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Abstract 

We determine the algebra of bi-invariant differential operators (i.e., the center 
of the universal enveloping algebra) of the group M(n) of rigid motions of R" by 
explicitly describing a set of [~-(n+ 1)] algebraically independent generators of 
orders 2, 4, 6 . . . . .  Passing to the complexification of the Lie algebra of M(n) we 
then obtain a description of the algebra of bi-invariant differential operators on 
the connected Poincar~ group SOo( p, q)•  p+~ (semidirect product). We also 
apply our main result to show how a certain generalization of the Radon transform, 
defined on the affine Grassmannian manifold of p-dimensional planes in R", inter- 
twines the M(n)-invariant differential operators on such manifolds. 

1. Introduction 

For a Lie group G let D(G) denote the algebra of left invariant differential 
operators on G and let Z(G)~D(G) denote the algebra of left and right invariant 
differential operators on G. In this paper we determine the algebra Z(G) when G 
is the group M(n) of rigid motions of the Euclidean space R". We will show that 
Z(M(n)) has [~(n+l ) ]  algebraically independent generators, having orders 
2, 4, 6 . . . . .  and we will describe these generators explicitly. 

Passing to the complexification of the Lie algebra of M(n) we then obtain a 
description of the algebra Z(G), when G is the semidirect product SO(n, C)•  ", 
and also when G is the general connected Poincar6 group SOo(p, q)•  p+q. 

Supported in part by NSF Grant DMS-8601965. 



192 Fulton B. Gonzalez 

The problem of describing the algebra of bi-invariant differential operators on 
the above semidirect products was also considered by S. Takiff [14], but was only 
completely solved in the case n~4. 

Next, let H be any closed subgroup of a Lie group G and let D(G]H) be the 
algebra of differential operators on the manifold G/H which are invariant under 
the action of G. If ~r: G~G/H is the natural projection, let kt: Z(G)--,-D(G/H) 
be the homomorphism defined as in [7] by (iz(D)f)ozc=D(fo~) for DCZ(G) and 
fEC~176 Setting G=M(n) and H the subgroup leaving a certain p-dimen- 
siolaal subspace of R" invariant, the coset space G/H is then the manifold G (p, n) 
of p-planes in R". Using the description of D(G(p, n)) in [4], we will show that 
the map #: Z(M(n))-,.D(G(p, n)) is sur]ective. ~[hus, in particular, D(G(p, n)) 
is commutative. 

As an application, we examine how certain generalizations of the Radon trans- 
form and its dual, considered by the author [3] and Strichartz [14], intertwine the 
invariant differential operators on the manifolds G(p, n). Specifically, fix p and 
q between 0 and n -  1 and choose an integerjwith max (O,p+q-n)<=j<=min (p, q). 
Define the transform R(p,q,j) fi'om functions on G(p,n) to functions on 
G(q,n) by 

R(,p, q,J)f('l) = f f(r162 ~6(q ,  n) 

when the integral is taken over all p-planes ~ which intersect a given q-plane 
orthogonally in a j-dimensional plane. A result of Helgason on abstract Radon 
transforms [ll] then enables us to show that for every DCZ(M(n)), 

R(p, q,j)o#p(D) = #q(D)oR(p, q,:), 

where/~p and #q denote the projections of Z(M(n)) onto D(G(p, n)) and D(G(q, n)), 
respectively. If  p+q=n--1, D(G(p, n)) and D(G(q, n)) have the same number 
of algebraically independent generators [4] and in this special case one can find 
sets {Ei} and {Fi} of such generators of D(G(p, n)) and D(G(q, n)), respec- 
tively, such that 

R(p, q, O)oE, = FioR(p, q, 0). 

This generalizes a well-known formula for the Radon transform and its dual 
(Lemma 2.1 of [9]). 

The author is indebted to Professor S. Helgason for introducing him to the 
subject and for offering valuable insights. 
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2. The algebra Z (M (n)) 

The group G= M(n) is isomorphic to the (n+ 1)• (n+ 1) matrix group 

(1) 

and it acts on R" by 

(~ ~ / ' ( ~ 1  = ~ ' ~ + ~ '  Y~R". 

Its Lie algebra g is given by the set of matrices 

(2) s = ( T  Z ) ,  TEso(n), ZER", 

so(n) being the Lie algebra of O(n). 3"he adjoint representation Ad--Ado of the 
group G then satisfies 

(3) Ad(~ ~ ) ' ( 0  ~ O ) = ( k ~  - '  k ' Z - U ' V / .  

