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Introduction

In this paper we investigate, from the point of view of Nevanlinna’s theory,
meromorphic functions with certain restrictions on the location of their poles and zeros.
We asgsume familiarity with Nevanlinna’s theory and with its standard notations.

In order to state our results concisely, we introduce two definitions.

DeriniTION 1. A path L in the complex z-plane is said to be regular if it satis.

fies the two following conditions:
(i) 4 s possible to represent L by the paramelric eguation
L: z=z(t)=t"® (t=>t,20),
where oft) is a real-valued continuous function;

(ii) there is a constant B(=1) such that, for any pair (t,,t,) (b,<t; <t,), the portion

of L which lies in t,<|z|<t, is rectifiable and of length
s(ty, b)) < B(ty —¢y). (1)

If it is important to mention the constant B, we shall call a regular curve for
which (1) holds B-regular.

DeriviTioN 2. Let 8 be a curvilinear sector, in the z-plane, bounded by an arc

of |z|=t, and two regular paths in |z| >4,
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We say that S has opening >c if the intersection of every circle |z|=r(>1t,) and S

is an arc of length =cr.

Our simplest result is

TueorEM 1. Let L;, L,, ..., L, be regular curves dividing the plane into s sectors,
each of opening >c, for some ¢>0. Let &,&, be two finite distinct complex numbers.

If f(z) is an entire function of infinite order, then at least one of the equations
fR)=§&, [(R)=¢&,
has infinitely many roots which do not lie on the paths L,, L,, ..., L.
This result will be a corollary of

TaeEoREM 2. Let the s B-regular curves
Li: 2=t (t=t);7=1,2,...,8; o) <op(t) < ... <otet) < oy (8) + 27 = ;te41(E))  (2)
divide |z|>1t, into s sectors, each of which has opening =>c>0.

Suppose that all but a finite number of zeros and poles of the meromorphic func-
tion f(z) lie on the curves L.

If some (0,7 o) is a deficient value (in the sense of R. Nevanlinna) of the
function f9(z), for some non-negative integer q(f”=f), then the order A of f(z) is neces-
sarily finite and

A<ly=9nB%/c. (3)

COROLLARY. Let &, &,, & be three distinct complex values, one of which may be oo.

If all except a finite number of the roots of the equations
f2)=§&, flz)=&, [2)=¢&

lie on s regular curves L; satisfying the same hypothesis as in Theorem 2, then either
the order of f(z) does not exceed 1, given by (3), or f(z) has no deficient value, finite
or infinite.

This corollary follows at once by the application of Theorem 2 to the three

functions

(f_ 51)/(f_ fz)a (f“ 51)/(f“ 53): (f_ 52)/(f~ 53)

(easy modification, if one of the &’s is infinite).
Theorem 1 is a special case of this corollary (&;= oo, (&, f)=1).
Theorem 2 generalizes a result obtained by one of us [3; p. 276] in the special case

o;(f)=const. (j=1,2,...,s). 4)
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It is then possible to replace (3) by

The quotient of Bessel functions
f2)=J1s(22%°/8) /T _3;5(22° /s) (2 < s=integer) (6)

has s finite deficient values (none of which is zero); its zeros and poles are on the
lines arg z=2kx/s (k=1,2,--,s) and its order is s/2 [5; p. 343]. This shows that
the bound Aj, in (5), is “best possible”.

The more general bound given in Theorem 2 is not as accurate but still is, in

some respects, satisfactory. In the special case of the functions (6), we have B=1,

c=2m/s, so that (3) yields
s

this shows that the form of the dependence of A, on ¢ is correct.

The restriction v+0, 7= oo in Theorem 2 is essential. This may be seen by con-
sidering an entire function ¢(z) of order A, 2< A< + oo, all of whose zeros are real.
Trivially (co, g)=0d(oc, g?)=1. We have shown elsewhere [4] that §(0,9)>0. It is
well known {10; p. 22] that for an entire function of finite order §(0,¢‘?)>48(0,g),
so that also 8(0,¢?)>0. The function g(z) satisfies the hypotheses of Theorem 2 with
¢=1,¢>20,7=0 or v=o0, but the order of g can be arbitrarily large.

It is possible to generalize Theorem 2 by allowing zeros and poles of f(z) to lie
off the paths L,, provided the number of such zeros and poles, in |z|<r, is suitably
restricted. In the case (4), of radial lines, such a result was obtained by I.V.
Ostrovski [9].

Under the hypotheses of Theorem 2 about the location of zeros and poles, a func-
tion of order A>4, can not have any deficient values other than 0 and oo. The
Theorem gives no information about functions of order A<4, In this direction we

prove

TuroreM 3. Let f(z) (Econst.) be an entire function of finite order A and let
Ly, Ly, ..., L; be the s B-regular paths defined by (2).

Let 6(=>0) be fiwed and let ms(r) denote the number of zeros of f(z) which lie in
ro<|z|<r but outside the s sectors &;(d) (7=1,2, -, 5) defined by

o;(t) —d<arg z<oy(t) + 9, r,<|z| =t < + co. (7)
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Assume that for every fixzed 6(>0), we have

1
}gg Trf) -

0, (8)
where T(r,f) denotes Nevanlinna’s characteristic function.
Denote by p the nwmber of deficient values of f(z) other than O and oo. Then
pP<24. (9)
Our proof of Theorem 3 also yields
p<s. (10)

If the configuration (2) is fixed and if F(z) is an entire function of order
A(< + o0), with all but a finite number of its zeros on the s paths (2), we may, by

combining Theorem 2, Theorem 3 and (10) summarize our results as follows:

2
If A=00 or Z>9ncB,

then p=0.
Otherwise p=min {s, 21}.

It is not known whether there exist entire functions of finite order with in-
finitely many deficient values. Assume that such functions exist and that G(z) be one
of them. Then, the lemmas and methods of this paper show that the arguments of
the zeros of G{(z) cannot have a simple behavior. A closer study of the question leads

to the following theorem which we state without proof.

THEOREM 4. Let f(z) be an entire function of finite order A and let

@y, Gy, Og, ...

be its zeros of positive modulus.
Put a,=|a,|e” (0<w,<2n)

and let Q be the closure of the set {w,}.

If Q is of measure zero, f(z) has at most 22 deficient values other than 0 and oo.

We conclude this Introduction by an indication of the contents of the following

paragraphs.
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1. Notation and statement of known lemmas.
2. Statement of principal lemmas.

