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§ 0. Introduction
0.1. Background

The theory of Whittaker functions (vectors) for reductive groups is significant for not
only number theory but also representation theory of real semisimple Lie groups.
Whittaker functions for reductive algebraic groups have been studied mainly from the
viewpoint of number theory, as in the Hecke theory of automorphic forms ([Jc], [JL],
[Shl], {Shd], etc.). However, recently the relation between Whittaker functions and
some micro-local properties of representations of real semisimple Lie groups (or
reductive groups over finite fields) has come to be recognized ([Ko], [Ha2], {Ly],
[GW], [Kal, 2, 3], [Mee], [Y2], [Ma2)). I expect the study of Whittaker functions to lead
us to a better understanding of such deep micro-local structures in representations of
real semisimple Lie groups.

This inquiry assumes the following notation and operating definitions. Let G be a
connected real semisimple linear Lie group. We fix an Iwasawa decomposition G =
KA,,N,, and a minimal parabolic subgroup P, with the Langlands decomposition
P,=M,A.N,. Let g, be the (real) Lie algebra of G and let g, f, a, ng,,
P, and m,, be the complexified Lie algebras of G, K, A,,, N, P,,, and M,, respectively.
Let U(g) be the universal enveloping algebra of g. We denote by X, the positive system
of the restricted root system corresponding (1n,,,a,,).

We fix a parabolic subalgebra p of g such that pop,, and a Levi decomposition
p=I[+n such that [om,+aq,,.
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Let t,, be a Cartan subalgebra of m,, and let h=t,+a,,. We denote by A the root
system with respect to (g, §). We fix a positive root system A* compatible with £* and

denote the simple root system of A* by IT. Let a be the center of [ and define
S={a€H|al,=0}.
We denote by (R) the following condition on p.

(R) p n qo is a real form of p. Namely, there exists a parabolic subgroup P of G
whose complexified Lie algebra coincides with p.

It is easy to see that p may not satisfy this condition (cf. 5.4, Example).
We denote by (G) the space of real analytic function on G. For X, Y€ g, and
JE AG), we put

flg: X+i¥) = %(f(g exp(tX)) + if (g exp(t )] —o,

fX+iY:g)= %(f(eXp(tX)g) + iFEXPUY)], o0,

Let y be a character (namely, a one-dimensional representation) on n. If a function
S on G satisfies f(g: X)=—y(X) f(g) for all g€EG and X€n, then f is called a (real
analytic y-) Whittaker function on G. We denote by (G, n;y) the space of Whittaker
functions. We can introduce a left U(g)-module structure on (G, n;vy) by

X f(g)=f(-X:p),

for all fEAG,n;9), XEN, and g€G.
If p satisfies (R), then (G, n; y) coincides with the following space of an induced
representation.

AGIN; )= {fEAG)|VgEG, VREN, f(gn) = w(n)~"' f(g)}.

Here, we denote by N the nilradical of P and by the same letter y the character on
N corresponding to the character ¢ on the Lie algebra n. If ¢ is contained in the
Richardson orbit with respect to p, then we call y admissible. Here, we regard y as an
element of g via the Killing form of g.

Let V be an arbitrary left U(g)-module. According to [Ha2], if there exists an
embedding (namely, an injective U(g)-homomorphism) ¢: Vo oG, n;y), then we say
V has a (algebraic) Whittaker model.
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Remark. Here, the usage of the word ‘‘model”’ is different from the original usage
of Gelfand-Graev.
Then we can ask:

PrOBLEM 0. When does V have a Whittaker model?

In order to apply algebraic methods, such as the homological algebra, we introduce
the notion of Whittaker vectors. For a left U(g)-module V, we denote by V* the dual
vector space over the complex field. Then V has a natural right U(g)-module structure.
We define the space of (dual) Whittaker vectors as follows.

Wh, (V)= (vEV|VXER, X v=p(X)v},
Wh? (V)= {(vE V*|VXEn,u-X = p(X) v},

For a right U(g)-module M, we also define Wh, (M) and Wh} (M) in the same
way.

Let V be an irreducible left U(g)-module. For F€Hom(V,HG,n,vy)), we
define G(F) € V* by

[T(F) () = [Fv)](e) (WEV).

Here, e is the identity element of G. Immediately, we see [(F)€Wh} (V) and T is

injective. Put
Why (V) = Image(I').

We call an element of th‘w(V) a global Whittaker vector. Clearly, the following is

equivalent to Problem 0.

PROBLEM 1. When is th,w(V)#O?

We can also ask:
ProBrLeM 2. When is Wh (V)#0?
ProBLEM 3. When is Wh{ (V)=Wh} (V)?
PrROBLEM 4. When is th‘w(V) (or Wh* (V) finite-dimensional?

n,y

PROBLEM 5. Determine dim Wh{ (V) and dim Wh} (V).
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First result with respect to these problems are ascribed to Kostant [Ko]. He has
proved that if 1t is the nilradical of some Borel subalegebra of g and v is admissible,
then Wh (V)0 implies the annihilator of V is a minimal primitive ideal. We assume
G is quasi-split. Kostant has also proved (the case of SI(n,R) is ascribed to Casselman
and Zuckerman) if G is quasisplit, V is a Harish-Chandra module (cf. 1.4), and the
annihilator of V in U(g) is minimal, then Wh:‘w(V)#O. He also gave a solution to
Problem 5. (Theorem K [Ko]).

At the almost same time, Hashizume considered Whittaker models for Harish-
Chandra modules with highest weight vectors ((Ha2]) and introduced Whittaker models
with respect to more general class of nilpotent subgroups. Recently, Yamashita ([Y2]
Part 2) studied Whittaker models of highest weight modules precisely.

In his thesis [Ly], Lynch generalized important properties of Whittaker vectors,
which had been shown by Kostant, to the case that y is an arbitrary admissible
character.

In [GW], Goodman and Wallach gave the solution of Problem 3 for the case G is
quasisplit, n=m,, and V is a Harish-Chandra module, using some differential operators

of infinite order.

From these results, it is suspected that the solution of Problem 1 or 2 is described
in terms of some micro-local conceptions, such as the associated variety (for example
see [V2], [Ma2]) or the wave front set (cf. {KV], [Ho], [BV]). In fact, Kawanaka (cf.
{Kal, 2, 3]) has shown corresponding results for the generalized Gelfand-Graev repre-
sentations of reductive algebraic groups over finite fields.

Let y be a character of n. Using the Killing form we regard y as an element of the
dual space g* of g.

In [Ma2], it is proved that Wh;'\"w(V)#O implies that the associated variety of the

annihilator of V in U(g) contains .

0.2. Main results

First, we assume that V is a finitely generated left U(n)-module. Then we easily see the
Gelfand-Kirillov dimension Dim(V) (cf. 1.2) is not more than dim n. Put d=dim n, and
let ¢ (V) be the multiplicity of V (cf. 1.2).

Then, using the vanishing theorem of Kostant-Lynch (cf. 2.1), we can get the
following solution of Problem 5 (D. A. Vogan gave the author a crucial suggestion (cf.
the remark after the proof of Theorem 2.2.1)).
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THEOREM A. (Theorem 2.2.1.) Let V be a left U(g)-module which is finitely gen-
erated as an U(n)-module. Let y be an admissible character on n. Then

dim Why (V)= c,(V).

As a corollary of this result, we can generalize a result of Kostant ((Ko] Theorem
K) to an arbitrary real (not necessary quai-split) semisimple Lie group.

CoroLLARY B. (Corollary 2.2.2.) Let G be an arbitrary semisimple Lie group and
let y be an admissible character on the nilradical n,, of the complexified Lie algebra of

a minimal parabolic subgroup of G. Let M be a Harish-Chandra module. Then

dim Wh* (M) = 0 ifDim(M)<d,
im Why_ (M) =1 (M) if d=dimn,, = Dim(M).
For Problem 3, we will show the following generalization of a result of Goodman
and Wallach.

THEOREM C. (Theorem 6.2.1.) Let M be an irreducible Harish-Chandra module
and let y be an admissible character on n,,. Then

WhS (M)=Wh2 . (M).

This theorem is proved by the same method as [GW] from Theorem E below.

An aim of this paper is to construct many global Whittaker vectors on an irreduc-
ible Harish-Chandra module. Especially, in order to prove Theorem C, we should
construct sufficiently many global Whittaker vectors.

Hereafter, we do not assume n=n, any more. Let y:n—C be an admissible
character.

Now we introduce some notations.
Define

Ps*= {/IE E)*|Va€S,2MEN}.
(a,a)
For AEP;*, we denote by L(p,A) the highest weight left U(g)-module with a
highest weight .
Let V be an irreducible Harish-Chandra module and we assume there is some non-
singular pairing between L(p, ) and V compatible with the g-actions. The existence of
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a pairing between V and some highest weight module implies the existence of an
embedding of V into some principal series representation.

Let v be a non-trivial character on n. If we found some non-trivial w€
Whn,_w (L(p,A)), we could easily construct a non-trivial global Whittaker vector on V.
Unfortunately, always Whn‘_w(L(p,/l))=0 holds. The idea of Goodman and Wallach
[GW] is to consider some completions of L(p,A) instead of L(p, 1) itself.

First, we consider the formal completion L(p, A) (cf. 3.2).

Then we have:

THEOREM D. (Corollary 3.4.6.) For AEP; " and an admissible character y,
dim Wh, _(L(p, 1)) = c AL(p, A)).

Here, d=dim n.

This result is a generalization of that of Kostant [Ko] (for irreducible Verma
modules) and Lynch [Ly] (for irreducible generalized Verma modules).

We also prove an conjecture of Lynch concerning the dimension of the space of
Whittaker vectors in the formal completion of (reducible) generalized Verma modules
{Theorem 3.4.7).

The formal completion is too large for our purpose. Hence, according to Goodman
and Wallach, we introduce the Gevrey completions L*(p, A) for 1=<x (cf. 4.2).

We prove:

THeoREM E. (Theorem 4.2.1.) For an arbitrary character y, A€ P{*, and 1<x<2,
Wh, _(L(p,2)) c L*(p, A).

First, Goodman and Wallach [GW] have proved this result for the case that n is the
nilradical of some Borel subalgebra. (Hence G should be quasi-split.)

Wallach also announced in his lecture at Katata 1986 (and personal discussion
1987), that Goodman and Wallach had proved a corresponding result for the case nis a
2-step nilpotent Lie algebra.

Fix LEPI™.

Using Theorem D and Theorem E, we can prove:

THEOREM F. (Theorem 5.5.1.) Let V be an irreducible Harish-Chandra module
which has a non-singular pairing with L(p, 1).
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For an arbitrary character y on n, there exists some discrete subset D of C such
that 0€D and for all zE€ C—D there exists some injective map:

Wh,, _(L(p, ) > Wh7 (V).

