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Introduction 

During the previous century an amazing amount of knowledge was accu- 
mulated about complete quadrics, collineations and correlations and a profound 
insight into their geometric and enumerative properties was acquired. A consid- 
erable effort has been made in our century to construct parameter spaces for these 
complete objects and to explain the results of the previous century in terms of the 
geometry and intersection theory of these parameter spaces. Severi [13], [14], van 
der Waerden [19] and Semple [10] studied such spaces for complete conics and 
Scruple [11], [12] and Alguneid [1] extended the results to quadrics in dimension 3 
and 4 respectively. Moreover, Semple [11] studied parameter spaces for complete 
collineations in dimension 2 and 3. 

The fundamental ideas for the construction of parameter spaces in arbitrary 
dimension were suggested by Semple [11] and performed by Tyrrell [15]. Their work 
is important, not only because they show how to construct spaces whose points 
are complete quadrics, collineations or correlations, but also because it suggests 
several different approaches to the construction of such spaces. During the last 
decade several of these suggestions have been followed by various authors. De Con- 
cini and Procesi [2], Demazure [3], Kleiman and Thorup [7] and Vainsencher [17], 
[18] all have different approaches to the subject and Finat [4] and Uzava [16] give 
variations on the same methods. The first part of the following work represents 
an addition to this literature. We do, however, take a different point of view from 
the above authors. While these start out by constructing a space which is a more 
or less likely candidate for a parameter space and then (at best) prove that the points 
of the space can be interpreted as complete objects in the classical sense, we start 
at the opposite end by generalizing the classical concepts of complete collineations 
and correlations to families of complete linear maps. We then define maps between 
such objects and show that there exists a unique complete linear map which is an 
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attractor for such maps. This complete linear map is then a natural candidate for 
a parameter space in the functorial sense. 

The definition of (families of) complete linear maps is one of the main con- 
tributions of the first part of the present work. A second main contribution is the 
construction of the characteristic maps associated to a complete linear map. These 
characteristic maps are the main tool in defining maps between complete objects. 
Our definition of  families of  complete linear maps is designed to extend the methods 
of Semple and TyrreU from fields to arbitrary commutative rings (with unity). As a 
result we obtain a treatment that is based upon (multi-) linear algebra over com- 
mutative rings and which extends to arbitrary base schemes. 

Two previous versions of the first part of  this work has circulated during the 
last three years. In both we start with the definition of a category of  complete linear 
maps and then solve the problem of  constructing a final object in this category in 
an as coordinate free way as possible. This approach is in many ways more elegant 
and is sketched in the last section below. We have, however, chosen a more "con- 
crete" presentation here because this is technically simpler. 

As has long been realized, the methods that can be used to study complete 
collineations and correlations can also be used to study complete quadrics. The 
methods of  this work confirms that observation. 

For the history of complete quadrics, collineations and correlations of  the 
previous century we refer to Zeuthens article [20]. An exposition and history of  
complete conics can be found in Kleiman [5] and Kleiman's article [6] contains 
many historical remarks and references to works on completed objects. In [8] we gave 
a sketch of the development of complete correlations and collineations and announced 
the results of the present work and in [9] we described the works mentioned above 
on completed objects in this century and gave some historical comments. 

w 1. Definitions, notations, examples 

In this section we shall give the definition of  complete linear maps over an 
arbitrary base scheme S and give their diagonal representation. Such a representa- 
tion was obtained by J. A. Tyrrell [15] in the case of quadrics over a field and our 
definition of complete maps is motivated by the desire to have a similar representa- 
tion over arbitrary rings. 

Let E and F be vector bundles over a scheme S, of ranks r +  1 respectively 
s+  1 with r<-s. Moreover, let T be an S-scheme and 

c~: Er  ~ F r |  

a T-linear map, where L is a line bundle on T and G r denotes the pull-back to T 
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of  a bundle G on S. For  each integer i =  0, 1 . . . . .  r we denote by I(i, a) the deter- 
minant ideal which is the image of  the map 

i + 1  i + 1  

(1.1) A E r |  A (Fr |  

obtained f rom the ( i+ 1)'st exterior power of  e. Here, as in the following, G* 
denotes the dual of  a bundle G. 

It is convenient to fix an open subset So over which E and F are free and to 
fix bases e0, el . . . . .  e, and f0,f~ . . . . .  f~ of  EISo respectively F[So. We denote 
by E(i)  and F(i) the subbundle of  E[So generated by e 0, el . . . . .  ei respectively 
the canonical quotient bundle of  FISo generated by fo,f~ . . . . .  J~- Moreover,  
we write 

e(io, il . . . . .  ij) = % ^ %  ^ . . . ^ %  

and 

f ( i o ,  i l ,  . . . ,  b) = f~o AA~ A... ^~. 
k + l  k + l  

We shall choose as bases for A E]So and A FISo the elements e(i0,/1 . . . . .  ik) 
respectively f ( i  0,/1 . . . . .  &) with 0<_-io<il<...<&<--r and we shall consider these 
bases as ordered in the lexicographical ordering. 

qhroughout  we shall consider the elements of  EISo and FISo as row vectors 
and consequently write the image of a vector e by a map corresponding to a matrix 
A with respect to some base as eA. 

Lemma 1. Let t be an integer such that O<=t<=r and assume that I(0, ~ ) = 0  r 
and the ideals in the sequence 

(1.2) I(r-- t ,  ~) ~ . . . ~  I(1, c 0 ~ I(0, ~) = 0 r 

are invertible. 
(i) Let V be an open subset o f  T which maps to So and is such that the maps 

i+1  i + 1  

(1.3) A E(i)v|  A F(i)~, -* I(i, ~)@L | 

induced by the maps (1.1) are surjective for i=0 ,  1 . . . . .  r - t .  Then choosing the 
trivialization 

t : 6v" (eo | -~ L 

of  L, given by (1.3) for i=0 ,  we have that the matrix M(a) which represents 

Ev ~v~. (F| fd.~* Fv 

with respect to the given bases eo, el . . . . .  e, and fo,.1"1 . . . . .  f~ can be written as a 
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product 

(MA 

(MB) 

A . D . B  of  matrices o f  the following form 

A(a,,j) = 

B(bi, j) = 

0 

1 

al,o 

Jar ,  0 

b o , 1  

1 

. . � 9  

1 

t 

a r - t + l , r - t  

ar ,  r - t  

1 br_t,r_t+ 1 ... 
1 0 

01 

0 
. . .0 1] be] 

 rl, s 
"'" 00: ]' 
0 1 

0 

dl 
did2 

�9 . .  0 

(AID) D(di,j) = : "dld2.. .d,-,  0 ... 0 

0 d~, 1 ... d~,,_,+ 

0 ... 0 dr,1 ... d,;s-,.+,l 

with ai, i and b~.j in F(V, Or), where di's are non-zero divisors in F(V, Or) and d~;j= 
dl.d2. . .d,_t .di ,  j with di, j~F(V,(Pv). 

Moreover, written in the above form we have that I ( r - t +  1, COy is generated 
by the determinants d , - t  n r - t - x  ~1 "~  .. .dr_t.di,j  of  the ( r - t+2)•  
o f  M(e)  containing the (r-- t+ 1)• (r-- t+ 1)-submatrix in the upper left corner�9 

(ii) Let x be a point o f  T that maps to So. Then we can find a neighbourhood 
V o f x  in T which maps into So and such that, after possibly renumbering the elements 
of  the bases eo, e~ . . . . .  er and fo,f~ . . . . .  f~, the maps (1.3) are all surjections. 

(iii) I f  we have that I ( r -  t+  1, e)=0,  then (ker Ct)v is the subbundle o f  rank t 
generated by e,_t+~A -1, er_t+2A -~ . . . . .  era -1 and (im COy is contained in the 
bundle 

( I ( r -  t, e): im (e))v 

of  rank r - t +  1 generated by foB, f tB ,  . . . , f ,_tB.  
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Proof. We shall prove assertions (i) and (ii) simultaneously for 0<-t<_-r+l, 
starting with the trivial case t = r + l ,  and proceeding by descending induction 
on t. Assume that assertions (i) and (ii) holds for some t with t>0 .  Then by (ii) 
we can, after possibly renumbering the elements of the bases, obtain that the maps 
(1.3) are surjective for i=0 ,  1 . . . . .  r - t  over some neighbourhood V of x. Denote 
by M(ev) the matrix representing e restricted to V in the given bases and with the 
given trivialization of L. By the second part of (i) we have that I ( r -  t+ 1, e)v is 
generated by the determinants A'-tA r-t- t  ~1 ~2 ...d,_td~, j of the ( r - t + 2 ) •  
submatrices of M(c 0 containing the (r-- t+  1)• ( r -  t+  1)-submatrix in the upper 
left corner. 