As usual, let E~j denote the matrix (6r~6~.i)1<_,,~,+ 1 and put 

X~j = Ei j -Ej l  ( l < : i < j < = n ) ;  
(4) 

Uk ---- Ek,+I (1 <= k <= n). 

These vectors form a basis of g. 
Let S(g) be the symmetric algebra over g (consisting of polynomials in {Xij, Uk} 

with complex coefficients) and let I(g) be the algebra of Ad (G)-invariant elements 
in S(g). As proved in [5], the symmetrization map 

)~: S($) ~ D(G) 

is a linear bijection. We recall that for any basis {Zi} of g and any fEC  ~ (G), 

where gEG. Since 2 commutes with the adjoint representation, its restriction to 
I(g) is a linear bijection onto Z(G). Although 2 is not multiplicative, we have by 
Lemma 4.2 of [4] that if P1 . . . . .  Pm are algebraically independent generators of 
I(g), then 2(P0 . . . . .  2(P,) are algebraically independent generators of Z(G). rIhus 
to characterize Z (G) it suffices to produce a set of algebraically independent gen- 
erators of I(g). 

To describe these generators of I(g) it is convenient to introduce some nota- 
tion. Let A=(a~j) be any N •  matrix, and for each l~_k<-N let 1<-/1< 
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<is< ...<ik<=N be a choice of k indices in {1 ..... N}. For any such choice, let 
D(il, is, ..., ik) denote the k X k  minor obtained from A by choosing entries a~i 
when i,j~ {i 1 . . . . .  ik}. "Ihat is to say, D(il . . . . .  ik)=det (aij)t,• (i, jC {il . . . . .  it}). 
Also, let 

(5) Pk(A) = Zq.. . , ,  D(i~ . . . . .  it), Rk(A) = ~ ,  ...... ~_ D(i~ . . . . .  ik_ 1, N)  

where the sums extend over all choices of the given indices. 

Theorem2.1. Consider the (n+l )X(n+l )  skew-symmetric matrix with vector 
entries 

(6) A = 

0 Zl~... X1, U1 
-XlS 0 ... Z~, U, 

. . .  

. . ,  

o . .  

- x ~ .  - x ~ .  . . . o u .  

- u 1 - u ~  . . .  - v .  o 

For <: .< 1 l=j=[-~(n+l)]  let QjCS(g) be the sum Qj=R2j(A). (That is. Oj is the 
sum o f  the 2jX2j skew-symmetric minors o f  A having vectors Uk in the last row 
and column.) Then the polynomials Qj are algebraically independent generators o f  
the algebra I(g). 

For the proof we view S(g) as the algebra of complex-valued polynomial func- 
tions on the dual space g*. ]-hen I(g) is identified with the algebra Io(fl*) of poly- 
nomial functions on g* invariant under the coadjoint representation Ad* of G on g*. 
2thus it suffices to obtain a set of generators for I0(g*). 

Consider now the linear bijection t /of so(n+ 1) onto g* given by 

/ 0 (7) - ' U  - "  ~ x , v  X ~ s o ( n ) ,  U E R "  

where, with S as in (2) 

1 1 ~x,v(X) = ~lx, u(  T Z) = - - ~ t r a c e ( _ t ~  U)(_ tT Z Z)  = - - f  trace(XT)+ 'UZ. 

Under this bijection, the coadjoint map Ad*[ k V] on g* corresponds to the 
x i 

transformation of so(n+ 1) given by 

(8, ( _ X  U ) -  (O k 1V)(_tU U ) ( k ;  01)" 

= ~,[ kffffk-l-VtUk-l_rUk - 1  +kUtV ~0 U) = (.IX; UI). 
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Indeed, 

(9) lad*/0  /1/O 
= l trace(Xk_lTk)+tUk_lT V+tUk_tZ. 