Moreover, if y is admissible and Dim(V)=dimn, then Wh® (V)0 for all z&D.

n, zy

If the condition (R) holds, we have a stronger result:

THEOREM G. (Theorem 5.5.2.) We assume the condition (R) holds. Let V be an
irreducible Harish-Chandra module which have a non-singular pairing with L(p, 1).

For an arbitrary character y on n, there exists some injective map:
Wh, _(L(p,A)) >WhS (V).

Moreover, if Y is admissible and Dim(V)=dimn, then Whﬁw(V) *0.

0.3. A working hypothesis

Let V be a left U(g)-module and let y be an arbitrary character on n.

In [Ma2], it is proved that Wh* ll,‘(V)=#0 implies that the associated variety of the
annihilator of V in U(qg) contains y. Here, using the Killing form, we regard v as an
element of the dual space g* of g.

I suspect that ‘‘under some good condition’ the converse of the above result
holds. Specifically, we consider the following situation, which is a special case of
Kawanaka’s generalized Gelfand-Graev representations ([Kal,2,3], {Y1]). Let Obe an
even nilpotent orbit of g and let ¥€ 0. We assume « is contained in n, N g, and there

exists a Lie algebra homomorphism

¢:512,C) > g

o 9)--
o8 Yen

such that
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H=¢<((1) —01>>

is contained in the center of [, N g, and all the eigenvalues of ad(H)|n,, is non-negative.
Put g(k) = {X € g| ad(H) X = kX} for all even integer k. Since u is even,

and we also assume

p.= >, 802k

kEN

is a parabolic subalgebra of g such that p,op,. We assume p,, satisfies the condition
(R). Let n, be the nilradical of p, and let a, be the center of g(0). Clearly, a, < b. Put

S.={a€|al, =0}.

It is known that p, is admissible, namely there exists some admissible character on
n,. (Cf. [SS].)

The following conjecture could be regarded an algebraic version of Kawanaka's
conjecture ([Ka3] (2.5.2)).

CoNJECTURE H. Let V be an irreducible Harish-Chandra module such that
Dim(V)<dimn, and let y be an admissible character on n, We denote by I the
annihilator of V in U(q). Under the above condition, the followings are equivalent.

(H1) The characteristic variety of I coincides with the closure of 0.
(H2) Wh:u_w(V) *0.

(H3) Whe (V) 0.

We remark that clearly (H3) implies (H2), and we see, from ([Ma2} Theorem 2, (H2)
always implies (H1). Corollary B and Theorem C means Conjecture H holds when
) U

Theorem G gives a sufficient condition for (H3) in terms of ‘‘minimal’’ embeddings
into principal series.

Hence we can easily see the following working hypothesis implies the above
conjecture.

WoRKING HYPOTHESIS 1. The condition (H1) implies that V has a g-invariant
pairing with L(p,, 1) for some 1€ P;:.
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At present, this hypothesis is mere wishful thinking. However, even if it were
false, counter examples to ‘‘Working Hypothesis I"” would, I believe, be interesting.

I fancy that the deep analysis of the structure of principal series representations by
Casian and Collingwood ([CC1], [CC2], [CC3]) enable us to say something about the
above hypothesis. In fact, they establish an algorithm to compute ‘‘minimal embed-
dings”* which are distinguished by the weight filtration (cf. [CC1]). For example, for
G=S5p(2,R) (real rank two), if V has an integral infinitesimal character, the above
working hypothesis is true ([CC1], [CC3]).

It is interesting, I think, to re-interpret the results of Casian and Collingwood in
more geometrical terms. ‘‘Working Hypothesis I'’ is a candidate of the beginning of
such reinterpretation.
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§ 1. Notations and preliminaries
1.1. Notation

In this article, we use the following notations.

As usual we denote the complex number field, the real number field, the rational
number field, the ring of integers, and the set of non-negative integers by C, R, Q, Z,
and N respectively.

For a complex vector space V, we denote by V* the dual vector space. Let g be a
complex semisimple Lie algebra, U(g) the universal enveloping algebra of g, b a Cartan
subalgebra of g, and A the root system with respect to (g, h). We fix some positive root
system A" and let IT be the set of simple roots. Put
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g, ={X€g|VHEDY,[H X]=a(H) X},

u= > g,

a€At

= 2 84

—a€A*t

Let (, ) be the Killing form of g.

Next we fix notations for a parabolic subalgebra. Hereafter, through this article,
we fix a subset S of IT and the following notations for the parabolic subalgebra
determined by S. Let S be the set of the elements of A which are written by linear
combinations of elements of § over Z. Put

a={HEHVa€ES,alH)=0},

[=h+ zga,

a€s
n= > 6
a€A*t-$
i= > 6
-a€At-$

m={X€El|VHEaq, (X, Y) =0},
p=m+a+n=I[+n,
p=m+a+n=[+0,
t=hHnm.

Hence § is the direct sum of t and a, which are othogonal with respect to the Killing
form. For each A € h*, we denote the restriction of 4 to t (resp. a) by 4, (resp.4,). Using

the Killing form, we can regard t* and a* as subspaces of h*. Then we immediately
have A =1,+4,.
For all 1€ h*, we define /€] by

VHEDY, (H,H,)=AMH).
Put
It={B€a*|f+ 0and Ja€EA",a|,=4).

13—-888289 Acta Mathematica 161. Imprimé le 27 décembre 1988
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For a €X*, put
n, = {X€n|VHEa,[H,X]= a(H) X},
fi_ = (X€R|VHEa,[H,X]= —a(H) X},
We define @ c =™ by

®={f€a*|f+0and Ja€Il, a|,=p}.
We denote by H, the element of a which satisfies:

BH)=1 forall BE®.

a() = {X € g|ad(H)X = iH}.

These define a Z-graded structure on g.
Put

Q} = {a,+...+a|lEN, ¢,€Z" (I<i=<])} U {0}.
For £ €Q}, we define

U(n), = {PE€ UM)|VHEa, HP—~PH = u(H) P},
U()_, = {P€ U(W)|VHE€a, HP~PH = —u(H) P}.

Let G be the simply-connected connected complex algebraic group corresponding

to g and let P (resp. PC) be the parabolic subgroup corresponding to p (resp. £).

1.2. Gelfand-Kirillov dimension and multiplicities

We recall two important invariants for finitely generated U(g)-modules, namely Gel-
fand-Killirov dimension and multiplicity (Bernstein degree). For details, see [V1].
Let g, be an arbitrary Lie algebra over C. Let M be a finitely generated

U(g,)-module and v, ..., v, its generators. Fix a non-negative integer n. Let U,(g,) be
the space of the elements in U(g,) which are written by a products of at most n
elements of g,. Put M, =Z,_..,U,(a))v;. Then, there exists some polynomial x(x) in

one variable over Q such that dimcM, = x(n) for sufficiently large n. The Gelfand-
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Killirov dimension DimM is the degree of x(x). Let d be any integer such that
d=Dim M. Then the multiplicity ¢,(M) of M is defined by

the coefficient of d!y(x) at x>™¥  if d=DimM

M) =
CdM) {o if d>DimM.

Multiplicities are always non-negative integers. The definitions of Gelfand-Killirov
dimensions and multiplicities do not depend on the choice of generators.
Let M,, M,, and M, be finitely generated U(g,)-modules such that

max (Dim(M))<d,

i=1,2,3
and there exists a short exact sequence of U(g,)-modules
0—->M,—>M,>M,—0.

Then we have

cAMy) = c M) +cM,).

1.3 Whittaker vectors

Let y:n—C be any character. We denote by the same letter the algebra homomorphism
y:U(n)—C induced from y.

Using the Killing form, we can identify the space of characters on n and g(—1).
Thus, hereafter we regard a character y as an element of g(—1).

Let M be a left U(g)-module. Then the dual vector space M* has a natural right
U(g)-module structures.

We define the space of (dual) Whittaker vectors (cf. [Ma2]) as follows.

Whn,w(M)= {vEM|VXEn, X -v=yX)v},
Wh? (M) = {vEM*VXEn, v- X=¢X)v},
For a right U(g)-module M, we also define Wh,w(M ) and Why (M) in the same
way. Namely,
Wh,w(M) ={vEM|VXEn, v X=ypX)v},
Why (M) = {vVEM*|VXEn, X-v=y9(X)v}.
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A g-module M is called a Whittaker module if there exists a cyclic element of M
which is contained in Wh, ,(M).

Next, according to Lynch [Ly], we introduce the following notions. Let y be a
character on n. We call y admissible when ¥ is contained in the Richardson orbit 0,

with respect to p. (Namely, 0, is a unique G¢-orbit such that 0,Nn is open dense in n.)

Here, we regard vy as an element of g(—1).

If there exists an admissible character, we call p an admissible parabolic subalge-
bra. It is known that there exist non-admissible parabolic subalgebras. (Cf. [Ly].) But,
for example, the complexification of the minimal parabolic subalgebra of a real form of
g is admissible.

Let L be the complex analytic subgroup of G corresponding to [. Then L acts

on g(—1) by the adjoint action. If p is admissible, then y € g(—1) is admissible if and
only if ¥ is contained the open Lc-orbit in g(—1).

If M is a finitely generated n-module, then the Gelfand-Kirillov dimension of M is
clearly less than or equal to dim n.

1.4. Harish-Chandra modules and global Whittaker vectors
We fix a real form g, of g and a connected real semisimple linear Lie group G whose
Lie algebra is g,. We also fix an Iwasawa decomposition:

G=KA,_N,,.

Here, K is a maximal compact subgroup of G, A,, is a maximal real-split torus, and N,
is the nilradical of the minimal parabolic subgroup of G. We denote by {, a,,, and n, the
complexified Lie algebras of K, A,,, and N, respectively. Let M,, be the centralizer of

A,, in K and let m,, be the complexified Lie algebra of M,,. Put
P,=M_A,N,,
[,=m,_+a,,
p,=m, +a,+n,.
We denote by log the inverse of exp: a,,N g,—A,,.

Let §,, be the opposite parabolic of p,, and let it,, be the nilradical of p,,.
We assume a,ch. Put S, = {fENI|VHEa,, B(H)=0}. Put o, =05 .
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A compatible left (g, K)-module (for example see [BW]) of finite length is called a
Harish-Chandra module.