I f  I ( r -  t +  1, e) is invertible, then after possibly shrinking V to a neighbourhood 
V' of x, we have that it is generated by one of  these determinants and after possibly 
renumbering e,_t+ 1, e,-t+2 . . . . .  e, and f r - - t + t , f r - - t + g  . . . . .  fs we may assume that 
the generator is the determinant dl-td~-t-1. . ,  d,_fl~,l of the ( r -  t + 2);< ( r -  t+  2)- 
matrix in the upper left corner of M(cOv,, expressed with respect to the renumbered 
bases. We see that with respect to these bases the map (1.3) is then surjective over V' 
for i--0, 1 . . . . .  r - t +  1 and we have proved assertion (ii). 

Moreover, when the assumptions of (i) of the Lemma holds we see that all 
the coordinates ofM(c 0, that are both in the last t rows and the last s-- r +  t columns, 
are divisible by the ( r - t + 2 ,  r-t+2)-coordinate dtdz...d,_t+ t where we write 
d,_t+t=dl,  t. Hence, subtracting a multiple of  row ( r - t + 2 )  of M(a) from the 
last ( t-1)-rows we obtain zeroes in column ( r - t + 2 )  except in the ( r - t + 2 ) ' n d  
coordinate. These subtractions correspond to the multiplication of  D to the left by a 
matrix of  the form Ma with non-zero coordinates only in the ( r - t +  2)'nd column. 
Similarly, we can multiply D to the right by a matrix of the form MB with non-zero 
coordinates only in the ( r - t + 2 ) ' n d  column and obtain zeroes in row ( r - t + 2 )  
except in the ( r - t +  2)'nd coordinate. Hence, we have the first assertion of  part (i) 
of  the Lemma. 

To obtain the second assertion we notice that all we have done is to add multi- 
ples of row and column ( r - t + 2 )  to the last t - 1  rows respectively columns. 
Hence, the determinants of the (r- t+3)•  containing the 
( r - t + 2 ) •  ( r - t+2) -ma t r ix  in the upper left corner are the same before and after 
the subtractions, and clearly, after the subtraction, these determinants generate 
1 ( r -  t + 2, ~)v'. 

Assertion (iii) follows from assertion (i). Indeed, with respect to the bases 
eo.A -~, e l .A  - t  . . . . .  e , :A - t  and f0"B, f t ' B  . . . . .  f s .B  the map c~ v is represented 
by the matrix D. Hence, (ker C0v is generated by e,_t+t �9 A -t ,  e,-,+2 �9 A - t  . . . . .  e,.  A - t  
and (im C0v is contained in the direct summand 

{fE Fvld[-td~-t-t . . .  dr-t fC(im a)v} = ( I ( r -  t, a): (im a)v ) 

generated by the elements fo" B, f t .  B . . . . .  f ,_ , .  B. 
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We are now ready for the main definition of  this work. 

Definition. Let t be an integer such that O<=t<=r and let Q=(rx, r~ . . . . .  rk) 
be a k-tuple of  integers satisfying the inequalities 

r = r~ > r 2  > . . . >  r~ ~ t. 

We shall, as a convention, put rk+~= t--1. 
A t-completed T-linear map % between E and F, consists of  T-linear maps 

~i: E~-~F~| for j----l ,  2 . . . .  ,k ,  

where the Lj are line bundles on T, such that the following three conditions hold: 
(i) For  j =  1, 2 . . . . .  k the ideals in the sequence 

J(r~-rj+~- l ,  ~ )  c . . . c / ( 1 ,  ~j) =~ I(0, aj) = ~ 

are invertible. 
(ii) For  .j= 1, 2 . . . . .  k -  1 we have that 

I(rj--rj+l, O~j) = O. 

(iii) We have that EI=Er and F~=FT and that 

E~+I = ker aj 

and 

Fj+I| = FjQLfl(I(rj-r j+~-l ,  aj): imaj)  for j = 1,2, . . . , k - 1 .  

A 0-completed map we call a complete T-linear map. 
From Lemma 1 (ii) it follows that Ej and F i are bundles o f  ranks r j+  1 respec- 

tively s--r+rj+ 1. We shall call p the rank of  ~Q. 
From the definition it follows that Ej is a subbundle of  E and that there is a 

natural map F-~F i making Fj a quotient of  F. 
We shall say that two t-completed T-linear maps of  rank Q given by 

~j: Ej -.- Fj| 
and 

~: E ~ F ~ |  for j = l ,  2 . . . .  , k  

are (projectively) equivalent i f  there are isomorphisms 

~,j: Ej -.- E; 

=j: E - ~ %  

z~: Lj - L~ 
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such that the diagrams 

Ej % Fj| 

E; "22 F; | 
commute for j =  1, 2 . . . . .  k, 

We note that from the above definition it follows that Ej and s  are equal 
as subbundles of  E and that F 1 and Fj are equivalent quotients of  F, that is, the 
diagrams 

F-*Fj 
[[ l J, 
F ~  F; 

where the horizontal maps are the natural quotient maps, commute for j =  1, 2 . . . .  , k. 

Example 2. (i) The diagonal form 

Denote by E' ( j )  and F'( j )  the free So-bundles generated by er_ 1, e,_1+1 . . . . .  e, 
respectively f ,_  j ,  f , _ j  + 1 . . . . .  A- 

Let o = ( r l ,  r2 . . . . .  rk) be a k-tuple of  integers such that r = r l > r 2 > . . . > r k > t  
and let T be an So-scheme. Moreover, we let 

fij: E'(rj)r-* F'(rj)r 

be the map given with respect to the bases e,_,a, e,_,s+~ . . . . .  e, and Y;-'a'f '- 'a +1 . . . . .  f" 
by the ( r j+  1)X(r j+  1)-matrix 

(M.ho) Dj(d,) = 

for j = l ,  2 . . . . .  k - 1  

-1 0 
0 d,_,k+l 

: o  

(Mk.o) 

1 0 ... 0 

0 d,_,s+l 
d,-,.s+ld,-,j+~. 

~ 

" 0 

d,-,~+ l d,.-,s+ 2 ... d,-,j+~-I 

" 0  ~ 1 4 9  

and for j =  k by the 

. ~ 1 7 6  

(rk + 1) X (rk + 1)-matrix 

Dk(di, j) = 

0 

0 

d,-rk +ld,-rk +~ ... dr-t 0 
0 d~,l ... d~,,_,+, 

0 d,,1 . . .  d , ' , _ , + t  I 
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Here dl, d~ . . . . .  dr_ t are non-zero divisors in F(T, Or) and 

d'l , ,  = 

with d,,~EF(T, OT). 
The maps cSj clearly give a t-completed T-linear map c~ of  rank e that we say 

is in diagonal form with respect to the given bases eo, e~ . . . . .  e, and f0,f~ . . . . .  f~. 

(ii) The diagonal representation 
Let A and B be matrices of the form Ma and MB of Lemma 1 (i). With the 

notation and assumptions of Example 2(i) we let Ej=E'(r i)r .A-1 and Fj= 
F'(rj)7..B. The maps 

aj: E j -~Fj  for j = l ,  2 . . . .  , k  

that are given with respect to the bases e,_,j . A -1, e,_,j+l. A -1 . . . . .  er " A -~ and 
f , -r~ 'B,f , -r j+l"  B . . . . .  f~-B by matrix Dj(Di, j) above clearly give a t-completed 
T-linear map % of rank 4. We say that the matrices `4, B and Dj give a diagonal 
representation o f% with respect to the given bases e0, el . . . . .  e, and f0,f l  . . . . .  f~. 

(iii) The "'generic" diagonal representation 
A particular case of the diagonal representation is sufficiently important to 

deserve its own terminology. 
Assume that So is affine and equal to Spec A. Let 

x~,; for O ~ j < - r - t ,  l < - i ~ _ r  and j < i ,  

Ye, j for O~=i<-r - t ,  l<=j~_s and i < j ,  

zi for iE {1, 2, ..., r - t } \ { r - r e ,  r--ra . . . .  , r - rk}  

z~,j for l~i_--<--t and l < - j ~ s - r + t  

independent variables over .4. We denote by Bt(e)---- he (r+ 1)(s+ 1 ) - / c -  1 
A Ix, y, z] the polynomial ring over A in these variables and let CL7(~)= Spec Bt(Q). 
The t-completed CLO(~)-linear map of rank 0 which has the diagonal representation 
given by A(xl, i), B(yi.j) and Dj(zi, t) we denote by r~ and we let 

v~ E j ~ F j  for j =  1,2 . . . . .  k 

be the individual maps that define vo(Q). 

(iv) Restriction to open sets 
Let % be a t-completed Tqinear map of rank Q given by maps 
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Then for each open subset V of  T the restricted maps 

(O~j)V: (Ej)v --~ ( F j ~ L j )  v 

give a t-completed V-linear map that we denote by (cte) v. 
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2. The caraeteristie maps 

Our next task is to define maps between completed linear maps. The main 
ingredient in our definition is the characteristic maps associated to a completed 
map. In the particular case that the completed map is of  rank (r) the characteristic 
maps consist simply of  multiples of  the adjugates of  the map 61 defining the com- 
pleted map. These adjugates, when ~1 has coefficients in a field, played a central 
role in the presentation of  Tyrrell [15]. It is crucial for our presentation that we 
are able to construct the characteristic maps over an arbitrary base and for com- 
pleted maps of any rank. 