On the other hand, by (8), 

~?x, v,( 0 Z ) = _ l t r a c e ( k X k _ ~ T _ V t U k _ i T + k U t V T ) + , U k _ l Z  ' 

which is easily seen to agree with (9). Thus, under the bijection r/, the algebra Io(g*) 
consists by (8) of the polynomial functions on so(n+ 1) invariant under the trans- 
formations 

(i) ( _ , ~  0 ~ )  - - ( ~  0 ) ( _ , ~  ~)(/CO ~ 01) ' k~O(n) 

I, denoting the identity n•  matrix. Let xij (l<=i,j<-n) and u k (l<=k~=n) denote 
the entry functions on the matrices XCso(n) and UCR", respectively. Then the 
bijection t/identifies g with the dual space so(n+ 1)* via 

(10) Xij ~ xii, gk -* Uk 

because tlx, v(X~j)=xij and ~x, v(Uk)=Uk. Since the transformations (ii) consist 
of simultaneous elementary row and colurrm operations involving the last row and 

columnoftheskew,symmetricmatrix ( S U  0U) ' it is clear from (10) and Lemma 2.2 

at the end of this section that the polynomials Qj do indeed belong to I(g). 

Next let (g*)' be the subset of g*=so(n+ t) consisting of the matrices , t  U 0 

for which ]Ul~=u~+...+u2,r Then let g•cg* be the subspace of matrices {00! / 
(11) X' ulER, X'Eso(n-1).  

- -  II 1 0 

Applying the transformations (i) and (ii) above, we see that the Ad* (G)-orbit of 
each point in (g*)' intersects g~. Consider the subgroup GonG of elements gEG 
in (1) with V=0 and k of the form 

0 
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"Ihe action of  Ad* (Go) on o~" is given by 

0 X" ~ k l X ' k f  1 . 

- ul 0 ~-Ul 0 

Let I~0(g*) denote the corresponding algebra of  Ad* (Go) - -  invariant polynomial 
functions on g~. The restriction mapping Q~Q=QIg '~  then maps 10(g*) into 
l%(gg). Since Ad* (G). gg contains (g*)', which is dense in g*, the restriction map 
is injective. New because of  Lemma 2.2 below, I * ~o(g0) is generated by u~ and the 

algebraically independent polynemials P 2 k ( X ' ) [ l < = k ~ l = ] - 2 @ ] } ,  where as in 

(5) P~ktX') is the sum of  the 2k•  2k skew-symmetric minors of  X' .  It follows that 
u~,u~P2 . . . . .  u~P2t which coincide with Q1, Q~ . . . . .  ~?,+1 are algebraically inde- 
pendent so by the injectivity of  the map Q ~  L) the polynomials Qt . . . . .  Q~+~ are 
algebraically independent over t2. 

It remains to prove that the algebra I generated by Q~ . . . . .  Q~§ equals Io(g*). 
Suppose there exists QC10(g*) not in I. qhen Q is a polynomial 

~) = S(/'//2, e2 ,  - - . ,  P s i )  = S(9_~1, Q2 /Q1  . . . . .  9_~/+1/.~)1) �9 

By the injectivity 

(12) Q = S ( Q I ,  Qz/Q~, ..., Qt+I/Q1) - SI(Q~ . . . .  , Qt+O Ok 

where S~ is another polynomial. Since Qr we have k ~  1. By the algebraic inde- 
pendence of  the Q,, we may assume that the variable q does not divide S , ( q  . . . . .  fi+x). 
Write 

S~(ta . . . .  , tt+x) = S'(t2 . . . .  , h+ , )+ taS" (q  . . . . .  h+l). 

q-hen S'(t2 . . . . .  h+O~O. We shall now show that there exists a complex matrix 
~o~so(n+ 1, C) such that 

(13) Q,((o) = 0, S'(Q=((o ) . . . . .  Qt+~(~o)) ~ 0. 

For this consider the complex skew-symmetric matrices of  the form 

jooo  o o ii 0 0 z23 z24..- z2~ i 
] : - - z ~  0 z~a"'z3,, 

(14) ~ = -- z~ -- zea 0 ... z4, 

I o ' ' '  [ - -  Z2n - -  Zan - -  Z4n . .-  0 0 

t - - i  - - i  0 0 . . .  0 01 
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and put Z=(zti)2ai, j~_ ,. Also, for each k = l  . . . . .  l, let Qk(Z) denote the sum of 
the 2 k •  skew-symmetric minors of  Z with entries from z2~, z~4 . . . . .  z2, in 
the first row and column. ~Ihen it is easy to see (because of  a pairwise cancellation 
of  minors) that 

Ol(~) = O, Qk(~) = Ok-x(Z)" (2 ~ k --<= l-l- 1). 