Next we introduce the notion of global Whittaker vectors. We denote by /(G) the
space of real analytic functions on G. For X, Y€ g, and f€ s/(G), we put

fX+iY:g)= g;(f(eXp(tX) (©)+ifexp(tY) @), o»

flg: Y+iY)= %(f(g exp(1 X)) +if (g exp(t D)), _o-

Let y be an arbitrary character on n. Put
G, n;y) = {fEAG)|VgEG, VXEn, flg:X)=—yp(X)f(g)}.
G, n;y) has a structure of U(g)-module by the left action. Let M be a left U(g)-

module and let Homu(g)(M, A(G, n; y)) be the space of U(g)-homomorphisms of M to
G, n;y). For FE Homy, (M, G, n;y)), we define ['(F)€EM* by

[TC(F))(v) = [F(v)](e) for all vEM.

Here, e is the identity element of G. We immediately see ['(F) € Wh} (M). Since any

real analytic function is determined by its Taylor expansion, we can easily see I is an
injective linear map. Put

WhS (M) = Image(T).

We call an element of Wh? (M) a (G-) global Whittaker vector on M.

We remark that if there exists a parabolic subgroup P of G and the complexified
Lie algebra of the nilradical N of P coincides with n, then &G, n; ) coincides with the
following space of an induced representation.

HMGIN;p) = (f€ AG)|VgEG, YnEN, fgn)=yp(n)~'f(&)}.

Here, we denote the character on N induced from the character y on n by the same
letter.

1.5 Generalized Verma modules

Define
PH= {AEb*|Va€S, ZME{O, L,2,... }}.
‘ (a,a)
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Let o, be an irreducible finite-dimensional [-representation whose highest weight is
AEPI*. Let V, be the representation space of o; and we fix a non-trivial highest weight
vector v, of 0.

V* has a natural right U()-module structure. Let v} be a non-zero A-weight vector
of Vi.

We define a left (resp. right) action of n (resp. fi) on V, (resp. V§) by X-v=0
(resp. v-X=0) for all X€n and vEV, (resp. XEf and vE V}). Then we can regard
V, (resp. V) as a left U(p)-module (resp. a right U(f)-module).

Let AEP!*. We define the generalized Verma modules (Lepowski [Le]) as follows.

M(p, )= U(g) @y, V-
M(ﬁ’l) = VT®U(;;) U(g)'

M(p,A) (resp. M(p, 1)) is a left (resp. right) U(g)-module.

As left U(ft)-modules (resp. right U(n)-module) we have M(p,1)=U[R)®V,
(resp. M(p,A) = V¥® U(n)).

Let L(p, A) (resp. L(p, 1)) be a unique irreducible quotient U(g)-module of M(p, 1)
(resp. M(p, 1)).

Let g, : M(p,A)—L(p, ) and g,: M(p,\)—L(p, A) be the canonical projections. Let

K(p,A) (resp. K(p,A)) be the kernel of g, (resp. g,).

Now we consider the situation in 1.4, namely G is a real semisimple Lie group with
the complexified Lie algebra g and a,,<h.

We also assume §,cS.

Then clearly we see Pg*<Ps™ and (,cl. For 1€V, we put
E, = U(,) v,cV,
Then E; is an irreducible representation of (,, with highest weight 4.
For 2€P;*, we have

M(p,,, 1) = U(@)®y, , E;,
M(®,,,4) = Ef®y;, , UQ).

1.6 Functions of Gevrey class and differential operators of infinite order

Now we refer to the (ultra-differentiable) functions of Gevrey class introduced in [Gv].
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Let U be an open set of R” and let 1<x. We denote by C”(U) the space of the
functions of class C” on U. We call g€C*(U) a function of Gevrey class of order # if
for any compact subset K of U there exist some A>0 and C>0 such that

Va€EN", sup|D%(x)| sCh'“'(|a| 0*.
x€EK

Here, for a=(a,, ..., @,)EN" we put

la|=a,+...+a,,
aldl

Da: a a
ox,'...ox,"

We denote by 4¥*(U) the space of the functions of Gevrey class of order x. Since the

definition of Gevrey class is local and invariant under any real analytic coordinate
transformation, we can define 4*(X) for any real analytic manifold X.

From Pringsheim’s result, we have 4'(X) = s(X).

Next we consider differential operators which acts “(U). We assume
¢, €C (xEN") satisfies

> led taly <o, (1)

a€N"

for all 1>0.
Put

P=> cD"

a€N"

Lemma 1.6.1 (cf. [Km] Theorem 2.12, also see [Ro]). Under the above assump-
tion, P is a continuous linear endmorphism of §*(U).

If we introduce the topology on C*(U) as usual, then the inclusion map
1:9*(U)>C"(U) is continuous.

1.7 Gevrey vectors

We use the notation of 1.4. Here we refer to the Geverey vectors in Banach representa-
tions. (For details, see [Gd1] §1, [GW].)
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Let & be a strongly continuous representation of G on a Banach space H=H(7).
We denote the space of C*-vectors for # by H, and we also denote the associated

representation of U(g) by dx.
We fix some basis X, ..., X, of g.

We define continuous semi-norms g, on H_ by
00v) =[]l

0,,(v) = max ||dn(X; ... X; )ul|.
i Im

Isj,<d

For »>0, we put
S (n)={vEH,|IM, t>0,VnEN,0,)EMt"(n!)*}.

An element of S,(n) is called a Geverey vector of order x.
Put

ol = Sug{f'"(n N7, )}

We topologize S, () as the inductive limit of the normed spaces
S, (M) = {vEH_||]v]], <=},

as f—» o,

Then the natural inclusion S, (7)>H,, is continuous.

§2. Dimensions of the space of dual Whittaker vectors
2.1. The cohomology vanishing theorem of Kostant-Lynch

In this section 2.1, we only consider left modules. However, the argument in this
section is applicable to the right modules.

First we define twisted n-actions (cf. [Ko], [Ly]). We fix an arbitrary character ¢
on n. Let V be a n-module. For vEV and X €n, we define

Xxv=X v—yp(X)v.

We call the above action the yp-twisted action. Immediately we see % defines another
n-module structure on V. We call this n-module the y-twisted n-module of V.



WHITTAKER VECTORS AND THE GOODMAN-WALLACH OPERATORS 201

We define an n-module structure on C by
X z=-yX)z (XE€n,z€Q).

We denote this n-module by C_,. Then, for every n-module V, the y-twisted n-module
is identified with V ®.C_,,.

For an n-module V, we put
H(n,V)={vEV|VXEn,X v=0}.

The functor V~~Hy(n, V) from the category of n-modules to the category of C-vector

space is left exact, and we can define the ith right derived functor H(n,-). For a g-
module M, clearly we can see

Wh, (M)=Hn,M®C_,).

Now we can quote the vanishing theorem, which is first proved by Kostant [Ko]
for Borel subalgebras and generalized by Lynch [Ly] to the case of admissible parabol-
ic subalgebras.

THEOREM 2.1.1. ([Ly) Lemma 4.3.) Let y be an admissible character on n, and let
a left g-module M be a Whittaker module (see 1.3) with respect to y. Then
H(n, M®C_w)=0 Jor all i>0. We also have the same result for a right g-module.

Let V be a n-module. We define
V,={n€V|dim (U(n)»v)<x=}.
If M is a g-module, then we can easily see M, is a g-submodule of M.

LemMMma 2.1.2. ([Ly] Proposition 4.5.) Let M be a g-module such that
dimCWhn_w(M)<00. Then M, has a finite composition series and each irreducible

constituent is a Whittaker module.

CoroLLarY 2.1.3. (Cf. [Ly] Theorem 4.3.) Let M be a g-module such that
dimcWh,  (M)<c. Then H‘(n,M”®C_w)=O Sfor i>0.

2.2. Dual Whittaker vectors of an n-finitely generated g-module

Now, we are going to prove the following our first main result.
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THEOREM 2.2.1. Let M be a left U(g)-module which is finitely generated as an
U(a)-module. Let y be an admissible character on n. Then

dimc(Wh} JM)) = c(M).
Here, we put d=dimn. (Since M is finitely generated, Dim(M)<d.)

Proof. Let M be a finitely generated U(n)-module. Since U(n) has finite global
homological dimension, V has a finite projective resolution. On the other hand, every
finitely generated projective U(n)-module is stably free ([Qu] Theorem 7, also see
[Mc]). From [No] 3.3, Lemma 7, we have the following finite free resolution.

0eM— UM ... Um®—o. Q)

®r.
Here, U(n)~ "7 means

7y

Um® ... ®UM).

Taking the dual of (1), we have
0— M* - (U - ... - (U™ - 0. 3)
From the Artin-Rees lemma for U(n) (cf. [Ko] Lemma 4.5), we easily have
0= (M*), = (U} — ... = (U*)P™ 0. 3)

We can regard the left U(n)-module “‘U(n)”’ as the image of a generalized Verma
module of with a lowest weight U(g) under the forgetful functor. On the other hand,
dim H'(n,(UM*),®C_,) = dim Wh _((U(1)*),)
=dimWh_ _ ((Un)*
n((UM)*) )
=dimWh} (U(n)

=1.
From Corollary 2.1.3, we have
fli(n,(U(g)*)n®C_w) =0 for i>0. 6)
From (2), we have

0 Wh, ,(M*) > Wh, (U®»®"),
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Especially, we have dim Wh,w(M*)<oo. Hence from Corollary 2.1.3,
Hi(n,(M*),®C_,)=0 for i>0. ©)

From (4), (5), and (6), we have

dimWh¥ (M)= dim Wh? ((M*),)

m ()
= > (=1)*lr,
i=1
On the other hand, from (2) we have
cM)= X (—=1)*Ir,. )
i=1
(7) and (8) imply the desired result. Q.E.D.

Remark. D. A. Vogan suggested the author that the multiplicities relate to the
dimensions of the space of dual Whittaker vectors via free resolutions.

We fix a connected real semisimple Lie group G and its Iwasawa decomposition as
in 1.4. Let M be an arbitrary Harish-Candra module. Then M is finitely generated as a
U(n,)-module ([CO] 2.3), and the multiplicity of M as a U(g)-module coincides with the
multiplicity of M as a U(n,,)-module ([Jo] 5.6). Hence, we have the following generaliza-
tion of a result of Kostant ((Ko] Theorem K).

COROLLARY 2.2.2. Let y be an admissible character on n,, and let M be a Harish-
Chandra module (with respect to (g, K)). Then

0 if Dim(M) <d,
cM) if d=dim n,=Dim(M).

n,. v

dimWh} (M)= {

Here, c (M) means the multiplicity of M as a U(g)-module.

Since we can easily see that the multiplicity of L(p, ) as a U(g)-module coincides
with the multiplicity of L(§,1) as a U(n)-module, we have another corollary.

