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Abstract

We determine the algebra of bi-invariant differential operators (i.e., the center
of the universal enveloping algebra) of the group M (n) of rigid motions of R" by
explicitly describing a set of [—;—(n+ 1)] algebraically independent generators of
orders 2,4,6,.... Passing to the complexification of the Lie algebra of M (n) we
then obtain a description of the algebra of bi-invariant differential operators on
the connected Poincaré group SO,(p, ¢)XRP*? (semidirect product). We also
apply our main result to show how a certain generalization of the Radon transform,
defined on the affine Grassmannian manifold of p-dimensional planes in R", inter-
twines the M (n)-invariant differential operators on such manifolds.

1. Introduction

For a Lie group G let D(G) denote the algebra of left invariant differential
operators on G and let Z(G)SD(G) denote the algebra of left and right invariant
differential operators on G. In this paper we determine the algebra Z(G) when G
is the group M(n) of rigid motions of the Euclidean space R®. We will show that
Z(M(n)) has [3(n+1)] algebraically independent generators, having orders
2,4,6, ..., and we will describe these generators explicitly.

Passing to the complexification of the Lie algebra of M(n) we then obtain a
description of the algebra Z(G), when G is the semidirect product SO(n, C)X ",
and also when G is the general connected Poincaré group SO,(p, ¢)XRF*4.
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The problem of describing the algebra of bi-invariant differential operators on
the above semidirect products was also considered by S. Takiff [14], but was only
completely solved in the case n=4.

Next, let H be any closed subgroup of a Lie group G and let D(G/H) be the
algebra of differential operators on the manifold G/H which are invariant under
the action of G. If =: G--G/H is the natural projection, let u: Z(G)—~D(G/H)
be the homomorphism defined as in [7] by (u(D)f)on=D(forn) for DEZ(G) and
f€C=(G/H). Setting G=M(n) and H the subgroup leaving a certain p-dimen-
sional subspace of R” invariant, the coset space G/H is then the manifold G(p, n)
of p-planes in R”. Using the description of D(G(p, n)) in [4], we will show that
the map u: Z(M(n))~D(G(p, n)) is suriective. Thus, in particular, D(G(p, n))
is commutative.

As an application, we examine how certain generalizations of the Radon trans-
form and its dual, considered by the author [3] and Strichartz [14], intertwine the
invariant differential operators on the manifolds G(p, n). Specifically, fix p and
q between 0 and n—1 and choose an integer j with max (0, p+¢g—n)=/=min (p, ¢).
Define the transform R(p,q,j) from functions on G(p,n) to functions on
G(g,n) by

R(p, 4,)f(n) = [f&)dE, 1€G(q, n)

when the integral is taken over all p-planes ¢ which intersect a given g-plane n
orthogonally in a j-dimensional plane. A resuit of Helgason on abstract Radon
transforms [11] then enables us to show that for every DEZ(M(n)),

R(p, ¢, ou,(D) = p,(D)oR(p, g, ),

where p1, and p, denote the projections of Z(M (n)) onto D(G(p, n)) and D(G (g, n)),
respectively. If p+g=n—1, D(G(p, n)) and D(G(g,n)) have the same number
of algebraically independent generators [4] and in this special case one can find
sets {E;} and {F,} of such generators of D(G(p,n)) and D(G(g, n)), respec-
tively, such that

R(p, g,0)0E; = FiOR(p> g, 0).

This generalizes a well-known formula for the Radon transform and its dual
(Lemma 2.1 of [9]).

The author is indebted to Professor S. Helgason for introducing him to the
subject and for offering valuable insights.
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2. The algebra Z(M ())

The group G=M (n) is isomorphic to the (n-+1)X(rn+1) matrix group

)] {[lg II/) keO(n), VER"},
and it acts on R® by
kv [Y] . .
(0 1]- )= kL-Y+V, YeR"

Its Lie algebra g is given by the set of matrices

@ S= (T Z], Teso(n), ZeR',

00
so(n) being the Lic algebra of O(n). The adjoint representation Ad=Adg of the
group G then satisfies

MK Z) _ (k" ke 2=k
® aafs )5 5= 0 '

As usual, let E;; denote the matrix (9,;0,;)1=,,s=,+1 and put
Xjy=E;—E; (l=si<j=n)

C))
U=E,.. (=k=n).