"Ihns, S'(Q2(~) ... . .  Qt+l(~)) = S'(Q~(Z) . . . . .  Q;(Z)). However, the polynomial func- 
tions Q~ . . . . .  Q~ were already seen to be algebraically independent over C so there 
exists (0 of  the form (14) satisfying (13). ~Ihis contradicts (12). ~lhus, I=I0(g*). 

~Io complete the proof  of  ]heorem 2.1, we recall the following result [12, 
Ch. XII]. 

Lemma 2,2. Let Y be the algebra of  polynomial functions on so(n) invariant 
under the adjoint action X-~kXk -~ of O(n). Then J is generated by the polynomials 

( ['1) P2k l<-k<= ~- where as in (5) P~k(X) iS the sum of  the 2k• skew-symmetric 

minors of  X. Moreover the P~k are algebraically independent over C. 

Proof. Viewing each real n• matrix A as a linear transformation of  R n, 
we have Pk(A)=trace (AkA: AkR"-~ AkR~). ~hus Pk(A) is certainly invariant under 
any change of  basis transformation A - ~ A z  -~ (z~GL(n)). (In fact, • is 
the coefficient of  )2 -k in the characteristic polynomial det (2I,-A).)  Now each 
XCso(n) is conjugate under Ad (O(n)) to an element of  the set D of  matrices 

0 s~ i 
- s  0 I 0 s~ 

-s2 0 

.J 
Let QCJ and ~)the restriction QID. Since Ad(O(n))D=so(n), the map Q-*-L) 
is injective. Also, Q is invariant under the transformation si~eis,(~) where ei= ___ 1 
and a is any permutation (the Weyl group of  so(n)). Thus, O~ is a polynomial in 
the algebraically independent elementary symmetric polynomials of  s~ . . . . .  s~ 

.owevo , poly- 

nomials Pe,. Thus, by the injectivity mentioned, the P2, are algebraically independent 
and Q is a polynomial in them. 

"Ihe proof  of  ~lheorem 2.1 is now complete. 
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3. Central  operators on other semidirect  products  

Let G be any real Lie group with Lie algebra g. If 9X(g) denotes the universal 
enveloping algebra of g (with complex coefficients), then we have the identities [6] 

(15) U(g) = l~(g c) = D(G) = D(Go) 

where Go is the component of G containing the identity and gc is the complexifica- 
tion of g. Letting 3(g) denote the center of 9X(g), we also have 

(16) z ( c )  ~ z (c0) = B (s) = 3 (o C) 

where Z (Go) consists of the bi-invariant differential operators on G 0. Now extending 
each operator ad X (XC(g)) to a derivation of the symmetric algebra S(9), we 
define the polynomial algebra/1 (9) to be the set {PE S(9)lad (X)P-= 0 for all X~ g}. 
q-hen i~(g) coincides with the Ad (Go)-invariants in S(fl), I(8)~=1~(9) and the sym- 
metrization map 2 is a bijection of l~(g) onto ~(g). 

Now take G=M(n). Then Go is the semidirect product SO(n)• By the 
same proof as that of ~fheorem2.1, with only the notation k~O(n) changed to 
kE SO (n), it can be shown that the algebra/1 (9) is also generated by the polynomials 
QI .. . . .  Qt+~. Thus /1(9)=1(9) and so by (16), ](g)=Z(G). By passing to the 
complexification, we obtain generators for/1 (tic). 

Theorem 3.1. For the Lie group SO(n, C))<C" with Lie algebra gc and basis 
vectors X~j, U k as in (4), the algebra 11 (gc) is generated by the algebraically independent 
polynomials Q1 . . . . .  Qt + 1 in Theorem 2.1. 

Next let H be the connected general Poincar6 group SOo(p, n-p ) •  with 
Lie algebra ~=so(p, n-p)• ~3 has basis vectors Xrs=Er~--Es, ( l~r<s<p,  
p+l<=r<s<-n), ~-=Er~+E~r (l~r~_p, p+l<-s<=n), and Uk=Ek,,+l (l=k---<n). 
The complex Lie algebra gC is canonically isomorphic to the complexification .~c 
via the map 

Here X1Eso(p, C), X3Eso(n-p, C), X2 is any complex p)<(n-p) matrix, UIEC p, 
and U2EC "-p. From Theorem3.1 and (17) it follows that the polynomials 
Qj"{q~ (X,,)}, {q~ (Uk)}) (1-<=j='< [y(nl + 1)]) constitute a set of algebraically independent 

~o: -~ -I"3 ~ i ~ - I " 3 -  �9 

0 ~ 0 
(17) 
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generators of I (5C)=I(5) .  Now 

~X,s 1-<_:r<s<=p or p+l<--r<s<--n;  
P (X" )= t iY , ,  l <=r<=p, p + l < = s < = n ;  

Uk l < = k ~ - p ;  
r = --iUk p + l  ~ k < = n .  