3. Proof of Theorem 2.

4. Proof of Theorem 3.

The remaining paragraphs 5-9 are devoted to the proofs of the lemmas stated
in § 2.
1. Notation, terminology and statement of known results

We use the symbol 4 to denote a positive absolute constant and the symbol K
to denote a positive constant depending on one or more parameters.

Most of our inequalities are only valid for sufficiently large values of certain
parameters m, r, .... We usually indicate this fact by writing, immediately after the
relevant inequality, (m>m,), (r>rg). ....

The quantities A4, K, m, ry, ... are not necessarily the same ones each time they
occur. We write A,, 4,, ..., K;, K,, ... whenever it seems clearer to preserve the
identity of the constants and K;(x, 4,...), K,(x, 4, ...), ... if it is useful to list ex-
plicitly all the parameters on which the constants depend.

The measurable sets E, which will appear in our proofs are subsets of the positive
axis. If E is such a set, we denote by H(«, ) its intersection with the interval («, )

and by mE(e, f) the measure of this intersection.

+
Nevanlinna’s notation for the means of log|f| will be extended by the following
convention.

If J is a measurable set of values of 0, we write

LN I 0] 70 — .
5 fjlog | f(re'®)| A6 = m(r, f; J). (1.1)

For the convenience of the reader, we first state as Lemma A some well-known

consequences of the fundamental estimates of R. Nevanlinna.

LeMmA A [7; p. 62 and p. 104]. Let f(z) be a meromorphic function which does
not reduce to a polynomial.
There is a set E (of values of r) of finite measure, such that r ¢ E implies all the

following inequalities

T(r, }*)< K(T(r, f) +1§g ry (k=0,1,2,...,q+1), (1.2)
mr, f(’”1>//<">)<K(1<+>g T(r, ) +1(+)g r (k=0,1,...,9), | (1.3)

m(r, {9/ (f@ — 1)) < K(l:)g T(r, f)+ ch;g 7). (1.4)
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We also need the three following lemmas which we have proved elsewhere [5].

LemMMa B. Let f(z) be a meromorphic function (f(z)z const.), let T(+=0) be a com-

plex number and let J be a measurable set of 6, in 0<0<2m. Then
m(r, {/1's ) >m(r, 1/(f—v); Ty —mlr, f /) —m(r, f' /(f — 2)) — K(). (1.5)
Lemma C [5; p. 322, Lemma III]. Let ¢(z) be meromorphic. With each r(>0) we

associate a measurable set I(r) (of values of 0) of measure

mlI(r)= u(r)
Then, for 1<r<R,
11 R’ , 1
i g5 101) = 72 TR ) ) 1 10g 1. (16)

Our next lemma is a special case of Lemma 10.2 [5] («x=0,e=1 and =3,
e=1 M=2):

Lemma D. Let V(r) be a non-negative, non-decreasing, unbounded function defined

m r>r, There is a set E with

8¢
mE(g,20) < (log V(@) (0> 0o)

such that outside E simultaneously

r
V(T—Fw) <eV(r),

V(r+

r 2
(log V(r»*) <V

The following Lemma E is obtained from a result of R. Nevanlinna [8; p. 84,
formula (14”)] by letting 8 (in Nevanlinna’s notation) shrink to a point a, putting
ﬁ”:B'

LeMMa E. Let G be a domain bounded by a Jordan curve C consisting of a Jordan
arc B and its complement A in C. Let £ be a rectifiable curve in G joining a point
a€A4 to a point bEB. Let z be a point on L. Let o(z) be the distance of z from A.
Then the harmonic measure w(z) of B with respect to G satisfies

1 B ”]_d_CJ}
w(z)?ZTexp{ 4fz@(é)’

where the integral ts taken along L.
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2. Lemmas

Here we state Lemmas needed in the proofs of Theorems 2 and 3. The numbers

in brackets refer to the paragraphs in which these Lemmas are proved.
Lemma 1 [§5]. Let r=2(u)=ue*® (u>t) 2.1)
be the parametric equation of a B-regular curve L. Then the point
PR
is at a distance d>t|sin}y|/B
from L.

This Lemma readily yields

LeEmma 2 [§5]. Let R be a denumerable set of circles with centers in |z|>t,>1,
and sum of radii less than D(<t,/B).

Let L(y): C(u)=ue®™Y (—g<y<a)

be the curve obtained by rotating the B-regular curve (2.1) through an angle v.
Then L(y) will not meet any circle of R if y lies outside a set of measure 27 BD/t,.

Levma 3 [§6]. Let f(z) be a meromorphic, non-rational function. There is a meas-

wurable set E, of values of r, such that

mE(g,20)=o0(e) (¢—>°)
and such that for r¢ E
T(r, )< AT(r, {©) log® T(r, {©).

Lemya 4 [§7]. Let f(z) (£0) be a meromorphic funciion and let
dydy dy, ... (|| <|dmis])

be the sequence of its zeros and poles, each ome appearing as often as its multiplicity
indicates. Let H(>1) be given and denote by R(H) the union of the discs

1
Rmi lZ“d,nIgEn—z (m=1,2,3,...).

Then there is an ry such that for

R'>rz|z|>r, 2¢R(H),
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f(q+1)(z)

f(z)

we have (2.2)

HR'T(R', )] *@
S =

where K,(q) and K,(q) depend only on q.

Let C be a circular arc belonging to the half-plane x>0 (z=x+y) and passing
through the points +ix (x>0). Let A" be the closed set (in 2> 0) of points bounded
by C and by the segment [— e, +ie] of the imaginary axis.

We define the “lens” A to be the smallest set containing A" and symmetrical
with respect to the imaginary axis.

The lens A is characterized by «(>0) and by B(0<p <), the angle formed by
the imaginary axis and the tangent to C at ix. Ambiguities concerning the value of

g will be removed by the convention that 0 <f<m/2 for convex lenses.

LeMMA 5 [§8]. Let A be the lens, in the z-plane, with vertices +ix and semi-
vertical angle f(0<f<n).
Let H(z) be regular in A; assume that

|HZ)|<1 (z€A),

and J'v log |1/H(iy)|dy>M*>0 (0<e<a). (2.3)
—ate
2M* e 278
)< — & <a—e). 4
Then g i) < - 2 {21 (ul<a-a 24)

Our last lemma is a straightforward consequence of Ahlfors’ distortion theorem.

