239:3:& + V(xyug —izqt)ug L }dxdt (9.19)

By calculating Re E(gp, p), which eliminates the term in ixqpg, we see that we can
apply [17], Chapter 3 and therefore obtain:

Given g with (14 V(x))"tg€L?0,t;H) and f€H, there exists u€L20,#y; K)
such that

(*) And actually ¢<7.
(2) And even not defined in general.
(®) This condition is implied by the preceding ones in case V(x) >c|x|.

12 — 622906. Acta mathematica 108. Imprimé le 21 décembre 1962
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ty oo -]
E(u, (p)=f J g(z, t)p(z, t)dadt —%—f f(x)p(x, 0)dx {9.20)
0J —o0 — 0
for every @ satisfying (9.18). The wuniqueness does not follow from the general theorem
but is true and can be checked as follows:
Let us consider u with E(u,)=0 for every ¢ satisfying (9.18). Then (extending
% by 0 for t<0) we have

u €LY — oo, 1y; K), u=0 for <0, (9.21)
18%u ou
o + V(z)u + Frae 1zq(t)u = 0. ‘ (9.22)

This implies u=0. To see this let a be a function of D(R) (real infinitely differen-
tiable functions with compact support) with a(z)=1 in a neighborhood of zero and
let a,(®)=a(z/r). We will let r—~oco in what follows. Now let x be a regularizing

sequence of even functions of ¢ and let ,(t) be defined by

1 2 1
0, (8) = n(to—;b——t), e S

Multiplying (9.22) by ((@,(%)0,(8)#)*ux) 8,(') and integrating over Rx(0,f,) we obtain

% Re ff@% (0,u) 6% ((a, 0, %) *a)dadt + Reff V(2)(0,u) ((2,0,%) % o)dxdt
- Reff(@nu)g—t {{a, B8, %) > a)dzdi ~ Reffu0n'((a,6nu)%a)dxdt
- Re(iffxq(t)&,u((arend)*ac)dxdt =0. (9.23)

Now the particular term

Rle(Gn %) gt ((a, 0, %) > o)dadt = 0,

() Cf. [17] for similar techniques. A modification of this process gives uniqueness in non-

linear problems, cf. Lions—Prodi [18].
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and hence letting a—4 in (9.23) we obtain

1 o )
D Az B 7 2
5 Re Jf@x {(Bnu) P (a,0,%)dxdt + Reff V(x)a,|0,u|? dedt

- Reff@nﬁ,,'a,fulzdxdt - Re(iffxq(t)ﬁ,. 2av,]u|2dxdt) =0.

Noticing that the last term on the left of this equation is itself 0 we obtain on letting

1 0
o[l 00

But now 6,6, <0 and hence 0,u=0. Since n is arbitrary this implies »=0.

r—> oo,

dxdt =0

2
dxdt+ReffV(x}lﬁnu|2dxdt~Ref 6,0, u

We are now provided with a Theorem of existence and uniqueness and can

therefore proceed here exactly as in Propositions 9.1-9.3. The same results are valid.

Remark 9.4. All the results of this section are valid if we replace V(z) by

V(z,t) with V(a,t)>0 and continuous (or even measurable).

Remark 9.5. We have used Hilbert space methods because this gives rise to
many generalizations (cf. section 11) and works without essential changes in the case
of the Schrodinger equation (next section). In the case of the parabolic operator
treated in this section other techniques are available, especially integral equations.
One can apply by a suitable adaption (1) the reasoning of several authors. We refer
to Dressel [5], Fortet [7], Kac [12], Rosenblatt [20], Rosenbloom [21], and the bib-
liography in the latter.

10. Example 2

We want now to consider, from the same point of view as in section 9, the

Cauchy problem for the Schridinger operator,

1o, a .
—5@‘1‘11’(.’8)4—6—{—7&@“),

where V(x) is given > 0 and continuous (to fix the ideas). Here we will take the spaces

H and K exactly the same as in section 9, and we will use the same notations as used

(1) One must take care of the term fzg(t)u.
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there. Again we define a(t;u,v) by (9.1), and we assume that (9.2) holds. Applying
[17, chapter 8], we have that there exists a unique function u € L2( — oo, ¢,; K), which

is zero for ¢t <0, and such that

1a(t; u(t), v) + ;t (u(t), v) — iq(t)fw rubdr = Jw g(z, tyv(x)dz for every v€K, (10.1)

~ 00

where g(z,t) is given satisfying

bo froo 1 dg(x, t)
Jo il or 25

and where g€CY0,t), ¢(0)=0. (10.3)

) dadt < oo, (10.2)

We notice that in (10.1) there is no term ( f wwf(x)ﬁ(x)dx)ét which means that u(x, 0)=0.
It seems impossible in general to consider a term of this form assuming only that
f € H—L*R). But let us sct in general
Tf=(1+ V() (=" + V@),
a2 (10.4)

f’ =d—/2taken in the sense of distributions on R.
x

We have then

ProrosiTioxN 10.1. Asssume that
V(z)=e|z|, ¢>0, (10.5)
and (10.2), (10.3) hold. Let f be given in H with

Tfe H— L*(R). (10.6)

Then, there exists a unique u € L2(— oo, ty; K) with w=0 for t <0, such that
N7 o
~onal? V(x)+ i 1xq(t) Ju = g(z, t) + f(x)d,. (10.7)

Proof. let 6(t) be twice continuously differentiable in B with compact support,
and let 6(0) = 1. Introduce the new unknown, u* =u — 8(t)f(x), so that u*€ L — oo, ty; K),
u*=0 for £ <0, and
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102 . J . *
( 3 522 +1V(x) + Py mq(t))u

~gtat) =i ="+ Viof) 60— 0 0ffe) —iza0Of(@) (103

Now equation (10.8) is equivalent to equation (10.1) with g replaced by g*, where g*
is defined as the second member of (10.8). But the hypotheses imply that this new

*
ff 1+V ( |2+ ‘ ')dxdt<oo

and therefore u* exists and is unique so that the proposition follows.

function ¢* verifies

Let us now introduce a space H, (different from the analogous space introduced

in section 9). For m an integer > 0, let
Hyn={f|(1+a*)"f €H, T((1 +a%)™f) €H}, (10.9)

=NH,. (10.10)
The same reasoning as in- Proposition 9.1 leads to

ProrosiTtioN 10.2. Under the hypotheses of Proposition 10.1, with g=0 and

fE€H,,, the solution w verifies
—(1 +22)" u(z, t) is continuous from [0, t,]—L3(R,). (10.11)

We have, therefore, the result analogous to the one of Proposition 9.3, namely

ProrosiTionN 10.3. Under the hypotheses of Proposition 10.2, the functional
g—u(w,1;q) admits a F.V. derivative 6™u(x,t; q)/0q(t)™ which is characterized as the unique
solution in L2(— oo, t,; K), equal to zero for t <0, of

( v 0 ] )6'"u(x, t; q)

gt IV@) g i) S

262? ot = (ix)"u(x, 7; 9)d: (7). (10.12)

Remark 10.1. There is a difficulty similar to the one encountered in section 9

when assuming only that V(x)>0. However, by the same kind of method (E(u,qp)
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is now more complicated—cf. [17, chapter 8, section 5]) we can prove that all
the preceding results hold assuming only V(x)>0. One can also make the same

observation here as in Remark 9.4.

11. Example 3

The observations of sections 9 and 10 are by no means restricted to operators
of order 2 in x. We can in general consider
m 0 d
a(t; u, v)= ZJ‘ a(x, ) D*uD*5dz, D=, (11.1)
k=0J —oo dz
With suitable hypotheses (we do not want to give details here), the preceding results
will extend to operators
m

> (= D D¥(ay(x, t)D")-l—%—imq(t). 1) (11.2)

k=0 ¢
As a very simple special case, we can consider

(-1)"D¥+ V(x)+% (11.3)

Here the space H remains unchanged and we define K by
K={u|V1+ V(z)u€ L¥R), D"u€ LX(R)}. (11.4)

It should also be observed that the results above apply also to mized problems, i.e.
problems where R, is replaced by €, an open set in R,. Here conditions at infinity
in x are replaced by suitable boundary conditions. Unfortunately however in the case
of mixed problems we meet a difficulty in chapter II.

In the preceding the fact that the dimension in x is one is essentially irrelevant.
However, if € R", then one must replace ¢ by a system of » parametric functions.

This is the purpose of the next section.

12. The multi-dimensional case

We start with some general remarks. With the notations of section 1 we con-

sider a functional

(1) The potential V(x) is now contained in the term ay(z, t).



F.V. VARIATIONAL EQUATIONS 183
0={au @ - G} > D@1, @3y --» 82) = P(g) from D(T)x...xD(T)=D(T)" into E and we

assume: 7={91.9 -, @} —>D(q) (12.1)

is continuous from D(T)" into E, and:

For every ¢,q" €D(T)", the function

513 52) “rey En_>(D(Q1 -T_ E]_q,]..l’ T Qn + éﬂq:) = (I)(q + Eq‘) (12'2)
is entire analytic in C" with values in E.

Then

-0

a d
> + == e @1,y + & e
7 a&(l)(q &y) d&q’(ql,qz, Q-1 @1+ &9, @i q)el_

£-0
is a linear and continuous mapping from D(T) into E (cf. section 1), and therefore

defines a distribution
00(q9) ..y
e DT B, 12.3
3¢() (T; E) (12.3)

which is called the F.V. derivative with respect to ¢, and which verifies

0d(q) d
Taq!(_"[')‘w(f)dT = d—&‘b(ql, e @-1, @5 &P, Gri1e ey Gn) le,-o- (12.4)

In the case when d®(q)/dg;(7) is a function, we have

ob(g) .. (

gy, - r 1> & P B2, --"vq")r_q)(q))» (12.5)
f @, (t)dt
T

where {p,} is a F.V. sequence at 7.
We can then define

v . 8 (6’"“¢(q))
=1 . 12.6
g, (0" g, () \bgs )™ Hao)

whenever the limit exists in E.
Of course, we can also define mixed F.V. derivatives. Let us notice (cf.
Lemma 1.1) that if ®(q) verifies (12.1) and (12.2) and

g(qI:T(Z;=O in D'(T; E) for every ¢ and j (12.7)

then ®(¢) does not depend on g¢.
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Let us look now at some mixed problems in this multi-dimensional case. We use
the notations of section 4. Let B, B,, ...,B, be a family of operators linear and

continuous from K to H (1) and assume:

There exists a unique function u €L2(— oo, ty; K),

which is zero for <0, and satisfying (12.8)

d
a’t; u(t), v) -+ dt zZq, Bju(t), v)={f,v)

where v€ K, f given in H, and ¢;€((0,,).(2) In this way we define a functional,
={a1 02 -, G} > ull; ) = wlt; @1, s -+ Gn)s
about which we assume:
g—u(t; q) is continuous from C(0,i,)" into L& — oo,ty; K) (12.9)
and moreover

there exists a subspace H, of H such that for every f€H,
the solution % of (12.8) verifies
t—u(t), Byu(t), ..., Bf tu(t),i=1,2, ..., n,

are continuous from [0,¢,]—K. (3)

(12.10)

Now we prove in the same way as Theorem 6.1,

THEOREM 12.1. We assume that (12.8), (12.9), (12.10),, kold and that f is given in

H.. Then 6™u(q)[0q,;(t)" exists and is characterized by
0"u'q)
dq;()"

€ L2(— oo, ty; K) and =0 for t<0; (12.11)

moreover,

0" u(t; g) 0"ult; q 8™ ult; q) )
“(t’ 6qj(r>'"’”)+dt(éq;(r)'"’“) ’Zq’ ( oyt

= ((iB)™u(t; q), v)0, (1) for vEK. (12.12)

We could also consider here mixed F.V. derivatives.