CoROLLARY 2.2.3. Let ¢ be an admissible character on n. Put d = dimn. For all
AEPST, we have

dimWh} (L(9,4)) = c(L(B, 1)) < ».
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Here, c {L(p,A)) means the multiplicity of L(p,A) as a U(g)-module.
Especially, if DIm(L(p,A)) =d, then

0<dimWh (L(,4)).

The following result is the special case of the formula (7) in the proof of Theorem
2.2.1.

CoRroOLLARY 2.2.4. Let y be an admissible character on n,, and let M be a Harish-
Chandra module (with respect to (g,K)). Then, for all i>0,

H(n,,(M*),®C_)=0.

§ 3. Whittaker vectors in the completions of highest weight modules
3.1. Canonical pairings for irreducible highest weight modules

Accordings to [Shp] (also see [Ko], [Lyl, [GW]), we introduce a pairing between
hightest weight modules.
Let ((, )), be the canonical pairing on V¥xV,, that defines a C-linear map

Let O, be the canonical projection:
Qi:M®, H®M(D,1) - M(H,2) @, Mp, )= VI® V..

The composition P;oQ, defines a pairing on M(§,4)XM(p, 1), which we denote by the

same letter ((,)).
From the definition, we have:

LeMMA 3.1.1. For all PEU(g),v*€M(p,4), and vE M(p, 1),
(v*-P,v)) = ((v*,P-v)).
Then we easily have:
CoROLLARY 3.1.2. For all AEPS™, the followings hold.
K(p,A) = (PEM(p,DIYQEM(D,A), (Q,P)) =0},
K(®, 1) = {QEM(P,M|VPEM(D,A), (Q,P)) =0}.
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Especially, {(,)) induces a non-singular pairing on L(p,A)XL(p,A). (We denote this
pairing by the same letter {(,)).)
Since the irreducibility of M(p,A) implies that of M(f,1), we have:

COROLLARY 3.1.3. If M(p,A) is irreducible, then {{ , )) is non-degenerate.
For x€Q}, put

L(p,\)_,={PEL(p,)|VHEa, H-P = (MH)-u(H))P},

L(p,A),={QEL®,A|VHEa, Q- H=(A(H)-u(H))P}.
We also define M(p,4)_,, M(f),/l)#, K(p,A)_,, and K(p, 1), in the same way.
Hence we have

L(p, A)_# = q}.(M(p! A)“ﬂ)’
I:(ﬁ, }')ﬂ = qx(M(b ) }')“)'

Immediately, we have the following direct sum decomposition of irreducible heigh-
est weight modules.

Lp, )= ® L(»,2)_,

u€Q;

Lo, )= ® Lp,A),

ue€Q,;

Especially, these are finite-dimensional as C-vector spaces.
We easily have:

LeEMMA 3.1.4. (1) Let u,v€Q; be distinct. Then the restriction of {(,)) to
I:(ﬁ,/l)#xL(p,/l)_v is zero.
(2) For u€Qy, the restriction of {(,)) to l:(ﬁ,/l)“xL(p,/l)_# is non-degenerate.

3.2. Formal completions and algebraic duals

We define the formal completion of L(p, 1) by

Low.ny=[] Lo 2,

;460;
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We also define M(p,4) and K(p,4) in the same way. From the same argument of the
proof of [GW] Lemma 2.2, L(p, A), M(p, ), and K(p,A) coincide with the fi-completion
(cf. [GW] 2) of L(p,1), M(p,4), and K(p,1) respectively. Especially, these have g-
module structures. The natural embedding L(p, A)~L(p,2) is a U(g)-homormorphism.

We have L(p,1) = M(p, )/K(p, 2).

We can extend ((,)) to L(p,A)xL(p, ) in the obvious way. If Q € L(p, 1) satisfies
{P,Q)) =0 for all PEL(p,A), then we easily have 0 =0.

Next result is obvious.

LEMMA 3.2.1. Let V, (i€N) be a family of finite dimensional complex vector
spaces. Put V=@, V.. Then the algebraic dual V* coincides with I1,c (V,)*. Here we
define f(v)=0 for all f€(V)* and vEV, such that j*1i.

From Lemma 3.1.4 and Lemma 3.2.1, we immediately have

PROPOSITION 3.2.2. The algebraic dual L(p,X)* of L($,1) is isomorphic to L(p,1)
as a g-module via the canonical pairing {(,)).

Namely, for all P€ U(g), v* €L, 1), and vEL(p,A),
«U*‘P,U» = «U*,P'U».

Remark. Though M(p, 1) and M(§,1)* are isomorphic as m-+a-modules, they are
not isomorphic as g-modules if M(p,A)= L(p,1).

3.3. Dual Whittaker vectors on an irreducible highest weight module

Let y:n— Cbe any character.
From Proposition 3.2.2 and Theorem 2.2.3, we have

ProposiITION 3.3.1.
Wh, (L(p,2)) = Whx (L(5,4)).
Especially, if ¥ is admissible, then we have
dim(Wh, (L(p, A))) = c AL(D, A).
Here, d=dimn and c(L(p, 1)) is the multiplicity of L(p,4).

Remark. we can easily see that for L(p, 1), the Gelfand-Kirillov dimension and
multiplicities as a g-module coincide with those as an n-module.
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CoRroLLARY 3.3.2. If ¥ is admissible,
Wh, (L®,A)+0 if and only if Dim(L(p,A))=dimn.

We write any element w of Whn‘w(l:(p, A)) as the following formal sum,

where w_FEL(p,A)_ﬂ.
Next we consider the case that L(p,4)=M(H,A). For vEV,, we define
v®y EWh¥ (M(,4)) by

WYY W*®P) = ((v*, u) yp(P),

where v*€V} and P € U(n). We denote the corresponding element in Whn_w(M(p, A)) by
¥, (4). Then we can immediately see

PY,A)y =18 vECO V,.
We easily get:

ProrosITiON 3.3.3. ([Ly] Chapter 5.) We assume M(p, 1) is irreducible. Then

Wh, (M(p,A4) = {y,DIvEV,}.

3.4. A conjecture of Lynch

Fix A€P;* and an admissible character y : n — C. From Lemma 2.1.2, and Proposition

3.3.1, we have:
LeEMMA 3.4.1. For all i>0, we have
H(n,L(p,4),®C_,)=0.
The following result is proved just the same way as [HS] Lemma 2.37.

PropPosITION 3.4.2. For every finitely generated U(n)-module V, the inclusion
(V*), > V* induces isomorphisms

H(n,(v¥,®C_)=Hn, V*®C_)).
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From Lemma 3.4.1, Proposition 3.4.2, and Proposition 3.2.2, we have:
ProrositioN 3.4.3. For all i>0, we have

H(n,L(p,H®C_,) =0.

Now we prove:

LEMMA 3.4.4. There exists an increasing sequence of sub-U(g)-modules of
M(p, 1) (namely a filtration)

0=M0§M1 c... _C_M,=M(p,/1)
such that for each 1<i<] there exists some A, such that
M,/M,_,=L(p,2).

Proof. 1t is well-known (and can be easily seen) that there exists a filtration of
M(p,A)
0=M,cM,...cM;=M(@p,A)

such that for each I<i<t/ there exists some 4, such that
M,/M,_,=L({,A).

Let Mi be the fi-completion of M, (cf. [GW] 2). From [GW] Proposition 2.1, (2), we can

easily see {M|0<i<I} satisfies the desired conditions. Q.E.D.
LEMMA 3.4.5. Put d=dimn. Then
cAL(B,A) = cL(p,A)).

Proof. Let 1 be the complexified Cartan involution with respect to the normal real
form of g corresponding to the decomposition

g=1+bh+u.
Then we have 7(ii))=n. For v€ L(p, 1), if we define a left U(g)-action ‘%"’ by
Xxv=v(~1(X)),
then as a left U(g)-module immediately we see

(L(p,A), %) =L(p, ).
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Since we can easily see
Un(@)»v} = v} U,(q)
for all m=0, we have the desired conclusion. Q.E.D.
From Proposition 3.3.1, we have:
COROLLARY 3.4.6. For every A€EP* and every admissible character y,
dimWh, (L(p,A))= cAL(D,1)).
Here, d=dimn.
Now we prove the following result which is conjectured by T. E. Lynch.
THEOREM 3.4.7. For every A€EPS* and an admissible character y,
dimWh, (M(p,A)) =dim V.

Proof. Proposition 3.4.3 and Lemma 3.4.4 implies:

i
Wh, (M(p,2)) = Z dimWh, ,(L(p, 1)).

i=]

On the other hand, from Corollary 3.4.6, and 1.2, we have
! !
> dimWh, (L9, 4)) = D, c LD, 1))
i=1 i=1
= c{M(p,A))
=dim V,.
Here, we put d=dimn. Hence we have the desired result. Q.E.D.

§4. Whittaker vectors in Gevrey completions
4.1. Unitary structures in root spaces
For a €®, we put
A*(a) = {BEA|Bl,=a}.

14888289 Acta Mathematica 161. Imprimé le 27 décembre 1988
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Considering the normal real form g, of g with respect to the decomposition
g=ii+h+u, we see there exists an involution 7 of g such that z];=—id; and 7(ii)=u. Let
o0: g— g be the complex conjugation with respect to g,. Put =c¢o1 (=7r00). Then, if we

regard g as a real Lie algebra, 6 is a Cartan involution of g.
We define an Hermitian product on g by

X, Y)=—(X,6(Y)).
Fix a €Z*. For simplicity, we denote the restriction of (,) to n, by the same letter.
For each B€ A™, we choose a non-zero element X, of g;N g, such that (X4, Xp=1.
Put X_;=—0(X,). Then X_,€q_, and for §,y EA™ we have

o _J1 ifg=y,
(Xp X)) = {0 otherwise.
Then {X _glBE AT(@)} is an orthonormal basis of fi_,. Let M, be the connected simply-

connected complex Lie group corresponding to m. Since it is invariant under ¢, we can
consider the compact real form M of M, corresponding to the Cartan involution 6.

Since M is simply-connected and connected, we can define an action o, of M on V,

which is compatible with the action of Lie algebra m. We also consider the adjoint
action Ad(m) (m€M) on fi_,.

LemMma 4.1.1. For each a €%, (Ad, 0i__, (,)) is a unitary representation of M.

Proof. For meM, X,YEn__, we have

—a’

(Ad(m)X, Ad(m)Y) = —(Ad(m) X, 6(Ad(m)Y))
= —(Ad(m) X, Ad(6(m)) 6(Y))
= —(Ad(m) X, Ad(m) 8(Y))
=—(X,0(Y))
~X. 7). Q.E.D.