Construction of  the characteristic maps 3. Let ~e be a t-completed T-linear 
map of  rank 0 =  (rl, r~ . . . . .  rk) given by maps 

~j: E j " * ' F j ~ L j  for j = l ,  2 , . . . , k .  
Put 

Ij(xe) = I(r--r2 -- 1, c 0 �9 I(rz--r~-- l, c%)... I(rj_ 1 - - r j -  l, ~j-a) 
and 

Lj(oce)  = L'-',|174174 for j = l, 2, ..., k - 1 .  

We shall construct canonical surjections, called the characteristic maps of  0c~, 

r--i+l r - - i + l  

cr A Er| A F~ ~ L ( r - i + t )  for i = t, t + l  . . . .  , r, 

where 
L ( r - i  + 1) = Ii(~)| I ( r j - i ,  ~j)| -I+1, 

when j is determined by the inequalities rj+x<i<-rj. 
The construction takes place in four steps. We first recall that whenever we 

have an exact sequence 

o-~P-~Q-~R-~o 

of  bundles on T with P and Q of  rank p +  1 and q +  1 respectively, then for each 
integer i such that O<-i<-p+ 1 there is a canonical surjection 

q--i+1 q--p p--i+l 
A Q ~ A R |  A e. 
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Similarly for each integer i such that O<=i<=q-p there is a canonical injection 

p + l  q~p--i q--i+l 
A P |  /~ R-- A Q. 

Step 1. Denote by Gj the cokernel of the inclusion Ej+IcEj. Then if 0-<i~ 
r j+l+ 1 we obtain a canonical surjection 

r j--i+1 rj--~+ I r j + ~ - - i + l  

(2.1) /~ E~-* Gj| /~ Ej+I. 

Similarly, if we denote by Hj the kernel of the map Fj|174 and if 
O<-i<=rj+x+ 1, we obtain a canonical injection 

"-2" "-2 Hi| A (Fi+a| ~ (FjQG). 

Step 2. The map 
~: Ej -~ Fj| 

factors through a unique map Gj~H i. Consequently, the resulting map 

rj--rg+x 
rJ-AJ+xEj --~ I ( r j - - r j + l - - I  , ~ j ) |  /~ ( F j |  

factors through a canonical isomorphism 

ry-9+1 
(2.3) "-~+'Gj --~ y[(rj-rj+1-1,~j)| A ]-~j" 

Step 3. Given a positive integer l~k.  Let 

r - - r $  rz--r 3 r! - l --rt 
a ( 0 =  A c~| A as|174 A c,_1 

and 
r - - r  z rg- - r  3 r I -- 1?1 

H(/)= A HI| A H2|174 A H,_,. 

Then, taking the composites of the maps (2.1) and (2.2) for j = l ,  2 . . . . .  l - l < k  
and tensoring by the appropriate bundles, we obtain maps 

r--i+1 rz--i+l 
(2.4) A Er~G(l) |  A E, 

respectively 
- - "  r - - i + X  

(2.5) H(/) |  A+~ F~ ~ A Fr| �9 

Moreover, the tensor product of the maps (2.3) gives a map 

(2.6) a~(l): G(1) ~ 1,(a~)| 

Step 4. The map 

r l - - / + l  rt--i+l 
(2.7) a~(r,--i): A Et~I(r~--i, oq)| /k (FI| 
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obtained from the ( r l - i +  1)'st exterior power of a t when rl+~<i-<-rt gives, to- 
gether with the maps (2.4), (2.5) and (2.6), a map 

co( r - i ) :  

which makes the diagram 

r - - t + l  

(2.8) 1 

G( / ) |  +* 

commutative. 

r--/+l r--i+l 

A E r ~  A F r |  

%@ - i )  r - i + 1 

' A F r |  
II r--l+1 

i i(%)| - i ,  =t)| A Fr|  | -'+x 

t rt--i+l 
E: ~,m| _r,(~)|174174 A F,| 

The map %(r--i)  of Construction 3 is the map associated to % ( r - i )  when 
r~+l<i <- r v We see that, since the left and right vertical maps are surjective respec- 
tively (split) injective, the image of % @ - 0  is the subbundle I i (%)|174 

rz--i+l 
l(r~-i,  ~ ) |  A Ft| In particular, the associated map % ( r - i )  is sur- 
jective. 

Example 4. (i) The diagonal form�9 Let 6 o be the t-completed T-linear map 
given in Example 2(i). We see from (2.6) and (2.7) of the construction that for 
rj+l<i<=rj the map 

r--i+l r--i+l 

A ElSo-~ A F*IS" 
corresponding to a ( r - i )  is given, with respect to the given well ordered bases 
e(io, il . . . . .  i,_ 3 and f ( i  o, il . . . . .  i,_~), by the matrix 

(2.9) 

j - i+ l  
Ao Dj] = 

[1 0 

!0 
d,-~+ l d,-i+ z ... d,-,j+l-1 . 

0 . . . 0  

0 . . . 0  
r j - i + l  

where A0 Dj is the ( r j - i +  1)'st exterior power of the matrix Dj of Example 2(i) (:)r 1 divided by the common factor -~'J-* r1,,-~-i ~ and [ A Dj] isthe • ~r - - r j - t - 1  ~ r ' - - - r j +2  """  ~ r - - t  

-matrix s + l  with Ao Dj in the upper left corner and zeroes elsewhere. s - r +  
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(ii) The diagonal representation 
Let ~e be the t-completed T-linear map having the diagonal representation 

of Example 2 (ii). With the notation of Example 4 (i), it is clear from Construction 3, 
that we have 

r--i+l r--i+1 
(2.10) e , ( r - i ) = (  A A ) . a ( r - i ) (  A B) 

for i = t , t + l  . . . . .  r. Hence, for rj+l<i<-rj the map 

r--i+l r--i+l 
A EISo-.- A FISo 

corresponding to u e ( r - i  ) is given, with respect to the well ordered bases 
r--i+l r/--i+l r--~+l 

e(io, il . . . . .  /r-i) and f(i0, i~ . . . . .  i,_~), by the matrix /k A.  [ Ao Dj].  B. 
A short calculation shows that the latter matrix takes the form 

[1 b,- t . , - i+l  b,-i,,-~+~ ... b,-~,~ X X X 

l a,-i+x,,-~, d~-i+l+a,-~+l, , - ib ,- i , , - i+a X X X 
ar~. i+2,r-i X 

(2.11) [a,],-i • 

t X X X X X 

where the crosses indicate elements in F(T,  0T). 

(iii) The "generic" diagonal representation 
We keep the notation and assumptions of Example 2 (ii) and (iii) and Exam- 

ple 4 (ii). Let 
f :  T ~ CL ~ 

be the map given on coordinate rings by the A-algebra homomorphism 

cp: B ~ (a) ~ F (T, Or) 

defined by ~p(xi, j)=ai. j ,  q~(y~,j)=bi, j and cp(zi, i)=di,~ for all the indices i a n d j  
appearing in the definition of Example 2 (iii) and 

for i E { 1 , 2 , . . . , r - t } \ { r - r ~ , r - r 3  . . . . .  r - r t }  

for iE { r -  r2, r -  r3, ..., r--  r,}. 

q~ (zi) "= di 

~o ( z3  = 0 

Then we have that 

(2.12) f*v~ = e e ( r - i )  for i = t, t + l ,  . . . ,r  

a n d f i s  the unique map T ~ C L  ~ that satisfies (2.12). Indeed, from the form (2.10) 
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ri+i ~=rj§ 
r--t+i 

her of Ao D(z~,j) 
are divisible by z~_,. 

for v~,~(r--i) and ~ta(r-i) we see that to prove (2.12) it suffices to show that 

f * [  A0 D ] =  ' Do] for i = t , t + l , . . . , r  and r j + ~ < i ~ r  i. 

However, the latter equations are immediate consequences of the following obvious 
observation: 

r j + l  ( r ~ + l l ) X ( r j _ i +  1)-matrixin the upper left cor- then the I, r j -  i + 
rj--i+l 

is the matrix /~ Dj(zi, j) and all the other coordinates 

The uniqueness o f f  follows immediately from the form (2.11) of the matrices 
representing v~,)(r-i) and ctQ(r-i) and from the above observation. Indeed, it 
follows from (2.12) that f *  must send the coordinates of v(,)(r-i) written in the 
form (2.11) to the corresponding coordinates of % ( r - i )  written in the same form. 
Hence f*  sends the xi, j to a~,~ and the yi,~ to b~,i for all choices of indexes. 
Moreover, it sends zj+xj, j_lyj_l,~ to dj+aj, j_lbj_l,i and hence zj to d~ for 
jE {1, 2 . . . . .  r -  t } \ { r - r~ ,  r-r3 . . . . .  r-rt}. Finally, it follows from the above obser- 
vations that f*  sends zj to zero for iC{r-r2, r-r3 . . . . .  r-rk}. 