LemMMA 6 [§9]. Let the domain D in the z-plane be bounded by portions of two
regular paths L,, L,:
Ly: 2=t (0<t< +o0; j=1,2), (2.5)

and by the two circular arcs
2=0;€0 (a,(0)<O<oy(0;), §=1,2;0<0;,<p,).
Put O) = oty (t) — 01 (£) (2.6)
assume that 0<Ot)<27 (0<iti< + o) (2.7)

and let t,, t, be such that
015 <l < Q.
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If wy(z,t,) denotes the harmonic measure with respect to D of the part of the bound-

ary of D which lies in |z|>t, and if

ré® €D, t,/r>e™ (2.8)
; 5et™ b dt
then wy(re' t,) < — exp { — nfr m} (2.9)

Similarly, if o, (2, t,) denotes the harmonic measure with respect to D of the part

of the boundary of D which lies in |z|<t,, then for

ré®€D, r/t,;>e™

) 5 4n T dt
we have w, (re'%, t)) < :t exp (—nft ®—(t)) (2.10)

1

3. Proof of Theorem 2

Denoting by A the order (not necessarily finite) of f(z), we prove Theorem 2 by

deducing from the assumption
A> 97sz/c=ZO,

the contradiction that f(z) is a polynomial.
Choose p so that Ay<p<i (3.1)
Then there exist arbitrarily large ¢ such that
T(o, /) > (20)"
and consequently T, fy>r# (3.2)
in p<r<2p.

If 0>g, then r can be chosen in such a way that all the following relations hold:

T(r,f®)<KT(r,f) (k=0,1,2,...,q+1), (3.3)

m(r, f*V/f®) <K log T(r,f) (k=0,1,2,...,9), (3.4)

m(r, {40/ (f? — 1)) < K log T'(r, f), (3.5)

T(r+r{log T(r, f*)} % f®) <eD(r, {®) (£=0,1,2,...,¢+1), (3.6)
T(r+r(log T(r, ™4, ) <T%(r, f), SN

T(r, fy < AT(r, {©) log® T(r, ). (3.8)
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This assertion is true, because by Lemma A, Lemma D, (3.2) and Lemma 3 the

set E of values for which at least one of (3.3)-(3.8) ceases to be true satisfies
mE(g,20)=o0(g) (0~ + ).

Since 7 is a deficient value of f©, there is a >0 such that

m (R, ﬁm-l—_;) >xT(R,f®) (BR>ry; ¢=0). (3.9)

The curves Ly, Ly, ..., L, divide the region [zl?to into s sectors 8, S,, ..., 8.
Let Jy=J,(R) be the set of arguments of the arc of |z|=R which lies in S,. Then
(3.9) implies that there is at least one index k==Ek(R) such that for J=Jyg (R)

1
m (R, f—@—_—%; J) >{x/s} T(R, fP) (BR>r,). (3.10)

When R—>oo through the values of a sequence
R,Ry, ...R,, ..., (3.11)

at least one value of k(R) must be taken infinitely often. Without loss of generality,

we may assume it to be k=1, corresponding to the sector §;= 8 given by
S: r>ty, oy (r)<O<ay(r) (2=re'f).

In the remainder of the proof, the letter R will always stand for a member of
a fixed sequence (3.11), such that for r=R=R, (m=1,2,...), (3.2)-(3.8) hold as well
as (3.10) with J=J,;(R,). It is important to notice that the constants K which will
appear in the proof are independent of m.

By Lemma B, (3.10), (3.4), (3.5) and the assumptions 10, T oo,

m(R, fO/f*D; J)> KT(R, {) - K log T(R, f). (3.12)
(D rogr (@
The identity ;%m:f%ﬁ'§ ;T f(fq~1>
and (3.4) imply
m(R, {/{70; J)>m(R, fO/f<*P; J) ~ K log T(R, f). (3.13)

Combining (3.12), (3.13), (3.8), (3.3) and using the abbreviation
T=T(R,f),
we find m(R, /{4, J)> KT(log T) 3, (3.14)

where E=R, and m >m,.
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We now leave m fixed and consider the function

90 )

1)

hiz)= (z=re),
in the curvilinear sector S’

S’ e Zre(>t), a(r)+ T <0< a(r)— T},

where 7, has been chosen so large that § exists and is free from zeros and poles of
f(z). We establish first that if

2€8’, r,<|z|<R+3}Rlog T,
then |h(z)| < T™@, (3.15)
This follows from (3.7), Lemma 4 with
R'=R+Rlog*T, H=T

and the remark that, by Lemma 1, the distance between a point of S8’ and the curves

L, L, is at least
resin (374 /B>T1.
Next we show that

a2 (R)—(log T)—*
f log |T%/h(Re'®)| d0 > KT log™>T (R=R,,, m>my, K;=K,(q).) (3.16)

w (B)+(Qog Ty~
If I=I(R) is the union of the two intervals
a, (R)<O<a, (R)+(log T)°S,
oy (R) — (log T) * <6< ay (R),
then, by Lemma C with g(z)=1/k(z) and
R’ =min {R+ R(log T)"%, R+ R(log T(R, f4*?)) %}
combined with (3.6) and (3.3):
m(R,1/h; 1)< AT(R',1/h) mI(1+ lgg(l/m(l)) log® T
SA{T(R, hH+ TR, {" D)} log™* T'loglog T
=o(Tlog™®T) (R=R,—>). (3.17)
By (3.14) and (3.17)

m(B,1/hJ —I)>KTlog™®* T (R= Ry, m>my).
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A fortiori m(R, T% /h;J —I)> KT log™® T.

+
This is exactly (3.16) with the log under the integral sign replaced by log. But
by (3.15),
+
0<log |T**/h|=1log |T**/R|,
on J—1I, and (3.16) is proved.
Let T be the arc z=Re'® with
a, (R)+{log T} <0< oy (R)—{log T} %; (3.18)
our next step is to show that
log |A(z)| < — KT exp (—{log T}*) (€T, R=R,; m>m,). (3.19)
This is done by an application of Lemma 5. To prepare this application, we
first map S into the {-plane by
{=§&41in="Y(2) =log z + const.,
in such a way that the insersection of §' with |z|=R is mapped onto the segment
£=0, |p|<oa=1{o(R)—o(R)}—T},
of the imaginary axis. Then the arc I' is mapped on
E=0, |p|<oa’—(QogT)*+T%.

Let A be the lens, in the {-plane, bounded by the two circular arcs which pass

through the points +4a’ and make an angle
1
— = flog TV} _
f=1 g T} (3.20)

with the 7-axis. If R is large enough, we have «'>¢/3 and since 7 —oco as R->co,

it 1s clear that
lim §=0. (3.21)

R->00

We prove first that the image ¥'(A) of A, in the z-plane, lies in the inter-

section D of S and
|z]< R+ 3 R(log T)"*.