(*) A slight change will be used in the examples as already seen in sections 9 and 10.

(2) In some examples (cf. section 9) ¢ € L*°(0,t,) would be enough; in others, more restrictions
are needed on the g; (cf. section 10). We extend ¢ arbitrarily for t<0.

(?) As we have noted previously, in scme applications this condition appears in a slightly dif-
ferent way.
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Remark 12.1. We can pass to the limit along the same lines as in section 7.

Let us look now at the Cauchy problem:

1 . <
—= A+ V{z)u _+6i¢_2 > x,q:(Hu=0, (12.13)
2 a4
u(x, 0) = f(2), (12.14)
where z={z,,,, ..., x,} ER", V(z) is a given non-negative continuous function in R", A,

= 0%/6m,2 + 82[0x3 + ... + 3%/ox and where f(x) is a given function. This then is the gener-

alization of section 9. The preceding considerations apply with
H=LXR", K={f|(1+ V(x))}f € LX(R"), 8 /ox, € LAR"),j=1, ..., n}. (1)

If a?=af+a5+...+a%, we define H,={f|(1+2?)"f€H}. In this way the results
of section 9 apply to this case. There are analogous generalizations for the Schridinger

equation.

13. Supplements

In this section we give some results supplementary to those of sections 9 and 10
{the same would apply to sections 11 and 12). These results will be useful in chapter 11.

First we prove the following uniqueness theorem.

THEOREM. 13.1 Let u be given with

w €L — oo, tys H), (H=LYR)) and u=0 for t<0, (13.1)
such that
ou 1o
— — jzo By = 2
o 2022 + V{x)u — ixgt)u =0, (13.2)

where V(x) is >0. Then u is identically zero.

Proof. Let o and 0 be given in D(R) (infinitely differentiable functions with
compact support). Assume that g is real and even and that 0>0. Multiply (13.2) by
((ug)0)%p, where the convolution  is taken with respect to the z variable. Inte-

(1) If 4, v€EK, then

n Ju 0%

(o) = | A+ V@) u@)v@de+ >, | ——daz.
RP i=1J Q0% Ox;



186 M. E. DONSKER AND J. L. LIONS

grate over = Rx[0,t] (the integrals are meaningful and note that (13.2) yields in-

formation about ou/ét). Since,

fﬁf@*@)dw = L(f*e)ﬁ dz,

we obtain

ffet(at *9) (G 0)0)dadt + - ff ( )“((u*g)ﬁ)dxdt

Jf (Vu)xp)(ixp) dedt——sz ((wu) %) ((d@x0)0)dxdt = 0.

Taking twice the real part of both members, we obtain

fﬂ | (wxp) (x,t |dx+ff ‘ (ux0)

+2Re ff (Vu)*p)(w*p)0dadt — 2Re ¢ Jf ((zu)*p) ((ti%%0)0)dxdt =0

“dwdt + ff 6 — |u*@|2dxdt

for almost all ¢. Since the second integral on the left is > 0, we obtain
1 143
fﬁ(x)|(u*g)(x, t)|2dx——f 6" | uxp|2dadt
R 2 Q
+ 2Reff0 ((Vu)3¢p)(uxp)daxdt — 2Re iffo q(t)((wu)*@)(d*)0dxdt < 0.
t 13

Now, taking a sequence of ¢ such that ¢—J, we obtain

f@ u(z, t) 2dx——ff 0"[u|2dxdt+2Reff V| u|2dxdt

—2Re iffo qt)x|ul20dxdt <0.  (13.3)

¢
Since the third term on the left in (13.3) is > 0 and the last one equals zero, we have
f 0(z) | u(z, t) 2dx——ff 6" | u(z, t) |2 dzdt <O. (13.4)

We now take a sequence 0= 0,(x)=a(x/m), where a €D, a>0, and ¢=1 in a neigh-

borhood of zero. From (13.4) with 8=0,, and letting m—co, we obtain
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f | ulz, t) [2dx=0
R

for almost all #, from which the theorem follows.
The same method may be applied in the case of the Schrédinger operator to

prove

THEOREM 13.2. Let u be given satisfying (13.1) and

ou 0% ,
a—t—ééﬁ-FzV(x)u—zxq(t)u—O, (13.5)
where V(x) > 0. Then u ts tdentically zero.
Actually this result holds when V is assumed only to be real.

Now we prove an existence theorem.
THEOREM 13.3. Let f(x) be given satisfying
flx)(1+ V(x)) € H=L*R), (13.6)

where V(x) is a given continuous function with V(x)>c|z|2. Then, there exists a unique

function w satisfying (13.1) and

— — ——+ V(x)u — sxq(t)u = f(x)d. (13.7)

Proof. The uniqueness follows from Theorem 13.1. In the space H, the unbounded

operator,

with domain D(A)={u|u €K, Au€H}, is self-adjoint and > 0. We diagonalize A into
the multiplication by 4 over a measurable sum % over (0, o). Let X be the unitary
mapping from H onto % which diagonalizes A. If w€D(A), then Xu €h, AXu€h and
X(Au)=21Xu. We set

uy(z, t) = X"Ye ™Xf) for >0 and 0 for ¢ <0. (13.8)
We now check that
u, € L2(— oo, ty; H), u;=0 for t<0, (13.9)
1 2,
and Guy 10 |y, = fa)o. (13.10)

ot 2 ox?
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Note that (13.6) means that f€D(A™t). Therefore, A"* Xf€% and since f:)°e'2’1tdt<c/l,
we obtain (13.9) and (13.10) follows immediately.

Now, let W=1U—1u (13.11)

. ow 10w . PR
we obtain P 202 + Vixyw — ixg(tyw = ixq(t)u,. (13.12)
From section 9 we know the existence of w€L*(— oco,i,; K), w=0 for { <0, satisfying

(13.12) providing
2q(B)uy (14 V() ¥ € L¥(0, t,; H).

But this last follows from (13.9) and V(z)>c|z|®. Thus w=u,-+w is a solution of
(13.7) and (13.1) is verified. Thus Theorem 13.3 is proved.
This method does not work in the case of the Schrédinger operator because in

(13.8) one has to replace e * by e ™,

CrAPTER 11

The F.V. variational equations

1. The general method
We want to derive a F.V. variational equation for the functional w(t;gq), the

solution of the mixed problem described in chapter I, section 4. As we saw there,
du(t; ¢)/dq(z) is characterized as the unique solution of a well-set mixed problem. In
this chapter our primary aim is to find a second expression, apparently different, for
the solution of this latter mixed problem, say ¥,(q). By the uniqueness property, we
then have

du(t; )

“(sq(—r)—=q"u(9)=\}"u(t;4)~ : (1.1)

This is the F.V. variational equation we are looking for. Qur next goal in this chapter
will be to study to what extent the only solution of the F.V. variational equation
(1.1), with some ‘“‘boundary conditions” to be found, (1} is the solution of the mixed
problem, w(¢; q).

The second expression ¥,{(¢q) is obtained by means of some algebraic properties
and this fact explains why in what follows we are obliged to consider only the

problems corresponding to the examples of sections 9-11 of chapter I

(1) We have already ssen some examples of such “‘boundary conditions’’ in chapter I, section 3.
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2. The parabolic case (I)
We consider the situation of chapter I, section 9, with the additional hypothesis
that V(z) is a polynomial of degree < m. To be specific, assume
V(x) is a polynomial of degree < m, V(z)=0, m even. (2.1)

We at first fcr convenience make another assumpticn but later in section 3, after
replacing condition (2.1) by a more general condition, we shall actually prove that
this assumption holds. Thus, assume for now

one can choose fEH < H,, (H, is defined by (9.8) of chapter

I) in such a way that the corresponding solution of the

Cauchy problem (9.7) verifies - (2.2)

ou
- 2 . 1
f € L2(0, ty; K) (1)

Let us now introduce ®y(z,; q) the solution of

Qe L — o0, §y; K), ®,=0fort<0 (2.3)
and L iy iag)| @, = i) (2.4
St V) + o~ iaglt)| @, = iaf(@) 4

Since f€H,, it is easily checked that xf €H,_; (in particular). Therefore ®, exists,
is unique, and t—>®(z, % q) (1 +22)™ ! is continuous from [0,¢,]—>H.

Since giving f is equivalent to giving u, we can also set

D, (x,t; ) = Lu(x, t; q), (2.5)
where u—Lu is a linear operator in 4. We now have
TaEOREM 2.1. We assume that (2.1) holds and that f€ H,\, defined in (2.2). Let
us define w(x, t,; q) by

. oulz, t;q)
Loig)=—ww— " —
w(x, !, 7; q) iT P

t
(f min (1, s)q(s)ds)u(w‘, £ q)
0

t
- ifo min (z, s)V’ ( — zﬁg) u(z, t; q)ds + ®,(x, t;q) if t>7, (2.6)

(1) Notations are those of chapter I, section 9, Therefore u € L¥( — oo, #;; K), #=0 for t<0, and

1 82 3
o 5m V@) + o, dwalt) fu= e

20
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and wix, t, 7;¢)=0f t<T. (2.7)
Then t—>w(-,t,7;9) €LY — o0, i; K) (Y) (2.8)
. T FOAR S P — »
@ 5t V(@) + o —imat) | w(o, t, 75 ) = dwule, 75 )3 (2). (2.9)

We will prove this shortly but let us first notice by comparison with Proposition
9.2, chapter I and according to the general remarks of section 1 that we obtain

THEOREM 2.2. Under the hypotheses of Theorem 2.1, the solution of the Cauchy

problem
(—1-8*2*-}-17 +é—' t)u( £ q)=f(x)d 2.10
282x . (x) ot W"Q() x, ,Q)“‘ (x) e ( . )
w(-,t;q) ELA— oo, ty; K) and = 0 for t<O0, (2.11)

satisfies the F.V. variational equation

M . t
6u§;¢2; q) +iT 3u(6;,xt, q) + (fo min (7, s)q(s)ds) u(z, t; q)

t

+ zf min (z, s)V’ ( - ii)u(x, tq)ds =Dz, t;9) for t>7, (2.12)
0 dq(s)

where O is defined by (2.3) and (2.4).