4.2. Gevrey completions

Now we introduce Gevrey completions of generalized Verma modules. First we define
a family of seminorms on generalized Verma modules which are essentially introduced
in [GW] (also see {Ra], [Gd2]) for Verma modules. Hereafter we fix a positive real
number x.
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Let S(f1) be the symmetic algebra of i and let
7. S(it) — U(R)
be the symmetrization map. We fix a numeration {B,,...,8,} of A*™—S. Here,
h=dimii. Put X=X, .
For I=(i,, ..., i,) EN", put
XM =X ... X},

h

BD = B

k=1
h
=i
k=1

We fix some 1€P;* and put d=dim V,. Since M is compact, there exists some
positive definite Hermitian inner product (,); on V, which unitarizes the action of M on
V,. We can assume (v, v;),=1. We fix an orthonormal basis v,, ..., v, of V, such that
v,=v,.

Then we can write each PE M(p, 1) uniquely as follows.

d
P= 2 2 P(j,DX(H®v; (formal sum).

Jj=1 1eN"

Here P(j,)EC for all I1<j<d and IEN,.
For x=1 and >0, put

d
1Pl = > D PG, DI,

J=1 [EN*

M*(p, )= {PEM®,A)|Vt>0,|P|, <}

Next we define Gevrey completions of irreducible heighest weight modules.
Let él:M(p,/l)——)LA(p,/l) be the natural projection. We define

L*(p, 2) = ¢,(M*(p, A)).

Now we can state one of the main results of this paper.
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THEOREM 4.2.1. For all 1<x<2 and A€PS", we have

Wh, (L(p,4)) = L*(p, A).

4.3. Recursion formula

In this section we fix an arbitrary character  on n and wEWhn’w(]:(p,/l)).
Put n=dima and m=dimt. Let H,,...,H, (resp. T},...,T,) be an orthonormal

basis of a (resp. t).
We denote by Q the Casimir element in U(g). Namely

Q= 2 H,.2+i T+ D (X_ ;X +X,X_p).
i=1 i=1 BEAY

Put

QM=§M:T,.2+ D XXyt X, X ).

j=1 BEA*NS

Then, up to scalar factor §,, coincides with the Casimir element for m.
Put

1
0= 2 BED",
BEA®
on=7 3 BErch"
peatnsS
0= 2, Beacihn
BeEAT-§

We fix A€EP{* and u€Q;.

Then, we have
Q=D HM > T+Hy,+2 ¥, X_,X,
i=1 j=1 geat

=QM+Z Hi2+HZQS+2 2 X-—ﬁXﬂ'
i=1 BEAT-S



WHITTAKER VECTORS AND THE GOODMAN-WALLACH OPERATORS 213

LEMMA 4.3.1. For all vEL(p, ),
Q v=((A,A)+(1,20))v.

Proof. Let u be any element of L(p, 1). We have only to show the statement of the
lemma for u. Since Q is contained in the center of U(g), the lemma follows from the
following formula, which we can easily deduce.

WI®1)- Q= ((4,A)+(4,20))vi®1). Q.E.D.
From the lemma, we have

(A, A)+(4,20)) w_,=Quw_,

=ng_#+(2Hi2+H29s> w_+2 D> X Xgw_,.

i=1 BEAT-S
Here

w= Z w_, (formal sum),
ueQ}

w_”EL(p,/l)_u (,uEQ;').
Hence we have:

LeEMMA 4.3.2. (Recursion formula.)

(A A+20) = (A —p, Ag=u+205) — Q) w_, =2, D, WXNX_pw_,.0)-
a€P geAt (@)

Here, if u—a € Q;, then we define w 0.

—uta =

We define T,(u) € U(n) by

T;(,“) = </1’ l+29>_<ia—ﬂ"1a_:u+295>_QM‘

4.4, Some unitary representations of M

Let r be a positive integer. For a=(a,, ..., a,) E®P’, put

W)= W(a,,...,a)=1_, ®c... ®ch_, ®c V;.
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For a € ®" we put
a)=a,+...+a;, (I=<sis=r).
We define a positive definite Hermitian product (,), on W(a,, ..., @,) such that
{X;®..®X_;Qu|f€EA™(a) (I<is<n), Isj<d}

is an orthonormal basis of W(a,,...,a,). We can immediately see W(a,,...,a,) is a

unitary representation of M with respect to (,),. Put
x|y = (x, X)g  (x € W(a)).
Let a,,, €®. We regard X_; (B€A™(a,, ) as an operator

X_ﬂ: W(a,,...,a,)—> Wa,,...,a,,,)

P®X_4m~P.

Then the operator norm of this operator ‘X _g"" is less than or equal to 1. Then

immediately we have:

LEMMA 4.4.1. There exists a positive constant C, which does not depend on

Qs ...,q,,, such that
> pXpX || <C).
BEA*(a,,)
Next we consider the action of Q,, on W(qa,, ..., a,). Since Q,, is contained in the
center of U(m) and W(a,, ..., a,) is completely reducible, we have:
LEMMA 4.4.2. Q,, acts on W(ay,...,a,) as a diagonalizable linear operator and

moreover distinct eigenspaces are orthogonal to each other. The eigenvalues of Q,, are

all non-negative.

4.5. An estimate of || T,(»)7"||

Let g, be the normal real form of g defined in 4.1. and let o be the complex conjugation

with respect to g,. We denote the induced conjugation on a*, §*, and so on by the same
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letter 0. For £€a*, put

RE = §+;(§) ,

_ &+a(d)
e = 2i

Put

=

(’1:’ ’11+2QM> +2(u, mﬂ'a_93> - i}
() 2

Y(A) = {# €Q;

LEMMA 4.5.1. Y(A) is finite.
Proof. Put

a¥ = {{€a* &(g,na)cR]}.

The lemma is deduced from the fact that

(A A +204) +2(E, R4, —05) ?i}
(£.8) 2

{ee
is compact set of af =R". Q.E.D.
Hereafter we fix a non-negative integer s(4) such that
{ueQ; ||y <sA}=2YR).
Then we have:

ProrosiTioN 4.5.2. Let r be a positive integer. We fix a=(a,,...,a)E®". Put
u=a(r)=a,+...+a,. If r>s(), then T,(u) acts on W(a,,...,a,) as an inversible linear

operator.
Moreover we have

(T~ <2 ) "
Here ||T,(w)™"|| is the norm as a operator on the Hilbert space W(a,, ...,a,).
Proof. We have

(A,4420) = (A, —p, A—p+205)
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= <At’ lt+20M> + <Aav A‘a+29S> - <,unu>
+ (At 205) + (Ao ) =Ry, Aot 205)

= <ﬂ’t’ A’t+2QM> + </l, ZAQ+ZQS> - <,u1/u> .

Hence
Ty (1) = (Ap Ai+2040) + 1, 22, +205) — (i, 1) — Ry

Let n be an eigenvalue of 7,(x) as a linear operator on W(a,, ..., a,).

r

From Lemma 4.4.2, we have
Ry < (Ay, A4+ 20y) + (1, 2R+ 205) — (o 1) -
Since u € Y(A), from Lemma 3.5.1 we have
Ry <= Hu,u).
The proposition is easily deduced from this fact. Q.E.D.

Next we introduce a new positive definite inner product {, } on af as follows. For
a,,a,€EP,
0 if o,*a,,
{ay, a0} = {1 if a,=a,

Then there exist positive constants C, and ¢, such that
C; H{x, x} < (x,x) < ¢y{x,x},

for all x€af.

Immediately we have:

CoRroOLLARY 4.5.3. We fix (a,,...,a,)ED". Put u=a,+...+a,. Then we have

1T (07"l < 2C,{u,u} 7"

4.6. Proof of Theorem 4.2.1

We use the notations of sections 3.1-3.5. Hereafter we fix A€EPS", an arbitrary

character ¥ on n, and w€Wh (L(p,A)). Then we have the following formal expres-

n,y
sion.
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where w_, EL(p, /1)_”.
Let H, be the element of a such that a(H) =1 for all a€® (cf. 1.1). Put jp|=
v(H,) for v€ Q. For v€Q], we define.

1v)={(a,...,a)q€P (A<isp),v=a+...+a,}.

Let u€Q; and a=(a,, ..., a,) EI(x). Put a(r) = o, +...+a, for 1 <r<|uf. We de-
fine a [-homomorphism p, , from W(a,, ..., a,) to M(p,1)_,, as follows.

P, (X|®...0X,®u) =X, X,... X, v.

Here X, € ﬁ_a‘_ (Isisryand vEV.
Let q, be the natural projection from M(p,4)_, to L(p,4)_,.
For u€Q;, we define

W= @ Wa),
a€l(u)

P.= Z Pa, /-

a€l(y)

W(u) has a unitary structure induced from (W(a),|| ||,). We denote || ||, the norm of the
unitary structure on W(u). We can easily see p,:W(u)— M(p,1)_, is a surjective
[-homomorphism. Put r, = q,°p,.

For u such that [u|<s(4), we hereafter fix w_, € W(w) suchthatr,(Ww_)=w_,. Since

r, intertwine the action of T,(x), Proposition 4.5.2 implies :

LEmMMA 4.6.1. Let u€Q} satisfy |u|>s(A). Then T)(u) is inversible on L(b,A)_, and
M(p,4)_,.

Now we introduce some notations. Let 4 € Q] satisfy |[u|>s(4). Put
D(u) = {vEQ]||v|=s(A),u—vEQ}.

For a €®, put

Y,= O vXpX_,

BEAT (@)
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We denote by Y, the lifting of Y, to a linear map of W(a,, ..., a) to W(a,, ..., a;, @)
or of W(&) to W(§+a). (Cf. 4.4.) Here a;,...,q,€P and £€Q; .
Then Lemma 4.6.1 and Lemma 4.3.2 imply :

LEMMA 4.6.2. Let u€ Q7 satisfy |u|~s(2)=r>0. Then
w,=2 D > T@n+v)'Y, Ter-D+»)7'Y, .. TeD+)'Y, w_,.
»ED() 0. € (u—) i

Here a.= (q,, ..., a,) and ofi) = a,+...+a, Hence p=a(r)+v.

For x4 € Q; such that |u|—s(1)=r>0, we define an element of W(u) by

b_o,=2 D, Y T+ ¥, Ter-D+0)" Y, T+ ¥, b,
v € D) ¢ € [a—v) ’

Clearly we have

rﬂ(w_#) =w_,.