The above map f i n  the case when T is the space CL~ gives a unique map 

iQ: cLo(o)-  cLo(r) 
such that 

"* 0 zQv(,)(r--t) = vQ(r--i) for i = t, t + l  . . . .  , r  

and we see that i~ is the map that identifies CL~ with the affme subbundle of  
codimension k - 1  of CL~ over Spec A which is defined by the equations 

zi = 0 for i E { r - r ~ , r - r s ,  ...,r--rk}. 

Moreover, we see that f factors via i~ and a unique map 

such that 

We have that 

g: r -* c (e) 

g*vQ(r--i) = uQ(r--i) for i = t, t + l ,  ...,r. 

* 0 g v j = a j  for j = l ,  2 , . . . ,k .  

Finally, we see that, since q~(zt) is a non-zero element of F(T, 0r) for 

iE{1 ,  2 . . . . .  r--t}\{r--r=, r--r a . . . . .  r--rt}, 

the map f factors via CL~ with t r=(r=sl ,  s= . . . . .  st) if and only if 

{sl ,  s2 . . . .  , st} E- {rl ,  r 2 , . . . ,  rk}. 
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(iv) Restriction to an open subset 
Let V be an open subset of  T and (~o)v the restriction of  a t-completed T-linear 

map ~Q as in Example 2(iv). 1hen it follows from Construction 3 that we have 

o~ (r-- i)v = (%)v (r-- i) 
for i=t,  t + l  . . . . .  r. 

(v) Equivalent maps 
Let ctQ and % be two t-completed T-linear maps of  rank ~ that are equivalent. 

Then it follows from Construction 3 that their characteristic maps % ( r - i )  and 
ct'e(r-i) are equivalent for i=t, t + l  . . . . .  r as surjective maps (that is they have 
the same kernels). 

I he converse assertion of  that in Example 4 (v) also holds and explains the term 
characteristic maps. However, the proof  of  the converse is considerably more diffi- 
cult and will follow from our next result. 

Proposition 5. Given a sequence 0=(r ,  r2 . . . . .  rg) o f  integers such that r>r2> 
...:>rk~t and an integer l such that l<-l<=k. 

For i= rz+ l+  1, r l+l+2,  ..., r we let 

r - - i + l  r - - i + l  

x ( r - - i ) : (  A E| /~ F * ) r ~ M ( r - i + l )  

be a surjection onto an invertible bundle M ( r - i +  1) over an S-scheme T. 
Moreover, let {U~}~r be a covering of  T by open subsets and let {a~,e}. ez be 

a collection oft-completed U~-linear maps o f  rank ~ between E[U~ and F[U~. 
Assume that for all 7, the restriction of  ~ ( r - i )  to U~ is equivalent to the char- 

acteristic map a~(r- i )  o f  a~,o for i = r l + l + l ,  r t+ l+2  . . . . .  r. 
Then there is an (r t+l+ 1)-completed T-linear map %a) of  rank O(/)--(r, r.~ . . . . .  rl) 

which, when restricted to U~ in the sense of  Example 4 (iv), is equivalent to ~,~(o and 
which satisfies the following property: 

( . )  The characteristic map %.o(r~-i) o f  o, o( 0 is equivalent to the surjection ~z(r-i) 
for i=rt+l+ 1, r~+1+2 . . . . .  r. 

Moreover, i f  a'~( 0 is another (rl+l+ 1)-completed T-linear map that satisfies property 
( , ) ,  then ~'~(o and %(0 are equivalent as completed linear maps. 

Proof. We shall prove the Proposition by induction on I starting by the case 
l=  1. For 1--1 we have that zc(0) defines a map 

E-~ F |  

which, by the assumptions of  the Proposition, becomes equivalent to a~,t when 
restricted to U~. Since the properties (i), (ii) and (iii) of  the Definition of  completed 
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maps hold for ~1 restricted to U~ for all ?, we have that ~1 is an (r~+ 1)-completed 
T-linear map. It follows from Example 4 (ii i)and (iv) that the characteristic map 
%(a)(r-i) restricted to Ur is equivalent to ~ ( r - i )  for i---r2+ 1, r~+2 . . . . .  r. The 
same is true for re(r-i). Hence the kernels of  %(l)(r--i) and z~(r-i) are equal 
and thus these maps are equivalent. 

Moreover, let 
P .  ~1. E" --,- F'|  

be another map whose characteristic maps ~cl)(r-i)  are equivalent to n ( r - i )  
for i=r~+ 1, r2+2 . . . . .  r. ~Ihen ~'(0) and a(0) are equivalent and their associated 
maps ~.~ respectively ~ are then equivalent as completed maps. 

Assume that the Proposition holds for l -  1 => 1. "fhen we have bundles Ej, Fj 
and Lj and maps 

for j =  1, 2 . . . . .  l - 1  that define an (r~+ 1)-completed T-linear map which satisfies 
property ( . )  of the Proposition for i=rz+ 1, r t+2  . . . . .  r and whose restriction to 
U~ is equivalent to the completed map defined by %,~, ~r,~ . . . . .  ~r,t-x- Moreover, 
if  c~ is a completed map as in the last part of the Proposition we have that the com- 
pleted maps given by ~1, ~2 . . . . .  ~ -x  and c~, ~z . . . . .  ~' t-1 are equivalent. 

We now define the subbundle E~ of/i:  and the quotient bundle F~ of F by 

Et = ker ~t_l 
and 

F~ | = F~_I | -- r, + 1, e,-a): im et-1). 

Then Ez and F l satisfy property (iii) of the Definition of  completed maps. 
In Construction 3 we have that the bundles G(I), H(l), Lt(%) and It(%) are 

all determined by e~, ~. . . . . .  et-1 and the same is true for the map cq(l). Moreover, 
the equivalence between the completed maps given by ~ 1 , ~  . . . . .  ~_~ and 
el," cq,' ..., c~_1' gives canonical isomorphism from the above bundles to the cor- 
responding bundles G'(I), H'(l), L;(cd~) and It(c~) constructed from el, e~. . . . . .  e~_~ 
and a commutative diagram 

G(1) ~o I,(e'~)| 

G'(1) ,'~(0 , it(~t,) | 

where the maps q~, ~p and v are the natural isomorphisms mentioned above. 
From these induction assumptions, the above definition of  E~ and F~ and prop- 

erty (iii) in the definition of % it immediately follows that there are isomorphisms 
?,: Et-~E[ and 7h: P]~F[ identifying El and/~[ as subbundles of E and making 
F t and F[ equivalent as quotient bundles of  F. 
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We define the invertible sheaf Lt by the equality 

(2 .14)  M ( r  - r t + 1) = I, (aa) | L, (aQ) | L t 

and obtain a diagram 

r - - r l + l  r--r:+l 

A ET ~~ A F r |  

I r - - r l + l  
(2.15) /\ Fr|174174 

t + 

where the horizontal map is obtained from ~ ( r - r 3  and the left and right vertical 
maps are those obtained from the maps (2.4) respectively (2.5) of the construction. 
Since re(r-i) restricted to Ur is equivalent to c~(r-i)  by the assumption of the 
Proposition and since the diagram (2.15) restricted to U~ is "equivalent" to the 
top part of diagram (2.8) of Construction 3 for at, Q, we have that there is a map 

e,: (G(1)| ~ -,. (Ft|174 I,(ae)| U~, 

such that when (2.14) is restricted to U~ and completed by e~ it is commutative. 
Moreover, since the left and right horizontal maps of diagram (2.15) are surjec- 
tive respectively injective we have that the maps ~ are unique and glue together 
into a map 

8:  G(1)OEt ~ FtOLt|174 

such that when diagram (2.15) is completed by this map it becomes commutative. 
The map s together with the isomorphism cq(l) define uniquely a map 

at: Et -~ Ft | 
such that 

Moreover, we have that there is a commutative diagram 

Etl U~ ~,Iu, (Fz| 

l l 
Er.t ".___.L+ (F,.t| U, 

such that the properties (i) and (ii) of the Definition of completed maps hold 
for cq. Hence cq, a~ . . . . .  at define an (rt+l+l)-completed T-linear map which, 
when restricted to (Jr, is equivalent to the completed map defined by the maps 

From the latter property we obtain from Example 4 (iii) and (iv) that the re- 
striction of the associated characteristic map a a o ( r - i )  to U~ is equivalent to c(~(r-i) 
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and hence to rc(r - i ) lU r for i=r t+ l+l  , rt+~+2 . . . . .  r. Consequently, the maps 
~z~cr)(r-i ) and n ( r - i )  have the same kernel over U r and hence over T and thus 
property ( . )  of the Proposition holds. 