If R is large enough, A lies in the parallelogram P defined by
|E]< (¢ —p)tanf  (0<y <o),

|E]< (@ +np)tan g (—a' <y<0),
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so that ¥-YP) =D (3.22)
implies Y-1A)=D. (3.23)
Put Li=ie =) (O<y <o)
=o' —m)+§
then g = ReltestP-T" -}

11/#1(:) =Refei{az(R)—T*%~m}.
Hence, for (€ P,
[¥1()|=Re* < Re* ™ < (1+2« tan B) R (3.24)

provided B(>0) is small enough.
By (3.21), —0 as m—oco and therefore

tan f<§f  (m>my).
Using this inequality and (3.20), in (3.24), we find
[FHOI< B+ §{log T}7H)  (m>my). (3.25)
Also, if ¢ is small enough,
[T - ()| =R | —1|<2R|&|<2R[a — (& — ;)] tan f=2Rn, tan f;

using again (3.20) and the fact that T —oco as m— oo:

¥ ()~ ¥ ()| < T Rllog T) 2.
Since 1 R(log T) "t < 3(R/B)sin (1) < } (R/B)sin (3)  (m>m,),

o

it follows by Lemma 1 that W'({) is in a circle with center ¥ !({;) which does not
intersect the boundary curves of §’, so that

Y1) eds.
In view of (3.25), this shows that the image of the upper half of P lies(?) in D.

The lower half may be treated in a similar way. Hence (3.22) and therefore (3.23)
hold for m > m,,.

() It is important to observe that (3.25) and the other inequalities for ¥ (¢) and ‘I"_I(Cl)
hold uniformly for all admissible values of { and {,, as soon as m>m,,.
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If we put HE) =T 5hz) =T LY 1),
we have, by (3.15) |[H) <1, (C€A).

Rewriting (3.16) as

o —(log Ty~¢: T~ % 1
J log‘ﬁ—\dn>KT(logT) S M*,

@ (ogTy ¢ T} (in)
defining # by (3.20) and letting
a=0o, e=ogT) *—T ¥*>}(logT)®,
we see that Lemma 5 may be applied to the function H({) with (€A.

The assumptions of Theorem 2 imply

c ’
3<<x <m (m>my),

so that (2.4) yields
log |h(Re')| =log |H(iy){+ K, log T
< —KT{log T} ®exp (— A{log T}t loglog T) + K log T
< —KTexp (—{log T}1)
(o (R)+ (log T) ®<O< ay(R)— (log T)"%; m>my),
which is (3.19).

Next we estimate log |k(z)| at
z=te @O (29,
by applying Lemma E with G=8"(R),
S"(R): ro<r<R, oy(r)+(logT) *<O<a,(r)—(log T) ®(2--re"?),

and with B=I" (defined by (3.18)).
For £ we choose the B-regular path

s(u) = ue @@ (2p <u<R). (3.26)
Let C denote the boundary of S"(R), let
A=C-B,

and let o(s(u)) denote the shortest distance between s(u) and A.
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Considering separately the eircular arc and the two B-regular curves which
form 4, we have, in view of Lemma 1,

o(s(u)) = min {u ( - :70) , %

sin E (% —{log T}‘“)] ‘

B

(3.27)

In view of the assumptions

c<ay(u)—o(u)y<2xn, B=l,
(8.27) readily yields

o(s(u)) = %min {B (1 - Tug)’ sin (ic —%{log T}‘S)} > due

9B (w2 Kry, m>mg).

Since the path described by s(u) is B-regular,

" |ds| ff‘ Bt 9nBsz dt_9nB’ (R)
| Bl PP < —= log |— u=Kr,, m>my). (3.28
Lu) o= ke ), T de e (y) wEEr mem. (328)

By the two-constant theorem [8; p. 42], (3.15) and (3.19),

log |h(s)| < K3log T — wKT exp (— {log T}*),
where ® is the harmonic measure of B(=I") with respect to 8”(R) at the point
s=s(u).

By Lemma E and (3.28)

1 97 B® R 1 [w)h
> - iy L A
@ 2neXp( e lOg{u}) Qn{R}

R<{T}",

But, by (3.2)

1
so that > — yh %
2n

log |h(s())| < Kylog T'— Kuh T4/ exp (—{log T}¥). (3.29)

As R=R, >, T—co and the right hand side of (3.29) tends to — oo, by
(3.1). Hence

fP(9)/f(s)=0
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for every s=s(u) (u>Kry). Hence f9'(z)/f(z) vanishes identically, which is only
possible if f(z) is a polynomial. This contradicts our assumption that f(z) is of order

A(>2,) and hence completes the proof of Theorem 2.

Proof of Theorem 3

The idea of the proof is as follows. Suppose that the function f(2) satisfies the
hypotheses of Theorem 3 and that it has the distinct deficient values

T T o0 Ty (T;F0, Ty 005 §=1,2, ..., p).

The curves L; divide the =z-plane into sectors Sj,. Let J,=J,(r) be the set of
arguments corresponding to the arc of |z|=7 in S,. Since the 7, are deficient, there

is at least one index k=k(j,r) such that for some fixed x>0

m(r,f%rj;Jk)>zT(r,f)=%T(r) (r>re k=k{j,7), 1=1,2,...,p); 4.1)

min {5(7;)}. (4.2)

we may choose x=

In (4.1), we have written 7'(r) instead of T'(r,f); from now on this will be done
systematically and we shall use the more explicit notation for the characteristics of
functions other than f.

From (4.1) we shall deduce that, for some arbitrarily large R, f'/f is small at
most points of the intersection D, of Sy (k=k(j, R)) with the annulus

e MR<|z|<eMR (0< M =const.). (4.3)

Since, by (4.1), f(z) must be close to 7; for some 2 €S8, it will follow, by integra-
tion of f/f, that there is a regular curve O, in the intersection of the annulus (4.3)

with 8y (k=Ek(j, R)) such that

(i) f(z) is close to 7; on Cy;

(ii) f'(z) is small on C,.