Next we are going to estimate ||w_,[|,. First we introduce some positive constants

which only depends on y and 4. Put
Cy= max ([w_,[,|v€ Q}. | = s},
D, = {veQ;|v|=sd)},

C4=max<2 < [l {a(;),au)}))-

VED; \ g€ 10 \1gjssh)

i

Fix u € Q, such that |u|—s(1)=r>0. From the definition, we have

ll_, ||, < Cy(4C CyY Z 2 (H{u(i)+v,a(i)+v}“)

vEDQ) a€lu~v) \ Isisr

(H
<ccic,cy S ( I {u(i),u(ﬂ}“)-

a€l(w) \ Isisiy]

We fix a numeration {y,, ..., y,} of ®. Then every u € Q; is represented as follows.

u= i mgy;
i=
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where m, (1<i<n) are non-negative integers. From the formula in [GW] (4.9), we have
> ( 11 {a(i»a(i)}*) = Jm»2. ¢))
o €1(w) \tsisly| i=1

We easily have

___M!_g n*. (3)

m!...m,

From (1), (2), and (3), we have:

LeMMa 4.6.3. There exists some positive constant Cs such that for all u€ Q;
e}, < C¥* (2

Putw_,=p,(0_,) for 4 €Q,. Next we are going to estimate [lw_,||, ,for 1<x<2and

t>0.
First we introduce some notations. Put

d= U AYa).
a€P

For u=Q;, we put
J) = {(B,, "-’ﬂw;)lﬂie(i)(l i), p= @B+ 4B}
If we put C,=card &, then we have
card J(u) < C¥., 4
For any positive integer r and B=(3,, ..., 3,) € D", put
Xy= Xﬂ. .. X, €U).
We choose an orthonomal basis v, ..., v, of V,asin 3.2, Then Lemma 4.6.3 can be
rewritten as follows.

LEMMA 4.6.4. For each u€Q/, w_, has the following expression.

d

W= 2 QU.B Xy,

J=1 BEJ(w)
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where Q(j, B €EC (1sj<d,; BE J(w)) satisfy
d
> > 106G, By
j=1 BEJ(W
Especially, for 1sj<d and BEJ(u), we have
103, Bl <CE (w2
We quote:

LeMMa 4.6.5. ([Gd2] (2.3), (2.4).) Put h=dimfi. For € Q_ and PE€J(n), we have

the following expression.

1 5 1 5
—X,= >, — X,
= 2 X0

where c?EC satisfies the following conditions (A), (B).
(A) ;=0 if I|> |y

(B) There exists some constant C, which only depends on the structure of # and

satisfies
|cB < ¥l

Put
K = {(TEN"| 1| < Jul}.
Then there exist some constant Cy such that
card K(u) < C}‘;‘.
From Lemma 4.6.4 and Lemma 4.6.5, we have

d
a, =Y S S Lo et xay,

J=1 1EK(u) BEJ () !

We fix 1=x<2 and t>0. Then we have

d

N Sl D D 100, B ey !

J=1 BEHu) 1€ Kp)

< dC5(C5 Co CoM(ful )™ E (! )

(L[}

< ABn)W(|u|H 2.
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where A=dC; and B=C,C,C, C;.
Put

Now we have

@l < > N0 .

©€Q7
<A D (Bl 6)
“eEQ}
< o,
This implies 1w € M*(p, A). Since §(iv)=w, we get the desired conclusion. Q.E.D.

4.7. Whittaker vectors in the Geverey completion of a generalized Verma module

The following results is deduced from just the same argument of Theorem 4.2.1.

THEOREM 4.7.1. For all 1sx<2 and A€EPS™, we have
Wh, (M(p,))cM*(p, 2).

For the later use, we slightly generalize the above result.
Fix A€PS*. We define

O(A) = {E€ a*|M(D, A +E) is irreducible}.

As a finite dimensional m-module, we identify V, and V,,, (§€a*).

From Proposition 3.3.3, we have:
LEMMA 4.7.2. For all E€O(A),
Wh, (M(p,2+8) = (p,A+E|vEV,}.
The following result is easily deduced from the proof of Theorem 4.2.1.

LEMMA 4.7.3. Let T be a compact subset of O(2). We fix v€V,. Then, for all

1=x<?2 and t>0, we have

sup [, A+8)l,, <
€T
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Put ®"=U, . ®’, where we put ®’={¢}. For all a =(a,, ..., a,) € ®*, put
la|=a,+...+a,.

Fix A€EP;* and £€qa*. We write

Y, A+E = Z Y, (A+8)_,

rEQY
where zpu(l+§)_# EM(p, /1)_#.

ProOPOSITION 4.7.4. Fix AEP;* and fix E€a* such that (u,E)*0 for all
w€Q,. Then there exists some €>0 such that z~>y (A+z§)_, is holomorphic on
{z€C|0<|z|<e} for all u€Q;.

Proof. From the proof of Proposition 4.5.2, we have
Tl+z§(:u) = <A'19 '1(+2QM> + </l, 2}’n+2QS> + </u’ 2Z‘§> - <ﬂ,ﬂ> _QM‘

T,,(u) is inversible for |u|>>0, 0<|z|<<I. On the other hands, there exists some
discrete subset U of R such that all the eigenvalues of Q,,on W(a) contained in U for all
a€d”. Therefore, T, J(a,+...+a,) is inversible on W(a) for all a=(a,,...,a)ED".

Hence, we get the desired conclusion from Lemma 4.3.2. Q.E.D.

§.5. The Goodman-Wallach operators
5.1. Principal series

Hereafter throughout § 5, we fix some ScII such that S, S and use the notations of

1.4.and 1.5. Namely, G is a connected real semisimple Lie group with finite center, g is
the complexified Lie algebra of G, E,cV,, ... etc.

Let M, be the connected component of M, containing the identity element. Put
P,=M,A,N,. Then P, is the connected component of P, containing the identity
element.

Hereafter we denote by * either ““m”’ or *‘0”’. Hence (M, P,) is either (M, P,) or
(M,, Py). Let o be a finite dimensional irreducible unitaty representation of M, and let
E, be the representation space of 0.

For any real analytic Lie group X, we denote by #(X) the space of measurable
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functions with respect to the (left) Haar measure. Let #be ¢* (1<x), C”, & or M. Let
F(G;E,) (resp. #(K; E,)) be the space of E -valued functions on G (resp. K) belonging

to the class #.
Let Z={X,,...,X,} be a basis of a real vector space fng, For r>0, x>1, and

fECT(K;E,), put
||f||k’f,=inf{C>O]Vn€N,VX,.l,...,X,. EZ, sup||f(X; ... X, :k)||g <Ct"(|n|)"}.
n kEK 1 n ]

Here, || {|¢ is the norm of E,,. Put
G (K E,), = {fEC'(K; E)|IfIIf <}
From [GW] Corollary 1.2, we have

Y(K;E)= U 9" K;E),.
>0
Moreover, the topology of %*(K;E,) coincides with the direct limit of those of the
normed spaces %K E,),.
Let H,(0) (resp. 9;(0)) be the space of E -valued square-integrable functions

(resp. ultradifferential functions of Gevrey class of order x) f on K which satisfies
flkm)=o(m)~'f(k) for all kEK and mEM,. Since ¥%%(0) is a closed subspace of
%*(K; E,), we introduce the subspace topology on 4,(0).

Let vEa). We define

F(GIPy; L, ) = (f€ F(G;E,)| Vg €G, YmE M+, Ya€A,, VnEN,,
flgman) = """ Y5(m)~' f(g)}.

We regard #(G/P,; L, ,) as a G-module by the left action. Namely, put

a* (g)f@)=r(g;' 8,

for all f€ #(G/P,;L,,) and g,,g€G.
For f€H, (or f€ 4,(0)), we define e ()€ MG/P,;L, ) by

e,(f)kan) = ¢” 7%V £(k),
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for kEK, a€A,, n€EN,,. Put
H,(0,v) = {e(f)EMGIP;L, ) fEH,(0)}.

We can immediately see

e,(95(0) = G (GIP,; L, ).

Since H,(o,v) is isomorphic to H,(0) as vector spaces, we can easily see that
(7} ,, Hy(o,v)) is a strongly continuous representation of G on a Hilbert space.

Clearly, we can see Hy(o, v) is a direct sum of a finite number of principal series

representations in the usual sense. Namely, we have

Hy(o,v)= @ [0:1]y ]H,(F.v).
TEM,,

Here, M,, is the set of equivalence class of finite-dimensional irreducible representa-
tions of ,, and [0:7],, ] is the multiplicities.

From the same argument as the proof of [GW] Lemma 5.1, we see the space
S, (7} ) of Gevrey vectors of order 1<x in (n} ,, H,(0, v)) coincides with ¢*(G/P,; L, ,),
and is also isomorphic to %%(o) as topological vector spaces. We simply denote
WFIUE, by (I£]1X, for all f€ 9%UG/P,;L, ) and t>0.

We denote by o (G/P,;L,,) (resp. H,(0),) the space of K-finite elements of

H,(0,v) (resp. H,(0)).
A(G/P,; L, ) has a structure of a (g,K)-module induced from the G-module

structure of H,(o,v). #(G/P,;L, ) is a Harish-Chandra module. We can easily see
A(GIPy; L, ) is isomorphic to H,(0), as a K-module via e,.

Hereafter throughout § 5, we fix some ScII such that S, cS.

Let L€EP{*. We denote by o, the finite dimensional unitary representation of M,
with the highest weight 4, with respect to (t,u0m,,). Then we can identify E, with E,.

Let o} be a contragradient representation of o;. Namely, E,,=E}. Put ’=4, .

Define
4*(GIP,, 2) = 9" (G/IP,; L‘,;, v QM),

A(GIPy, 2) = AXGIPy; Loy 1110
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Since 9*(G/P,, 4) is the space of the Gevrey vectors in H(oj{‘,lam), hereafter we regard
9*(G/P,, ) as a topological vector space (cf. 1.6).

5.2. Embeddings into principal series

Let V be an irreducible Harish-Chandra module. We fix A EP;*.
Put

Emb(V;1) = Homg‘K(V, A UGIP,y, A)).

We remark that the highest weight vector v, of V, is also a highest weight vector of
E,. For 1EEmb(V; 1), we define J,€ V* by

0,(v) = [l))()v) WEYV).

Here, e is the identity element of G, and we remark that [«(v)(e)] € E}.

We define '’X=—X for X€g. Then we can extend X ~'X to the anti-automor-
phism of U(g).

Now we consider V* as a left U(g)-module, namely for v*€V*, vEV, and
YE U(g), we define

[Y-v*)(v) = v*('Y-v).
For t€Emb(V; 1), we can easily see
LeMMA 5.2.1. The map
E:M(®,,A)3YQu,~ Y -0,EV* (YEU(q)

is a well-defined U(g)-homomorphism.

Put

Emb°(V;4) = (1 EEmb(V; )| Image(E) is irreducible}.