Finally, it remains to see that the completed map defined by e~, ct2 . . . . .  ez 
is equivalent to that defined by e~, cq . . . . .  cq. To this end we first remark that by 
Construction 3 we have that 

L'(r  - rl + 1) = It (~'Q) | L; (~)  | L; 

and that, by assumption, we have that L ' ( r - r t + l  ) and M ( r - r t + l  ) are iso- 
morphic. Together with the isomorphism mentioned above between Ii(~Q) and II(c~) 
and between Ll(%) and L~(e~), we obtain from the definition (2.14) of L~ an iso- 
morphism 6t: Ll~ L~. 

We have now defined all the maps in the diagram 

(2.16) 
E l - - "  F1QLl 

t 

E[ ~"-,- F: | L; 

and it only remains to prove that this diagram commutes. However, from the com- 
mutativity of the diagram (2.15) completed with e and from the commutativity of 
the diagram 

r - - r l+ l  a~(r-- rz) r--rz+l 
A ET ' A F r |  

G'(1)| ,l(t)| I,(~)|174 F/ eL; 

obtained from diagram (2.8) of Construction 3 for %, it follows from the way all 
the above maps were defined that there is a commutative diagram 

(2.17) 

G(l)|  ~ , Iz(~e)|174174 

t �9 
�9 t t p G'(1)| ~,(1)o~,, it(o~o)| H (1)| | 

where rp, ~k and v are the isomorphisms of diagram (2.13). The commutativity of 
(2.16) follows from the commutativity of diagrams (2.13) and (2.17) together with 
the equality e= al (l) | al. 

p Corollary 6. Given two t-completed T-linear maps % and ~Q such that the char- 
acteristic maps % ( r - i )  and u'~(r-i)  are equivalent as surjective maps for  

p 

i--- t, t+ 1 . . . . .  r. Then % and % are equivalent as t-completed T-linear maps. 
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Proof. Let {Ur}rg x consist of the single element T and let c~,~=~. Then 
7~ satisfies the assumption of the second part of the Proposition and is consequently 
equivalent to ~Q. 

Lemma 7. Let T be an S-scheme and ~ a t-completed T-linear map o f  rank 
0=(rx, r~ . . . . .  rk) given by the maps 

ej Fj rj. 
(i) Let V be an open subset o f  T which maps to So and is such that the maps 

ot~(r-i) restricted to 

r-- t+1 r--f+1 
(2.18) ( /~ E ( r - i ) |  /~ F( r - i )* )v  

are surjective for i=t ,  t + l ,  .... r. We denote by 

~,-t+1: (Pv ~ L ( r - i +  1) 

the resulting trivialization o f  L ( r - i +  1) given by the basis e(O, 1 . . . . .  r - i ) |  
f(O, 1 . . . .  , r - i ) *  o f  the bundle (2.18). 

Then from the maps ~t,_~+ 1 we obtain trivializations 

v~: Ov -~ L 2 
such that the maps 

define a t-completed T-linear map of  tank O which has a diagonal representation 

A (at, j). Ds B(b  A 

by matrices o f  the form Ma,  Mn and Mj,o o f  Lemma 1 (i) and Example 2 (ii) with 
respect to the bases e o, el . . . . .  e~ and Jo,f l  . . . . .  f~ as in Example2 (ii), 

(ii) Let x be a point o f  T that maps to So. Then we can find a neighbourhood V 
o f  x in T which maps to S o and such that, after possibly renumbering the elements o f  
the bases eo, e~ . . . . .  e~ and fo,f~ . . . . .  f~, the maps c%(r-i)v restricted to the mod- 
ules (2.18) are surjections for i=t ,  t+ 1 . . . . .  r. 

Proof. We shall prove the Proposition by induction on k starting with k=  0. 
Assume that we have, under the assumptions of (i), chosen trivializations 

zj: Ov~Lj  of L i for j =  1, 2 . . . . .  l - l < k  and found matrices of the form A' and 
B" of the form Ma and Mn of Lemma 1 (i) with t = r ~ - I  such that Ej=E' ( r j )A  -~ 
and F j - F  (rj)B for j = l ,  2 . . . . .  l and such that ~i with respect to the bases 
er_r s A - l ,  er_r s + l A - 1 ,  .... e ,A -~ and f , - r B ,  f , - , + ~ B  . . . . .  f~B is represented by a 
matrix Dj as in Example 2 (i). We have tr]vializations 

/tr- n : Ov -+ L (r - rt) = Ii (c~Q) |  ( ~ )  
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and 
~,-,,+1: Ov --" L ( r - r t + l )  = L ( r - r t ) |  

Hence we obtain a trivialization 

%: Or ~ Ll. 

From Construction 3, diagram (2.8) it follows that with the above trivializations 
the map 

r--i+1 r - - i + l  

A Ev| A Fv ~ L(r--i+l)";---x'z~ia, I(rl--i, ~z)QL} "-~+1 

factors via the map 

rt--~+l rt--i+l 
(2.19) A (El)v| A (Fl)v-- 'I(rz-i ,  et)NLf '-i+1 

obtained from ez. Moreover, for i=rt+l+l ,  rl+l+2 . . . . .  r~, the condition that 
e ( r - i +  1) restricted to the module (2.18) is surjective is the same as the condition 
that the map (2.19) restricted to 

(2.20) ~ v ( e ( r - r l , r - r ~ + l ,  . . . , r - i ) |  r - r t + l  . . . .  , r - i ) * )  

is surjective. We can now use Lemma 1 (i) with v = ~t to the map et to obtain a diag- 
onal representation of this map with respect to the bases e,-r,, e,-rl+l . . . . .  e, and 
f,-,,,.f~-,~+l . . . . .  f~. However, we consider the (rl+ 1)X(rl+ 1) and ( s - r + r t +  1)• 
( s - r + r t +  1)-matrices A respectively B o fLemma 1 as ( r+ 1 ) •  1) and ( s+  1)X 
( s+  1)-matrices A" respectively B " with A respectively B in the lower right corner, 
l ' s  on the diagonal and the remaining coordinates zero. 

It is then clear that the matrices A' .  A" and B ". B" give a diagonal representa- 
tion of  the map ~l and part (i) of the Lemma follow by induction. 

For part (ii) we can assume that we have found a neighbourhood V such that 
the c~(r--i)v restricted to (2.18) are surjections for i=r l+l ,  rt+2 . . . . .  rt_~. Then 
as in part (i) we can find matrices A' and B '  that give a diagonal representation for 
cq, 0r . . . . .  ch_~. We can now use Lemma 1 (ii) to et so that, after possibly shrink- 
ing V and renumbering the elements of  the bases e,_,,, e,_,,+x . . . . .  e, and 
f,_,,,fi_,,+x . . . . .  f~, we have that for i=r~+x+l, rt+~+2 . . . . .  rz the map (2.19) 
restricted to the line bundle (2.20) is surjective. Consequently, as we saw in the proof 
of  part (i) of the Lemma the same is true for ~Q ( r - - i+  1) restricted to the line bundle 
(2.18). Hence, part (ii) follows by induction. 

Theorem 8. Assume that So is affine and equal to Spec A. Let T be an So-scheme 
and % a t-completed T-linear map of  rank 0 = (rx, r2 . . . . .  rk) given by the maps 

~j: Ei-~ Fj |  j for j = l ,  2 , . . . , k .  
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Assume that the maps u o ( r - i )  restricted to 

r - - i + l  r - - i + l  

/~ E ( r - i ) |  A F ( r - i ) *  

are surjective for  i=t ,  t+ 1, ..., r. Then there is a unique morphism 

f :  T-~  CL~ 
such that 

f*v~ = ~ e ( r - i )  for i = t, t + l ,  . . . , r .  

The morphism f satisfies the following two properties: 
(i) I f  factors, via i~ o f  Example 4 (iii), through a map 

g: cLot(a) 

with a = ( r = s l ,  sz . . . . .  st) i f  and only i f  

{sl, s,} rk}. 

(ii) With g as in (i) we have that 

g*v~ = c~j for  jE{i]r,E{sl, s~. . . . .  , sz} }. 