From Theorem 2.1 we obtain the generators of the invariant algebra I(~) 

(18) 

Theorem 3.2. Consider the ( n + l ) •  1) matrix with vector entries 

B = 

r o X12 ... X1, Y~,p+l 

- - 5 2  0 ... X2p Yz, p+l 

[ Yl, p+l Y~.,p+I ... Yp, p+l 0 

n . . . .  p i t  

l -V~ - v ~  ... -Up Vp+~ 

r f 1,~ n + l  
Then the polynomials R2j(B) [1-<-j-<-[~[] 
erators of 1(9). 

In fact, Qj({~(Xt~t)}, {qo(gk)})=R94(B ). 

g~,p+2 ... Y~, U1 ] 

I 
Ir~+1 p+~ ... X . + ~  . / ,+q. 
0 ' ...x,+,'..V,+~ I 

-X,+~, ...0 in I 
u,+~ ... U, 0 j 

are algebraically independent gen- 

As an example, let n=4  and p=3 .  q-hen computing by means of Theorem 3.2, 
the algebra of bi-invariant differential operators on the connected Poincar6 group 
SO0(3, 1)•  4 can be shown to have two algebraically independent generators, 
these being the images under the symmetrization 2 of the second order polynomial 
U~ + U~ + U~-  U~ and the fourth order polynomial (X12 Ua-  X13 U2 + X2s U1) 2"  
(X12 U4+ X~4 U2-- Y24 U1) 2 -  (X13 Uaq- Y1r Us-  Ysa U~) 2-  (X2a U4-t- Y24 Us-- Y34 U2) 2- This 
result has been obtained previously by Varadarajan (see [15]). 

4. Projections on Grassmannians and applications to Radon transforms 

In this section G will denote the Euclidean motion group M(n). For 0<_-p <- n -  1, 
let Ep denote the subspace spanned by the first p basis elements of Rn (Ep= 0 if 
p=0) ,  and let H be the subgroup of G leaving Ep fixed. Then H=M(p)•  
and G/H is the affine Grassmann manifold G(p, n) of p-planes in R". Denote by 
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D(G/H) the algebra of differential operators on G/H which are invariant under 
the G-action. If re: G~G/H is the natural projection, we have a homomorphism 
# of Z(G) into D(G/H) given by 

(19) (p(D)f)orc = D(fo~) 

for DEZ(G) and fEC~(G/H) ([7]). We notethat  (19)also defines p(D)ED(G/H) 
for any DED(G) which is invariant under right translations by all hEH. 

Theorem 4.1. # maps Z(G) onto D(G/H). 

Remark. Since Z(G) is commutative, so is D(G/H) by Theorem4.1. The 
commutativity of D(G/H) is also a consequence of the fact that the pair (G, H)  
is a symmetric pair ([1], [13]). 

For the proof of ]heorem 4.1, we decompose the Lie algebra g of G into a 
direct sum of .~, the Lie algebra of H, and an Ad (H)-invariant subspace ~ .  Since 
H consists of the matrices 

(20) h = b 
0 VERv 

we define 9Jr =c g as the subspace of matrices (0Y) 
T = - ty  0 

0 0 WER "-v. 

Then g= ~ @ ~ and since 

0 aYb-1 
A d ( h ) T =  -btYa-1 0 

0 0 

Y any real p •  matrix, 

o) 
b. W + b*Ya-W 

0 

~0l is Ad (H)-invariant. Now for every PE S(g), there exists a unique polynomial 
-PES(~J0 such that P-PES(g)~. Let I(~UI) be the algebra of Ad (H)-invariants 
in S(gJ0. Then the map P-~P takes l(g) into I(gJ0. Since the pair (G, H) is reduc- 
tive [4], it suffices by [10, Chapter II, Proposition 5.32] to prove that the map P-*P 
takes l(g) onto I(~IJl). Now gJl has basis vectors Xij (l<-i<-p,p+l<-j<-n) and 
Uk (p+l<=k<=n), We recall the characterization of I(~) in terms of these basis 
vectors [4]. 