Let SAG/P,y, 4) (resp. 45(G/P,, A)) be the space of the elements f of A (G/P,, ) (resp.
4*(G/P,, 1)) which satisfy

{
D f(g:Y)e)=0 (ZEG),
i=1

15-888289 Acta Mathematica 161. Imprimé le 27 décembre 1988
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for Y, ..., Y, € U(#,) and e, ..., ¢, € E, such that I!_, Y, ®e,€K(p,,,A). Clearly,
AAGIPy, =G (GIPy, 1).
Emby(V)= U Emb?V;4).
AEPET

We call an element of Embg(V) a minimal S-embedding.
We have:

LemMmA 5.2.2. For all tEEmb°(V, ), we have
(V) ALGIPy, A).

Proof. Let Y,,...,Y,€U(,) and e,, ..., ¢,€ E, satisfy L|_ Y, @e,€ K(p,,, ).
Then there exist Z,, ..., Z,€ U(m,,) which satisfy e,= Z;-v,. Let Q be an arbitrary

element of U(g).
Since i€ Emb°(V, 1), we have

/i
> QY28 =0.
i=1
for all vEV. If we put f=i(v), then we have
li
0= f(QY,Z,:e)v))
i=1

!
= 2[‘ Z; fle:QY)lv,)

i=1

i
= D' [fle:QN))Z; vy
i=1

[
= > [f(e:QY)e)

i=1

Since Q € U(g) is arbitrary and the function

!
GEg~ D [f(g:Y)Ie)

i=1

is a real analytic function on G, we have the desired conclusion.
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5.3. The definition of the Goodman-Wallach Operators

Fix an arbitrary character y:n—C, 1<x<2, and 2€EP{*. Let w be an element of
L*(p,A). From the definition of L*(p, 1), we can choose w € M*(p, A1) such that g,(w).

Then we can write as follows (cf. 4.2).
d —

= > W(,DXDRu,
j=1

J=11en*

Here W(j,I) €C for all 1sj<d and IEN", and X(I) and v, ..., v, are defined in 4.2. We
fix Z,€ U(m) such that v,= Z,-y, for all 1<i<d.
We define J,€ 9*(G/P,, H)* (1<i<d) by

0(f)=1f(Z;:e)lv)) (fE€ G (GIPy,A)).
G(G/P,, A)=9;(0%) as topological vector spaces and the natural embedding
% (0% o C°(K; Ea;)

is continuous. Hence we can see 9, is continuous linear functional on ¥(G/P,, 1) since

0, clearly defines a continuous linear functional on C*(K ;E,,A.). Namely, we have:

LemMA 5.3.1. Fix arbitrary t>0 and some |<i<d. Then, there exists some posi-
tive number |8, , such that for every fEG(GIP,,2A) which satisfies ||f||f <, the

Sfollowing estimate holds.
BLOI=I0L, A1l

Put 0], , = max, ¢y O], -
For f€ 9" (G/P,, A) we define

d
w ()=, > WU DIFEDZ :0)lw,).
j=1 [EN*

From Theorem 4.2.1, and [GW] (2.2), we see w,, is a continuous linear functional on
G (G/Py, ).

Namely, we have:
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ProPOSITION 5.3.2 Fix arbitrary t>5>0. Then, for all f€9*(G/P,, A) which satisfy
IR , <o, the following estimate holds.

| (O < Nl s 18], N1l oo

where e=r(t—s)* and w is an element of M*(p,A) such that q,(w)=w.

Moreover we easily see the definition of w,, does not depend on the choice of w if
we restrict w,, to 9(G/P,, 1).

Hereafter we assume w € Whn,_w(I:(p, A)eL*(p,A).

We denote the restriction of w, to A} (G/P, 1) by the same letter. We have:

ProrositioN 5.3.3. For all f€ G%(G/P,y,2), we have
0, X -f)=ypX)w,(f) (XEn).
Especially w,,€Wh}  (A3(G/P,, ).

Proof. We define w € M*(p, ) as in 4.6. This proposition is directly deduced from
the following fact.

X-w=—-yX)w modK(p,A)nM*(p,4). Q.E.D.

Remark. The Whittaker vector w,, is introduced by Goodman and Wallach in [GW]

when G is a real quasi-split semi-simple Lie group.
Put

7,(8)f(g) =f(g'g),
192,(NNQ) = w,(m,(eH ),
for f€ 95(G/P ) and g,g,€EG.
From Theorem 4.2.1, Lemma 1.6.1, [Gd1] (2.6), we can easily see Q (f) € 4*G),

since f€ 9°(G).
We put

GG, n;y) = {fEG(G)|VgEG,VXEN, flg: X) = —y(X)f(g)}.

Especially 9'(G, n; y) = oG, n; ). Using the left action we can regard 9*(G,n;y)as a
left G-module. From Proposition 5.3.1, we can easily see Q, (f)€ 9 (G, n;y).
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We call the G-homomorphism
Q,G(GIPy, A) > GG, n,y)

the Goodman-Wallach Operator (attached to wEWhn,_w(M(p,l))).

5.4. The injectivity of the Goodman-Wallach Operators
We fix LEP{* and w€Wh, _(L(p, 1))

Then w is uniquely written as

where w_MEL(p,A)_#. We define w_, such that g (w_)=w_,, as 4.6, forall u€Q;.

First we prove:

ProrosiTION 5.4.1. w#0 if and only if w,+0.

Proof. We assume w,=0. Then, via the canonical pairing of 3.1, w defines
w*EWh:'_w(I:(fJ,l)) such that w*(1® V*)=0. However, since L(P,1) is generated by
(1® V¥ as U(n)-module, we have w*=0. This means w=0. Q.E.D.

For z€C we put
()= >, Hw_,
HeQ,
w(z) = q,(w(2)).

We can easily see w(z)EWh"‘_:,‘,(l:(D,l))-

Then we have:

LEMMA 5.4.2. For all 4 (G/P, ), w,,(f)is an entire holomorphic function in z.

wlz

Proof. Fix f€ s5(G/P,, A) and r>0 such that ||f||¥ <.
We have

Wy F)= 2, o, (). (1)

HEQ,
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From 4.6 (5), there exist some A, B>0 such that
@ Jl,., < ABOHy2,
for all >0 and « € Q. Hence, from Proposition 5.3.2 we have

l“’w_y(f)lS Hw_#H%‘ 2k+1,léf~, 2;”f“f,r

)
< D A, A el B2 .

ueQr
Hence the right hand side of (1) converges uniformly on |z|<R for all R>0. Q.E.D.
Next we prove:

THEOREM 5.4.3. We assume wEWhn,,w(LA(p,/l)) is non-zero. Then there exists
some discrete subset D of C such that 0¢ D and for all zEC-D,

Qi A GIPy, 2) - AG, n; 29)

w(z)
is injective.
Proof. Put

U= {z€C|Q,, :AYUGIP,, ) — G, n; zy) is not injective}.

w(z)

First we show 0¢ U. There exist some Z€ U(m) such that Z®vu, = w,. We define
0,€ A (GIPy, A)* by

0L =1f(e: )y (fE€AUGIPy, 1))
Clearly, 0,=w,q,.

Since V, is an irreducible U(mm)-module, there exists some Y€ U(m) such that

YZ v,=v,. We can easily see
1'Y'Q-Q, (NHle)=Lf(eNQ vy,

for all Q€ U(m,). Hence Q , :A(G/Py, A) — UG, ;) is injective.

Next we assume U has a limit point. Since kernel of Q. is (g, K)-submodule of
A (GIP,, ) and A %(G/P,, A) has finite length, there exists some non-trivial (g, K)-
submodule of H3(G/P,, 1) such that

W= {z€(| V_D_KCF(QW(Z))}
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also has a limit point. Choose a non-trivial element £ € V. Then we can immediately see
that there exists some k€ K such that [h(k:Z)])(v,)#0. Since V is K-invariant, there

exists some f€ V such that [f(e : Z)}(V,)#0, namely w,,,(f)#0. On the other hand, we

have
W, (f)=0 (zEW).

Since W has a limit point, Lemma 5.4.2 implies w,,,(f)=0 for all zEC. This is a
contradiction. Q.E.D.

Next we consider the following condition on S.

(R) png, is a real form of p.

Example 1. If G=SU(n, 1) (n>1) and p is a maximal parabolic subalgebra of g
which contains the complexification of the minimal parabolic subalgebra for G, then the
condition (R) does not hold.

Example 2. If G is real-split, then the condition (R) always holds for all §o5,,.

Under the assumption (R), we can prove a stronger result than Theorem 5.4.3.
Hereafter, we assume (R) holds.
Put a,=q, Nang, Let A, (resp. N) be the analytic subgroup of G corresponding

to a, (resp. nN g, and let M, be the centerizer of A, in G. Let P be the normalizer of
png, in G. Then P has a Langlands decomposition P=M, A, N.
Let n=dima,. Let £, the restricted root system with respect to (n,,a,)

and let I1,, be the set of simple roots of Z. Put
M= {a€T,|al, +0)
= {a,,...,q,}.

We denote the restriction of a; (1<i<n) to a, by the same letters.

Then, we can easily see Il forms a basis of the dual vector space of a real vector
space a,. Let {H,,...,H,} be the dual basis of a,,.

Put R} ={(x,, ..., x,) ER"| x>0 (I<i=n)}. For x=(x, ..., x,) ER, we define

a,= exp(—z log(x,) H,.> €A,.

i=1
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Then we see x~»qa, is an isomorphism of R, to A,,.
For A€ H* and x=(x,, ..., x,) ER], we define

th= exp< A(i log(x;) H,.> > )
i=1

Fix 1<x<2. Let w€EWh, _ (L(p,A)). According to the proof of Theorem 4.2.1,
there exists some w_, € M(p,4)_, W€ Q;) such that

()
ueay

and there exist some A, B>0 such that

ll@_ I, < ABOH(fe 2,

for all >0 and #€0Q;.

Put w_ =3 W ®Z,v,, where W?, € U(?t)_,, and Z;€ U(m) for (1<i<d).
We consider w,(r,(a; ' f) for f€ %(G/P,, %) and xER’,. Put w_,=q,(w,). We have

] MQ_

wwvu(n).a;l)f) =

[fa;: W2, Z))w)
i=1

o

=D [f*WPZ:a)l(vy)
=1

!

1

= x4 w, (f).
For x=(x,,...,x,)ER’, put
[x[ =[x |+... +]x,)
Then, we get:

THEOREM 5.4.4. We assume the condition (R). Let 1<x<2 and let AEPZ]. We fix
wEWhn'_w(lﬂ,(p,/l)). We choose w_, for u€ Q. as above.
Then for all 45(G/P,, ) and xER’, we have

o la f)= D, o, (f)x". )

HEQ
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Moreover for all R>0, the above series is unformly convergent for |x|<R.