Also before proving Theorem 2.1, let us notice

Remark 2.1. The F.V. variational equation (2.12) is quite unsatisfactory
as it stands, since the right side ®,(x,t; q) = Lu(x,t; ¢) cannot be explicity expressed in
terms of V and ¢.(*) However, as we shall see, equation (2.12) becomes a much
simpler equation for the kernel of the mapping f—wu i.e., for the fundamental solution
of the operator

1 02 o .
—Qa_x2+ V(x)—l—é—mq(t).

Proof of Theorem 2.1. We first check that w defined by (2.6) and (2.7) verifies

(2.8). This is true for the first term in (2.6), —itdul,t; q)/ox, because of (2.2). Ob-

()} And, of course, =0 for t<0 since T=>0.
(?) Except by using function space integrals (cf. Introduction).
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viously the same is true for ( J'; min (1, 8)g{s)ds)u(z, t; ¢) and also for ®, (cf.{2.3)). By

Proposition 9.3 and Theorem 8.1, chapter I, the function s— V'(—¢8/dq(s))u(z,t; q)
is continuous from [0,¢,] to L*0, ¢,; K) and therefore

fmln (T,8) (_Zé‘ﬁ) u(z, t; q)ds

defines an element of L*(z,t; K) and thus (2.8) is proved. It remains to prove (2.9).
To simplify the writing let us set

A= — %58—2 + Viz)+
Since Au=1izq(t)u we have by differentiation in =z,
(A —izq(t)) Zi; + V'(z)u —iq(tyu =
Hence for t>r1,
u\—am@»<—¢{g)=izvmwu+rgnu. 2.14)

On the other hand, for t>1

(A —12q(t)) ((~ ftmin (7, s)q(s)d.s) u) = —1q(t)u. (2.15)
0

(im0 7 (55 i )

o .0 )
=~V ( %q(s)) w(, t; Q) |s-1

Moreover,

= — itV (@)u. (1) (2.16)

Since by definition of @, (A —ixzq(t)) ©,=0 for t> 1 (cf. (2.4)), one obtains from (2.14),
(2.15) and (2.16) that (A —izgq(¢))w=0 for t>7. Thus in order to prove (2.9) we must
only check that

w(x, t, T; 9)—>wxu(x, T; q) as t—>1.(2) (2.17)

(*) By Proposition 9.3 (8™ u(z, t; 2)169(2)™)|z=t = (i2)"ulz, t; ¢), so that

.9 R .
1% (~®§q(s)) u(@, t; ) [s=t = V'ix}ulz, t; q).

(3) For instance, in H.
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Now condition (2.17) is equivalent to

. dulx, T; q) (f’ . ) .J" ( .0 ) .
— T — ‘s\d 5q)— —i——|ulz,7;q.d
4 o Osq\s, s)u(x, 1;9)—1 osV 1éq(s) ulz, 1;q.ds

4 Oy, 7; 9) = 12u(2, 7; ) (2.18)

and this relation (2.18) has to be truc for every v>0. Replacing 7 by ¢, and sctting

t; t
w, (x, 8 q)= — itauf,(x’ 1q) — (f sq(s)ds) u(z, t; q)
ox 0

A )
—'lJ sV ( 1éq~(—s—)) ulx, t; ¢)ds -+ Oz, t; q) , (2.19)

0

one has to check that
wy(z, t; q) = izulz, t; q) for t>0. (2.20)

Since, by hypothesis, f€Hy, both terms in (2.20) belong to L*(— oo, ty; K) and are

=0 for t<0. Therefore, in order to prove (2.20) it is enough to prove
(A —ixq(8))w, = (A —izq(t)) (¢zu) (2.21)
and wy(x, 0; q) = tzu(z, 0; q). (2.22)

The latter equality is easy since w,(x, 0; ¢) = ®/(z, 0; ¢) and D,(z, 0; ¢) = txf(x) (cf. (2.4)),

and moreover u(z,0;q)=f(x). We now verify (2.21). First one has

(A —ixq(¢)) ( - itz—: — ixu) = —iiitq(t)u —tV' (x)u)

and since (A —izq(t))®,=0, there remains only to check that

¢
tgt)u - itV (x)u— (A —xq't)) (f sq(s)ds) %
0

t
— (A —ixq(t)) (Jl)sV' (—— zéq(’ss)) u(z, t; q)ds) =0.

t
But (A —izq(2)) (f sq{s)ds) w=1tq(t)u
0

t
and (A izg(t) ( f OsV'( - i‘a‘q%)) uds) 7 (- i -éq‘z& —))u

go that the result follows. The proof of Theorem 2.1 is completed.

=tV'(x)u(z, t; q),

s=t
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3. Verification of hypothesis (2.2)

Let u be the solution in L?*(— oo,t,; K) which is zero for ¢<0 of

1 .
( o2t Vir)+ %t - WQ(t)) u = f(x)d,. (3.1)

We now apply the method of finite differences in x (cf. for this very general method
L. Nirenberg [19]). Let us set

wy(x, t) =7 (u(x+ h, t) —u(z, 1),

&

fn(@) =7 (Hz+ k) — f(2),

TN

1
Val@)=3 (Va+h) = V).

Then w, verifics

18 .
(— 5% + Vix)+ g_t - ixq(t)) wp= — Va(x)u(z + h, t) + tq(t)uiz + b, ) + f, (2)8:.  (3.2)
Let us assume that f =df/dx€ LA R)=H, (3.3)
and

V is once continuously differentiable with V'(z)/(1+ V(x) bounded. (3.4)

As b0, ig(t)u(z + b, t)—>ig(t)u(z, t) in L*0,ty; K) and fy—f in L*(R)=H. It follows
that w, will belong to a bounded set of L*0,t;; K) as h—0 if V,(z)u(z +k,t) remains
in a bounded set of L*0,t,; K'). (1) This last is true if

Vil + V) ¥u(z+h,t)

remains in a bounded set of L*0,¢, H). But Vl_gf’u(x—kk, t) remains in a bounded
set of this space and thercfore

I/
Va(l4- V) Yu(@+h, t)= 1—4"1;(1 + V)bu(z + b, t)

remains in a bounded set of L%0,t, H). Hence w, bclongs to a bounded set of

L*0,t,; K). We can extract h,—>0 such that w,—w in L¥(0,1,; K) weakly and since
0 i 0 y

wy,—u/3x in the sense of distributions, one has du/dz = w € L*(0, t,; K). Hence we have

(1) K’ is the dual of K.
13 — 622906. Acta mathematica 108, Imprimé le 27 décembre 1962
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ProrosiTion 3.1. If we assume that V{x)>0 satisfies (3.4) and if we take f€H
salisfying (3.3), then the solution of the Cauchy problem (3.1) verifies (2.2), t.e.,

2—: € L¥0, t,; K). (3.5)

Remark 3.1. If we consider, instead of a Cauchy problem, a mixed problem,
i.e. T€(a,b) a or b finite, with wu(x,t) verifying some boundary conditions for x=a
or b, then condition (3.5) will never be satisfied. Consequently the problem of
finding a F.V. variational equation somewhat analogous to (2.12) for a mixed

problem is open.

Remark 3.2. With some more hypotheses on V(r) we can obtain by the same
method, similar results about 2%u/dx2, o®u/ox3, etc. For instance, if V verifies (3.4) and

we assume further

V' is once continuously differentiable with V''/(1+ V) bounded, (3.6)

then if f, f', '€ H we have

2
Z—;eLﬂ(o, ty; K). 3.7)

We now prove

ProrosSiTIiON 3.2. We assume that V(z) =0 and that V(x) verifies (3.4) and (3.6).
If f is given with
(L+V)f€eH=L*R), (3.8)

then (u being the solution of (3.1)), (1+ V)u € L0, ty; K) and the function t—(1+ V)u(-,t)

is continuous from [0,%]—H.

Proof. Using (3.6) one sees that there exists a unique w in L2*(— oo,y K)

which is zero for ¢ <0 such that

1 & 8 . -
(—'2‘6—1:2+ V(x)+ét—-zxq(t))w1— Vax(

et ) LV o= (1 + P)(@)b,.

1+V) 21+V
But, if we set u*=w/(1+ V), then u* € L2(— oo, ty; K), u* =0 for t<0 and

18 o . *
(~gam Vo= = s | = f18,

Hence «* =u and the result follows.
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4. Stability in V
We consider a family of functions V,(x)>0, with
Vs~V uniformly on every compact set.(!) (4.1)

We define a space K, by
du )

K,,,:{ul(1+ V.)u € L¥(R), (-i--ELz(R)I (4.2)
Let u, (or respectively u) be the unique solution in L*(— oo, ty; K,,) (or L*(—
ty; K)) which is zero for t<0, of
-—L—aj—%V +?-—' ¢ t) = f(x)d 4.3
zaxz m(x) 8t ‘xQ() um(xa )"‘ (12 & ( . )
or of (~1§+V)+—a-—' t) t) = f(x)d 44
r o 5o Vi)t —ixg(t) Ju(zt) = (). (+4)

ProrosiTioN 4.1. Let V,, V be=0 continuous functions satisfying (4.1). Then

Up—>tu, Viug—>Viy, -82'—"—3—@,
oxr ox
in LARX(0, t,)) weakly.

Proof. If we set upy(x, t) = ewy(z,t), then w, verifies

1 8% o .
(—~~0;:~ +(1+ Vm)+5t~mq(t))wm=f(-’v)5t-

This implies (multiplying by 1w, and integrating by parts) that

L
L

Consequently we can extract a subsequence u,, such that

+(1+V ’x)|w,,,{2 dxdt<;f | H) [P

and therefore

(14 V)| |2)dxdt <ec. (4.5)

(3) Practically, the V,, will be polynomials but for the moment this hypothesis is useless.
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weakly in the space L*(Rx(0,4)). But using (4.1) one sees that V3iuw, —Viy* in the
sense of distributions, hence u** = Viu* and therefore u® €L*(— oo, t; K) and u* =0
for ¢t <0. Pagsing to the limit in (4.3) one sees that

18

(- 35+ v+ 2 taato ur (e ) - Hopoe

Comparing this with (4¢.4) one concludes that u* =u so «* does not depend on the

subsequence and proposition 4.1 follows.