Proof It follows from part (i) of Lemma 7 that after trivializing the bundles 
L ( r - i +  1) appropriately we can find a diagonal representation of c~ of the form 
given in Example 2 (ii). As we saw in Example 4 (iii) there is then a unique map 

f :  r ~  CL ~ 

satisfying all the assertions of  the Thcorem. 
I f  

h: T ~ CLOt 
is another map such that 

h* v~o ( r -  i) = c~e ( r -  i) for i = t, t + 1, ..., r 

then it coincides with f with respect to the above trivialization and hence h=fi  

3. The parameter space for completed linear maps 

The schemes CL~ of q-heorem 9 can be considered as the parameter spaces 
of  complete linear maps that can be trivialized in a particular way with respect 
to the bases e0, el . . . . .  e, and fo,f~ . . . . .  f~. In this section we shall glue together 
these parameter spaces for different rearrangements of  the bases and obtain a 
parameter space for all complete linear maps. The main tool in the glueing process 
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is the characteristic maps 

r - - i + l  r--i-}-I 

c~(r--i):  ( /~ E| /~ F*)T-~ L ( r - - i+ l )  for i = t, t + l ,  . . . , r  

that are associated to a t-completed T-linear map ~e. These maps define maps 

r--i+1 r - - i + 1  

h / : T ~ P (  A E| A F * ) = P ( r - i + l )  for i = t , t + l , . . . , r  

such that %(r- i )  is equivalent to the pull back by h I of  the universal quotient 

r - - i+1  r - - i + 1  

7Zr-i" ( A E| A F*)e(r-i+l)-'>'LP(,-i+I) 
on P ( r - i +  1). Consequently we obtain a map 

h: T-~ P =/-1~=, P(i) 

and it is the latter map we shall use to define the parameter space of  completed 
linear maps as a subscheme of  P. 

It follows from Exercise 2 (v) that two equivalent completed maps c~ e and fie 
give rise to the same map h. Conversely, if  two completed maps ~e and fie give rise 
to the same map h then for i=t, t + l  . . . . .  r the maps ~Q(r-i) and f ie(r-i) are 
equivalent as surjections. Hence it follows from Corollary 6 that ~Q and fie are equiv- 
alent as completed maps. 

We collect the main results of  this article in the following Theorem. 

Theorem 9. Let Q=(rl, r2 . . . . .  rk) be a k-tuple of  integers satisfying the in- 
equalities 

r = rl > rs > . . .>  rk >= t >=O. 

Then there exists an S-scheme CLt(o) and a t-completed CLt(Q)-linear map v o given 
by maps 

vj: E,(e) --'- F~(e)| for j = 1, 2, ..., k, 

which satisfies the following properties: 
(i) Over an affine open subset So=Spec A of  S the scheme CLt(o) can be 

covered by open a~ne subsets of  the form CL~ of  Example 2 (iii) and Theorem 8. 
In particular CLt(o) is an al~ne bundle over S o f  relative dimension 

(r+ 1)(s+ 1)-k. 
(ii) Let % be a t-linear T-complete map of  rank 0 given by the maps 

~j: E j ~  EjQLj  for j = l , 2  . . . .  ,k .  

Then there exists a unique map 

f(~e): T ~ CLt (r) 

such that ot~(r-i) and f(~Q)*ve(r--i) are equivalent as surjections for i= t, t+ 1 . . . . .  r. 
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(iii) The map 
f(ve): CL,(o) ~ CLt (r) 

defined in part (ii), is a closed immersion which in the affine covering described in 
part (i) coincides with the map i e o f  Example 4 (iii). 

In particular we have that f(ve) is a complete intersection defined by the ideal 

/ / ~ = 2  I ( r - r i ,  re). l ( r - r  i -  1, ve) -2 �9 I ( r - r l - 2 ) ,  

where we let I ( -  1, vo) be the structure sheaf. 
(iv) Let a=(r=sl ,  s2 . . . . .  sl). Then f(%) factors via f(v,)  i f  and only i f  

{ S l ,  S 2 . . . .  , St} ~ { r l ,  7" 2 . . . . .  r/~}. (3.0 

(v)/f(3.1) holds and 

g(%): T-~ Cq(6) 

is the factorization o f  (iv), then for jE{i[siE {rl, r2 . . . . .  r,}} we have that there are 
isomorphisms ?j, 7r 2 and ~j making the diagram 

g (~) ,gj  (a) ~c%~*~, g (~)*Fj (~) | g (~)*Lj (a) 

E i *'--2---.J.,. F i |  t 
commutative. 

Proof. We assume first that S is the affine scheme So= Spec A. 
Let re, , be permutations of  (0, 1 . . . . .  r) respectively (0, 1 . . . . .  s). We denote 

by CL~"(Q) the space that has the "generic" diagonal presentation of  Example 2 (iii) 
with respect to the rearrangement r~ of  e 0' el . . . . .  e, and , of  f0 , f l  . . . . .  f t .  In 
particular id,~d _ o CL, (e) -CL,(e) .  

Let % be a t-complete T-linear map and assume that T is an S0-scheme. We 
denote by T~(z~, z) the open subset o f  T where the map % ( r - i )  restricted to the 

r - - f + l  r--i+l 
subspace of  ( A E |  A F*)r  generated by 

(3.2) (e (zr (0), zc (1) . . . .  , zc (r-- i))) |  (0), z (1), ..., z (r -- i))* 

is surjective. Then Ti(zc, z) is mapped by h~ into the subset Ui@, "c) of  P ( r - i +  1) 
where the universal quotient map re,_ i restricted to (3.2) is surjective. 

We introduce the following notation 

r T(~, ~) = (3i=,T/~, *) 
and 

r 
U(~, T) = f f  t=l Ui(~, T). 



The geometry of complete linear maps 253 

Then U(rc, z) is an open subset of  P and the maps hi for i=t, t + l ,  .... r gives 
a map 

h(~, 3): T(~. 3) -- u(~. 3) _c_ p. 

In particular we obtain a map 

j (~, ~): CLC,~.,) (a) -~ V(~, 3) 

for each e = ( r = s l ,  s2 . . . .  , st). I f  we assume that (3.1) holds we see that since the 
two latter maps are defined by the quotients %(r- i )  and v , ( r - i )  respectively, 
we have that 

h (rt, z) = g (TO, z). j Oz, 3) 
where 

g(~, z): T(rc, 3) -~ CL~(~")(a) 

is the map g of  Theorem 9 defined with respect to the arrangement n and 3 of  the 
bases eo, el . . . . .  e, respectively f0 , f l  . . . .  ,f~. 

From the expressions (2.11) for the maps v r  and the fact that v , ( r - i )  
is the pull-back of  re,_, by j(rc, 3) followed by the projection of  U(rc, 3) onto the 
i ' th  factor P ( r - i +  1) it follows that j(zc, z) is a closed immersion. 

Let nl and 31 be two other permutations of  {0, 1, ..., r} respectively {0, 1 . . . . .  s}. 
From the way in which the maps h(rc, z), j(:c, z) and g(n, z) above were defined 
and the uniqueness of  the maps into CL~'*)(a) asserted by Theorem 8 it follows 
that the following diagram is commutative: 

T(n, z) g(~,o CLt(~,O (a) J(~.o U('~, 3) 

u [I g ( ~ , , ) l r '  _ C 

T(rt, ,) n T(~i, ~1) ~ / I  htth' 

n i[ ,(~,.,,)lr' C '  

m II 

Jc,.ozc u II 
~ ~ _ ~  u(~,.) n U(~l, 31) 

J(~, ~)IC' n l[ 

T(lq, Zl) g("l,q)' CLt("I' ,1) (~r) ~ U(Ttl, xx), 

where C and C '  are the open subspaces of  CL~'~)(cr) respectively CL~",'*O(cr) 
where the characteristic maps restricted to the spaces generated by the vector 
e(rc(0), re(l) . . . . .  ~ ( r -  i)) | =(1) . . . . .  = ( r -  i))* respectively 

e(rq(0), xl(1) . . . .  , xl(r--i)) |  ~1(1) . . . .  ,31(r--i))*, 

are surjective for i=t, t + l  . . . . .  r, and where h and h" are the unique (inverse) 
maps whose existence are asserted by Theorem 8. 

It follows that the spaces CL~'~ for all different rearrangements ~ and x 
glue together to a closed subscheme CLt(a ) of  the open subset U =  u U(r~, 3) of  
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P, where the union is over all rearrangements n and z. Hence we have proved the 
existence of the scheme CLt(tr ) that satisfies assertion (i) of the Theorem. 

It also follows that the maps g(zc, z) glue together to a map 

g(c~e): U~,. T(rc, z) ~ CLt(a ) 

and from the way maps into the projective space P=l-[[=t P(i) are defined it fol- 
lows that this map is the unique map such that there are isomorphisms 

o - ( r - i + l ) :  g(%)*(Le(,-~+l)lCLt(a))--"L(r-i+l) for i = t, t + l  . . . .  , r  

- ~  g(%)*(Lr~,-,+a)lCL,(a)) 
r - - i + l  r - - i + l  [ a ( r - - i + l )  

( A E| A F*)ur(,,,) 
.-~ L ( r - i +  l) 

%(r - i) 

are commutative. However, it follows from Lemma 7 (ii) that u T(rc, z)= T. Con- 
sequently, g(%) is defined on T and for a = ( r )  we get a map 

f(~): T-~ CL,(O, 

such that % ( r - i )  is equivalent to f(%)*Le(,-~+l). 
We see that, to prove assertion (iii) it remains to prove the existence of a uni- 

versal map vx on CLt(r ) such that Le(,_~+I)ICLt(a) is equivalent to vt,)(r--i+ 1) for 
i =  t, t +  1 . . . .  , r. 