Proof. We have only to show the uniform convergence. This is showed by the same
argument of the proof of Lemma 5.4.2, using (3). Q.E.D.

Since Q,,, is injective (cf. the proof of Theorem 5.4.3), we have:

CoROLLARY 5.4.5. We assume that (R) holds. Then for all non-zero w€
Wh, _(L(p, 1),

Q,: GAGIP,, A) > G(GIN; )

is injective.

5.5. Existence of a global Whittaker vector

Let V be an irreducible Harish-Chandra module and A€P;*. We assume

Emb°(V;4)#0. Fix a non-trivial : € Emb°(V; 1) and an arbitrary character y:n— C.
For w€Wh, _ (L(p, 1)), we define W, (w)€EWhE (V) by

n, - Ly ny

¥, ,(w)v) = w,0@) @WEV).

From [V1], we have Dim(V)=Dim(L(p, A)) when Emb°(V; 1)=0.
Hence, from the Theorem 5.4.3 and Corollary 2.2.3, we immediately have:

THEOREM 5.5.1. There exists some discrete subset D of C such that 0& D and for
all z€C—D the map

q!:,z - Whn‘ _Zu,(i(;j, ) — Wh¢ V)

Y nzy
is injective.
Moreover, if y is admissible, Dim(V)=dim n, and Emby(V)*0, then Wh{ _ (V)*0.
If the condition (R) holds, from Corrollary 5.4.5, we have a stronger result:
THEOREM 5.5.2. We assume the condition (R) holds. Then the map

W, s Wh, _ (L0, 4)) > Wh{ (V)

", - ny

is injective.
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Moreover, if Dim(V)=dimn and vy is admissible, then Emby(V)*0 implies
Whﬁw(V)¢0.

§ 6. Whittaker vectors attached to an admissible character
on the nilradical of a minimal parabolic subgroup

6.1. Whittaker vectors on principal series

In § 6, we use the notation in § 1 and § 5 freely. We also assume hereafter in §6 §=3S5,,.

Hence we have p=p,, n=n,, [=[,, ... etc. However m=m,, and a=a, may not hold.
Let W be the little Weyl group with respect to (g, a,). Put t,=fnm,. Hence we

have h=t,@Pa,, and t, and a,, are orthogonal with respect to the Killing form. Using

Killing form, we can regard t* and a as subspaces of h*. Since tct,,, and the restric-

tion of each element of a};, to t, is zero, we have
a*c Pt

First, we consider the Whittaker vectors on spherical principal series with unique
quotients.
Let id,, be the trivial representation of M, .

Let F be 9, sy, or C*. For vE a¥, we put

F(GIP,;L,)=F(GIP,;Ly ).

m?

Then we have natural embeddings:

HALGIP,,; L) A(GIPy,v—0,),

m?

G*(GIP,;L)>%,(GIPy,v=0,),
Put

(a})_={HEa*|Va€Il,, R(a(H))>0}.

m
We quote:

THEOREM 6.1.1. ([Ly] Theorem 6.2.2, Corollary 6.2, also see [Ko] Theorem 5.2.1,
Lemma 5.2.) We assume v € (a})_ and y: U(n,,) — C is an admissible character. Then,
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ALGIP,; L) is a free U(n,)-module with card W generators. Hence we have

dim Wh?

nm,w(dk(G/Pm;Lv)) = card W.

Remark. The dimensions of dual Whittaker vectors on non-spherical principal
series are also known ([Ko] Theorem I, [L.y] Theorem 6.4). Namely,

dimWh, (A(G/P,;L, ) =card Wdim V..
For f€ C*(K/M,,), we define e (f)€ C*(G/P,;L,) by
e,(f Nkan) = €% fkM,,).

For each w€W, we fix a representative w*€G. We put i, =Ad(w*)nni. Let
N,=Nnw*"'Nw* be the corresponding analytic subgroup of N.
We define for f€ C*(G/P,,;L,) and wEW,

0, ,(f)= f fw*n,)dn,,.
Nm

We denote the restriction of 9, ,, to ¥*(G/P,,; L,) by the same letter.
We also define for f€ C*(K/M,)),

0,(v.f)=19, (e (f).
Put
(a¥)__= (vE(a:,)_|Vaez;,,2i"‘—*‘fl¢z>.
" (a,a)

THEOREM 6.1.2. ([He]l, [Sch], cf. [Wal.)
(1) For all v€(a})__and wEW, 4, , is a continuous linear functional on

C*(G/P,;L,). Hence 6, , is also continuous on §*(G/P;; L)) (x=1).
Especially, for each t>0 there exists some positive number |0, |, , such that for
every f€GXGIP,;L,) which satisfies || f||X <o, the following estimate holds

18, (I 10y, whe AS Il

Moreover if T is a compact subset of (a¥)__, then we can choose |9, |,  for vET such
that

Sup |6v w|x,l < co.

vET
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(2) For all f€ C™(KIM), v~0,(v,f) is a holomorphic function on (a})__.

We fix v €(a¥)_. Then we can easily see there exist some & € a* which satisfies the
assumption of Proposition 4.7.4. (Even if Z*#Z;, we can easily see this fact.) We may
aslo assume v+z£ € (ay)__ for all 0<|z]<<1. We fix some non-zero vE€V, . Let ¢ be a
sufficiently small positive integer. For z€C such that 0<|z|<e, we consider
(—y (wv+z8)—p,) € Whnmykw(M(p, w(A+zE)—p,,)) defined in 3.3.

There exist unique Pf’u(z) € U(n)_, for all u€ Q; and w€ W such that

—9),Ww@+8—-0,)= >, P*()®v,

reQr

and z~»P¥ (z) is holomorphic on 0<|z|<e for all x€ Q} and wE W.
For f€ *(G/P,; L,, ), we define

ww,z(f) = 6w.v+z£< 2 dﬂv+25(l(P‘fﬂ(z)))f)>_

HEQ,

Here, dn,, . is the differential representation of ¥*(G/P,,;L,, ;).
From Proposition 4.7.4, Theorem 6.1.2, and [GW] (2.2), we have:

LEMMA 6.1.3. Let 1sx<2. Fix (a})_. We choose & as above and let € be a
sufficiently small positive number. Then, w,, , satisfies: Put V.= §(GIP,; L, ..
(D, , is a continuous linear functional on V_and contained in Wh¥ (V) for all

0<|z{<e. Especially, for each t>0 there exists some positive number |6, |, , such that

for every f€ §X(GIP,; L,) which satisfies | f||5 <=, the following estimate holds
Wy (OIS0 + 2O, 10 l0rce b, 2l A1

(2) For all f € §(KIM), 2w, (e, {f)) is holomorphic on 0<|z|<e.

Z

Put r=card W. Fix A €(a*)_ and choose £€a* as above. From Theorem 6.1.1, for
all z such that |z]<e, dim Wh, (A(GIP, L, J))=r.
Let o, (K/M,) be the space of K-finite functions on K/M,,.

Now, we can prove the following result in just the same way as {GW] Lemma 5.11.
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LEMMA 6.1.4. For all z such that |z|<e, we can define a basis

1 ®
yi),...,yz’

of Whi (A (GIP,;L,, ) such that for all f€ A (KIM,) and 1<i<r, the map

2>y e, ()
is holomorphic on |z|<e.
We have:

PrROPOSITION 6.1.5. Fix 1<x<2 and fix an arbitrary v € (a*)_. Then, every element

of Wh¥ ’w(.de(G/Pm;Lv)) can be extended to a continuous linear functional on

©¥(G/P,;L,). Especially,
Why (LGP, L) = thm_ ASA(GIP,;L.)).

Proof. Now we can apply the same method as the proof of [GW] Lemma 5.12.
Clearly, we have only to extend y{’ (I<i<r) to a continuous linear functional on

9*GIP,;L,).
We fix >0, 1<i<r, and f€ o (K/M,) which satisfies ||f]|5 ,<%. From Lemma

6.1.3 and Lemma 6.1.4, we can write

y(z”(ewzg(f)) = 2 di,w(Z)ww.:(eV“E(f))’

weEwW
for all 0<|z|<e. Here, d, ,(z) (w€ W) is homorphic functions defined on 0<|z|<e.

From Theorem 6.1.1, and [GW] (2.2), we have

Ve, (VIS D, s @I =0 WO +28 =0, 1, 10y, ubs, LA 1K -

weW

From Lemma 4.7.3, and Theorem 6.1.4, we have

sup > |d; @I~ @E+2E=0)l, 5,10yt wlw.i < ©

l2]=¢2 yew

We denote by M the above constant.
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Hence by the maximum principle,

e (0] < max e, o F)| < MUl

Since e (A (K/M, )= (G/P,; L)) is dense in 9*(G/P,,; L), we have the desired result.
Q.E.D.

Now that we have proved Proposition 6.1.5, we can prove, using Corollary 2.1.3
and Corollary 2.2.4, the following theorem in just the same way as the quasi-split case,
namely [GW] Theorem 5.2.

THEOREM 6.1.6. We assume vy is an admissible character on n,. Let ¢ be an

irreducible finite dimensional representation of M,, and vE€ a%. If
y€E Wh:m‘w(.de(G/Pm; L,)),

then w extends to a continuous functional on §*(G/P,;L, ).

Especially,

Wh:m,w(ﬂx(G/Pw L,))= thm‘w(dK(G/Pm; L,)).

6.2 Global Whittaker vectors

As a corollary of Theorem 6.1.6, we have one of the main results of this paper.

THEOREM 6.2.1. Let V be an irreducible Harish-Chandra module, and let
y:Un,)) - C be an admissible character. Then,
Wh¢ (V)=Wh* (V).

L N @

Remark. dimWh* (V) is given in Corollary 2.2.2.

Proof. From Casselman’s embedding theorem, there exists some irreducible repre-
sentation o of M,, and vE€a} such that there exists some embedding

Vo (GIP,;L, ).
For simplicity, put M=, (G/P,;L, ). Hence we have an exact sequence

0> MIVY* > M* > V*—0.



WHITTAKER VECTORS AND THE GOODMAN-WALLACH OPERATORS 239

From [KO] Lemma 4.5, the following is exact.
00— (M/V):;‘——>M:I"—> V:‘,‘—> 0.
From Corollary 2.2.4, we have an exact sequence

0— Wh,*{m‘w(M/V) —>Why (M) —>Why (V) —0.

n,, ¥

This means every Wh;’;m‘w(V) extends to an element of Wh:m,w(M)- Hence, by

Theorem 6.1.6, we have the desired result. Q.E.D.
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