ProPrPoSITION 4.2. Adssume the functions V,, V are twice continuously differen-
tiable with

V>V, Vo> V', Via—> V" uniformly on every compact set, {4.6)
GVl + | Vi DJ(L+ V) bounded (for each m) and | Vi |/(L + V) bounded @)
uniformly in m,

and (V' |+ V" DL+ V) bounded. (4.8)

Let f be given with f€H, 1 +2)Y(1+ V¥ e€H, (1+23 (1 + V) f€H, for every m and
remain in a bounded set of that space.()

Then
A+ /7R A+ + Vol up—> 1+ VHQ + 25 (1 + V)Pu,
nd O {14+ B U+ VPun] 2 [(1+ %) (1 + V)] 9
@ 8z[ m) thm 8:::[ (
weakly in L*Rx(0,t,)).
Proof. Set yu(x)=(1+2*)(1+ V,(x))* and consider the equation
1 & (w, J .
stui () + (o G ieafom=smtins, 10

w, €LY — oo, t; K,) and w,=0 for £<0.(2) Now if we set w,/yn,=1un then u,€
L3~ oo,ty; K,,) and u,, =0 for t<0, as well as satisfying (4.3), so that it coincides with
the u, previously introduced. In the same way, let w be the unique solution in
L*(— oo, ty; K) which is 0 for t<0 of

1 & [w o
—_éya?(;]) + <V+éi—7'z9)w“y/(~t)ae,

(1) We are not looking for the most general hypothesos on f for which what follows is true, e.g.
one can obviously replace {1 +z?} by (1 + #t)}, For our main result, section 6, it would be enough to
take f infinitely difforentiable with compact support.

(3) The solution exists and is unique. This fact is a simple variant of the case y,=1.
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where y(z)=(1+2%)(1+ V)% Then as above w/y=u. If we replace w, by ¢*w,, then
(4.10) is replaced by the same equation but with (8/of-+ k) instead of 9/of. We obtain

o ] to 1 =]
;,,ym)dxdt+f f (Vi) + k) | w,, |*ddt <5f | ymf(2) |*de,
A “J —o0

1 © Mg (w,
R g
2 ef—oo J 0 ox (ym

x)

0
)
)2 [ w,, |*dzdt < constant,

xr

hence
1 ] 1 6 . J*oo J‘tn( y;n(
= — | Wy, |“dedt Vala)+k~7"-
2f—oofoaxlw | it —J 0 x) ym(
Choosing % large enough and using the fact that y./y, is bounded, it follows that

o0 ty 00 te
1 f f 9 | w,, [Pdxdt f f V(%) | wy |*dzdt < constant,
2 —e0d 0 ox 0J 0

and we complete the proof as in Proposition 4.1.
If we use Proposition 3.1, we obtain, always by the same method,
Ve V are once continuously differentiable,

ProrosiTioN 4.3. Assume that
40U 6%,,,_)811,
oxt

V'/I1+ V), V(1 + V,) are bounded, V,—V, Vp—>V' uniformly on every compact set.
or’ ot

™ 1+ V)

Suppose | is given with f, f' €H. Then
)ial
ox

1+ V,

weakly in LR x(0, ).
(L+ Va)un( -, t)—>(1+ V)u(-,t) weakly in H for every fized t>0.

PrROPOSITION 4.4. Assume the hypotheses of Propositions 4.2 and 4.3. Then
Proof. It follows from (4.3) and (4.4) that in the open set Rx(0,t,)

Oun _10un
o 2ot mmT VUm
ou 18%u .
%ot Vu + txqu.
Using the results of Propositions 4.2 and 4.3, this implies du,/ot—0ou/ot weakly in
L*0,ty; LA(R)). Let s>0 be fixed and let g(z) € D(R) (infinitely differentiable functions

with compact support). Furthermore, let ®(x, t) €D(R_ x R,) with ®(x, s) = (z). Then,
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e

f (14 Va)un(z, ) o(x)de = f f ~(1+ Vm)(umq))dxdt—i-f (1+ V) f(z)D{(x,0)dx,
and since (1+ V,)u,, and ou,/ét converge respectively to (1+ V)u and ou/ét in
L*(Rx(0,t,)) weakly we obtain

fw 1+ V), 8)p()da—> f B (1 + V)ulx, s)p(z)de.

-0

On the other hand,
f (L+ Vu)? | umle, 8) [Pdz= f f—[(1+V u,,,u—,,l]dxdt-i-f (14 V..)?| f(z) [Pda

and this is bounded. Therefore one can extract a subsequence wun such that
(14 Vi) Umi(x, s)—>g, weakly in L*(R). But since

fw (L + Vi) tomi(, S)de»fw (L + V)u(z, s)p(x)dz,
one has g,=(1+ V(z))u(x,s) and therefore (1+ V,)u,(z,s)—>(1+ V)u(x,s) weakly in
L*R). Thus proposition 4.4 is proved.

We pass now to the stability of Volterra derivatives. By Proposition 9.2 (chapter
I) we know that ou,/dg(t) (or respectively du/dq(z)) is characterized when f€H, as
the unique element in L?(— oo, fy; K,) (or L?(— oo, ty; K)) which is zero for ¢<0 (in

fact for t<t) and is the solution of

16° o Sun(z,t;q) .
(‘éa?* V(@) + 5~ i q(t))%wnmm v 9)04(7) (411)
18° 2 Su(z, t;
or of ( 550 —+ V(x)—l—gt—z q(t)) “é:( )~mu(x v 8. @.12)

When f€H, one has by a variant of Proposition 4.4, ivu,(z, T; ¢)—izu(z, T; ¢) weakly
in L*R) and by Proposition 4.1(}) we get

ProrosiTioN 4.5. Under hypotheses of Proposition 4.1 and with f€H,,

(1) Where ¢=0 is replaced by ¢=7 and in (4.3) f is replaced by f,; where f,—f weakly in H.
This does not change the result.
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Oy, ou == Oy, — du 8 Ou, @ bu

dq(v) dqlr) ' '™oqlr) " oq(r) dudqr) oxdq()

(4.13)

weakly in LA(Rx(0,1,).
Assume now that f€H and henceforth that V, is a polynomial. By Proposition
9.3, (chapter I) we obtain

(—Iiz FV. (x)+g—ix (t)V'(——'»—a—»—) = Vol @)m(®, 8)04( (4.14)
Zasz m a q(t) ) Vm léq(s) Um =V m\2)Up( X, o(8), .

with  Viu(—36/0q(s))u,, € L*( — oo, ty; K) and =0 for t<0 (in fact for t<s). We want
now to pass to the limit. We make the fundamental hypothesis:

V is twice continuously differentiable, V{(z)>0, and

| V(@) |+ | V"()]
LA e Y oo
1+ V() <
One can find a sequence of polynomials V,(z), V,(x)>0, | (4.15)

such that
V=V, VoV ViV’

uniformly on every compact set and with | V,|/(1+ V) <c,

where ¢ is a constant independent of m.

Under the hypotheses of Proposition 4.2 one has (cf. Proposition 4.4)

,
m
1+V,

V@ ttp(2z, 8) = (14 Vo unlz, 8)=>Vulz, )

weakly in H, and this remark combined with (4.14) and the proof of Proposition 4.1

gives.

THEOREM 4.1. Assume that V and V, verify (4.15) and that the function f is
given such that

f€H., f,f €H, (1+2)1+V¥Ef€H, (1+22)1+TV,)}fe€H (4.16)

and remains bounded in that space. Then, Vnu(—1id/0q(s))u, converges to a limit weakly
in LA Rx (0, t,)). By definition this limit is called V'(—1i06/0q(s))u. One has
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o 6 o . 6 v (. 0 + ,,(_ 6_)
Vi ’@(s))“"‘” ( Z6q(s>)“’ ViV zéq(s))“"‘"’V "\ g™
a ’ o 5 3 ’ '_6_,,, . 9
8_x(Vm( léq(s))u"')eéx(v ( léq(s))u)’ all weakly in L*(Rx(0, t,)).

Moreover, V'(—i— 6--)u is the unique element in L*(— oo, ty; K) which is=0 for t<s

(4.17)

dq(s)
and satisfies
18 a . A .6 .
(— 252 + Vix)+ Fr zxq(t)) | 4 (— zg(—s—))u = V'(x)u(z, s)d,s). (4.18)

Also the limit in (4.17) behaves in s in such a way that

' mi (9 g .8
fo min (7, §) Vi ( — lé—qiéj)umds—-)fo min (1, s) vV ( — Zm)) uds
weakly in L*0, ty; H). (4.19)

Proof. There remains to prove only (4.19). Let us set

, é é
@) __ .Y oyl ;2
W V'"( z<5q(8))u"" wh=V ( léq(S))u'

By (4.14), we have

o Pl (] | g |2 oh 1 [ ’ 2
- m 3 <= 4 2 ‘
f_wfo (2 oo | T V@ | )dxdt 2f‘ | Vin(@) | wn, ) [d
But f l V:n(x) |2|um(x, 8) |2dx< le (1+ Vm(x))z I (% 8) |2da:

and according to the proof of Proposition 4.4, this is < ¢,. Therefore we obtain in
particular s—w{ € L*(0, ty; L*(0, t,; H)) (bounded measurable functions in (0, f,) with
values in L%O, to; H), and w$) remains in a bounded set of this space. As a con-
sequence, we can extract a subsequence m; such that w{;) converges weakly in
L*(0, t,; L¥0, ty; H)). Necessarily this limit is w'®, hence wi'—w'® weakly in
L=(0, ty; L*(0, ty; H)) and this implies (4.19).

By using the results of section 13, chapter I, we are now going to prove that
essentially Theorem 4.1 remains true under similar hypotheses but with V assumed
only once continuously differentiable instead of twice.

We need first some more propositions.
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Prorositiox 4.6. Assume that q is once continuously differentiable with q(0)=0
and that V(x)>c|z®,c>0. Let f be given in K with —(12) {’+ V(x)f€H. Then the
solution wu of (4.4) verifies

8
a—lt‘ € L¥0, t,; K). (4.20)

Proof. Using the notations of (13.2) (section 13, chapter I) let us consider
u,=XYe ™Xf) (and—0 for ¢t <0).

By hypothesis f€D(A ) so that AXf€h and therefore
ou,
S €10, 15 K). (4.21)

Since u,(1+ V)} belongs to L*0,ty; H) and V(z)>c|z]?, we have
zu,(1+ V) e L¥0,t,; H). (4.22)

Now if we set w=wu—u;, then w belongs to L% — oo, ty; K) and satisfies
— — 353 T Viz)w —izg(t)w = ixq(t)u,. (4.23)

But since ¢ is once continuously differentiable and ¢(0) =0, then setting g(z, t) =ixq
{(t)uy(z, t) we have g and &g/ot belonging to L% — oo, ty; K') where K’ is the dual of K.
Therefore by [17, chapter V, Th. 3.1], we have

aw 2
o €10, 15, K)

and this combined with (4.21) gives the result.

ProrosiTioN 4.7. We assume that q and V are given as in Proposition 4.6
and that f€D(R). Let V, be a sequence of polynomials with V,(x)=cu|z|? cn>cy>0
and V,—V on every compact set. Let u, be the solution of (4.3). We have

U, $)(1 + V() —>u(z, s)(1+ Viz))} weakly in L*(R).