The curves (', divide the annulus (4.3) into p sectors. By a method which is
closely related to A. J. Macintyre’s proof of the Denjoy conjecture [6] we prove
that, if

p>22,
f(?) is so small in one of these new sectors, §', say, that f(z) can not be close to
two different 7’s at the ends of the arc of |z| =R which lies in §’. This contradicts

(i) and shows that the assumption p>21 is not tenable.
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We proceed to the details of the proof.
Let v be any finite fixed number such that

A<v<d+1; (4.4)
then, T(r)r~—0,
as r—>oo. Hence we can find an increasing, unbounded sequence ry, 7y, ..., 7y, ..,
such that
Tr)r<Trp)ra’ (rzr,; m=1,2,...). 4.5)

With the equations (2) for the L;, we shall denote by 8 the sector

. >ty ou(r)<0<omii(r) (z=re"®);
by Si(d) the sector

r>1y, o(r)+0<O<ouii(r)—3F (0<d<e);

by J,(8) the set of arguments of the arc of |z|=r in S,(8) and by I, () the comple-
ment of J(8) in J,=J,(0). We apply Lemma C to the function 1/(f—1;), with

R =27, I{r)=1,(26) and
Ty <T<2r,.

This yields

m(r, 1/(f—1;); L[,(268))<22T(2r,1/(}—1;)) 46(1+log(416))

Using the first fundamental theorem and (4.5), we obtain

m{r,1/(f—1;); L.(28)) <904y T(r )6(1+10g(416))<g’1’(r)

provided 0<6;=0,(%, ), m>my.

Hence, by (4.1), mir,1/(f —;); J,(28))> 1 5T(r). (4.8)

We may assume that f(z) is not a polynomial (since non-constant polynomials

have no finite deficient values) and hence
log r=0(T(r)) (r—oo). 4.7)
Combining (4.6), Lemma B, the estimate

mir, /) +m(r, f'/(f— 7)) = O(log 1)

9 — 622906. Acta mathematica. 108, Imprimé le 21 décembre 1962
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and (4.7), we obtain m(r, f(2)/f (2); Jk(25))>§—;T(r), (4.8)

for Ta<r<2r,, m>my; k=k(G,r); 1=1,2,...,p; 0<d<6;.

We choose now a constant M(>2). For the proof of (10} we take M =2. For

the proof of (9) we shall obtain a contradiction if we assume

p

A<y< > (4.9)
and if we choose M so large that
M>16A45=U, A,=5¢"/x, (4.10)
Ky a2 4 -mgo-» —3M
and _Z+4 Age +44,e7*" <0, (4.11)

where the constant K, (defined in (4.38)) depends only on the function f(z), on the
configuration of the paths L, and on #x (defined by (4.2)). We shall see, in fact, that
K, (as well as two auxiliary constants K; and K¢ wich appear in (4.21) and (4.24),
respectively) may be characterized completely in terms of 4, ¢, B, ». It is essential to
observe that these constants depend neither explicitly nor implicitly on the parameters
m and M.

Our next task is the investigation of the function f(z)/f(z) in the annulus
Ye Mr, <|z|<8eMr,.
By Lemma 4 (with H=1, ¢=0, R'=27)
| @)/ 1) < A{T@N} (r>r,), (4.12)

outside a set R of discs with sum of radii less than 1. Therefore, since f(z) is of

finite order, we can find an integer h=~Ah(1) (depending only on the order 1 of f(z))
such that

|z "f'(2)/{(z)| <1 (|z|>rg,2¢ R). (4.13)

It follows now from Lemma 2, that there exist some § (36, <d<d,) and some

re such that (4.13) holds on the boundaries of the S(d) (k=1,2,...,s), for |z| > 7.

From now on we assume that § has been chosen in this way and we shall make no

further changes in the choice of §. It is also easily seen that there are two circles

’

|z2|=R =R,; 26%r,<R <3e"r,, (4.14)
and |z] =7 =1 e Mr,/3<r <}eMr,,

on which (4.13) holds.
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Consider now g(z) =2 "f'(2) P(2)/f(2), (4.15)
where P(z) ==#Irjl (22;;”),

is the product, taken over all the poles of f/f which lie in [z|< R’ but outside the
sectors &(J) (j=1,2, ...,s) defined by (7).
The function ¢(z) is regular in the intersection of r,<|z|<R' with every S,(d)
(k=1,2,...,9). In |z|<R
|P(z)|< 1. (4.16)

By (4.13), (4.16) and the maximum modulus principle
l9@)[<1 (2€Dy), (4.17)
where D, is defined by the inequalities
Dy: r'<r<B; ogp(r)+0<0<ag(r)—0.

By a well-known lemma of H. Cartan
A n
[1|z—a.|> @R")"
p#=1
outside circles the sum of whose diameters is less than 4e3R’. In ]z]SR’ and out-

side the circles

_ . |z—aﬂ|

= (4b)". (4.18)

If b is chosen less than some b,(¢, B, M) (¢ and B as in the statement of Theo-
rem 2), then it is possible to choose

(i) curves O (k=1,2,...,s) given by

Cu: z=2()=tefsDtv0 (¥ <t<R)

with re<yp<ic
on which (4.18) holds; this follows from Lemma 2;

(i) a circle |z|=R,, with < BRp<iry 4.19)
on which (4.18) is satisfied.

By (4.15), (4.16) and. (4.8)

(B, 1/95 J3(20)) > m(B, f(2)/'(2)s J;c(25))>gT(Rm) (4.20)

for m>my, k=k(j, R,), 1=1,2,...,p.
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Next we use Lemma 5 and Lemma ¥ to show that g(z) is small on Cy, (k=k(j, Ry,))
and on the arcs J,(20) of |z| =R, (k=k(j, Ry)).
We note first, by repeating the arguments following (3.19), that the image of D, by

{ =log z+ const.

contains a lens A whose center line is formed by the vertical segment which is the
image of R,e'® (0€J,(0)) and whose boundary is formed by the two circular arcs
through the endpoints of this segment making a sufficiently small constant angle g
with it. We choose f=1/40B and apply Lemma 5 with this value of § and

H(E)=g(2), e=3 (}01<8<61), M"=TT(Ry),

a= %{“IHI(Rm) - “k(Rm)} —-0> %C.
This yields log |g(z)| < — K3 T(Ry) (2 € Bu(k)), (4.21)

where B, (k) is given by
2=R,e% 0€J,28), k=L(,R,), (4.22)

and where the constant K; may be chosen as

2 2 4
o e (2057
(B=pB(B) and 8§, =6;(x, A)).