These vectors form a basis of g.

Let S(g) be the symmetric algebra over g (consisting of polynomials in {X};, U;}
with complex coefficients) and let 7(g) be the algebra of Ad (G)-invariant elements
in S(g). As proved in [5], the symmetrization map

A: 8(g) ~ D(G)
is a linear bijection. We recall that for any basis {Z;} of g and any fe¢C=(G),

A& ={P(. - i) e (Seuz)] . Pes@),
1 s (t)=0

where g€G. Since A commutes with the adjoint representation, its restriction to
I(g) is a linear bijection onto Z(G). Although A is not multiplicative, we have by
Lemma 4.2 of [4] that if P,,..., P, are algebraically independent generators of
I(g), then A(Py), ..., A(P,) are algebraically independent generators of Z(G). Thus
to characterize Z(G) it suffices to produce a set of algebraically independent gen-
erators of I(g).

To describe these generators of I(g) it is convenient to introduce some nota-

tion. Let A=(a;;) be any NXN matrix, and for each I=sk=N let 1=i<
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<iy<...<{;=N be a choice of k indices in {1, ..., N}. For any such choice, let
D(,, iy, ..., i) denote the kXk minor obtained from A by choosing entries a;;
when i, j€{i, ..., &). That is to say, D(i, ..., i)=det (@ )exi (7€ {is --os is})-
Also, let

®) Pi(4) = Zil,_,,ikD(ils ces B Rk(A) = Z

where the sums extend over all choices of the given indices.

D(il, evy ik-l! N)

[ FPRTANS

Theorem 2.1. Consider the (n+1)X(n+1) skew-symmetric matrix with vector
entries

0 Xys... Xy, Uy

X 0 ... X, U,

6) A=
~ X, —Xepm-- 0 U,
- -U,..-U, 0
For 1=j=[+(n+1)] let Q;cS(3) be the sum Q;=Ry;(A). (That is, Q; is the
sum of the 2jX2j skew-symmetric minors of A having vectors U, in the last row

and column.) Then the polynomials Q; are algebraically independent generators of
the algebra I{g).

For the proof we view S(g) as the algebra of complex-valued polynomial func-
tions on the dual space g*. Then I(g) is identified with the algebra I,(g*) of poly-
nomial functions on g* invariant under the coadjoint representation Ad* of G on g*.
Thus it suffices to obtain a set of generators for I,(g*).

Consider now the linear bijection # of so(rn+1) onto g* given by

XU
™ L5

where, with S as in (2)

_ T Z] _
ﬂX,U(S)—nx,U(O o)~

J‘*’?X,U Xeso(n), UcR

1 XU T Z)_ 1 ‘
— trace (—‘U 0](—‘Z 0)="73 trace (XT) +*UZ.

Under this bijection, the coadjoint map Ad* kv on g* corresponds to the
P 01

transformation of so(n+1) given by

L2 -ENLE9G )
-t 0 0 1J\—tv oJ\w 1

_(ka‘l—V‘Uk—1+kU’V kU]_( X’ U’]

- —tUk— S0 )\~ o)
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Indeed,
o {pel§ Dm0 §)=mo[na(5 )0 )

- _% trace (Xk—Tk) +'Uk—'TV +Uk-'Z.