Proof. Let @, =0uy,/ét and we have

. .y ' l "
&"éﬁ_{w Vm(x)~@xq)q7m=wq Uy T (2f - me)(S‘



202 M. D. DONSKER AND J. L. LIONS

It follows that (where @, = Rx(0,1,))

f |<pmxt0|dx+ff (
=3 [ |37 vatPanime (i [[, aouuaea). w20
213 m + o, q mPmddt ). .

Ognl® V(@) | @ |2)dxdt

But

ff l'q um(pmdxdt — ff ( )q (t)(um(l + V ) )((pm(l T+ Vm)*)dxdta

and since wu,(1+ V,)! is bounded in L*@Q;,), it follows that, in particular, (1-- V,)}g,

is bounded in L*Q;) and therefore

1+ V,,.)*aut —(1+ V) - \\eakly in I? (@e,)-

From this and Proposition 4.1 we infer (4.24).

TrEOREM 4.2. Assume the hypotheses of Proposition 4.7 and moreover that

| Vi |/(1 + V) < constant independent of m. Then
g (_i_ém)u AVI(_Z."(S—)“ weakly in LX0, ty; H) (4.25)
m 5q(8) m 6q(3) Yy > Vo .
and
¢ s ; s
f min (7, §) Vm( — i —)u,,,ds—>f min (t, s)V'( — i—-)uds
0 dq(s) 0 dq(s) (4.26)

weakly in L*0,ty; H).

Proof. Set w$=Vn,(—10/0q(s))u, From section 13, chapter I, we know that
(s

wiy is the unique solution in L*0, {,; H) which is 0 for t<s of
é—18—2*1’(%) izg(t) | = Vo (@)um(x, 5)04(5).
a4 2022 0™ q m (S

Let WS be the solution in L% — oo, t,; H) which is zero for t<0 of

. 1
(gt 2552 T Vnl® ))W(S)_ ()t (2, 8)04(5)
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(cf. chapter I, section 13). We have

’

, 1 v 2
o [Pdzdt < (T, 8) P - da = = + Vi) | um(z, 8) |"dz,
ﬁot.l W Pdadt cJ‘EU Un(2, 8) | Tr dea: CJR(I—}- Vm) (1+ Vi) | (2, 8) [*da

where ¢ is independent of m. Thus W7’ remains in a bounded set of L@ ). Using

the proof of Theorem 13.3, chapter T, we see that w,(s) belongs to a bounded set of
L*Q.,) when m and s vary. We complete the proof as in Theorem 4.1

5. The parabolic case (II)

THEOREM 5.1 Under the hypotheses of Theorem 4.1 or of Theorem 4.2, the solu-
tion u of the Cauchy problem

. ai; 14 2_; ¢ t; q) = f(z)d 5.1
(_25‘.?:2 ' (x)at_le( )) u(z, t; q) = f(x)0¢, (5.1)
u(+, t;q) €L}~ oo, ty; K) and =0 for t<0, (5.2)

satifies the Volterra variational equation

Vu_(x’at’qﬁ) R oul(z, t; q) t . )
bqln) 1T T am + (Jl)mm (7, s)q(s)ds)u(x, t; q)

. , ) ) _ .
) fomm (r,9)V ( —1 %)u(x, t; q)ds = Oz, t; q), (5.3)

where D, is defined as in (2.3) and (2.4).

Proof. Assuming first that we are under hypotheses of Theorem 4.1, we consider
Vam a sequence of non-negative polynomials verifying the conditions which appear in
(4.15). Let u,, be the corresponding solution of the Cauchy problem. Now V,, verifies
(ef. Theorem 2.2) the Volterra variational equation analogous to (5.3). By Proposi-
tions 4.1, 4.3, 4.5 and Theorem 4.1 we can pass to the limit in the left-hand side.
With obvious notations one checks by the same method as in Proposition 4.1 that
O™ (x, t; @)Dz, t; ) weakly in L*Rx(0,¢,)) and hence the theorem follows. If we

assume the hypotheses of Theorem 4.2, we see that the same proof obtains.
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6. The parabolic case (III): The F.V. variational equation for the kernel

We consider the mapping f—u. It is, in particular, a mapping from D(R) (space
of functions infinitely differentiable on R with compact support) into D'(RX(— oo, tj)).
This mapping is defined, by the Schwartz kernel theorem (see Schwartz [23]), by a
kernel Q(z,y,t; q) which is a distribution on R, XR,X(— oo, t,) and is=0 for t<0

and is, moreover, such that
u(x, t; q)=f Q, y, & Ofy)dy. (6.1)

The distribution @Q(x, y,t; ¢) is the fundamental solution of

18 a .
25 + Viz) + P 1xq(t),
. 18R J .
i.e. (_—287:2 + Vix) + pri zxq(t))Q(x. ¥, b q) = 0,(y)@60) {6.2)

and, for every y and t, x—>Q(z, y, t; q) satisfies growth conditions equivalent to the fact
that the operator (6.1) maps L*(R) into L*0, ty; K).(!) Using the kernel Q(z, y,t; q),

one can write
Oy, t; q)=f Qlz, y, t; q)iyfy)dy. (6.3)
Admit, for the time being, the

LemMa 61. Let X and Y be two open sets in R" and R™ respectively. Denote
by D(Y) (or D'(X)) the space of functions infinitely differentiable in Y with compact
support (or of distributions on X). Let C(D(Y), D'(X)) be the space of continuous linear
mappings from D(Y) into D'(X) provided with the topology of uniform convergence on
bounded sets of D(Y). Let T be an open interval of R,. Let q—M(q) be a mapping
from D(T) into L(D(Y), D'(X)) which verifies:

For every 9 €D(Y), qg—M(q)p is continuous from D(T) into

(6.4)
D'(X) wuniformly for @ belonging to a bounded set of D(Y).

(1} In the present case, one has in particular Q{z, ¥, ¢; ¢) > 0 as z— T co.
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For every 9 €D(Y) and every q, q, €D(T), the function E—

(6.5
Mg+ &q,)p is entire analytic from C into D'(X). )
Let K(x,y,q) be the kernel (in the sence of Schwartz) of M(q), t.e.
M (q)¢=ny(x, ¥y Qply)dy for p€D(Y). (6.6)
Then
g—>K(z, y; ) is continuous from D(T)->D'(XxY), 6
E—>K(z, y; ¢+ &q,) is entire analytic from C—D'(XxY) ©D
and
oK, y; q) ED'(T;D'(XxY)=D'(TxXxY)
dq(7)
(6.8)
M K ;
satisfies M) _ [ K=y q-)<p(y)dy-

sqm) ¥ )y dog(t)

We apply this lemma to the kernel Q(z, y, t; ¢)(1) of the mapping f—u. We assume
that V satisfies (4.15). Then

, . 0 , .0 '
V,,.( — zgqm)um(x, L)~V (— zéq—(.g—))u(x, tq) (6.9)

weakly in L*(Rx (0, t)) (in particular, cf. section 4).
Let Qu(w,y,t;q) be the kernel of f—>u,. By (6.8)

VZ,,( - ibq(%s))u'"(x’ t,q)= J‘: Vin( - i@%gj)Qm(x’ ¥, & Of(y)dy (6.10)

and, on the other hand, the mapping

. 0 )
>V~ u(x, ¢; 6.11
- 5002 69 (6.11)
has a kernel (applying once more Schwartz’s Kernel Theorem). But the kernels depend

continuously on the mappings (stability of the kernels) and therefore the kernel

(1) { =, ¢t} plays the role of z in the lemma.
5 play!
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.8 -
Vm(_ qu(_s))Qm(x! Y, ty Q)

has a limit (for every fixed s) in D'(R xR ,x(~ oo,t,)). This limit is the kernel of
the mapping (6.11). By definition this limit kernel is denoted by
V'(—i—(1 —-)Q(x Yt q)
3q(s)) " P EL

We notice also that the kernel of the mapping

N , .0 ]
) ~]‘Omm (z,8)V (— zm)u(x, t; q)ds

. , N ( .8 _
is @fomm (r,8)V (— Z;Sg—(éj)Q(x’ Y, t; q)ds.

From these remarks and from Theorem 5.1 we deduce

THEOREM 6.1. Assume that V and V, verify (4.15). Let Q(z, y,t; q) be the fun-
damental solution of the operator —1/2 &*/ox* + V(x)+ 8/ot —izq(t) (cf. (6.1), (6.2)). One
defines in this way a functional q—>Q(z,y,t;q) from C(0,t)—>D' (R, xR, x(— oo, ).

This functional verifies the Volterra variational equation

0Qx, y, b q) | . 0Q(=,y, t; -
Q—(a(;q%) Q)—Hr Q(xég; 9 + (fomm (T, S)Q(S)ds)Q(x, vt q)
t
+if min (t,s)V'(—ii)Q(x,y,t; g)ds = iyQ{x, y,t;q) for t>1. (6.12)
0 dq(s)

We note that the same result holds under the hypothesss of Theorem 4.2.

Remark 6.1. The interest of equation (6.12) is that now all the expressions

which appear in (6.12) are known once V is given.

Remark 6.2. We leave open the problem of determining the best conditions

on V for which (6.12) holds. Now there remains only to prove the lemma.

Proof of Lemma 6.1. First of all (6.7) follows from general properties of vector-
valued distributions (cf. Schwartz [23]). For (6.8), we calculate
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d
ds Mq-+-Eq,)p= dgf K(x, y; 9+ &q))p(y)dy = f d—fK(r Y5 9+ éqy)e(y)dy
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and taking & =0 and applying the definitions of Chapter I, section 1, we have the result.

7. The Schriédinger case (I)

We consider the situation in section 10 of chapter 1. To begin with assume

V(x) >0 is a polynomial of degree m.

We consider u(a,t; g), solution of

i 2
( 28 2+ V( )+a-t_1’xq ) f 6!9

where u €L — oo, t,; K) and w=0 for £<0.
This solution exists and is unique if

g€CY(0,¢,), q(O) =0

and fand Tf (=(1+ V) ¥ —1/2f"+ V(z)f)) belong to H=L*R).

The space K is unchanged, i.e.

du
= ) 2z
{u|(1+ V) uEH,der}.

The same proof as in Proposition 3.1 gives

ProrosiTion 7.1. If V is once continuously differentiable with

and if | verifies (7.5) and
f,. T €H,

then the solution w of 7.2 and 7.3 satisfies

a—" € L*0, t,; K).