Next we apply Lemma E, first to the part of D, in |z|>R, then to the part
of D, in |z|<R,. In both cases B, (k) is the arc (4.22) and L is a portion of the
curve (. It is easily verified, with the aid of Lemma 1, that for any point { on

Ok, with
e MR, <|C|< "Ry, (4.23)

we have o(8)>1¢|/Kqlc, B). (4.24)

From now on, we denote by C% the portion of C) which satisfies the condi-
tion (4.23).
By (4.24) and by the B-regularity of C,

2 |dg| flzl dt
< BK —|=BK
fﬂmef"m o({) N Jan t §

2|

log 7 (2€ Cy; R, € €Cy).
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Therefore, by (4.17), (4.21), Lemma E and the two-constant theorem

log If—

K
log |g(z)| < —ﬁexp(—ﬁLBKG B

) T(R,) ((€Ck k=k{j,rm). (4.25)

We now deduce from (4.21) and (4.25) similar inequalities with g replaced by f'/f.
For the degree n of P(z), we have, by (8)

n<iig(R') =o(T(R')).

By (4.14) and (4.19) Ll <?<3€M, (4.26)
and in view of (4.5)
n<o(T(3eMr,)) =o({8e¥} T(r,)) = o(T(R,,)). (4.27)

Combining (4.15), (4.18), (4.26) and (4.27), we obtain

log

;—,|< log |g(z)| +hlog {3¢¥} + hlog R, +o(T(R,) (lz|<R,=R). (4.28)

Now (4.21), (4.28) and (4.7) yield

—

(2)

T | SO (- HETR,))  (n>my, 2€Bu (b)), (4.29)

Similarly, using (4.25) instead of (4.21), we have

! K
10g‘§(%?\< —75exp(—4:BK6 log'ITZmI

) T(R,) (m>m, 2€Cy k=k(,Ry). (4.30)

By (4.6), with 7=R,,, there must be a point z, on B, (k(j, R,)) such that
[f(z1) — 7| <&

for any assigned ¢(>0), provided m > m,,
If 2z is any other point of B,(k), then by integration of (4.29) along B, (k),
keeping (4.7) in mind,

|log f(z) —log f(z1)| < 2 R, exp ( —K?sT(Rm)) =0(1) (m—>+ oo),

and so for any assigned £(0<e< 1)

fz)—1;| <2e<1 (2€B,(k), k=k(j,Ry), m>my). (4.31)
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By choosing &(>0) small enough, we see that the index k(j, R,) cannot have
the same value for different values of §. This proves (10) and also shows that all the
p curves O lie in distinct sectors S,. The proof is valid with M =2 and hence does
not depend on the assumption (4.9).

By integrating f'(z)/f(z) along C} (k=k(j,R,)) from the point of intersection z,
of O with B, (k) to the point z and remembering that C; is a B-regular curve, we

obtain, in view of (4.30),

|log f(z) — log f(2) | < B(e"R,, — R) exp (— I—%e‘“’“’” T(Rm)) (m>my, 2€CL).

Hence, by (4.31) and (4.7) we have, for any assigned &(>0),
&) —wl<e  (m>mo, 2€Ck k=K, Ry)).

These inequalities and (4.30) imply

log ‘Ri'

m

, K
log |f'(2)] < —;"’exp(——éLBK6

)72
(m>my, 2€Cx, k=k(j,Ry,), 1=1,2,...,p). (4.32)

We have already seen that the curves () do not intersect, since they lie in
different sectors S,. Therefore they divide the annulus (4.3) (with R = R,) into p dif-
ferent domains. Let S* be a typical one of these domains and let {®(f) be the length
of the arc of |2|=¢ which lies in S*.

Our aim is to estimate f(z) in 8* by means of Lemma 6. Let 4,=¢*" and let
A, and U(>A;) be the quantities which appear in (4.10).

Denote by I'; the part of the boundary of 8* in

R,/U<|z| < UR,,

by T', the boundary arc of S* on |z|=e"R,, by I'; the boundary arc of S* on
|z2]=e™R,, and by T, the part of the boundary of §* which does not belong to
ryul,uTs,.
We denote by ,(2z) the harmonic measure of I'; with respect to 8* (j=1,2,3,4).
Then, by Lemma 6,
" N N An gt URn it
Wy (R,€%) + wy (R e%) + wy (R e )<A2exp{—nme/U m}-l—flzexp{—nf}zm M}

- 58471 5
<2A2U i A2=7, U=16A2

since OF)<2ax.
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Hence, in view of (4.10),

01 (Bne®)=1—w,— w;— w,>}.

Similarly, wy(Bne'®) < dye
10 MEm
and Wy (Rpe’)y < Ayexpy—a . @(—[) .

We now show that for at least one of the sectors S*

=

eMBm
{ M.

% o5y
o Bm t®(t) ?

For (the index j refers to the p different sectors §*)

M

(®J(t))”1’

Y 1

D 2
p2={gl(®j<t>>* (@;(t»‘*} <2z

by Schwarz’s inequality and the obvious fact that > ®,=2x. Hence

HBmdp 2. [MEm g
S T
=P ZPJ‘Rm ¢ igl Bm 1O;(E)

which is impossible, unless (4.36) holds for at least one S*. For such an S*
0y (Rpe'%) < Age 7M.

On I'; and I', (4.32) holds, so that
’ 'K5 —4BKglog(164,%)
log|f'(2)| < — K,T(R,,f) zEI’],K4=§e slogb4),

log|f(2)| <0 (z€T,).
By Nevanlinna'’s inequality

, 2r+r
Iggloglf(Z)Kz

U m@r,f)=3m@nf) (1>,

and, for non-rational functions of finite order,
m(t, {)<m(t, f)+m(t, f /H<§TE) (¢>r,).
Therefore (in view of 2¢e ¥ <2¢%2<1)

log |f'(2)| <4T(2e ™R,) <4T(R,) (2€Ty),

135

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)
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and  log|f(2)| < 4T (2 R,) < 4T (3e"r,) < (4) (3") &M T (r,) < 4**2e™T(R,,) (z€T,), (4.41)

by (4.4), (4.5), (4.19) and the fact that T'(r) is an increasing function.

Now a bounded function, harmonic in 8%, with the following boundary values:

~K,T(R,) on T, 4"2¢MT(R,) on T,
4T(R,) on T, 0 on I,

dominates the subharmonic function log|f'(z)| at each point of S*.

Hence
log |f (Bn€?)| < — 0, K, T(Bp) + 08" 2 T(R,) + 4w, T(R,)  (Rne €8*, m>my).