On the other hand, by (8),
(T Z) _
nx,v 00J)"

which is casily seen to agree with (9). Thus, under the bijection #, the algebra I;(g*)
consists by (8) of the polynomial functions on so(n+1) invariant under the trans-
formations

o (oo Ily G 1) wow

I O R [ I O

I, denoting the identity nXn matrix. Let x;; (1=i, j=n) and u (1=k=n) denote
the entry functions on the matrices X¢so(n) and U€R”, respectively. Then the
bijection # identifies g with the dual space so(n+1)* via

(10) X~ x

because #y p(X;)=x;; and ny y(U)=u,. Since the transformations (ii) consist
of simultaneous elementary row and column operations involving the last row and

—%trace (kX' T-VUKT +kUVT)+'Uk™Z,

s U™ 1y

column of the skew-symmetric matrix (——)'{U g) , itis clear from (10) and Lemma 2.2
at the end of this section that the polynomials Q; do indeed belong to I(g).

Next let (g*)" be the subset of g*=s0(n+1) consisting of the matrices [—A‘,U g)
for which |UPP=u?+...4+u2%0. Then let gfcg* be the subspace of matrices

0 0 u
(1n 0 X0 meR, X’cso(n—1).
—u; 0 0

Applying the transformations (i) and (ii) above, we sce that the Ad* (G)-orbit of
each point in (g*)" intersects gi. Consider the subgroup G,CG of elements g€G
in (1) with V=0 and k of the form

+1 0]
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The action of Ad*(G,) on ¢} is given by

0 0 0 0 +uy
0 X" 0}~ 0 KkXk* O0].
—u; 0 0 Tu, 0 0

Let IGo(g;{) denote the corresponding algebra of Ad* (G,) — invariant polynomial
functions on g;. The restriction mapping Q- Q=0lg; then maps Io(g*) into
Ico(g;)“). Since Ad* (G)-g} contains (g*)’, which is dense in g*, the restriction map
is injective. Now because of Lemma 2.2 below, IGo(gﬁ) is generated by «? and the

-1
" ]), where as in

(5) Py (X’) is the sum of the 2kX2k skew-symmetric minors of X’. It follows that
U, 12 Py, ..., u2 Py which coincide with Q,, Q., ..., 0,4, are algebraically inde-
pendent so by the injectivity of the map Q- Q@ the polynomials @, ..., Q;4; are
algebraically independent over C.

It remains to prove that the algebra I generated by Oy, ..., 0;;; equals I,(g®).
Suppose there exists Q¢1,(g*) not in I. Then @ is a polynomial

Q =S80, R, ..., Py) = S(Qla QZ/QI: cevs Q1+1/Q1)-
By the injectivity

(12) Q = S5(01, Q/Q15 s Q141/Q0) =

algebrairally independent polynomials P, (X") (lékélz[

SI(QD cees QH-I)
of ’

where S; is another polynomial. Since Q¢I, we have k=1. By the algebraic inde-
pendence of the Q;, we may assume that the variable ¢, does not divide S; (%, ..., f;41)-
Write

Sitys s tia) = Sty ooy )+ 1587ty ooy Biid).

Then S'(t;, ..., 441)#0. We shall now show that there exists a complex matrix
Ly€so(n+1, C) such that

(13) 0. =0, S,(Qz(Co)5 “ees QH»l(Co)) # 0.

For this consider the complex skew-symmetric matrices of the form

1

0 0 0 0 ...0 1
0 o Zog  Zog .- 2oy
0 —zy O Z34 +e- Zgp O

0

(14) (=] 0 —2zy4 —2z5y O ...2z,

[=]

0 —Zy —Zgy —Zay- O
-1—i 0 0 ..0 0
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and put Z=(z;))p=; j=,- Also, for each k=1, ...,1, let Q;(Z) denote the sum of
the 2kX2k skew-symmetric minors of Z with entries from Zas, Zogs .0y Zoy IR
the first row and column. Then it is easy to see (because of a pairwise cancellation
of minors) that

0.(0=0, %D =0i1(2) Q=k=I1+1).

Thus, S(Q2(0), ..., 01+1(0))=S(01(2), ..., Q;(Z)). However, the polynomial func-
tions O, ..., Q; were already seen to be algebraically independent over C so there
exists {, of the form (14) satisfying (13). This contradicts (12). Thus, I=1I,(g*).