Lemma 4.2. Consider the (p+ 1)X(n-p)  matrix with vector entries 

C = .  X l  ~+1 Y l .  �9 

txL+l xL 
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For l~k<=min ( p + l ,  n-p)  let TkCS(?OI ) be the sum of the squares of the kXk  
minors of C having vectors U~ in the first row: 

Tk = Xp+I~_il< .... ~_, det~ XJl'a XJl"i~ �9 

l ~ J l  . . . . .  Jk_l~p , A~rjlr _ 1, il  Xj~--l,ikl 

Then the polynomials T k are algebraically independent generators of l (~).  

We will show that for the generators Qk of I(g) in ]-heorem 2.1, ~)k = T k when 
l<:k<=min (p+  1, n--p). Since the map P ~ P  is a homomorphism, this will show 
that it is surjective from I(g) to I(~l). 

For this purpose it is convenient to identify S(g) and S(gJ0 with the algebras 
of polynomial functions on the dual spaces g* and ~lOl*, respectively. Thus, as in 
the proof of Theorem2.1, I(g):I0(g*). By the same token, I(~0l) is identified 
with the algebra I~0)l* ) of polynomial functions Q on gJl* invariant under the 
co-isotropy representation Ad;  (H) on 9)2* 

Q(Ad*(h)f) = Q(f) hCH, fCm*. 

By letting each fCg)l* be identically zero on ~ we may assume ~Ol*cg*. If P~ S(g), 
P then coincides with the restriction PlgYl*. Obviously if P~I(g*) then PEI~(gJI*). 
Under the bijection (7) of so(n+ 1) onto g*, the subspace gJl*cg* corresponds to 
the subspace of skew-symmetric matrices of the form 

( 0 X U) X a n y r e a l p X ( n - P )  matrix, 
(21) A = - tX 0 UER "-p. 

0 - tU  

From this we also obtain a linear bijection of ~0l* onto the space Mp+~,._p of real 
(p+ 1)• (n-p) matrices as follows: 

( 2 2 )  A ~ = | X l ,  p +  1 X l n  . 

\Xp, p + 1 Xpn 

By means of the transpose map, ~ corresponds to the dual space M~+~,._p, and 
by (10) the basis vectors of ~ correspond to the entry functions of Mp+~,._p via 

X~j-~x~j l < = . i ~ p , p + l ~ j < = n ;  
(23) 

Uk~uk p + l < = k ~ n .  

Thus the polynomials T k are polynomial functions on the space Mp+~,._p, just as 
the Qk are polynomial functions on so(n+ 1). Moreover, it is easy to see that for 
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any matrix A of the form (21), 

Qk(A)= Tk(tU) k = l  . . . .  ,min(p+l,n--p) .  

Thus it follows that 0.~= Tk, and this proves Theorem 4.1. 

Remark. If  k:~min ( p + l ,  n-p),  then QkI93~*=0. 

Corollary 4.3. The operators #(2(Q1)) . . . . .  p(2(Q,,)) (re=rain ( p +  1, n-p)) are 
algebraically independent generators of D(G(p,  n)). 

Proof. By [4, Lemma 4.2] the operators p(2(T1)) . . . . .  p(2(Tm)) are algebraically 
independent generators of  D(G(p,  n)). Since O.k=Tk (l<_--k~m), we have 

(24) #(,l (Qk)) = #(2 (Tk)) + lower order terms 

([7]). Now suppose P = ~ a ,  ...... ,mX~l...X~,m iS a nonzero polynomial such 
that the differential operator D=P(p(2(QO) ..... p(2(Q,~)))=0. Let D'---- 
P(g(2(T1)) . . . . .  #(2(T,~))). Then a ' r  and by (24), order (D'-a)<order(D'). 
This yields order (D ' )<order  (D'), a contradiction. Thus #(2(Q0)  . . . . .  #(2(Qm)) 
are algebraically independent. Next let DCD(G(p,n)). "Ihen we may write 
D =  P(#(2(T1)) . . . . .  #(2(T,,))) for some polynomial P. Setting 

Dz = P(#(QO ..... /z(,~(Q,,))) 

we have D=DI+D~, where order (Dz)<order (D). The corollary follows by 
induction on the order of  D~. 