The estimates (4.33), (4.34) and (4.37) now give
, in K4 it+e ~MEp—v) M
log | (R,¢®)| < —?+4 A,e +4A4,e T(R,),
and hence, in view of (4.11),
7] i8 K4 ig £ 3
|f (Rne®)| <exp ~—4—T(R,,,) (Rn€? €8*, m>my). {4.42)

Let £y and 7, be the endpoints of the arc of |z]=R, in §*; then, by choosing
adequately e(>0), in (4.81), it is obvious that |f(Z;) — f({,)]| stays above a fixed positive
bound (as m-— o).

On the other hand, by integrating (4.42),

K
6~ e < 2aRmexp (- 51 TR,

and, in view of (4.7), the right-hand side of this inequality tends to O as m— + oo,
This contradiction shows that p< 24, since otherwise we could always select a v
satisfying (4.4) and (4.9) and an M satisfying (4.10) and (4.11). We have thus proved (9).

5. Proof of Lemmas 1 and 2

We choose the determination of y so that |y/2|<}m and notice that if y=0

there is nothing to prove. We may therefore assume

o= tlsinty/2)] Siné7/2)|>o. (5.1)
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If the lemma were not true, it would be possible to find u(>1¢;) and #(=1t,)

such that
Itei(a(t)+y) _ uei“("))| <o. (5.2)

This implies lt—u| <o,
and, by the definition of regular curve
A= te™® — ue*™| < Bt —u| < Bo. (5.3)
By the triangle inequality, (5.1) and (5.2),
A S |10 giad | _ |ggl®+7) _ gy gie®| S 9By — 5 (9> 0).

Since B>1, this contradicts (5.3) and proves Lemma 1.
To prove Lemma 2, we consider a disc
|[e—te OV <y (t>t>1,) (5.4)
and notice that it will not intersect the curve
Ly):  C(u) =ue™ 7 (y>1)

if the distance d between the center te'™®*¥) of (5.4) and L(p) exceeds 7,

Hence, in wiew of Lemma 1, there is no intersection unless

n>d>t|sin%(y—‘F)|>t] |sin¥2l(y-‘~I")|.
B B

Choosing adequately the determination of W this implies

n>t1(’”_qf(. (5.5)

7B

The lemma is now obvious since (5.5) restricts the values of y to an interval of

length 27By/t,.
6. Proof of Lemma 3
Let by, b,, ..., by denote the poles of modulus less than one and
bicit, brrzy oor (1<) brar] < lbrsel <),

the remaining poles of f(z) (each pole being repeated as often as indicated by its
multiplicity).

By the Poisson-Jensen formula,
2<|z|<R
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implies

g 1031 <5 [ 08 1B T o e =y 7
27 Jo B+ 2| — 2R|z| cos (6 — )

4R R*—2b
Thlog (S5 + log | o2
°8 (lz}) 1<|%|<R ogiR(z—bm)

Let R denote the union of the discs

R Iz—bm|<‘£’;—| (m=k+1).

Then, if 2<|z|<r<R, 2¢R,

R2
R(z—by)

2REm? _2R[n(E, FO?
CR[bal T bl

so that (6.3) and (6.1) imply

log | £©(2)] < 2= m(R, /) + klog (2R) + n(R, /) log 2

+ 2n(R, f?) log n(R, {?)+ N(R, {9).

Now for R'>R>1 and any meromorphic function g¢(z)

R

R’ n(u, g) < R ,
n(R’g)<R/__RfR u du\R/__RN(ng)‘

’

By Lemma D, with V{r)=T(r, {'9),
T(r+r{log T(r, f9)} 2, ) <eT(r, {9)
provided r lies outside an exceptional set &, with
mls (e, 20)=0(g) (@—>o°).
Let R =r+r{logT(r, )} %, R=}(R +71).
Then we obtain from (6.4), (6.5) (with g=f?) and (6.6)

log |/ @(z)| < AT, f?) {log T'(r, )} ((2¢ R, rp< |z| <7, 7¢E,).

Seen from the origin, the discs R,, subtend angles of sum not greater than

m=1

& ® 1 3
2 > aresin (%) <22 5 =% 2a

(6 =argz).

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)
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Therefore we can find a ray
argz=Y, r>=r, (6.8)
which does not intersect R. Tt is also easily verified that the set E, of values of
such that |z|=r intersects R satisfies
mE,y (g, 20)=0(¢) (0> ).
If »¢E,, then we can join z;=re” to zo=19¢'Y (same 7, as in (6.8)) by a path
I’ consisting of an arc of the circle |z|=r and part of the ray (6.8).
Now f(z0) ZE_I-I—)—! f (2= 0T L) AL+ Oz,
where the integral is taken along I'. The length of T' is, at most, equal to (w+1)7,
and hence (6.7) yields
|f(re’®)| < Artexp {AT(r, f?) Qog T(r, )} + 0" ") (ré{B U E,}; r>1,). (6.9)
Since log r=o(T(r, {?)), we find, by taking logarithms in (6.9),
mir; ) < AT(r, {9) log T(r, fON°  (r>1n,, r¢{E, U E,}). (6.10)

Since at every point where f(z) has a pole f© has a pole of at least the same
order,
N, SN, fO)<Tr, ) (r=1). (6.11)

The Lemma now follows from (6.10) and (6.11).

7. Proof of Lemma 4

An easy induction on ¢ starting from

i) -2)

shows that f“*V/f is expressible as a polynomial in f'/f and its successive derivatives
DFf/f) (k=1,2,...,q9). The coefficients of the polynomial are integers depending on

g only. It is therefore enough to prove

HR'T(R',
| DA/ < K@) (—R—(—’2

Ks(a)
—, ) (k=0,1,2,...,q; ¢ R(H), ry<|z]<r<R). (7.1)

There is nothing to prove, if f(z) is a constant. We may therefore suppose 7'(r, f)

unbounded.
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By (k+1) differentiations of the Poisson-Jensen formula for log f(z) we find
[8; p. 222], for |z|<r<ZE,

‘D"';—I(z) <

11 (k+1)1 2R
klld%d?ﬂ"“ + (R— )k+1} + (R— T)k+2 {m(R, f) +m(R, l/f)}

r

Now, if z¢ R(H), the typical term in the sum on the right hand side is less than

1 ZHk+1(%{R))2k+2Rk+1

2?c+2H3c+1
m +(R—7’)k+1< (R—T)k+1

(B=1),

where n(R)=n(R, )+ n(R,1/f). The number of terms in the sum is n(R). Therefore,

2(k!)Hk+1Rk+1(n(R))2k+3 (]C+ 1

N
’D"f—(z) < (B +(R )m {mR fy+m(R,1/f)}. (7.2)
Since R>1, H>1 and {R/(R—r)}>1, (7.2) implies
k‘ﬁz_) Rq+2 g+l 2q+ _
‘D T | (7 e A BRIP4 (o 1 22T(R, ) + O]}
(k=0,1,2,...,q9). (1.3}
We choose now R=}r+R)

and estimate n(R) by N(R',f)+ N(R',1/f), using (6.5). This yields

n(R)<

AR—T—@#) (r>7g). (7.4)

R

Using (7.4) in (7.3), we obtain (7.1).