To complete the proof of Theorem 2.1, we recall the following result [12,
Ch. X1I].

Lemma 2.2, Let J be the algebra of polynomial functions on so(n) invariant
under the adjoint action X—kXk™ of O(n). Then J is generated by the polynomials

Py, (léké [-g—]) where as in (5) Py (X) is the sum of the 2kX2k skew-symmetric
minors of X. Moreover the P, are algebraically independent over C.

Proof. Viewing each real nXn matrix 4 as a linear transformation of R”,
we have P (A)=trace (4*4: A*R"-> A*R"). Thus P, (4) is certainly invariant under
any change of basis transformation A4-t4:™! (z€GL(n)). (In fact, +P,(4) is
the coefficient of A*~* in the characteristic polynomial det (Al,—4).) Now each
Xeso(n) is conjugate under Ad(O(m)) to an element of the set D of matrices

0 s
-5 0
0 s,
~53 0

Let Q¢J and Q the restriction Q|D. Since Ad(O(n))D=so(n), the map Q-0
is injective. Also,  is invariant under the transformation s;,—¢;5,;, where g=+1
and ¢ is any permutation (the Weyl group of so(n)). Thus, @ is a polynomial in
the algebraically independent elementary symmetric polynomials of i, ..., s?

n
(t=[—2—]). However, these polynomials are just the restrictions to D of the poly-

nomials Py,. Thus, by the injectivity mentioned, the P, are algebraically independent
and Q is a polynomial in them.
The proof of Theorem 2.1 is now complete.
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3. Central eperators on other semidirect products

Let G be any real Lie group with Lie algebra g. If 2(g) denotes the universal
enveloping algebra of g (with complex coefficients), then we have the identities [6]

(15) U(g) = U(g®) = D(G) = D(Go)

where G, is the component of G containing the identity and g€ is the complexifica-
tion of g. Letting 3(g) denote the center of (g), we also have

(16) Z(G) S Z(G,) =3(9) =3(g9)

where Z(G,) consists of the bi-invariant differential operators on G,. Nowextending
each operator ad X (X€(g)) to a derivation of the symmetric algebra S(g), we
define the polynomial algebra I, (g) to be the set {PeS(g)lad (X)P=0 for all Xcg}.
Then I,(g) coincides with the Ad (Gy)-invariants in S(g), I(g) S I;(g) and the sym-
metrization map 4 is a bijection of Z;(g) onto 3(g).

Now take G=M(n). Then G, is the semidirect product SO(m)XR". By the
same proof as that of Theorem 2.1, with only the notation k€O(n) changed to
k€ SO(n), it can be shown that the algebra I, (g) is also generated by the polynomials
Ots ..o Oyp1- Thus I (g)=1(g) and so by (16), 3(g)=Z(G). By passing to the
complexification, we obtain generators for 7;(g%).

Theorem 3.1. For the Lie group SO(n, C)XC" with Lie algebra g¢ and basis
vectors X;;, Uy as in (4), the algebra I, (g%) is generated by the algebraically independent
polynomials Qy, ..., Q11 in Theorem 2.1.

Next let H be the connected general Poincaré group SO,(p, n—p)XR", with
Lie algebra $=s0(p, n—p)XR". $H has basis vectors X, ,=E,—FE, (1=r<s<p,
ptisr<s=n), Y,,=E,+E, (1=r=p, p+1=s=n), and U,=E, ., (1=k=n).
The complex Lie algebra g€ is canonically isomorphic to the complexification $€
via the map

X, x, U, X, ix, U
(1" o:|7'X, X, Up|~|i'X, X, —iU:].
0 00 o o O
Here X,€s0(p, C), Xy€s0(n—p, C), X, is any complex pX(n—p) matrix, U,€CP,

and U,£C*?, From Theorem 3.1 and (17) it follows that the polynomials
0, {o (X))} {o(U}) (1=j=[5(n+1)]) constitute a set of algebraically independent
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generators of I($C)=I1(H). Now