We shall now prove

(1.1)

(7.2)

(7.3)

(7.4)

(1.5)

(7.6)

(7.7)

(7.8)
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THEOREM 7.1. Under the hypotheses of Proposition 7.1 and with f € H, (cf. (10.9),
“chapter I), the solution w of the Cauchy problem (7.2), (7.3), satisfies the Volterra varia-

tional equation

6u((5.’;:(t)q) ra% -H(f min (7, $)g(s ‘ds) u(z, t; q)
—zf min (1, 8) (—z ~~5)u(x t; q)ds = Oz, t; q) (7.9

for t>1 and where ®, is the solution in L* (— oo, ty; K) which is=0 for t<0 of

i & o . )
9 e s xX,t; = t. .
( > o2 +1V(x)+ P wcq(t))(b (x, 8 q) = 1zf(2)d (7.10)

Proof. The proof is along the same lines as that of Theorem 2.1. We have to
check that

(f min (1, §) ds) u(z, t; q)+zf min (1,8} V' (—iéqa(s))u(a:, t;, q)ds+ @,

for t>1,

w=0 for t<T,

satisfies we L0, ty; K) (7.11)
O iVl (t)) — izu(z, 1)3,(7) (7.12)
352 iV(x)+ o 1xq(l) Jw = ixu(zx, £)0,(T). .

Condition (7.11) follows from (7.8) and the results of section 10, chapter I. In order
to prove (7.12) we first check that this relation holds for {>1. Set

i & 0
A= —2‘a—2+7/V(£E)+’at. (7.13)
From (A —izq(t))u =0, we deduce
(A —izq) (1 _x) = — i V'(x)u + trqu. (7.14)

£
Now (A —1zq) (( - zf min (7, s)q(s)ds)u) = —1q(t)u,
[}
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and

. . q . 0 ) o .0
(A—wq)(zfomln(r,s)V(—z%)u(x,t,q)ds—nV(——16—

q(s))u(x, t;q) |s—t =37V’ (2)u.

Thus since by definition (A —izq)®,=0, these relations combined with (7.14) prove
that (A —i2zq)w=0 for ¢>7. Consequently in order to prove (7.12) there remains only
to check that w=w(z,1, 1;¢)—izf(x) as t—71 or, replacing v by ¢, that

o ([ N O S _
tac - z(fo 8q(s)ds)u(x, tq)+1 fosV ( — zé—q(s—))u(x, t; q)ds
+ Dy(z, t; q) = txu(z, t; q). (7.15)

In order to verify (7.15) we note that both members belong to L* — co,fy; K), are
zero for ¢<0 and are equal for =0 (where both sides equal izf(x)). Now applying

(A —ixq) to both members gives the same result, for

(A —tzq) (tg—: - zxu) =itg(t)u — it V'(x)u,

t
(A —ixq) (— z(f sq(s)ds)u) = — itq(t)u,
)

. Y Y . T S .
(A —izq) (zfosV (—zm)u(x, ¢ q)ds) =iV ( zaq(s))u(x, t;q) |s-¢

=iV (x)u,

and hence the conclusion follows.

8. The Schridinger case (II)

We can pass to the limit in Theorem 7.1 along the same lines as in sections 4

and 5. We obtain

THEOREM 8.1. Assume that V., V verify (4.15). Let f be given with
{EH,(Y)

f.(TFY,{",(Tf)" €H,

(L+2%(1+ P32, (1 + 2% (1 + V), L+ 28 (L+ Vo)), T(L+ 2 (1 + Vo))
all in H and remaining bounded in H.(2)

(8.1)

(*) Cf. (10.9), chapter I.
(?) For our purposes here we can take fED(R) so that these hypotheses are harmless.

14 — 622906. Acta mathematica 108, Imprimé le 27 décembro 1962
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Let u be the solution of the Cauchy problem

w€L*(— o0, ty; K) with w=0 for t<0 (8.2)
. i & iV +Q_ = () 8.3
@ 55 HiV@+ o~ i) (8:5)

Then Vu(—i0/0q(s))un converges to a limit weakly in L*(Rx(0,t,)). This limit is called
V'(—16/0q(s))u. The functional w verifies the Volterra variational equation,

ESMT(ZE:)—Q) auxtq (f min (t, s ) u(zx, t; q)

f min (7, 8 ( 6;2 )) u(x, t; g)ds = Dy, t; q) (8.4)
for t>1, where @, is the solution in L*(— oo, ty; K), which is zero for t<O0, of
i & o . . ~
( é5—2+zV( )+a—t—zxq(t))d>,=zxf(x)6‘. (8.5)
We consider now the kernel Q(z,v,t;q) of the mapping f—u, ie.

wz, £, q) = f Qx,y,t 9 f(y)dy, (8.6)

where Q(z,y,t; ¢) is the fundamental solution of the operator

X o .
—;é?+lV(x)+a—7’xQ(t);
Q9,4 Q) €D (B x By X (— o0, ¢y)), Q=0 for £<0, 8.7y
v o° 8
and 53_2+ Vi) + 7, — gt )) Qz, 5t 9) = 0:(y) ®6,(0) (8.8)

with growth conditions as z— 3 co. These latter growth conditions are equivalent to
the fact that f—>u, given by (8.6), maps the space of functions f for which f and
Tt belong to L*R) into L*0,ty,; K). By the same considerations as in section 6,

we obtain

THEOREM 8.2. Assume that V and V, satisfy (4.15). Let Q(z, y, t;q) be the
fundamental solution of the operator
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v & 0

5 s iV @)+ 2 —ing()

(cf. (8.7), (8.8)). In this way one defines a functional q—@Q(x,y,t; q) from the space of
g€CY0,¢) with q(0)=0 into D'(R,XR,x(— oo,t,)).) This functional satisfies the Vol-
terra variational equation,

6Q(§;g;)t; Q)-—raQ(x’ai’t 4) +z(f min (7, s)q(s)ds) Qx, y,t;q)

f min (z, §) (_zéq(? ))Q(x:?/, t;q)ds

=iyQ(z,y,t; q) for t>1. (8.9)

Remark 8.1. As in Remark 6.1, we notice that all the expressions appearing

in equation (8.9) are known, once V is given.

9. The multi-dimensional case

We consider now the situation in chapter I, section 12, i.e., we consider u, the
solution of

——A,u-l— V(x)u+ ——3 Z 2,q;(8)u = f(x)0;, 9.1)
n 82
where A= Z
with w€L*(— oo, ty; K), u=0 for t<0 (9.2)
and {u| L+ V)rue LHRY), o eLZ(Rn)}, H=I}RM.

Now, if f€H, u exists and is unique. By the same methods as in sections 2 and
3, we prove

THEOREM 9.1. Asssume V is a polynomial =0 of degree m. Assume [ is given with

+2%)"fE€H, :f €H, j=1,2, ..., n. (9.3)

Then, for j=1, 2, ..., n, one has
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st inte) [ min . 01g615) ute .0

8q,(7)
ov( . 8
+ zf min (7, 8) (62:,( léq,(s))) u(z, t; g)ds = OF (9.4)

for t>1 and where ®F is the solution in L*(— oo, ty; K), which is zero for £<0, of

(— BBt )+ o i Z iy t)) O = iz (x)8:. 9.5)

One can pass to the limit along the same lines as in sections 4 and 5. Let us denote

by Q=,9.t ¢y, ---,9,) = Q(=, ¥, ¢ q) the kernel of the mapping f—u, ie.

U b q1, gy <1 Gn) = f W@ b0 o g Y)Y (9.6)
We obtain the result

THEOREM 9.2. Assume that V=0 is given(t) in C%, that

and that there exists a sequence of polynomials V(x) such that V,—>V in C*, with

‘aV,,,(x)

Then, for j=12, ..., n

692"’(”; 9) +”aQ(zay’,t :9) ( f min (7, 5)g,(s) d8) Qz,y, 5 q)

. ov(_ . o :
+ zfomm (t,9) (B_x,(_ tm)) Qx,y,t; q)ds

=1y,Q(x,y,t;q) for t>1. (9.7)

The same remarks are valid in the multi-dimensional Shrédinger case.

1) O1 is the space of twice continuously differentiable functions. In that space g,—g if
p P
gn—>g, 0gn|0X;—0g|0x;, d3gn|0X10x;—>0%g|0xi0xy

uniformly on every compact set.
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10. Case of example 3, chapter I

We do not here make a systematic study, along the same lines as above, for
the general situation of section 11, chapter I. We only want to mention, however,
the following result.

Let u(z,t;q) be the solution in L?*(— oo,ty; K) which is = 0 for t<0, of

n_l 2n 9 —— —
((—1) 2nD,, +6t nq(t))u—f(z)é,, (10.1)
a™u 2
where K= u|u,@€H , H=ILYR), fe€H.
Now, assuming that
{1 €H, (10.2)

we have the F.V. variational equation

du(z, t q) (f'(g f‘ )(2"_1’ ) _
—6q(r) + . 1.ax+ aq(u)du doyu=0, t>1, (10.3)

where @, is the solution in L*(— oo, ; K) which is = 0 for t<0 of

—1” azn . -
(( 2n) e + 8% - nq(t)) &, = izf(x)6,. (10.4)

then one obtains the desired F.V. variational equation,

6 Y, l; 1 . 3 t (2n-1 .
Q(qu‘?(/t)—q—) + (f (za—x + f q(u)du) do-) Qx,y,t; q) =1yQ(z, v, t; q) (10.6)

0 4

for t>1.

11. Lemmas
We recall the following Lemma (cf. Cameron {2)):

Lemma 11.). Let M(z) and N(z) be two functionals, z€ C(0,t), z(0)=0. We assume
z—>M(z) is continuous with values in a vector topological space E (cf. section 1, chapter
1), and admits a Volterra derivative M (z)[dz(s) which depends continuously on s in E.
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Also we assume z—N(z) is continuous with values in C(H; E),(1) and admits a Volterra

derivative ON(z)/02(s) which depends continuously on s in L(E; E). Then

b » ON w oM -
fqmm (T, ) [Ez {M%}—FEZ {N%H ds=EY{2(t) MN}. (11.11)

LemMMA 11.2. Assume that for every continuous function g€ C(0,1):

E? {exp (z ftz (o‘)q(o)da) iB(z, t; z)} =0, t>1,

1]

where R(x, t;2) = rg—g + (f:min (T, s)V’(z(s))ds) G+ f:min (,$) ég;:z—yds, t>1.
Then

E=0.%)
Proof.

More precisely we now prove:
Let F[z] be a functional defined on C(0,t) which is bounded and continuous in the
uniform topology. If for all q(c) €C(0,t) we have

E;"{exp (iftq(a)z(a)do')F[z]}=0 (11.1)
0

then F[z]=0 for all z(c) €C(0,1).

The proof of this fact makes use of certain techniques and calculations used in
Cameron and Donsker [1]. We repeat some of these here so that the present proof
will be self contained. In the proof we postpone to the end some of the calculations
so that the simple idea of the proof will be clear.