Now fix a value of  q between 0 and n -  1, and f ix j  between max (O,p+q-n) 
and rain (p, q). We consider a generalization of  the Radon transform and its dual, 
due to Strichartz [14], from functions on G(p, n) to functions on G(q, n). For 
a fixed q-plane t/, let 0 be the set of  all p-planes r intersecting t /orthogonally in a 
j-dimensional plane. [[hen 0 is a closed submanifold of  G(p, n) and there exists a 
canonical measure d#(~) on 0 invariant under all Euclidean motions preserving t/ 
(cf. below). For any suitable function f o n  G(p, n), the transform R(p, q , j ) f  is a 
function on G(q, n) defined by 

(25) R(p, q,j)f(~) = fo f(r tIEG(q, n). 

For our purposes it is necessary to formulate this integral transform in terms of  
homogeneous spaces in duality. Let ex . . . .  , e~ be the usual basis of  R ", let Ep be 
as before the span of  el . . . . .  ep and let Eq be the span of  ep_j+l . . . . .  ep_j+a. I hen 
Ep and Eq meet orthogonally in a j-dimensional plane. I fH v and H~ are the respective 
subgroups of  G leaving Ep and E a invariant, then Hp consists of  the (n+ 1)X(n+ 1) 
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matrices h in (20) while Hq consists of the (n+ 1)X (n+ 1) matrices  0f~176 00} b" 0 V' a'EO(p-j) ,  b'EO(q), 
/ 0 0 c" ' e '~O(n+j-p--q),  V'ER q. 

0 0 

Also, G(p, n)=G/Hp and G(q, n):G/Hq. 

Proposition 4.4. The manifolds G/Hp and G/Hq are homogeneous spaces in 
duality. That is to say, the groups G, tip, Hq, and H :  hrp n Hq satisfy the following 
properties: 

(i) They are all unimodular. 
(ii) i f  h~EHp satisfies hpHqcH~Hp, then h, CHq. 

(iii) HpHq is a closed subset of G. 
The proof is straightforward and shall be omitted. (See [9] for the assumptions under- 
lying homogeneous spaces in duality.) 

]he  transform R(p, q,j) is then the integral transform associated with the 
double fibration 

C/H 
(26) / \ 

G/H. a/H  
That is to say, if t l=g.E q (gEG), then f / :  {gha.EplhqCHa} and 

R(p, q,J)f01) = f njH f(gha. Ep) d(hq), 

where d(ha) n is the Ha-invariant measure on HJH. (See [9].) A result of Helga- 
son [11, Proposition 4.1] states that an integral transform associated with a double 
fibration such as (26) intertwines the G-invariant differential operators in G/Hp 
and G/H a arising from operators in Z(G). 

Proposition 4.5. For any DCZ(G), let lip(D) and ira(D) be the projections of 
D on G/Hp and G/Hq, respectively, as in (19). Then for any fCC~(G(p, n)), 

(27) R(p, q, = ,a(D)(R(p, q, j ) f ) .  

Note that by Theorem 4.1, (27) is a statement about how R(p, q,j) intertwines 
all G-invariant differential operators on G/Hp and G/H a. 

Finally we consider the case q = n - p - 1 .  By Corollary4.3, the algebras 
D(G(p, n)) and D(G(q, n)) have the same number of algebraically independent 
generators, these being E~=#p(2(O,)) and F~=#a(2(a,) ) (l<:i<=min (p+ 1, q+ 1)) 
respectively. (27) shows how R(p, q,j) intertwines these generators: 

(28) R(p, q,j)o E~ = F~oR(p, q,j). 
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When  j = 0 ,  the  t r ans fo rm R(p ,  q, 0) is inject ive (and in fact  was inver ted  expl ic i t ly  

in [3]), a n d  (28) general izes the  well k n o w n  re la t ions  for  the  R a d o n  t r ans fo rm 

R ( = R ( O ,  n -  I, O)) a n d  its dua l  R t ( = R ( n - -  l ,  O, O)) on R": 

R ( L f )  = [2 (Rf ) ,  Rt(cqq~) --- LRtqo, 

for  a l l  f C C ~ ( R ' ) ,  ( p E C ~ ( G ( n - 1 ,  n)), where  L is the  Lap lac ian  on R" a n d  [] is 

the  Lap lac ian  on the  fibers o f  the  vec tor  bund le  G ( n - 1 ,  n) ([8], [9]). 
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