_[Xs 1=r=<s=p or pt+l=r<s=n;
('D(X'S)_{iY,s l=r=p, p+l=s=mn;

_ U, 1=k=p;
o (U) = {~iUk prl=k=n.
From Theorem 2.1 we obtain the generators of the invariant algebra I(§)
Theorem 3.2, Consider the (n+1)X(n+1) matrix with vector entries

(18)

0 X12 sne le Yl,p.',l Y].’p+2 e Yln Ul
"‘X12 0 Tne sz Y2’p+1 Y2’F+2 vae an U2
~X, —X 0 Yopis  Ypprz o Ym U,
B = Yl,p+1 Yz,p+1 Yp,p+1 0 Xp+1,p+2 Xp+1,n Upsay-
Yl,p+2 Y2,p+2 see Yp,p+2 _Xp+1,p+2 0 are Xp+2,n Up+2
Yln Y;v .. an T Ap+in —Ap+2,n e 0 Un
v, -U, .-U, Uyir Upe .U, 0

1
Then the polynomials Ry;(B) (lé j= [%—]) are algebraically independent gen-
erators of 1(H).

In fact, Qj({(/’ X} {o(U)})= Ry;(B).

As an example, let n=4 and p=3. Then computing by means of Theorem 3.2,
the algebra of bi-invariant differential operators on the connected Poincaré group
S0,(3, )X R* can be shown to have two algebraically independent generators,
these being the images under the symmetrization A of the second order polynomial
U+ UZ+U2—U} and the fourth order polynomial (XyoUs— Xy3Uy+ Xo3Up)®—
(X2 Uyt X34 U= Yo Un P — (X33 Uy + Y Us— Y3y U~ (X5 Us+ Yy Us— Y3, Up)™ This
result has been obtained previously by Varadarajan (see [15]).

4. Projections on Grassmannians and applications fo Radon transforms

In this section G will denote the Euclidean motion group M (n). For 0=p=n—1,
let E, denote the subspace spanned by the first p basis elements of R* (E,=0 if
p=0), and let H be the subgroup of G leaving E, fixed. Then H=M(p)X O(n—p)
and G/H is the affine Grassmann manifold G(p, n) of p-planes in R". Denote by



200 Fulton B. Gonzalez

D(G/H) the algebra of differential operators on G/H which are invariant under
the G-action. If n: G—~G/H is the natural projection, we have a homomorphism
p of Z(G) into D(G/H) given by

(19) (u(D)f)or = D(for)

for DEZ(G) and f€C=(G/H) ([7]). We note that (19) also defines u(D)eD(G/H)
for any DED(G) which is invariant under right translations by all h€H.

Theorem 4.1. u maps Z(G) onto D(G/H).

Remark. Since Z(G) is commutative, so is D(G/H) by Theorem 4.1. The
commutativity of D(G/H) is also a consequence of the fact that the pair (G, H)
is a symmetric pair ([1], [13]).

For the proof of Theorem 4.1, we decompose the Lie algebra g of G into a
direct sum of §, the Lie algebra of H, and an Ad (H )-invariant subspace M. Since
H consists of the matrices

a 0 V\ acO(p), beO(n—yp),
(20) h:(O b 0O

00 1/ VeRe

we define M S g as the subspace of matrices

0 Y 0\ Y any real pX(n—p) matrix,
T={""Y OW
000

Then g=9HdM and since

WeR* P,

0  aYb-! 0
Ad(WT =|-b'Ya—1 0 b-W +b'Ya~
0 0 0

I is Ad (H)-invariant. Now for every P¢S(g), there exists a unique polynomial
PeS(M) such that P—PcS(g)9H. Let I(M) be the algebra of Ad (H)-invariants
in S(M). Then the map P-P takes I(g) into 7(9M). Since the pair (G, H) is reduc-
tive [4], it suffices by [10, Chapter II, Proposition 5.32] to prove that the map P-P
takes I(g) onto I(M). Now M has basis vectors X;; (1=i=p, p+1=j=n) and
U, (p+1=k=n). We recall the characterization of I(R) in terms of these basis
vectors [4].