We therefore turn to the existence of  the maps vj asserted in the Theorem. 
On each local piece CL~"'~ there are completed maps v(, ~'0 represented by 

vj ,o: eJ","-- rJ 

as in Example 2 ( i i )and by the way the embedding of  CL~'~")(a) in U(zt, z) was 
defined we have that the characteristic map of  v~ ~' o is equal to the universal quotient 
7t,_~ on P(r- i+ 1) pulled back to CL~'~ It follows from the first part of 
Proposition 5 that there is a t-complete CL,(tr) linear map v. of  rank a whose re- 
striction to CL~'~ is equivalent to the map v(~,o and whose characteristic map 
v.(r- i )  is equivalent to the pull-back of  zr._ i to CLt(a). Consequently, we have 
proved the existence of  the map vr of  the Theorem and we see that when a = ( r )  
we have also finished the proof  of  assertion (ii). Moreover, since we have that the 
pull-back of  rr._ l to CLt(u) and CLt(r ) are equivalent to the characteristic maps 
G ( r -  i) respectively v(,) ( r -  i), we see that the map f(v,): CLt(a ) ~ CLt(r), defined 
by v,, is the inclusion CLt(a)c=CLt(r)C= U defined by glueing together the maps 
j(n, ~) above. Hence we have proved the first assertion of  part (iii). The second 

such that the diagrams 



The geometry of complete linear maps 255 

assertion reduces to the easy verification made in Lemma 1 (i) that on the piece 
CL~ the ideal of part (iii) is generated by z i for iC {r-r2, r -r3  . . . . .  r-rk}. 

Part (iv) follows immediately from the first part of Theorem 9 and the way 
in which we constructed f(eQ) and f(v,)  from the maps g(rc, z). 

From part (iv) it follows that, in order to prove part (v), we may assume that 
O=a. As we have seen above, we then have that g(z~, z)*vQ and %IT(z~, z) are 
equivalent completed maps. Moreover, we saw above that g(ee)*vQ(r-i) and 
%(r- i )  are equivalent surjections for i=t, t + l  . . . . .  r. Hence it follows from 
Proposition 5 that g(%)* vo and % are equivalent and we have proved part (v) of 
the Theorem. 

Finally we notice that we have only proved our result over an affine subset 
So = Spec A of S. However, it is clear that all objects considered glue together over 
S exactly like those connected to P do and consequently that all results hold over 
any base S. 

qhe parameter spaces that we are really interested in are the schemes CLo(r). 
We have throughout retained the additional complication of considering the t-com- 
pleted maps because it makes it easy to display the connection between our approach 
and that of Vainsencher [17], [18]. ~Ihis connection is explained by the following 
result from which we also, as an additional benefit, obtain that the sckemes CLo(r ) 
are proper over S. q-he properness of  CLo(r) can however also be proved directly, 
with slightly less work, using the valuative criterion. 

Proposition 10. Assume that t>0 .  With the notation o f  Example 2 (iii) and 
Theorem 10 the following two assertions hold: 

(i) Let V be the open subset of  C Lt_l (r ) which maps to the open subset So = Spec A 
of  S and where the restriction o f  eo(r- i)  to 

r - - i + 1  r - i + 1  

Ix E(r--i)|  Ix F(r - i )*  

is surjective for i=t,  t+ 1 . . . . .  r. Then the canonical map 

f(v,_l,(O): V ~ CL~(r) 

makes V the monoidal transformation o f  CL~ with center on the subscheme defined 
by the ideal 

I ( r - t +  1, v~o ) �9 I ( r - t ,  v~ -~ �9 I ( r - t - 1 ,  v~ = (z,,j) = (zi,j)l~_i,j~_,. 

The exceptional locus is the subscheme CLt_l((r, t))c~ V of  V and the scheme 
CL,_I((r, r2) ) c~ V is the strict transform of  CL,((r, r2)) .for r2= t+  1, t + 2  . . . . .  r--1. 

(ii) We have that CLt_l(r ) is the monoidal transformation o f  CLt(r ) with center 
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on the zeroes of  the ideal 

I ( r - t  + 1, vt)" I ( r - t ,  vt) -z.  I ( r - t -  1, vt). 

The exceptional locus is the subscheme CLt_~(r, t) and the strict transform of 
crt((r, r2)) for r 2 = t + l ,  t + 2  . . . . .  r - -1  is CLt_I((r, r2)). 

Proof. It follows from Lemma 7 (ii) that V is covered by the open affine sub- 
sets V(i,j) of  V, where the map v~,)(r-t+ 1)v restricted to the 0v-module gen- 
erated by the element 

eo ̂  e l ^  ,.. ^ er-t^ ek| ... ^ f , - , ^ f l  

is surjective where r-t+l<=i<=r and r-t+l~_j~_s. We first consider the sub- 
o and v ~ have diagonal representations set V ( r - - t + l , r - - t + l ) = C L ~  Both v t t-1 

described in Example 2(iii). The matrix At_~(x~, ~) in the representation of  o vt_ 1 can 
be written as 

1 0 . . . .  0 

xlo 1 . "  
~ 

1 

: x,-,+I.,-t  1 .  
0 " 0 

x,o x , , , - t  0 0 1 

.1 0 
, 0  - 

1 
: 0 

O _ 

1 
x,-t+z,r-t+1 I .  

0 0 

0 . . .  0 x~.,-,+t 0 . . . 0  1i 

We denote the left matrix by A,(x~,j) and the right by A'(&,j). Similarly B(y~,j) 
in the representation of  v ~ ,-1 can be written B'(y~,i).Bt(y~,j). Hence the matrix 
representing vt~ can be written 

The t •  in the upper left corner o f  A'(&j)D(zi, j)B'(y~,j) is 

p r t 
[ zr-t+l Y,-t+x,,-t+~z,-t+a, ..., Y,-t+l,sz,-t+l ] 
i �9 t Zt ] X r - t  + a,r--t + l Zr--~ + l ,  (Zj § l , J  + l "~" Xl, r - t  + l Y r - t  + l , j )  r - t + 1  ... .  

" I  

[ x , , , - t+xz,- ,+l  

where z~_t+l=Z~ �9 z~...z,_,+l. 
Comparing with the diagonal representation At(xi, j), Bt(&.y) and D(&j) ofv  ~ 

we see that the map of  rings 

q~: B,(r) = A[x,y,z] ~ B,_l(r) 

that corresponds to the morphism CL~_x~CL ~ sends all the x~,~, Y~,s, z~,j, z~ 
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to themselves except the following 

 o(zh) ' ~-~ Z r _ l +  1 

t = Xr_t+f,r_t+lZr_t+l for 

9(z~,j) = y,-,+a.,-,+iz;-,+l for 

~O(Z;,2) = (Z~_l,j_l + Xr_t+t,r_t+lYr_t+l,r_t+j)Z~_,+ J 

i = 2, 3, ..., t 

j = 2 , 3 , . . . , s - - r + t  

for 

We see that 

i = 2, 3 . . . . .  t 

and j = 2 , 3  . . . .  , s - r + t .  

by the map 
2 r+l 

. . . .  A "). 

q~ (z , . l / zu )  = q~(z~.x/z~O = x , _ , + ~ , , _ , + ~  f o r  i = 2, 3 . . . . .  t 

~o(z , , / z lO  = ~o(z~,jlzh) = y,- ,+l . , - ,+j  for j = 2, 3, ..., s - r + t  

~p(z~,j/zu) = r = z~-ld- l+x,- ,+~. , - ,+ly,- t+, . , - t+j  for i = 2, 3, ..., t 

and j = 2 , 3  . . . .  s - r + t .  
Consequently we have that 

B t - a ( r ) = B  t(r)[z~,i/zl,1] where i =  1,2 . . . . .  t and j =  1,2 . . . .  , s - r + t .  

Reordering the elements of the bases e,-t+x, e,-t+2 . . . . .  e, and f,-t+x,f,-t+2 . . . . .  f~ 
we see that the coordinate ring of V(k, l) is 

Hence we see that the V(k, l) have exactly the coordinate rings of the local pieces 
of the monoidal transformation of CL~ with center on the ideal (z~d), and it 
is clear that they also fit together on the intersections as the monoidal transforma- 
tion does. We have proved the first part of assertion (i) of the Proposition. 

For the second part of assertion (i) we have only to notice that the exceptional 
locus in Bt(r)[z~,flzl, d is defined by the dement tp(zl,1)=q~(z~,Jzlzz...z,_,)= 
z:_t+l/zlz2...z,_t=z,_t+l. Hence, by Example4 (iii) it is equal to CL~ t). 
Moreover, we have that CL~ r~) and CL~ 1"2) are both irreducible codimen- 
sion one subschemes of CL~ respectively CL ~ defined by the equation z,_, .  Hence 
we have proved the last part of assertion (i). 