8. Proof of Lemma 5

. o + 2|2
The function u+w=w=L0Q%) = {Za Z}ﬂ (8.1)
o’ —
maps the interior of A on larg w| <=, |w|>0.
The interval —ete<y<a—e

of the y-axis is mapped on the interval

w<u<l/u

7T
of the w-axis, where Uy = {—8—-—}13 < 1.
20—¢
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Let W(w) = H(Q l(w)),
log | H(z)

where W(w) is regular in each of the half-planes v>0 and »<0. Moreover, ¥'(w) is
continuous and bounded in v>0 as well as in v<<0. Under our assumptions we

also have
Pw)<0 (—a<argw< 7). (8.2)

As an immediate consequence of the Poisson-Jensen formula for a half-plane
{2; p. 93], we have, for v>0, or v<0

?,U | |f u "l“"q') (83)

In the right-hand side of (8.3) we have omitted an integral involving ®(ue'™) or
®(ue **); this is possible in view of (8.2).

llu,
By (8.2) and (8.3) O(iw) | |f 2.

Expressing ®(u) and du in terms of y, by means of (8.1),

Za[vl . U dy
)< log | H g 8.4
O(iv) f_aH og |H(iy)| Wt (= ) (8.4)
% u
<1 SR By
In w <u Bt 1+
. u l/u Uy
1<u<l L A
and in 1<u<l/u, u? + o 1+(v/u)2>1+v2
Hence (8.4) implies
L 20w v dy
<=ZA 1 H(iy)| *2
Q(MJ) ﬂ(l = 02) Og | Zy I 2
(because log |H(iy)|<0) and in view of (2.3),
. 2u, M* |v =
(I)(w)s—;—ﬁ 1|-+|1—)§ (— oo <v< + o0), (8.5)

The Poisson-Jensen formula for the half-plane >0 now yields

. d duy M* tvdv
— g S — - — . .
f ®e e naf Jo (L+0%) (£ +07) (t=>0) (88)
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Observing that, for ¢=1

I . 1 1 2
I_fo (L+2%) (B +0%)  2(82-1) Jo {1+v2 t2+v2}d(”)
. log £
we obtain 1_2(72:1.5,

which, properly interpreted, is also valid for t=1.
Using this result in (8.6), we find

| e T[] gt s
t) < naf - maf t—(1/8)

-1
For u<t<1/u,

] (¢>0).

an application of the mean value theorem of the differential calculus now gives

D) <

_2u§M* B 2M*( € M)z’”ﬂ oM* ( 3 )2"“5
20— ¢ ’

- e = — e < —_— e —
7w naf naf \2e

which is the assertion of Lemma 5.

9, Proof of Lemma 6

Let S be the (open) curvilinear sector (extending from 0 to oo) which contains
D and is bounded by the curves (2.5).
Let 2 be the part of § in |z|<¢, and let C be an arc of its boundary defined by

C: |zl=t, olt,) <argz<a,(t,).
We map S, by s=logz=logt+16,
onto a region € to which we shall apply Ahlfors’ distortion theorem.
Let w=u+1w:=g@(s)=g(logz)=D(z)=U(z) +iV(z) (9.1)

map £ conformally on the strip

. 7 4
— 00 U< T 0oC, —.;)'<’U<‘—),

in such a way that U(z)—> — oo as |z|>0 and U(z)—> 4 o as |z|— - co.

Put U, — inf U(2).

zeC
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By Ablfors’ theorem [1; p. 10] and the definition (2.6), we see that if

O<t<ty< + oo,

logts g  dr
i oo 2 s
and if flogl o) J; 700) 2, (9.2)
then U, - U(te"”)?nfh- dr_ —4n (9.3)
2 t TG)(T)
for te¥EZ.

By (2.7) and (2.8)

" dr 1 (#dr 1 9
A e >, .
J, 0(1) 27 fr T 2 log (t,/7) 2 (9-4)

This shows that (9.2) is satisfied with ¢=r and hence (9.3) is valid with te® = re®.

We thus have

U, - Ure'®) > ¢, (9.5)
ty
and U(re'®)— U, < 4nm — nf %—g{; (9.6)

Two applications of Carleman’s principle [8; p. 69] show that
w2(27 t2)<(0(2, O: 2)1

where (z,(; Z) is the harmonic measure of C' with respect to 2, at the point z=re'.

By the invariance of harmonic measure under conformal mapping
w(z,C; 2)=w(U(z) +iV(z), DC); B(2)),

where @®(C) and ®(Z) denote the images of ' and 2 under the mapping w= ®(z)
given by (9.1). A further application of Carleman’s principle shows, in view of (9.5), that

o(UR)+iV(z), ®(C); O2)) <w(Uz)+1V(z)),
where @(w) is the harmonic measure of the boundary segment
u=U, —jn<v<in, (9.7)
with respect to the semi-infinite strip Z
Z: u<U, —ijan<v<inm.

The function =E+in=e U
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maps the closure of Z on the closure of the semi-disc Z',
7z |t|<1, &>0,
in such a way that the circular boundary
[e[=1, &>0 (9.8)

corresponds to (9.7). It is easily verified that, at ((€Z’), the harmonic measure of

the arc (9.8), with respect to Z’, is given by

Re{2——-1 clﬂ} 2(1— largé—qr};)=2(1—2€),
1 Fi4 -1 7

where X is the angle subtended at { by the line-segment
£=0, —i<y<n.

Hence using again the invariance of harmonic measure under conformal trans-

formation,

o(U+iV)=2— i arc tan {1%17} ~~ arctan {—: }

&
—=2- [arctan{~ 5 }+arctan{ H -2( -+ E )
T l+n 7 1—77

4t  4¢” YrcosV - 4V 0
a(l—n) a(l- XU UD g2 1y T [l — 62U U‘)]

(U + iV =Uz) +iV(2)).

Using (9.5) in the denominator and (9.6) in the numerator, we obtain

4471 o
w32 t) <BUE) TiVENS oo, )-exp[—nfr;@—f,-)},

which implies (2.9). The proof of (2.10) is similar.
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