Lemma 4.2, Consider the (p+1)X(n—p) matrix with vector entries
Up+1 sen Un

C= Xl,p+1 nee Xl,n .
X X

pspt+l s “p.n
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For 1=k=min (p+1,n—p) let T ,€SM) be the sum of the squares of the kXk
minors of C having vectors U, in the first row:

U, ..U,
T, = Z’ det? Xj1,i1 thik
k pHl=i<.. .<i =n
1=j,<...<ji _1=p
Xjk—1,i1 Xjk-bik

Then the polynomials T, are algebraically independent generators of 1(IN).

We will show that for the generators Q, of I(g) in Theorem 2.1, Q,=T, when
1=k=min (p+1, n—p). Since the map P—P is a homomorphism, this will show
that it is surjective from I(g) to 1(M).

For this purpose it is convenient to identify S(g) and S(9%) with the algebras
of polynomial functions on the dual spaces g* and I*, respectively. Thus, as in
the proof of Theorem 2.1, I(g)=1I,(g*). By the same token, I(M) is identified
with the algebra I;(9t*) of polynomial functions Q on 9W* invariant under the
co-isotropy representation Ad¥(H) on IM*

O(Ad* () f) = Q(f) heH, fem*.

By letting each f€9R* be identically zero on § we may assume M*cg*. If P S(g),
P then coincides with the restriction P|9t*. Obviously if PeI(g*) then P¢l,(IN%).
Under the bijection (7) of so(n+1) onto g*, the subspace MM*cg* corresponds to
the subspace of skew-symmetric matrices of the form

0 X 0\ X any real pX(n—p) matrix,
A=|"X 0 U| UecR""
0 U 0

21

From this we also obtain a linear bijection of M* onto the space M, ,—, of real
(p+1)X(n—p) matrices as follows:

tU up+1 wee Uy
(22) A~ (X) =X 41 0o X0 |-
Xp,p+1 -+ Xpn

By means of the transpose map, Mt corresponds to the dual space M., ,_,, and

by (10) the basis vectors of 9 correspond to the entry functions of M, ., ,_, via
Xij=>x; 1=i=p, p+l=j=mn;
(23) J J
Uk‘—’uk p+1§k§n.
Thus the polynomials 7} are polynomial functions on the space M., ,—,, just as
the Q, are polynomial functions on so(n+1). Moreover, it is easy to see that for
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any matrix 4 of the form (21),

0, A =T, [E’]) k=1, ..,min(p+1, n—p).

Thus it follows that Q,=7,, and this proves Theorem 4.1.
Remark. ¥f k=>min (p+1, n—p), then Q,IM*=0.

Corollary 4.3. The operators p((Qp), ..., u(2(Q,)) (m=min (p+ 1, n—p)) are
algebraically independent generators of D(G(p, n)).

Proof. By [4, Lemma 4.2] the operators u(A(T%)), ..., u{A(T,,)) are algebraically
independent generators of D(G(p, n)). Since Q,=T, (I=k=m), we have

(24) #(A(Q) = u(A(T}))+1ower order terms

({71). Now suppose P=> Ay, ..n Xi'... Xy is a nonzero polynomial such
that the differential operator D=P(u(A(Q), ..., (A (Q,)=0. Let D'=
P(u(A(Ty), ..., u(A(T,))). Then D’#0 and by (24), order (D’— D)< order (D).
This yields order (D')<order (), a contradiction. Thus #(A(Q0), ..., #(A(Qy)
are algebraically independent. Next let DeD(G(p,n)). Then we may write
D= P(u(A(Ty), ..., u(A(T,))) for some polynomial P. Setting

Dy = P(u(Q0); s (A(Q))

we have D=D;+D,, where order(D,<order(D). The corollary follows by
induction on the order of D,.