Let A and u be positive constants and let x(c) be a fixed function defined on
0< o<t with 2(0)=0 and satisfying a Lip-x condition for some &>0. From assump-

tion (11.1) we have for all ¢(c) € C(0, )
t t
exp { - M[uf x(a)q(a)do} E? {exp {M[uf q(c)z(o)do‘}F[z]} =0 (11.2)
0 0

Now let R(c, & — u?) be the resolvent kernel on [0,¢] of min (g,§), ie.,

(1) Continuous linear mappings from E to E.
(2) The authors wish to thank G. E. Baxter for pointing out an error in an earlier version of
Lemma 11.2 which is corrected in the present proof.
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__cosh u(t—§) sinh_;w

<
u cosh ut o<é

R(o, &~ p*) =
(0, &= 1) coshy(t—a)smhpf

h g=zé.
[ cosh ut

The eigenvalues of — R(q, &; —y2) are all positive (being (k+ 1})2n2/t2+,uz, k=1,2,3,...),
and therefore p,(c, &)= — R(o, & — u®) is a positive definite, symmetric function and
we can form a Gaussian process, { Qo> 0<a<t}, with mean function zero, covariance
function p,(c, £) and almost all the sample funetions of which, ¢{¢), vanish at ¢=0.
Moreover, with this covariance function almost all sample functions ¢(¢) are continuous.

Since (11.2) holds for all continuous ¢(o), it holds in particular for allmost all
sample functions of the Gaussian process just constructed, and therefore taking ex-

pectations with respect to this Gaussian process we get

¢ t
E2u {exp { - iluf z(0)q(o) da}E;" {exp [ilyf q(o)z(a)da} F[z] }} =
0 0
t
B { exp {M,uf [2{o) — x(6)]9{0) da}
0

= {——)2 2ff [2(0) — 2(0)] [2(&) — %(&))pu(o, &) dodé }

But,

{ “u ff [2(o o)1[2(§) — (&)1 R(o, & — p)dodE }

and therefore we have

¢ ot
E? {exp { % ARut J‘OJ‘O [2(a) — 2(0)][2(&) — (&)1 R(a, &; — uP)dodé } F[z]} =0. (1L3)

We will show later in this proof that if y(o)€C(0,t) and furthermore satisfics some
order Lipschitz condition, then

¢

lim x f f R(o, & — yP)dadé = —f yi(o)do. (11.4)

>0 0

Since by assumption z(¢) satisfies a Lip a-condition for some «>>0, and since almost
all sample functions, z(c), of the Wiener process satisfy a Lipschitz condition of order

strictly less than %, we apply (11.4) and obtain from (11.3) on letting yu—> oo,
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1 t
E’;"{exp{—élzf [z(o)—x(o)]zda}ﬁ’[z]}=0 (11.5)
0

We will also demonstrate later in this proof that under the assumptions imposed
here on F[z] and on (o),

1 £
E? {exp { - 512 f [2(0) — x(o‘)]zda} Flz] }
w 1 : ‘ 2
E} {exp { - él J'O [2(0) — z(6)}°do }}

Thus, dividing both sides of (11.5) by

E? { exp { - %lg ft [2(0) — x(c))%do }}
0

and letting A— oo, we obtain F[z]=0. Now let 2(c) be an arbitrary element of C(0, ¢].

lim
A=>o0

= Flz]. (11.6)

Since F[z] is continuous in the uniform topology and since every uniform neighbor-
hood of z(o) contains a function z(o) satisfying a Lip «-condition, we have F[z]=0.
This completes the proof except we must now prove (11.4) and (11.6).

To prove (11.4), consider
¢ t ot
fo y*(o)do + /ffofoy(a)y(é) (o, & — p*)dodé

t t 2 prtoprt
~ [ o+ [ o, &= wasao 4 | | 2o = i) ~woraos

0

(11.7)

Each of the terms in this last expression are positive and therefore to prove

(11.4) it will suffice to show that each goes to 0 as u—oo. Now

cosh u(t—o)

t
1+u? LR(U, &—udE=—_— "

and therefore, letting % be the bound on y(¢) on [0,1],

t
f y2(0) cosh u(t — o) da
0

: 13
f RAGIE f JBlo: &= ) dldo =

2 13 h2 inh
< M cosh u(t — o)do = M.
cosh ut J o w cosh ut
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Since this last approaches 0 as u—>oco, we see that the first term on the right in
(11.7) goes to zero.

For the second term on the right of (11.7) we use first the assumed Lip «-
condition on y(g), ie.,

f f osh (0= 8) LR U ) — yie) P

‘u2 t Pt
ngJ.OR(G, & — p?) [y(o) — y(&)Pdodé | = we Osh it

2
< P
cosh ut

t (€
f j (o — &)™ cosh u(t — &) sinh pyodad§.
oo

By the Holder inequality this last expression in less than or equal to

kz t rE o t prE 1-a
¢ [ f f (o — &) cosh u(t— &) sinh yadad.f] [f f cosh u(t — &) sinh ‘uodadf]
0J o oJ o

cosh ut
uh? [cosh it ( 2 )]“ [t cosh u¢  sinh ,ut] 1~
= 1+ -
cosh ut| b cosh ut 2u 2u

1 2 “Tt sinh ut 1*¢
= 2 —_— D ———— —_—
ph [u“ (1 * cosh ,ut)] [2[u 2u® cosh Mt]

1 fl-e ) X A
N e T e

iz iz

which approaches 0 as p—>co. Hence the second term on the right of (11.7) also
goes to zero and we have proved (11.4).

We now prove (11.6), but for this we need only assume that x(c)€C(0,¢). The
Lipschitz condition assumption on xz(¢) was used in applying (11.4) to (11.2) and
is not needed here. Assume then that z(c) is a fixed function in O(0,¢) and that
F[z] is bounded and continuous in the uniform topology on C(0,t). For ¢>0 let
8>0 be such that | F[z]— F[z]|<e whenever supococ: |2(0) —#(0)|<d. Let Ss={z2(0):
SUPo<oct | 2(0) — 2(0)| <8 }. Now

EY {exp { - 112 'r [2(a) — x(a)]zda} Flz] }
E? {exp{——lzf [2(0) — z(0)]’do }}
E? {exp { - —22 f [2(o )]2da} [F[z] — Flx]] }

BY {exp { - 512 fo [2(0) — x(a)]zda}}

— Flx]
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;'es,,{exp { i f [2(c a)]Zdo} [Flz]— F[x]]}
E? {exp{—~~ ).zf [2(c) — ]zda}}
1
Els, { exp { - ;/1 fo [z(0) — x(o)]zda} [Flz] — F[x]]}

EY {exp { — é;\z ft [2(0) — x(0)Pdo H ’
0

where S; is the complement of Ss. Using the continuity of F[z] and letting M be the

+

assumed bound on F[z] we have

E"’{exp{—- A2 J (z(o (0)]2da}F[z]}

L —? — Flz]

E? {exp { - 2ﬂ.2f [2(6) — z{0)Pdo }}
0
erso{cxp { - lzf [2(0) — z(0)]*do }}

\8-‘2M .

EY {exp{——izf {2(0) — )]2da” ,

and therefore to prove (11.6) it will suffice to show

t
E:JES‘G{GXP { - 112 J’ [z(c) — x(a)]zdaH

lim =0,

e g {exp{———lzf [2(c )]2d0}

or what is equivalent
w 1 2 ‘ 2
EZs,qexp —-él 0[2(0)—x(a)] do
=1

lim ——

Aoy 1, [ 2 B
E; {exp —‘—27. Jﬂ[z(o’)-—x(o‘)] do

The proof of (11.8) is somewhat delicate and is done in Cameron and Donsker [1].

(11.8)

The context there is more complicated and therefore to avoid confusion we now show
(11.7) in detail. We need first the following transformation theorem: Let z(g)€
C(0,t) and let L|z] be a functional such that L{z—=z] is measurable on the Wiener

process. Then, for any positive number 4
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1 ¢
E? { Lz —2x] exp { - élz J [2(¢) — 2(0)]*do }}
1]

t t
= (sech Af)t exp { %f [q()(a)]zdo} exp { - 222 f 2%(0)da } Ey{Lp—=}}, (1L.9)
0 0

where

G ¢
golo) = A f sech A(t — s)dsf cosh A(t — &)z (&)dE

0

and

0(c) = cosh A(t — o) f’sech At — 8)d[p(s) + ¢ql8)]
0

= () + cosh A — g) f sech A(t — s)dp{s) + Sln}}ll};‘)t'f sinh A(t — s)dx(s)
0
cosh (t — o) (*
~ " cosh At fo cosh Asdx(s).

We will now prove (11.9) and use it to prove (11.8). To show (11.9) we make
use of a result of Cameron and Martin to the effect that if (o) is positive and

continuous on [0, ¢] and if G{z] is measurable on the Wiener process, then

- 1/ fu(®) w{ [ ,f("iy_({)]}
EY {G’[z]exp{2,uf0r(a) )da}} (f,‘O) F1G 1 f) o Fuo) ]’ (11.10)

where f,(0) is a non-trivial solution of

{ﬂf )+ ur(o)fu(e) =0

, (11.11)
f,u(t) =

and u is less than the least eigenvalue of the system (11.11) augmented by the
condition f,{0)=0. Equation (11.10) holds in the sense that the existence of either
side implies that of the other and the equality. We apply (11.10) to the left side
of (11.27) with

Qiz] = L{z — x] exp{ - %lzf xz(a)da} exp { A2 ft x(a)z(a)do‘}
0 0
ro)=1

p=—2
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and we choose f,(¢)=-cosh A({—g) in accordance with (11.11). Then the left member
of (11.9) becomes identical with the left member of (11.10) and is hence equal to

(sech At)} BY { G [cosh At—(-)] J'(.) sech A(t —s) dy(s)]}
0

¢

= (sech At)texp { - %lz J. 2*(o)do }

0

-EY {L[cosh A= (")) J‘(.) sech A(t — s)dy(s) — a( - )]
0
t G
<exp { sz cosh A(t — a)x(a)dof sech A( — s)dy(s) } (11.12)
0 0

To show that this last expression is the same as the right member of (11.9), ie.,
to show that

1,
exp {3 [ witontdo | 25 (110~}
=gy {L[cosh At—()) J(.)sech At — s)ydy(s) — (- )]
o
4 [
exp{ff cosh ).(t—a)a:(o)daj sech l(t-—s)dy(s)}], (11.13)
0 )

we make use of the Cameron-Martin translation theorem which states that when
go(0) is absolutely continuous, go(¢)€L,, and H is a functional measurable on the

Wiener process
1, b
53 (Hip+a}=exp| - [ witorao| £ {1 exp{ [ ggorno ). 110

We apply (11.14) to the left side of (11.13) with g,(0) as given just after (11.9)
and with H[y]=L{cosh A(t—(-)) [, sech A(t—s)dy(s)—=(-)]. This verifies (11.13) and
proves (11.9). If we consider (11.9) in the special case where L=1 and divide