Part (ii) of the Proposition follows immediately from part (i). 
The purpose of the next result is to give the connection between our approach 

and that of Tyrrell [15]. He maps the open subset V of CL, ( r )=P (Hom (E, F)*)= 
P(E|  F*), consisting of maps ~: E-+ F of maximal rank, into the product 

f + l  t + l  

P =/ /7=o P( A E| h F*) 
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Then he defines CLo(r ) as the closure of the image by this map, and finds a char- 
acterization of the points of  CLo(r ) in terms of his characteristic maps, 

Proposition 11. The morphism 

i + 1  i + 1  

CZ,,(r)-,. II',=o P( A E| A 

given by the characteristic map 

(v,(0) ,  v,(1),  . . . ,  

of v t is a closed immersion. 

Proof Over the open subset CL~ of CLt(r) the map vt has the diagonal 
form A(xi.j).D(zi~j).B(yij ) described in Example2 (ii) and (iii). The corre- 
sponding matrices representing the maps v~ take the form (2.11) of Exam- 
ple 4(ii) of  w i with j =  1 and the variables as coefficients. From the form of the 

0 make latter matrices for i =  t, t+  1 . . . . .  r me see that the characteristic map of v t 
i + l  i+1  

CL~ a closed subscheme of  the open affine subset of /rff= 0 P( A E |  A Y*) con- 
sisting of matrices with a 1 in the upper left corner. Hence, the morphism of the 
Proposition is an embedding. However, from Proposition 10 it follows that CL t is 
proper over S. Consequently, the immersion is closed. 

4. The category of completed linear maps 

The following section contains a different point of  view from that of  the pre- 
vious section. We-shall consider 0-completed maps that we call simply complete 
and we denote by CL(o) and CL the spaces CLo(O) respectively CLo(r). 

We shall now define a category that we shall call the category of complete maPS. 
The objects of this category are S-schemes T with an equivalence class of  complete 
T-linear maps. By definition each member of  such an equivalence class has the 
same rank which we call the rank of the object. 

Let a=(T,[%]) and fl=(U,[fl~]) be objects of  the category of  ranks 
Q=(r, r2 . . . . .  rk) respectively a=(r=s, s2 ..... sl), where [%] and [fl~] denotes the 
classes containing the complete maps % respectively rio. By a morphism from 
to fl we mean a morphism 

f : T - - U  

such that the maps f * f l~ ( r ' i )  and %(r, i )  are equivalent as quotients maps 
from 

r - - i + 1  r - - i+X 
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for i=0,  1 . . . . .  r. It follows from Example 4 (v) that the definition of a morphism 
is independent of the choice of representants from the classes [as] and [flo]2 More- 
over, it follows from Theorem 9 (iv) that if such a morphism exists, then we must 
have that 

(4 .1 )  (s,  s2 . . . .  , (r,  r l ,  . . . ,  rk}- 

We shall write Q<=a, and say that  Q is at most equal to a if the inequality 
(411) holds. With the above terminology the main contents of Theorem 9 is that, 
in the full subcategory of the category of complete maps whose objects are those 
of rank at most a, there is a final object (CL(a), [v,]). By afinal object of a category 
we mean an object into which there is a unique map from each object in the 
category. 

A more elegant approach to this subject might be to start with the definition 
of the category of complete maps and then pose and solve the problem of finding 
a final object in an as coordinate free way as possible. This approach was taken 
in two previous versions of this article. We have, however, chosen the approach 
of this version because it is more concrete and hopefully more understandable. 

5. An auxiliary geometric construction 

We shall in this section prove a result that illustrates the geometry of the space 
of complete linear maps and that provides the crucial inductive step in our forth- 
coming treatment of the enumerative theory of such maps. 

Let p be an integer such that O<:p~r. We shall in the following denote by 
X and Y the grassmannians Gp(E*)respectively Gp(F) and by Z the ~roduct X• Y. 
The universal sequences on X and Y we shall denote by 

0 -* Q* -* E~ -* G*i-* 0 
respectively 

O ~ R - ~ F r ~ H - * - O  

Moreover, we let CL=CL(E, F) and denote by C(p) the degeneration subscheme 
CL(r, r -p)  of CL. On C(p) there is a canonical inclusion 

(5.1) E2 ~ Ec~p) 

and a canonical surjeetion 

(5.2) Fc(p) -* F2. 

These define a natural map 

t :  c@) G (E*)XGp(F) 
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such that the canonical maps G--Ex and Fr-*H 
(5.2). The restriction of the universal map 

v: Ecz ~ FcL| 

on CL restricts to a map 

(5.3) 

on C(p), where 
tain a map 

g: C(p) -~ CL(Qz,  Rz) 

pull back to (5.1) respectively 

Ectp ) "~ G1 ~ H1 | L ~ Fctp) | L 

Gx:Ec(p)lE~ and Hl=ker(Fc(p)|174 Hence we ob- 

into the complete linear maps between Qz and Rz. We shall denote by CL(p) the 
space CL(Qz, Rz) and by h the structure map 

h: e L ( p )  -~ Z. 

The characteristic map v(p = 1) on CL defines a map 

c: C L ~  P 

where P=P( /~  E| F*) and there is a Segre map 

s(p): Z -~ P, 

defined by the natural quotient map 

Together with the inclusion j :  C(p)-*CL we obtain a diagram 

CL. .c , p  

b lscp~ 
c(~)  ' , z 

Proposition 12. 
(i) The above diagram is commutative. 

i=0,  1 . . . . .  p--1 be the universal quotients by the char- 

1+1 i + l  

( A Q |  A/~*)CL~p) ~ L~(i+I)  

(ii) Let Lp(i+ l) for 
acteristie maps 

on CL(p). Then 

g*Lp( i+ l )  = L ( i + l ) l C ( p )  for  i =0 ,  1, . . . , p -1 .  
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(iii) Let D= CL(GcLtv), HcLtp) | Lp(P) -1) be the complete linear maps between 
GcL(p) and HcLo)| -1 over CL(p). Then there is a canonical isomorphism 

C ( p )  -~ D 

such that, under this isomorphism, the morphism g corresponds to the stucture map 
g' o lD over CL(p). 

(iv) Under the isomorphism in (iii) the universal quotient M on D by the first 
characteristic map 

( a o u *  ~L,(p))~ -.- M 

is pulled back to L(p+ 1)[C(p). 

_Proof. (i) The map cj is defined by the restriction of the characteristic map 

P P 
v ( p -  1): (A E |  A F*)CL -~ L(p) 

to C(p), that is by the characteristic map on C(p). On the other hand the map s(p)t 
is defined by the natural map 

(5.4) (:\ e |  :\ - 

By the Construction of the characteristic map on C(p) these two maps are the same. 
Hence the top square of the diagram commutes. However, the bottom triangle is 
obviously commutative so we have proved part (i). 

(ii) From the factorization (5.3) it follows that, for i=0, 1 . . . . .  p - 1  we have 
a commutative diagram 

t+1  t+1 

(A E|  A F*)c(p)'---"-~ L(i+l)lC(p) 

I + I  i + l  

A ~ |  A (HI'| 
where the slanted map is obtained by exterior product from the map. 

(5.5) G1 -~/-/1 

in the same way as v(0 is obtained from v. However, by the definition o fg  the map 
(5.5) is the pull-back of the universal map 

e: QcL(p) -* Rct.(p) | Lp(1) 

on CL(p). We therefore have proved assertion (ii). 
(iii) The universal map 

v~: E~ --,. F~| 
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on C(p), defines a unique canonical map 

c(p)  ~ D 

of CL(p) schemes such that the universal map 

a: G, -* (H|174 

pulls back to v2. Conversely, on D, the pull back by g '  of the map 

ED -~ Oo ~-3-~ (R| ~ (F| 

together with the map ~, define a unique canonical map 

D -. C(p) 

such that  the  above two maps are pull-backs of the canonical maps v and v~ on 
C(p). By the uniqueness the maps are inverses of each other. 

(iv) The pull-back of ~ by the isomorphism in (iii) is v~. Hence Lv(p)'~l| 
pulls back to L2. However, by Construction 3 on C(p), the characteristic map v(p)' 
on C(p) is given by maps 

p + l  p + l  

A Ec(p)| F~(p) -,- f~ GI| H1*QL1)QE2| ~ /~ GI|  (H~|174 

Here the right hand side is L(p+ 1)[C(p) and as we saw in the proof of  part (i) 
we have that 

P P 

A al |  A (H*| ~- L(p)[C(p). 

Consequently; we have that L2~(L(p+I ) |  .1, We have proved that M 
pulls back to 

Lp(.p)D| = L,(p)DQ(L(p)IC(p))| 1)IC(p). 

However, by part (ii) and (iii) above Lp (p ) ,=  (g')* Lp (p) pulls back to g* Lp (p) = 
L(p)lC(P) and we have proved part (iv). 
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