Now fix a value of g between 0 and n—1, and fix j between max (0, p+qg—n)
and min (p, q). We consider a generalization of the Radon transform and its dual,
due to Strichartz [14], from functions on G(p, n) to functions on G(q, n). For
a fixed g-plane #, let 4 be the set of all p-planes & intersecting # orthogonally in a
J-dimensional plane. Then 4 is a closed submanifold of G(p, n) and there exists a
canonical measure du(€) on # invariant under all Euclidean motions preserving ¢
(cf. below). For any suitable function fon G(p, n), the transform R(p, q,j)f isa
function on G(g,n) defined by

25) R(p, g ) f) = [, F©) du(®. n€Glg, n).

For our purposes it is necessary to formulate this integral transform in terms of
homogeneous spaces in duality. Let e, ..., e, be the usual basis of R, let E, be
as before the span of e, ..., ¢, and let E, be the span of €p_ji1s vers €pjrg. L1hED
£, and E, meet orthogonally in a j-dimensional plane. If H, and H, are the respective
subgroups of G leaving E, and E, invariant, then H, consists of the (n+1)X(n+1)
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matrices & in (20) while H, consists of the (n+1)X(n4-1) matrices

a0 00

0 oV a’c0(p—j), b'e0(y),

0 0 0} cdcont+j—p—q), V'ERL
6 0 01

Also, G(p, n)=G[H, and G(q,n)=G[H,.

Proposition 4.4. The manifolds G/H, and G|H, are homogeneous spaces in
duality. That is to say, the groups G, H,, H,, and H=H,n H, satisfy the following
properties:

() They are all unimodular.

(ii) iIf h,cH, satisfies h,H,CH,H,, then h,cH,.

(i) H,H, is a closed subset of G.

The proof is straightforward and shall be omitted. (See [9] for the assumptions under-
lying homogeneous spaces in duality.)

The transform R(p, q,/) is then the integral transform associated with the
double fibration

G/H
(26) 7N\
G/H, G/H,

That is to say, if n=g-E, (g€G), then fj={gh,-E\h,cH,} and
R, .16 = [, f(8hy- B d(h)n

where d(h,)q is the H,-invariant measure on H,/H. (See [9].) A result of Helga-
son [11, Proposition 4.1] states that an integral transform associated with a double
fibration such as (26) intertwines the G-invariant differential operators in G/H,
and G/H, arising from operators in Z(G).

Proposition 4.5. For any DEZ(G), let p,(D) and p (D) be the projections of
D on G[H, and G|H,, respectively, as in (19). Then for any feCZ(G(p,n)),

27 R(p, 4, ) (1,XD)f) = p, (D) R(p, g, )f)-

Note that by Theorem 4.1, (27) is a statement about how R(p, q,j) intertwines
all G-invariant differential operators on G/H, and G/H,.

Finally we consider the case g=n-—p-—1. By Corollary 4.3, the algebras
D(G(p,n)) and D(G(g, n)) have the same number of algebraically independent
generators, these being E;=p,(A(Q)) and F;=p,(1(Q)) (1=i=min (p+1, g+1))
respectively. (27) shows how R(p, ¢,j) intertwines these generators:

(28) R(p= qu)oEi: FiOR(pa q,])
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When j=0, the transform R(p, ¢, 0) is injective (and in fact was inverted explicitly
in [3]), and (28) generalizes the well known relations for the Radon transform
R(=R(0,n—1,0)) and its dual R*(=R(n—1,0,0)) on R":

R(Lf) =T(Rf), R(O¢)=LRg,

for all feCZ(R"), ¢cC7(G(n—1,n)), where L is the Laplacian on R” and [ is
the Laplacian on the fibers of the vector bundle G(n—1,n) ([8], [9]).
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