(11.9) member by member by this special case we obtain that
¢

E? { L{z—x]exp { - %lzf [2(0) — z(0)Pdo }}
0

E¥ { exp { — %AZ f [z(0) — x(0)*do }}
0

=Ey{L[6 -]} (11.15)
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Let g(u)=1 for |u|<d and O otherwise. Define the functional L{y] = g(supoco<: [¥(c)]).
Comparing (11.15) for this functional and the left side of (11.8) it is clear that to
prove (11.8) and hence (11.4)) we need to show

lim 5 { p(suPoco<t |6(0) — (o) |} = 1

where 0(c) is given just after (11.9). For this it will suffice to show that for almost

all p(e) (Wiener process measure) ;Iim 6(c) = (o) uniformly for ¢ €[0,¢]. Looking at

the second form for 0(¢) (which is obtained from the first form by repeated inte-
grations by parts) we want to show that uniformly for ¢ €[0,¢] and for almost all p(c)

lim cosh A(t— o) f sech A(t — s)dp(s) =

Asoo 0

im sinh Ao
A0 cosh }.t

cosh A(t—o) [° _
lim “oosh i j . cosh Asdz(s) =

ft sinh A(t — s)da(s) =0 (11.16)

Almost all sample functions of the Wiener process satisfy for some kb depending on
p the modified Holder condition

| (o) — [<h([o o | o _al

log ~——-

) . (11.17)

Let n=(log A)/A. In order to estimate the first expression in (11.16) we note that

cosh A(t— o) fo_n sech A(t — s)dp(s)
0

< [cosh A(t— )] [sech [A(t— o) + log A]]%

<2hel(t 9 I-At-0)~log A1 __ 2}‘}& 0

uniformly for ¢ €[0,¢] as A—+oo. Also for sufficiently large A

cosh A(t— o) fc sech A(t — s)dp(s)
o-n

< [eosh A(f — o)][sech A(t — o)1 R (77

3
log 1
Oge‘)

{loil(logl-loglogl+l)} <h(1°§’1) (2 log A)t = 2h((l°§l)) ~0
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uniformly in ¢ €[0,t] as A—>oco. Thus we have shown the first statement in (11.186).

The next two statements in (11.16) arc true because of the uniform continuity of

2(o). The argument for the third statement is almost identical with that for the

second and therefore we will domonstrate only the sccond. Since z(¢) is uniformly

continuous on [0, {] there exists a continuous increasing function 9(¢) such that y(0)=0

and |z(o) —2(0’)|<y(|o—¢']). Again letting = (log 2)/A, we have

sinh A¢
osh At

=

sinh Ac f“"

osh 7t sinh A(t —s)dxz(s)| <

sinh A(t — 0)p(n) < y(5)—>0

[

uniformly for ¢€[0, ] as A—oco. Also

sinh
<
¢

: ¢
sinh Ao f sinh A(t — s)dx(s)

Ao .
cosh At J 5.4 1 [sinh A(t — o —n)]y(t)

osh Al

eJaei(t—o—n) el(t—q) (t)_>0

< < A
i) 4 cosh At i) 24 21

again uniformly for ¢ €[0,¢] as i— .

12. The equivalence Problem; Parabolic case

TrEOREM 12.1. Assume that V and V, verify (4.15). Let u(z,t;q) be a func-

tional which satisfies

dq(r)
lim 2% — i
=r
Tt éq(T)
ou 18%
w{x, t;0)->6 as t—0.
Suppose that
1 i —iur ppw ij‘ (o)z2(a)do tuz(t)
w(@, 4 q) — 5 e HIEY L) o7 H(z)e'™*® } du.
2 )

Then necessarily

ou b [t A . 9D . ou
(—- fo min (r,s)q(s)ds)u—zfo min (7,8) V (—@bq-(s))uds n%,

(12.1)

(12.2)

(12.3)

(12.4)

(12.5)



F.V. VARIATIONAL EQUATIONS 223
t
H(Z) =e—j0V(z(o))do (126)

Proof. From (12.5) it follows that (0 <7 <1):

_,6_@_ — _1_ f e—furE;v {iz(r) etff,a(a)z(a)du H(z) PEIO) }dﬂ-

— 00

We apply now Lemma 11.1 with

Mz) = glhame@doiuzty, N(z)=H(z),

and we compare the result with (12.1). We obtain

¢
—fo min (z,8) V' (—zﬁj) uds =

=__f —wzf min (T S { 1‘,.0“(0)2(0)‘10662(8)) iyz(t)}dsd

= (S_ —_1_ * - iuz pw ’ 1_[ a(o)2(0) da iyz(t)
But V( Zéq(s))u_Qn c’Qe EY{V'(zs 0 H(z }du,

hence

1 e L w ] _t{taozarde 6H£) ' :Iiyz(t) _
2nf, c’oe fo min (7, 8)E% {e f6 sets) V'(z(s)) H(z)| e dsdy=0.

Since this relation holds for every 2 we have

12
f i () B2 {e’f GRS [%IZ( (:)) + V'(2(s)) H(z)] e } ds =

Applying —d?*/d* we obtain:

E? { ¢ iuoa@da Pﬂﬁ) + V'(2(7)) 11(2)] el ® } = 0.
02(T)

for all u, any 0<t<t, and all ¢ € C(0,¢).
Using Lemma 11.2 it follows that

0H(z)

52(7) + V'(2(7)) H(z) =0



224 M. D. DONSKER AND J. L. LIONS
« _{t .
from which H(z)=Ke Jevisonaa.

Using (12.3) (12.4), it follows that K =1, which completes the proof of the

theorem.
13. The equivalence problem: general case

The solution of the equivalence problem given in sections 11 and 12 does not
apply to the Schrodinger case, where a representation of the kernel Q(x,y,¢;q) as a
single Wiener integral does not exist. It would be of interest to find a proof of
uniqueness for the solution of the F.V variational equations involved here without
any use of function space integrals. Such a proof is given but only for very special
V(z) in section 14.

In these connections we would like to point out the following communative
property which obtains here. For a functional F(z,y,¢;q) with values in D'(R,x R, x

(— oo,t,)) we set

V. F= 6271;) + i‘rz—f+ (J: min (7, .s)q(s)ds) F
+if win (z, ) V’(—i»—§—) Fds—ig)F for t>7,  (13.1)
0 dq(s)
and Ag=A—ixq(t), A= —-l-—a;-i- V(x)-i-g. (13.2)
20z ot

THEOREM 13.1 Let F be a functional so that (13.1) exists and which verifies

f_. 0 . : .
4 (—7’@@) F(CE, ¥, b q)_>V (x)F(x; Y t; Q) (133)

in the sence of distributions as s—t.(3)

Then AV F=VAF, fort<r.

Proof. We calculate Y, A F. One has

é oF
B—q(_r) (AqF) = Aq Eﬁq(—t) - ’L(EF(S;(‘!’),

(1) We assume V is infinitely differentiable here.
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0AF)_, OF
hence e “3q(0) for t>1.
. 8 .. OF .
Next, o AJF =1itA, g +itV' (@) F + 1q(t) F.
t ¢
But Aq((f min (7, 8)¢(s) ds)F) = (f min (t, s)q(s)ds) AJF +1q(t) F,
0 0

A.q(if:min (7, 8) V’( 6;3)) Fds= f min (7, 8) V' (—16 (3 )) AJFds+irV'(2) F,

using (13.3). Hence (13.4) follows,

14. Solution by F.V. series

In this section we show that in the case of very simple V(z) one can solve the

F.V. variational system:

ou )
£5~( f min (7, s)q(s)ds) —zf min (7, 8 V( '5;?8)) uds—'itg—:,

= izu, b (14.1)

lim 2%

T=>t (Sq('[)

u(z,t;0) 18%u(x,t0)
ot 2 ot

Viz)u(z,t;0) wu(z,t;0)—06(x), t—0,

by the wuse of F.V. series expansions of the unknown functional wu(z,t;q) (cf.
chapter I, section 5 and the remarks made in the Introduction). It is of interest to
note that this elementary technique also provides uniqueness proofs for the solution
of (14.1) in these simple cases of V(x)—uniqueness proofs different from those given
in the preceding sections, since here no function space integrals are used.

Consider (14.1) with V(x)=4a® (this is the example considered in the Introduc-

tion) and the F.V. series expansion of u(z,#;q),
o0 1 tny
u(z, b, q) = co(z, ) + 21;' fo...focn(x, 5Ty Toy oo s Tn) 4(Ty) - Q(TR)dTy .o dT,. (14.2)
Substituting (14.2) in the F.V. variational equation of (14.1) we obtain the recur-

rence formulae,
15— 622906. Acta mathematica 108, Imprimé le 27 décembre 1962
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4

ole, t; )= —f min (7, $)¢; (2, ¢ s)ds—ir@&’—t), (14.3)

0 or

) b . bey(x, t; £)
Col, t; &, 7) = —colz, t) min (7, &) — | min (1, 8)ey(x, £ &, s)ds — it — i ete. (14.4)
0
Now we can solve the integral equation (14.3) and obtain

¢
elx, b 1) = ——z?(M) [r+f sR{t,s;— 1)ds}, (14.5)

ox 0

where Rz, s;— 1), the resolvent kernel of min (7,s) on [0,£], is given explicitly in the
Introduction. ¥rom the boundary condition in (14.1) involving the limit we obtain

using again the F.V. series (14.2) that in particular
ey, & t) = 1xey(x, t). (14.6)

Putting (14.5) (with 7=1¢) and (14.6) together we get the equation

H
iwey(@, £) = — i u® ) [H— f sR(t, s;— 1)ds] (14.7)
6x 0
£
and thus since t+ f sR(t,s;— 1)ds=tanh ¢,
o
we get colx, £) = K(t)e ™2 temnt, (14.8)

Now the differential equation ‘“‘boundary condition” in (14.1) and the last condition
in (14.1) determine that

K(t) = (27 sinh t)" V2,

From (14.5) we now can obtain explicitly and uniquely c,(,t; 7} and from (14.4) etc.
we determine explicitly and uniquely the coefficients in the F.V. series expansion
(14.2). The resulting series is exactly formula (1.2) of the Introduction.

An even simpler example is V(z)=0, where the technique above leads to the
same result one would obtain from either the differential equation (Introduction (1.13)
with V(z)=0) or by calculating the function spacc integral (Introduction (1.11) with
V(z)=0). By all three techniques one obtains

2 ot
u(x, t; q) = 27t) "t exp [— ;t + E:J‘ Uq(a)da] .
0

t
- exp [ - ; fo JO (min (o, u)— G—:f) q(0) q(u)dadu] .
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Again the uniqueness comes from the fact that the coupled recurrence formulae de-
termine the coefficients uniquely.

Even in the case V(x)=a*/4 the recurrence formulae are coupled in such a more
complicated way that it seems very difficult to try to prove uniqueness by this
method. The difficulty with this coupling is to be expected, since in the case V(z)=
x/4 it is not possible to calculate the function space integral and also not possible
to explicitly solve the differential equation boundary value problem.
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